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ABSTRACT

The transferability of adversarial examples can be exploited to launch black-box
attacks. However, adversarial examples often present poor transferability. To
alleviate this issue, by observing that the diversity of inputs can boost transferability,
input regularization based methods are proposed, which craft adversarial examples
by combining several transformed inputs. We reveal that input regularization based
methods make resultant adversarial examples biased towards flat extreme regions.
Inspired by this, we propose an attack called flatness-aware adversarial attack
(FAA) which explicitly adds a flatness-aware regularization term in the optimization
target to promote the resultant adversarial examples towards flat extreme regions.
The flatness-aware regularization term involves gradients of samples around the
resultant adversarial examples but optimizing gradients requires the evaluation of
Hessian matrix in high-dimension spaces which generally is intractable. To address
the problem, we derive an approximate solution to circumvent the construction of
Hessian matrix, thereby making FAA practical and cheap. Extensive experiments
show the transferability of adversarial examples crafted by FAA can be considerably
boosted compared with state-of-the-art baselines.

1 INTRODUCTION

Figure 1: Different colors in the decision boundary in-
dicate different predicted classes. A sharp region is con-
sidered a small region covered by many colors like the
yellow region of the target model. Adversarial examples
in flat regions (pale green regions) can be effective against
both the proxy model and the target model.

The transferability of adversarial exam-
ples is crucial in security-oriented appli-
cations (Liang & Xiao, 2023; Wei et al.,
2023) and we explore the property on
the inspiration of the following observa-
tion. Input regularization methods (Dong
et al., 2019; Lin et al., 2020; Long et al.,
2022) improve the transferability by at-
tacking multiple transformed versions of
inputs. We discover that such methods
encourage adversarial examples to con-
verge towards flat regions, where losses
of different samples barely differ from
one another. Specifically, due to the
highly overlapping semantic information
of transformed inputs to their original
ones, transformed inputs lie in the neigh-
borhood of the original ones. As shown
in Figure 1 (left image), attacking trans-
formed inputs can be regarded as making
nearly all inputs around the original ones
threatening, i.e., comparable loss. In con-
trast, vanilla attacks (Xu et al., 2020) do
not concern the neighbors of the original
ones, which may cause sharp regions.

In fact, the cross-model transferability is probably induced by the similar shape of the loss landscape
of models associated with the input spaces; otherwise, adversarial examples produced via the proxy
model should not be effective against the target model, since their loss landscapes are not correlated
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and then adversarial examples should present distinct loss on different models. Furthermore, despite
the overall comparability of loss landscapes among models, there still exists some discrepancy due
to the non-negligible intrinsic divergence between models. To confirm the insight, we visualize the
loss decision boundaries of ResNet50 (bottom) and DenseNet121 (top) and demonstrate their high
similarity in loss landscapes, as shown in the right images of Figure 1. Wherein, the green regions
are flat and shared by proxy and target models and the yellow, while brown regions are sharp and
model-specified, which is probably caused by the unique nature of the proxy model. Hence, it is
easily grasped why the adversarial examples within flat regions usually exhibit better transferability.
Moreover, if attacks do not encourage adversarial examples to leap over the sharp regions, the
resulting examples become trapped within sharp regions, rendering them non-transferable; vice versa.

Input regularization methods implicitly push adversarial examples towards flat regions, i.e., promoting
the effectiveness of surrounding ones instead of explicitly penalizing sharpness. However, implicit
approaches tend to underperform explicit ones (Zhang et al., 2021; Cortes & Vapnik, 2004) due to the
need for sufficiently intricate transformation techniques. The opacity of DNNs makes it intractable
to identify the most effective transformation technique. To address this, we propose FAA, which
explicitly adds a flatness-aware regularization term to encourage adversarial examples towards flat
regions, together with optimizing one item for high loss. The high loss item maintains the effectiveness
of the resultant adversarial examples to fool the proxy model, while the flat region item promotes
them to incline towards flat regions. By jointly optimizing the two items, the produced adversarial
examples are more likely to arrive at flat extreme regions, empowering better transferability.

Two challenges arise when putting our idea into practice: defining the flatness-aware regularization
term and solving the optimization task. In response to the first challenge, we observe that samples
located in flat regions exhibit smaller loss differences than those in sharp regions, i.e., the gradients
of these samples are small. Motivated by this, the flatness-aware item is defined as the norm of
gradients of samples around adversarial examples. The second challenge is the prohibitive expense
of constructing Hessian matrix (Fletcher, 1988) in high-dimension spaces, which is necessary to
optimize the flatness-aware item. Although some approximation algorithms (Fletcher, 1988; Qian
et al., 2022) have been explored to decrease overheads, they still remain costly. To tackle this, we
analytically derive an approximate solution using only first-order gradients, so as to circumvent the
need to directly evaluate the Hessian matrix and enable cheaper and more practical attacks. Moreover,
we formally analyze the impact of the flatness-aware item on the transferability (see Appendix C),
establishing a theoretical connection between transferability and flat regions. To the best of our
knowledge, we are the first to demonstrate this in theory. Finally, extensive experiments show the
superior performance of FAA over various evaluation settings. Our contribution are four-folded:

• We propose FAA which solves an optimization task involving two items for high loss and flat
regions. Furthermore, we design an effective flatness-aware regularization item that consists
of the gradient norm of samples around crafted adversarial examples.

• We derive an analytical approximation method that circumvents the need for direct computa-
tion of the Hessian matrix, thereby solving the formulated task effectively.

• We provide an theoretical analysis that illuminates the intricate relationship between flatness
regions and the transferability.

• We conduct extensive experiments in both benchmark dataset ImageNet and multiple real-
world applications, e.g., Google Vision Systems and advanced search engines, showing
the impressive performance of FAA. To our best knowledge, FAA is the first transfer-based
attack to achieve an average 90% attack success rate against transformer architectures.

1.1 RELATED WORKS

In each iteration, input regularization methods (Dong et al., 2019; Xie et al., 2019; Wang & He,
2021; Wang et al., 2021) ensemble multiple transformed inputs to craft adversarial examples, and the
distinction between these methods are reflected in the transformation techniques used. DI (Xie et al.,
2019) observes the diversity of inputs can nourish the transferability and then suggests to resizes and
pads the inputs to generate diverse inputs. Similarly, to obtain diverse versions of inputs, TI (Dong
et al., 2019) translates the inputs and SI (Lin et al., 2020) scales the inputs. By observing that existing
transformations are all applied on a single image, Admix (Wang et al., 2021) attempts to admix inputs
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(a) Proxy Model: ResNet50 (b) Proxy Model: DenseNet121

Figure 2: The variance of model prediction for transferable and non-transferable adversarial examples.
See Appendix A for more results and detailed settings.

with an image from other categories. Recently, SSA (Long et al., 2022) perturbs inputs in frequency
domains to produce more diverse transformed inputs, that significantly improves the transferability.

Some methods enhance the transferability via the lens of model per se (Li et al., 2020; Zhu et al., 2022)
and optimization methods (Lin et al., 2020; Dong et al., 2018). For instance, MI (Dong et al., 2018)
adopts Momentum optimizer. Interestingly, it is well-shared that Momentum optimizer is capable
of evading sharp extreme regions, and our insight also, to some extent, clarifies why Momentum
optimizer works. Besides, SGM (Wu et al., 2020) refines the back-propagation procedure to amplify
the gradients of early layers, due to that the features learned by early layers are more shared over
different models. StyLess (Liang & Xiao, 2023) employs stylized networks to prevent adversarial
examples from using non-robust style features.

We find that the recently proposed RAP (Qin et al., 2022) shares a similar idea that pushes adversarial
examples towards flat regions. However, we distinguish this paper from Qin et al. (2022) in the
following ways: 1) The motivation difference. This paper observes the connection between flat
regions and input regularization methods, and RAP analogizes transferability to generalization ability
of models. 2) The technical paths taken are distinct. FAA adds a flatness-aware item to optimization
target and derive an approximation solution to address optimization. RAP formulates a SAM-like
bi-level task1. 3) In terms of effectiveness, FAA enjoys time complexity of O(n) while RAP has
time complexity of O(n2). Experiments show higher attack success rates of FAA over SAM. 4) We
provide a formal demonstration of the relationship between flat regions and the transferability.

2 LAUNCH EXPERIMENT

Before developing FAA, we conduct a launch experiment to validate that the adversarial examples
in flat regions are more transferable. Intuitively, the predictions of the model in the presence of
adversarial examples in sharp regions fluctuate more drastically than in flat regions. The fluctuation
degree can be quantified by the variance of model prediction with respect to the samples in the
regions. Based on this, we compute the variance of the regions of transferable and non-transferable
adversarial examples respectively, thereby validating our point.

We craft adversarial examples for 10000 natural samples using BIM (Kurakin et al., 2016) on
two proxy models, i.e., ResNet50 and DenseNet121, with the iteration of 10 and the perturbation
budget of 16/255. We mark the adversarial examples that mislead target models (corresponding to
x-axis) as Trans and the remaining ones as Non-Trans. To evaluate the flatness of regions around
crafted adversarial samples, we compute variances of loss of proxy model’s loss using 100 samples
extracted from the neighborhood of the crafted adversarial examples. Lower variances indicate flatter
regions. As shown in Figure 2, the prediction of the proxy model is less sensitive to small changes
in transferable adversarial examples than non-transferable ones, i.e., verifying that transferable
adversarial examples fall in flat regions.

1the bi-level task also is known to be difficult to solve by common optimization methods (see Appendix B)
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3 APPROACH

3.1 OPTIMIZATION FORMULATION

Given samples x with ground-truth labels y, vanilla transfer-based adversarial attacks (Xu et al.,
2020) solve the following optimization task to craft adversarial examples:

δ∗ = argmin
δ

−L(F (x+ δ), y), ||δ||∞ ≤ ϵ. (1)

where L(·, ·) is loss function and F (·) is the proxy model. Generally, L(·, ·) is cross-entropy loss
function and high loss makes x to be misidentified by F (·). ||δ||∞ ≤ ϵ is the optimization constraint to
make δ human-imperceptible and ϵ is a given perturbation budget. Notice that the above optimization
target is just to increase the loss of the proxy model with respect to x+ δ. However, the resulting
x+ δ is easily trapped into sharp extreme points since that many sharp extreme points are around x
(Figure 1). To address the issue, FAA instead adds a flatness-aware regularization item in Equation 1
to encourage the adversarial examples to fall in flat regions. As validated in Section 2, the adversarial
examples around flat regions are more transferable and, hence, the produced adversarial examples are
more shared across different models.

We now turn to define our flatness-aware regularization item. In flat regions, the loss difference
between points is small. Hence, the flatness of a region U around x+ δ can be evaluated as follows:

(

∫∫
x1,x2∈U

dx1dx2)
−1

∫∫
x1,x2∈U

||L(F (x1), y)− L(F (x2), y)||
||x1 − x2||

dx1dx2. (2)

Equation 2 measures the average slope of any two points in the regionU . However, directly optimizing
Equation 2 is expensive since it requires enumerating all possible pairs of x1 and x2. Fortunately,
based on Mean Value Theorem (Stein & Shakarchi, 2005), there is ||L(F (x1),y)−L(F (x2),y)||

||x1−x2|| =

||∇L(F (ξ), y)||, where ξ is between x1 and x2. If ||∇L(F (x), y)|| ≤ k for ∀x ∈ U , there is an
upper bound of Equation 2:

(

∫∫
x1,x2∈U

dx1dx2)
−1

∫∫
x1,x2∈U

||L(F (x1), y)− L(F (x2), y)||
||x1 − x2||

dx1dx2

≤ (

∫∫
x1,x2∈U

dx1dx2)
−1

∫∫
x1,x2∈U

k dx1dx2 = k.

(3)

Therefore, penalizing the gradients of samples around x+ δ can encourage the resultant x+ δ to fall
in flat regions. Compared to directly penalizing Equation 2, penalizing the gradients only involves a
single variable, significantly reducing the optimization costs required. In practice, FAA penalizes the
gradients of N samples uniformly extracted from the small region around x+ δ to conduct unbiased
monte carlo estimation. Specifically, the optimization target of FAA is formulated as follows:

δ∗ = argmin
δ

− L(F (x+ δ), y) +
λ

N

N∑
i=1

||∇L(F (x+ δ +∆i), y)||2,

||δ||∞ ≤ ϵ,∆i ∼ U(−b, b), b ≥ 0,

(4)

where U(−b, b) is uniform distribution between −b and b, λ is penalty magnitude, and x+ δ +∆i

denotes a sample extracted uniformly from the region around x + δ. b determines how wide the
region around x+ δ is desired to be flat, and higher λ suggests more attention to be paid to searching
flat regions. Moreover, intuitively, by incorporating a gradient penalty term into Equation 4, the
generated adversarial examples become less sensitive to changes in models. Thus, the resulting
adversarial examples probably enjoy small loss change on similar models, i.e., high transferability.
See Appendix C for the formal discussion.

3.2 APPROXIMATE SOLUTION

The highly non-linear and non-convex nature of F (·) render the analytic solution of Equation 4
to be hardly derived (Kurakin et al., 2016). As a result, standard practice for solving Equation 4
is employing gradient-based optimization methods (Croce & Hein, 2020). However, as shown in
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Equation 5, the gradients of Equation 4 involve Hessian matrix evaluated at multiple points x+δ+∆i

for ∆i, i = 1, · · · , N , each of which is troublesome to evaluate in high-dimension spaces (Fletcher,
1988; Qian et al., 2022).

−∇L(F (x+ δ), y) +
λ

N

N∑
i=1

∇||∇L(F (x+ δ +∆i), y)||2

= −∇L(F (x+ δ), y) +
λ

N

N∑
i=1

Hx+δ+∆i

∇L(F (x+ δ +∆i), y)

||∇L(F (x+ δ +∆i), y)||2
.

(5)

To get rid of directly evaluating Hessian matrix in Equation 5, we propose an approximate estimation
for Hx+δ+∆i

∇L(F (x+δ+∆i),y)
||∇L(F (x+δ+∆i),y)||2 . To achieve this, we utilize Taylor expansion on L(F (x + δ +

∆i + ϕ), y), assuming ϕ is small enough for making expansion feasible:

L(F (x+ δ +∆i + ϕ), y) = L(F (x+ δ +∆i), y) +∇L(F (x+ δ +∆i), y)ϕ, (6)

Furthermore, by differentiating both sides of Equation 6, we obtain:

∇L(F (x+ δ +∆i + ϕ), y) = ∇L(F (x+ δ +∆i), y) +Hx+δ+∆i
ϕ, (7)

Notice that, the desired item Hx+δ+∆i

∇L(F (x+δ+∆i),y)
||∇L(F (x+δ+∆i),y)||2 arises if setting ϕ along the direction

∇L(F (x+δ+∆i),y)
||∇L(F (x+δ+∆i),y)||2 . By implementing the idea, there is:

Hx+δ+∆i

∇L(F (x+ δ +∆i), y)

||∇L(F (x+ δ +∆i), y)||2
=

∇L(F (x+ δ +∆i + k ∇L(F (x+δ+∆i),y)
||∇L(F (x+δ+∆i),y)||2 ), y)

k︸ ︷︷ ︸
Term 1

− ∇L(F (x+ δ +∆i), y)

k︸ ︷︷ ︸
Term 2

.
(8)

Wherein, ϕ = k ∇L(F (x+δ+∆i),y)
||∇L(F (x+δ+∆i),y)||2 and k is a small constant to cater ϕ being small. By substituting

Equation 8 into Equation 5, we obtain the approximately estimated gradients of Equation 4. Compared
to directly evaluating Hessian matrix that requires quadratic storage and cubic computation time
(Fletcher, 1988; Qian et al., 2022), our solution only involves first-order gradients (linear computation
time) so as to make FAA more efficient computationally. Moreover, linear expansion used in Equation
7 results in an approximation error of O(k) (Stein & Shakarchi, 2005). If L(F (·), ·) is ψ-Lipschitz
continuous Hessian, the approximation error is lower than ψk

2 . See Appendix D for empirical error
evaluation.

3.3 A TOY EXAMPLE

Figure 3: The search trajectories of
SGD and our method FAA.

We construct a objective function sin( 1
x )

(x−0.15)2+0.1 + 100(x−
0.15)2 involving sharp and flat extreme regions to exemplify
that FAA can find flat regions. We employ SGD optimizer
and FAA with learning rate of 0.01 and random initialization
strategy (U(0.075, 0.250)) to search for the best solutions
that minimize the objective function. Both SGD and FAA
are run 1000 times each. Out of these runs, SGD converge
to a flat region (around 0.2) only 649 times, while FAA find
such regions 948 times, showing the superiority of FAA to
locate flat areas.

Figure 3 shows an example, of the search trajectories us-
ing different optimizers with initialization point of 0.01.
Wherein, SGD optimizer obtains the best solutions of about
0.1. However, the right extreme point, situated in a flatter
region, is more favorable compared to the left extreme point. We employ FAA to search for the best
solution and the obtained solution is convergent at the right extreme point, indicating that FAA is
indeed aware of the flatness of surrounding regions and favors a solution centered around flat regions.
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Table 1: The attack success rates (%) of different attacks on normal models. Best results are in bold.
Proxy Model Method ResNet50 DenseNet121 EfficientNet InceptionV3 MobileNetV2 SqueezeNet ShuffleNetV2 ConvNet RegNet MNASNet WideResNet50 VGG19 ViT Swin

ResNet50

BIM 100.00 40.48 34.31 38.62 41.30 53.62 44.08 26.35 34.03 42.63 41.51 42.98 24.59 27.14
MI 100.00 87.91 76.43 68.57 66.51 86.66 78.11 60.84 72.50 81.33 90.77 81.99 43.06 55.89
NI 100.00 88.14 76.79 68.57 66.10 86.43 78.06 60.64 72.55 82.35 91.17 82.98 41.68 54.87
DI 99.97 80.77 68.75 69.74 66.05 77.58 72.83 49.39 65.82 79.54 82.91 76.51 40.33 46.71
TI 100.00 73.47 56.28 55.99 55.79 68.85 62.04 42.83 59.08 66.33 78.60 68.78 34.85 40.51
VT 100.00 89.62 81.63 73.47 76.86 90.21 83.83 76.28 82.83 92.86 95.51 86.12 54.77 57.87

SSA 100.00 95.51 91.56 79.62 77.40 93.60 87.60 79.90 85.99 93.60 96.53 95.13 54.21 59.64
RAP 100.00 95.01 94.78 93.81 93.88 93.87 94.64 90.80 94.54 95.25 93.97 94.92 62.62 60.77

StyLess 100.00 98.16 95.75 94.21 94.98 95.12 95.63 89.19 95.77 97.20 94.10 94.66 83.27 79.43
Ours 99.85 99.69 99.52 98.70 99.52 99.72 99.82 94.34 97.37 99.82 99.44 98.83 93.52 90.98

ResNet152

BIM 45.77 40.08 34.57 38.83 40.64 53.37 43.78 26.48 34.85 41.99 41.56 41.96 24.72 27.14
MI 83.44 85.92 77.70 70.97 66.33 85.54 77.65 62.17 74.59 81.30 90.36 79.52 45.43 56.22
NI 84.26 87.32 77.70 70.38 66.38 86.10 78.06 62.88 74.67 81.48 90.89 78.70 43.93 54.31
DI 86.76 79.06 70.56 71.38 66.89 75.87 73.06 52.70 68.75 78.67 83.01 73.80 43.62 47.45
TI 84.21 73.42 58.57 57.60 56.51 68.14 62.42 45.08 61.35 66.48 78.57 66.48 37.91 41.30
VT 89.54 89.57 84.67 83.62 77.98 92.07 87.76 72.42 89.29 92.5 91.38 90.87 56.38 55.87

SSA 94.62 95.23 93.06 88.55 78.55 96.05 93.37 76.79 95.33 93.24 94.74 93.11 57.63 59.46
RAP 98.86 94.44 93.74 93.48 93.61 92.37 93.07 90.01 92.89 94.82 93.22 94.22 61.48 58.98

StyLess 99.10 95.54 94.78 95.11 94.48 93.57 94.88 91.22 93.25 95.25 95.10 95.46 83.48 78.54
Ours 99.85 99.67 99.39 98.95 99.18 99.01 99.64 94.11 97.96 99.77 99.57 98.57 90.19 86.27

DenseNet121

BIM 42.07 100.00 33.67 38.75 41.76 54.08 44.26 25.99 32.50 41.96 37.96 42.91 24.39 27.27
MI 89.01 99.97 81.35 73.95 70.33 87.88 80.18 65.00 73.65 84.41 86.63 85.64 47.17 61.10
NI 90.28 99.98 82.55 74.13 70.10 87.65 81.15 65.51 74.26 86.10 87.98 86.28 47.60 61.45
DI 82.45 99.90 73.24 72.88 70.43 78.90 76.58 51.33 66.22 81.22 78.47 79.52 43.52 49.92
TI 76.33 99.95 61.38 60.15 59.01 70.41 66.33 46.15 58.78 70.84 72.76 73.60 38.88 44.21
VT 92.12 99.95 90.33 86.58 81.48 92.02 90.18 75.19 85.78 78.75 81.20 81.56 49.18 52.93

SSA 94.82 99.97 91.86 83.67 83.67 96.66 92.76 82.18 88.04 88.11 90.48 90.13 50.92 59.64
RAP 97.40 99.96 95.48 95.06 94.67 97.91 94.94 90.77 92.51 96.10 95.04 94.43 63.13 61.65

StyLess 99.19 99.98 96.24 95.49 95.50 97.85 96.13 91.22 94.34 96.58 90.96 96.82 83.76 81.42
Ours 99.69 99.87 99.34 98.32 99.52 99.57 99.82 94.41 97.37 99.77 99.08 99.03 93.70 91.98

DenseNet201

BIM 43.32 46.81 35.31 39.41 41.25 53.49 44.97 27.09 33.65 42.76 39.23 42.07 25.23 28.06
MI 90.41 95.89 83.16 74.90 70.56 87.53 80.69 69.21 76.33 85.08 87.60 83.34 51.28 64.31
NI 91.20 96.56 83.19 75.48 70.20 87.32 80.87 70.18 77.24 86.25 88.55 84.67 50.48 64.54
DI 84.57 90.28 76.02 75.71 70.74 77.68 77.76 56.71 70.99 82.53 81.38 78.57 47.78 53.67
TI 78.39 88.11 63.85 62.37 59.67 70.00 66.61 49.21 63.29 71.30 74.11 70.74 41.53 46.38
VT 93.44 95.91 83.06 87.40 80.71 89.92 93.04 79.92 84.89 79.16 82.12 79.16 42.37 55.66

SSA 96.20 97.27 92.42 84.11 82.88 94.59 90.31 77.93 90.33 87.42 89.82 87.70 42.50 62.12
RAP 96.01 98.99 94.42 95.15 93.27 97.56 93.58 89.05 91.04 95.64 93.74 92.52 62.66 61.31

StyLess 98.26 99.56 95.77 96.42 94.72 97.84 94.76 93.44 93.57 96.75 95.81 93.57 82.54 80.15
Ours 99.72 99.90 99.67 98.83 99.23 99.31 99.85 96.96 98.34 99.77 99.62 99.16 93.54 92.85

Here we give insights into the effectiveness of FAA. Consider the situation that the optimization
variable falls in flat regions. In flat regions, the gradients of nearby points show small variation,
causing the flatness-aware regularization term (estimated by Equation 8) to close to 0. Thus, the high
loss item dominates Equation 5 and FAA can be deemed to degrade into vanilla transfer-based attacks.

On the contrary, if optimization variables falls in a sharp region, x+ δ+∆i+ k ∇L(F (x+δ+∆i),y)
||∇L(F (x+δ+∆i),y)||2

probably goes beyond the sharp region due to considerable gradients of points over sharp regions.
In this way, Term 1 in Equation 8 informs gradient information about other regions. Moreover, the
gradient directions of points over a small neighborhood of x + δ should share similar directions.
Hence, Term 2 in Equation 8 in fact weakens the impact of the high loss item. In summary, in this
situation, FAA will encourage the optimization variables to explore more regions.

4 SIMULATION EXPERIMENT

4.1 SETUP

Dataset. We randomly select 10000 images from the validation set of ImageNet. These images span
the whole label domain of ImageNet (1000 classes).

Models. We consider 14 models including ResNet50, DenseNet121, MobileNetV2, EfficientNet,
VGG19, InceptionV3, WideResNet50, MNASNet, RegNet, ShuffleNetV2, SqueezeNet, ConvNet,
ViT, and Swin. The models cover mainstream CV models: the former 12 are convolutional networks
and the last 2 are transformer-like networks. Moreover, we also validate the performance of FAA on
secured models including adversarial training with L2 (Salman et al., 2020) and L∞ (Tramèr et al.,
2018) constraint as well as robust training with Styled ImageNet (SIN) and the mixture of Styled and
natural ImageNet (SIN-IN) (Geirhos et al., 2019).

Baselines. Nine state-of-the-art attacks are used as competitors for FAA: BIM (Kurakin et al., 2016),
DI (Xie et al., 2019), MI (Dong et al., 2018), NI (Lin et al., 2020), TI (Dong et al., 2019), VT (Wang
& He, 2021), SSA (Long et al., 2022), RAP (Qin et al., 2022), StyLess (Liang & Xiao, 2023), and
Self-Universality (Wei et al., 2023). Self-Universality is a targeted attack and thus we only report its
performance in targeted setting (Table 3).

Evaluation metric. Attack success rate is used as the evaluation metric that is defined as the
misclassified rate of adversarial examples by target models. The higher the attack success rate, the
better the attack performance.
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Table 2: The attack success rates (%) of different methods on secured models. Three different
robust training methods are considered: adversarial training with L2 perturbation (L2− {0.03 ∼ 5})
(Salman et al., 2020) and L∞ perturbation (AdvIncV3 and EnsAdvIncResV2) (Tramèr et al., 2018),
robust training with Styled ImageNet (SIN) and the mixture of Styled and natural ImageNet (SIN-IN)
(Geirhos et al., 2019). The best results are in bold.

Proxy Model Method AdvIncV3 EnsAdvIncResV2 SIN SIN-IN L2-0.03 L2-0.05 L2-0.1 L2-0.5 L2-1 L2-3 L2-5

ResNet50

BIM 41.81 33.52 50.51 51.56 63.67 64.06 62.81 61.10 63.98 68.27 74.13
MI 58.78 43.24 75.46 96.05 82.83 83.47 80.31 74.74 75.00 75.08 77.98
NI 58.11 43.11 75.13 96.79 83.57 83.70 79.97 74.52 75.15 75.33 78.11
DI 54.34 45.03 75.84 92.04 78.27 78.19 75.61 69.57 70.94 71.53 75.74
TI 48.52 39.72 66.35 88.27 75.51 75.05 72.76 67.04 69.21 70.87 75.61
VT 59.72 50.89 69.03 94.06 77.27 77.22 74.21 68.24 69.80 70.92 75.48

SSA 60.13 50.48 70.31 97.63 80.61 80.46 76.84 69.06 70.28 71.25 75.69
Ours 74.57 72.81 99.52 99.90 96.20 96.45 96.48 93.65 91.76 88.19 87.24

ResNet152

BIM 41.84 33.85 48.95 42.14 63.11 63.47 62.76 60.92 64.11 68.19 74.06
MI 58.78 45.15 71.40 82.58 82.55 82.96 80.13 74.87 75.23 75.36 78.21
NI 58.98 44.74 71.79 83.83 82.70 83.04 80.08 74.80 75.13 75.28 78.14
DI 54.97 47.58 72.50 80.00 77.27 76.86 75.38 69.46 70.26 71.56 75.59
TI 49.34 41.48 63.11 72.76 74.21 74.44 72.22 66.61 69.06 71.35 75.48
VT 51.22 43.42 65.10 78.62 76.58 76.07 73.44 68.11 69.72 71.02 75.41

SSA 51.30 41.94 67.68 84.62 79.34 79.31 76.61 69.29 70.20 71.20 75.54
Ours 71.66 79.46 99.21 99.80 95.64 95.43 95.15 91.76 90.05 85.36 84.72

DenseNet121

BIM 41.99 34.08 48.80 40.26 63.09 63.11 62.55 60.92 64.01 68.27 74.16
MI 59.31 45.03 71.25 79.44 81.71 83.27 80.08 74.64 76.02 75.77 78.65
NI 59.03 45.08 72.07 80.31 81.53 83.14 79.80 74.87 75.69 75.79 78.57
DI 55.00 47.19 73.21 77.19 76.99 77.07 75.94 69.31 70.69 71.68 75.69
TI 49.13 40.71 62.24 67.58 73.62 73.57 71.96 67.60 68.85 71.10 75.38
VT 60.26 51.73 64.26 75.28 76.28 76.38 74.21 68.55 69.97 71.05 75.54

SSA 61.84 51.86 69.08 84.06 79.64 79.85 76.94 69.67 70.51 71.45 75.77
Ours 72.19 79.64 99.16 99.64 95.31 95.69 95.56 92.65 90.82 86.63 85.71

DenseNet201

BIM 42.07 34.18 48.93 40.99 62.88 63.62 62.78 60.94 64.11 68.42 74.13
MI 59.92 45.20 71.33 81.53 82.98 83.19 80.03 75.54 76.20 75.71 78.60
NI 59.90 44.41 72.27 82.42 82.55 83.06 80.18 75.28 75.79 75.66 78.21
DI 56.53 48.70 74.69 80.03 77.12 77.45 76.73 70.05 71.43 71.71 75.82
TI 50.08 41.20 62.68 69.34 74.21 74.29 72.60 67.68 69.67 71.02 75.64
VT 61.76 52.86 65.23 76.51 76.66 76.86 74.59 68.67 70.26 71.07 75.64

SSA 62.30 53.76 69.59 85.05 79.64 79.39 76.76 70.20 70.92 71.38 75.99
Ours 70.99 78.21 98.98 99.67 95.41 95.94 94.92 91.56 89.44 85.51 84.57

Table 3: The targeted attack success rates of different methods. The proxy model is ResNet50.
Method DenseNet121 EfficientNet InceptionV3 ConvNet WideResNet50 VGG19 ViT Swin

MI 4.20 0.60 0.00 0.20 5.20 0.80 0.00 0.20
DI 1.60 0.20 0.20 0.00 2.00 0.70 0.00 0.10
VT 4.74 1.08 0.53 1.05 5.43 1.31 0.42 0.38

SSA 5.39 2.27 1.43 0.70 6.65 3.56 0.81 1.20
RAP 18.64 13.90 8.23 6.76 12.20 7.10 7.30 5.82

StyLess 19.85 14.27 9.15 8.50 14.85 9.67 7.96 6.75
Self-Universality 22.00 18.04 9.59 8.69 15.69 8.52 9.72 6.69

Ours 31.90 25.20 14.30 12.20 22.60 13.20 13.40 9.80

Hyperparameter configurations. For baselines, we set hyperparameters used in their original papers
by default. For FAA, we set λ = 5, b = 16, k = 0.05, N = 10. Moreover, for all methods, we set
iteration of 20, ϵ of 16, and step size of 1.6.

See supplement materials for source codes. See Appendix E.1, E.3, E.4, E.5, E.6, E.7, E.8 for attack
results in other kinds of defenses like NRP (Naseer et al., 2020), the impact of hyperparameters,
L2-norm constraint attack, the impact of iterations, comparsion with transformer-based attacks, the
generality validation of FAA, comparison of flatness between adversarial examples generated by FAA
and RAP. In the following parts, our primary focus is on SSA as it stands out as state-of-the-art input
regularization attack.

4.2 ATTACK RESULTS

Attack results on normal models. Here we examine the attack effectiveness of our method on
both convolutional neural networks and transformer-like neural networks and Table 1 reports the
attack results. The following observation can be made. Simply speaking, as shown in Table 1, our
method defeats all the baselines by a significant margin and is the winning attack. For instance, when
employing ResNet50 as the proxy model, our attack witnesses an average gain of roughly 9% on
attack success rate, even when compared to the state-of-the-art transfer-based attack SSA.

Attack results on secured models. We evaluate the effectiveness of FAA on models defended by
robust training. We stick to employing undefended models as proxy models and this is a more
challenging setting, given that proxy and target models are more divergent. The attack results are
reported in Table 2 and we draw the following conclusions. Similar to the attack results on normal
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models, FAA still can craft more transferable adversarial examples against robust models. In particular,
as can be seen in Table 2, FAA enhance the attack success rates over SSA by a large margin.

Figure 4: The impact of perturbation budgets on
the effectiveness of FAA using a Proxy Model of
ResNet50.

Targeted attack results. We also investigate
the attack effectiveness of FAA for targeted
attacks, which is a more challenging attack
setting compared to untargeted attack setting.
Following the evaluation setting for targeted
attacks (Zhao et al., 2021), Table 3 reports
the targeted attack results of different attack
methods. As can be seen in Table 3, the attack
effectiveness of FAA on the targeted setting
is so striking, even when compared to Self-
Universality, which is specifically designed for
targeted attacks. compared with baselines.

Attack results with varying perturbation
budgets. Small perturbation budgets ϵ raise
the difficulty in conducting transfer-based at-
tacks and we further evaluate the attack ef-
fectiveness of different methods with varying
perturbation budgets. Figure 4 illustrates the
attack success rates of VT, SSA, and FAA. In short, FAA still dominates all settings in terms of attack
success rates.

4.3 A CLOSER LOOK AT FAA

Figure 5: The upper images visualize the crafted
noises using different methods while the below im-
ages show the attention maps of the target model
to corresponding adversarial examples by employ-
ing GradCam (Selvaraju et al., 2017). We provide
visualizations for targeted attacks in Appendix E.2.

We are also interested in how produced adver-
sarial noises fool target models. Figure 5 visual-
izes the generated adversarial noises generated
by VT, SSA, and FAA, respectively. Overall, the
adversarial noises with VT and SSA unevenly
spread throughout the entire images, whereas
the adversarial noises with FAA seem to be more
semantic and focus on tampering with the part
of the entity in the images, i.e., the dog, car, and
tree. Intuitively, tampering with the features of
the entities is more likely to make the resultant
adversarial examples transferable, since models
indeed use the features of the entities to make
predictions. Moreover, we examine whether or
not the adversarial noises can lure the attention
of the target model (DenseNet121) to deviate
from the location of the target class (dog). The
bottom images of Figure 5 verify our point that
the attention of the target model focuses on the
upper area rather than the location of the target
class. Interestingly, we find that the noises in
the upper area of produced adversarial noises with FAA are intensive and the target model also paid
more attention to the area than the unperturbed version. This leads to speculation that FAA can
distinguish different entities in the images, corrupt the features of the entity matching the ground-truth
label and reinforce the features of leaving entities, so as to fool the target model.

5 EVALUATION IN REAL CV APPLICATIONS

This section evaluates the performance of FAA against real deployed computer vision systems,
which is more challenging but also leads to a more reliable evaluation due to the following three
reasons: 1) Complexity and architecture of the target applications. The model used in real
applications is unknown and the model can range from a simple network to an extremely sophisticated
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Table 4: The scoring for the effectiveness of adversarial examples against real-world applications.
We generate 100 adversarial examples using FAA and then enlist a volunteer to assess the consistence
between the image contents with the predictions made by applications. A lower rating reflects a
higher effectiveness of the attack. A rating of 1 signifies that adversarial examples completely fool
the applications to a significant extent. The results of other attacks can be found in Appendix E.9.

Score Classification Object Detection Google Search Engine Bing Search Engine Yandex Search Engine Baidu Search Engine

5 1 3 0 0 0 0
4 7 21 10 6 5 4
3 13 7 18 11 13 4
2 9 4 16 21 17 10
1 70 65 56 62 65 82

combination of various networks. Besides, such applications may be equipped with some practical
defenses. 2) Training setting. Publicly available models mostly share similar training settings
(ImageNet). However, the settings of real industry environments probably are far more complicated.
3) Structure of the output. Real-world systems often output multiple hierarchical labels with
associated confidences, instead of logits. Besides, the label domain of the target applications is
extremely larger than that of proxy models, i.e., inconsistency in label space.

Google MLaaS platforms. We attack Google Cloud Vision Application 2 including image clas-
sification and object detection, which is believed to be one of the most advanced AI services. We
craft adversarial ones for 100 images against the applications. For image classification and object
detection, we collect predictions made by the Google Vision System and seek a volunteer3 to score
the consistency of the adversarial ones with the corresponding predictions. The scoring ranges from
1 (totally wrong) to 5 (precise), with higher scores indicating weaker attack performance. See the
appendix F for further details about the scoring process. Table 4 shows the striking effectiveness of
FAA against Google Service, while Appendix G gives the visualization results. The attack success
rates for image classification and object detection are around 70% and 80%, respectively, when
considering a score of 1 or 2 as a successful attack. Besides, we find that ineffective adversarial
examples often involve entities of persons, which ImageNet does not contain as a label. As a result,
FAA is not guided to corrupt the features of "Person," leading to the ineffectiveness of these adversarial
examples.

Reverse image search engine. Given an image of interest, reverse image search engine enables
searching for the most similar ones and creates great convenience and benefits. The task is remarkably
different from image classification and object detection and here we test the effectiveness of FAA
against the engines.

Google, Bing, Yandex, and Baidu Picture Search are Top-4 search engines suggested by the site4. We
reuse adversarial ones created for Google Service and score their effectiveness ranging from 1 to 5.
The attack effectiveness is negatively correlated with the similarity between the original image and
the images retrieved by the engines. Table 4 reports attack results and Appendix G shows the images
retrieved by four search engines for original and adversarial ones. Four engines present notable
vulnerabilities against adversarial examples by FAA. Specifically, the retrieved images for adversarial
ones are significantly inferior to those for original images, particularly for Baidu Picture Search,
which returns completely unrelated images.

6 CONCLUSION

We proposed FAA that involves a flatness-aware regularization item to encourage crafted adversarial
examples towards flat regions so as to boost the transferability of crafted adversarial examples. We
designed a flat item that consists of the gradients of samples around the crafted adversarial examples
and derived an approximate solution to circumvent the construction of Hessian matrix, making FAA
cheaper and more practical. We conducted extensive experiments in ImageNet over various proxy-
target model pairs and real-world CV applications and the results showed the superior effectiveness
of FAA compared with baselines.

2https://cloud.google.com/vision/docs/drag-and-drop
3See Section 7 for more information on the recruitment of volunteers and the evaluation procedure.
4https://www.reverseimagesearch.com/
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7 ETHICS STATEMENT

This paper designs a novel approach to enhance the transferability of adversarial examples. While
this approach is easy-to-implement and seems harmful, it is believed that the benefits of publishing
FAA outweigh the potential harms. It is better to expose the blind spots of DNNs as soon as feasible
because doing so can alert deployers to be aware of potential threats and greatly encourage AI
community to design corresponding defense strategies.

For the human assessment process (Section 5), we generated adversarial examples and collected the
predictions of different applications on these adversarial examples. Throughout the entire process, all
communication with the volunteer, including recruitment, was conducted anonymously. Similarly,
we do not knew the personal information regarding to the volunteer. The volunteer were unaware
of our specific objectives, ensuring that there was no interest between the volunteer and us. The
volunteer came from a certain university and possessed normal discernment abilities. During the
rating process, the volunteer were unaware of whether a given sample was an adversarial example or
the attack method used to generate it. Therefore, there was no bias towards any particular type of
attack method from the volunteer. Overall, the evaluation process was relatively fair.

8 REPRODUCIBILITY

To ensure that researchers can replicate our experiments, we provide detailed descriptions of methods,
experimental setups, and code implementations. The source codes are available in the supplementary
materials for review. Additionally, a detailed readme file is provided to assist researchers in com-
prehending and utilizing the code effectively. We also supply dependency information to guarantee
smooth execution of the code. After the paper is accepted, we will make all source codes publicly
accessible on GitHub.
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A MORE RESULTS ABOUT LAUNCH EXPERIMENT

We here provide more results to validate our point. Figure 6 shows the results in MobileNetV2 and
EfficientNet. As can be seen, transferable adversarial examples usually enjoy small variance, i.e.,
falling in flat regions.

(a) Proxy Model: MobileNetV2 (b) Proxy Model: ResNet50

Figure 6: The variance of model prediction for transferable and non-transferable adversarial examples
when deploying MobileNetV2 and EfficientNet as proxy model.

B PROBLEM IN SOLVING BI-LEVEL TASK

The task of solving bi-level problems, also known as min-max problems, is widely recognized to be
challenging. For more details, please refer to (Boyd & Vandenberghe, 2004). We here provide an
example to show the difficulty of gradient descent algorithm in solving bi-level problems.

Let f(θ, δ) = minθmaxδ θδ, where θ and δ are defined on the interval [−1, 1]. For the inner
problem, we see maxδθδ = |θ|, and the optimal solution is θ = 0. Consider the case θ = 0. In this
case, the inner optimal solution δ can be arbitrary values between -1 to 1. Without loss of generality,
we set δ = 1 and we observe ∇θf(θ, δ) = f(0, 1) = 1 ̸= 0. However, θ = 0 already is the optimal
solution for the bi-level task. To sum up, we see gradient descent algorithm may cause suboptimal
solutions for bi-level problems.

C THE CONNECTIONS BETWEEN THE FLATNESS-AWARE ITEM AND THE
TRANSFERABILITY

The effectiveness of adversarial examples against target models is referred to as their transferability.
In this paper, we break down transferability into two factors: the local effectiveness term, which
measures the loss on the proxy model, along with the transfer-related loss term, which quantifies the
change in the loss of adversarial examples when transferring from the proxy model to the target model.
A higher local effectiveness term and a lower transfer-related loss signify a stronger transferability of
adversarial examples. In the following, we demonstrate that, minimizing the flatness-aware item in
Equation 4 can be seen as a way to minimize the transfer-based loss to a certain extent, thus validating
the effectiveness of Equation 4.

Assume the dataset of interest follows distribution p(x, y) and there exists a ground-truth model Fg(·)
that fits p(x, y) perfectly. We employ cross-entropy loss as the loss function. We first consider Fg(·)
to be the target model. By employing Taylor expansion on L(Fg(x), y)− L(F (x), y), we derive the
following expression:

L(Fg(x), y)− L(F (x), y)
= L(Fg(x+ δ), y)−∇L(Fg(x+ δ), y)T δ − L(F (x+ δ), y) +∇L(F (x+ δ), y)T δ.

(9)

Wherein, L(Fg(x + δ), y) ≈ L(F (x + δ), y) is our transfer-related loss term. We assume that
our proxy model can fit p(x, y) well. Therefore, due to L(Fg(x), y) − L(F (x), y) ≈ 0, we wish
∇L(Fg(x+ δ), y)T δ −∇L(F (x+ δ), y)T δ ≈ 0 so as to make L(Fg(x+ δ), y) ≈ L(F (x+ δ), y),
i.e., small transfer-related loss term. For simplicity of notation, in the following analysis, we omit
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y. We consider minimizing ||∇L(Fg(x+ δ), y)T δ −∇L(F (x+ δ), y)T ||22 over the distribution of
interest: ∫

p(x)||(∇logp(x+ δ)−∇logF (x+ δ))T δ||22dx

≤
∫
p(x)||δ||22||∇logp(x+ δ)−∇logF (x+ δ)||22dx (by ||ab|| ≤ ||a||||b||)

=

∫
p(x)||δ||22(||∇logp(x+ δ)||22 + ||∇logF (x+ δ)||22)dx

− 2

∫
p(x)||δ||22∇logp(x+ δ)T∇logF (x+ δ)dx.

(10)

For the second integral
∫
p(x)||δ||22∇logp(x+ δ)T∇logF (x+ δ)dx in the above equation, we have:∫

p(x)||δ||22∇logp(x+ δ)T∇logF (x+ δ)dx

=

∫
p(x)

p(x+ δ)
||δ||22∇p(x+ δ)T∇logF (x+ δ)dx

≥
∫

||δ||22∇p(x+ δ)T∇logF (x+ δ)dx (use p(x) ≥ p(x+ δ))

= ||δ||22p(x+ δ)T∇logF (x+ δ)|+∞
−∞ −

∫
||δ||22p(x+ δ)T∇2logF (x+ δ)dx

= −
∫

||δ||22p(x+ δ)T∇2logF (x+ δ)dx.

(11)

In the third line of Equation 11, we use p(x) ≥ p(x + δ). This is because that, δ is crafted for
attacking the proxy model. The proxy model makes worse predictions for x+ δ than x. Furthermore,
the similarity between the proxy and target model makes it work in the target model. In the fourth line
of Equation 11, we suggest p(+∞) = p(−∞) = 0, which is natural in the distribution of interest.

Combining Equation 10 and 11, we have:∫
p(x)||(∇logp(x+ δ)−∇logF (x+ δ))T δ||22dx

≤
∫
p(x)||δ||22(||∇logp(x+ δ)||22 + ||∇logF (x+ δ)||22)dx+ 2

∫
||δ||22p(x+ δ)∇2logF (x+ δ)dx

≤
∫
p(x)||δ||22(||∇logp(x+ δ)||22 + ||∇logF (x+ δ)||22)dx+ 2

∫
||δ||22p(x)T ||∇2logF (x+ δ)||dx.

(12)
In the second line of Equation 11, we use p(x) ≤ p(x+ δ). We see that decreasing ||∇logp(x+ δ)||22,
||∇logF (x + δ)||22, and ||∇2logF (x + δ)|| can enhance the transferability of crafted adversarial
examples. Now we back to our flatness-aware regularization item ||∇L(F (x+ δ +∆), y)||2,∆ ∼
U(−b, b). We find the flatness-aware item in fact minimizes the above three items. Notice that the
flatness-aware item punishes the norm of gradients of samples around x+ δ. Therefore, this induces
||∇logF (x+ δ)||22 and ||∇2logF (x+ δ)|| to be 0. Moreover, if the proxy and the target model are
similar, the gradients of the proxy and target model also present high similarity. In practice, the target
model may not perfectly fit the distribution of interest but can fit it well. If adversarial examples are
effective against the ground-truth model, they are likely to be effective against the target model as
well. In short, we grasp why minimizing flatness-aware item can be seen as a way to minimize the
transfer-based loss.

D APPROXIMATION ERROR OF EQUATION 8

We here evaluate the approximation error of our method (Equation 8). Specifically, we compute the
ground-truth Hessian matrix and derive the ground-truth values of Hx+δ+∆i

∇L(F (x+δ+∆i),y)
||∇L(F (x+δ+∆i),y)||2 .

Table 5 reports the averaged maximum absolute distance between the ground-truth values and the
approximated values obtained using Equation 8 over 100 samples. The results demonstrate that the
approximation error diminishes as the value of k decreases.
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Table 5: Approximation error of our method with varying k.
k 0.001 0.01 0.1 1.0

Approximation Error 0.001 0.0042 0.0092 0.0114

E SUPPLEMENTARY EXPERIMENTS

E.1 ATTACK RESULTS ON OTHER DEFENSES

We here evaluate the attack performance of FAA against other defenses including R&P (Xie et al.,
2017), NIPS-R3 5, FD (Liu et al., 2018), ComDefend (Jia et al., 2018), RS (Jia et al., 2020), NRP
(Naseer et al., 2020). These defense mechanisms deviate significantly from adversarial training as
they rely on data processing techniques to purify adversarial examples into normal ones. The detailed
settings follow Long et al. (2022). Table 6 reports the attack performance of VT, SSA, RAP, and our
method against these defenses. FAA still consistently surpasses baselines by a large margin.

Table 6: The attack success rates (%) of attacks against various defenses. We use ResNet50 as the
proxy model.

Attack R&P NIPS-R3 FD ComDefend RS NRP

VT 64.53 70.69 73.4 87.33 52.14 43.97
SSA 72.10 75.32 76.06 91.27 61.86 52.91
RAP 93.15 92.44 92.58 95.59 76.09 76.28
Ours 95.81 97.44 94.02 97.64 85.54 83.47

E.2 ATTENTION VISUALIZATION FOR TARGETED ATTACKS

Figure 7 shows more visualizations of attention maps. As can be seen, the adversarial examples
produced by VR and SSA only can slightly decrease the attention of the target model to entities of
images, while FAA can significantly distract the attention of the target model from the entities to
trivial regions.

E.3 IMPACT OF HYPERPARAMETERS

FAA involves four hyperparameters that can significantly impact the attack performance:

• λ is a balance factor between the loss of resultant adversarial examples and the flatness of
the region around the adversarial ones. The bigger λ attaches more attention to promoting
adversarial examples toward flat regions.

• b suggests how wide the region around adversarial examples is desired to be flat.
• When comes to the implementation of FAA, Hessian matrix is approximately evaluated and

a inappropriate k probably induces non-trivial errors.
• We extract N samples around adversarial examples to estimate the flatness of the region

around the adversarial ones. Generally, the estimation accuracy raises with increasing N.

The impact of λ. Figure 8(a) illustrates the attack success rates of crafted adversarial examples by
FAA with varying λ against target models. We see that as λ increases, the attack effectiveness of
FAA presents the tendency to climb initially and decline thereafter. If λ is small like λ = 0.1, most
attention of Equation 4 is put into optimizing L while ignoring the flatness of the region around
crafted adversarial examples, i.e., degrading into vanilla transfer-based attacks and causing that the
adversarial ones are more likely to be trapped by model-specified sharp regions. As a remedy, properly
increasing λ can grab part of the attention of Equation 4 to focus on the flatness of the surrounding
region, so that the resultant adversarial examples have more chance to evade the model-specified

5https://github.com/anlthms/nips-2017/blob/master/poster/defense.pdf
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(a) Original (b) VR (c) SSA (d) Ours

Figure 7: We conduct targeted attacks and visualize attention maps of the target model to the resultant
adversarial images.

sharp regions and are more transferable. However, it should be stressed that too bigger λ induces
Equation 4 to only focus on the flatness and de-emphasize whether the region poses a threat to the
proxy model, leading to a reduction in the attack success rate. Therefore, carefully adjusting λ is
necessary.

The impact of b. We examine the attack effectiveness of FAA by changing the hyperparamter b and
Figure 8(b) shows the attack results over different proxy-target pairs. Overall, the attack performance
of FAA steadily increases with increasing b. The reason for it is that, a small b makes the extracted
samples too close to the resultant adversarial examples and causes that the flatness of the region
around the resultant adversarial examples cannot be effectively evaluated. Furthermore, increasing b
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(a) Impact of λ (b) Impact of b

(c) Impact of k (d) Impact of N

Figure 8: The attack effectiveness of FAA with varying λ ∈ {0.1, 0.5, 1, 5, 10}, b ∈
{1, 2, 4, 8, 12, 16}, k ∈ {0.01, 0.03, 0.05, 0.07, 0.09}, N ∈ {5, 10, 15, 20}. The proxy model is
ResNet50. We set ϵ = 8.

alleviates the issue so as to boost the transferability of produced adversarial examples. Moreover,
interestingly, we find that, when employing ResNet50 and EfficientNet, increasing b from 14 to 16
slightly hurts the transferability of produced adversarial examples, and this is probably attributed to
the extracted samples being a little far from the crafted adversarial examples.

The impact of k. Figure 8(c) shows the influence of the hyperparameter k to the performance of
FAA and we observe that increasing k weakens the attack effectiveness of FAA. In fact, as shown in
Section 3.2, Hessian matrix is approximately replaced by gradient difference, i.e., Equation 8, and
the feasibility of the approximation solution depends on a small k to omit the error of approximation
induced by Taylor expansion. Hence, it is intuitive why a bigger k incurs degradation on the attack
success rates of FAA.

The impact of N . Figure 8(d) shows the attack performance of FAA with different N . Intuitively, by
sampling more instances from the region around the resultant adversarial examples, i.e., increasing
N , we can make a more accurate estimation of the flatness of the region, which in turn can decrease
estimation errors and then strengthen the transferability of generated adversarial examples. As
expected, Figure 8(d) validates this point that increasing N promotes the transferability of produced
adversarial examples.

E.4 ATTACKS WITH L2 CONSTRAINT

Table 7 reports the attack results with L2-norm constraint. The attack effectiveness of FAA still
outperforms baselines by a large margin.
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Table 7: Thr attack results with L2-norm constraint. We use ResNet50 as the proxy model.
Attack DenseNet121 EfficientNet InceptionV3

VR (Wang & He, 2021) 81.88 79.84 73.49
SSA (Long et al., 2022) 83.96 83.02 77.65

Ours 87.48 85.68 80.05

E.5 ATTACKS WITH VARYING ITERATION

We here investigate the impact of iterations on attack performance. Table 8 reports the performance
of different attacks with varying numbers of iterations. It can be observed that there is negligable
change in attack performance when the number of iterations is increased from 10 to 20. The results
suggest that the attack methods achieve convergence with 10 iterations.

Table 8: The attack effectiveness of different attacks with varying iterations. We use ResNet50 as the
proxy model.

Attack ResNet50 DenseNet121 EfficientNet

VT (10 iter) 100.00 88.76 81.51
VT (20 iter) 100.00 89.62 81.63

SSA (10 iter) 100.00 95.29 90.72
SSA (20 iter) 100.00 95.51 91.56
Ours (10 iter) 99.80 99.08 99.25
Ours (20 iter) 99.85 99.69 99.52

E.6 COMPARISON TO TRANSFORMER-BASED ATTACKS

Recent certain attacks (Wei et al., 2021; Naseer et al., 2021) exploit the unique characteristics
of transformer-like networks to conduct transfer-based attacks on similar networks. Intuitively,
these attacks achieve better attack performance against transformer-like networks due to the higher
similarity of the proxy model to the target model. We evaluate the attack performance of such attacks
and FAA and the results are reported in Table 9. Notably, the attack success rates of these attacks are
less than 80%. In contrast, FAA shows impressive attack performance, surpassing the baseline by
achieving a remarkable 90.98% attack success rate against Swin.

Table 9: The attack success rates (%) of different attacks against Swin. MASR and RE use ViT as the
proxy model. FAA employs ResNet50 as the proxy model.

Attack MASR Wei et al. (2021) PGD+RE Naseer et al. (2021) Ours

ASR 46.10 77.40 90.98

E.7 VALIDATION OF GENERALIZATION OF FAA

Table 10 validates that FAA is a generic method. By combining FAA, the attack effectiveness of the
three methods can be notably enhanced.

E.8 FLATNESS COMPARISON

We compare the flatness of adversarial examples generated by FAA with that of RAP, following
the setting of the figure 6 of the RAP original paper Qin et al. (2022). As shown in Figure 9, FAA
produces flatter adversarial examples than FAA, providing an explanation for the better effectiveness
of FAA. Regarding the inferior flatness of RAP’s adversarial examples, there are two reasons. The first
one lies in the difficulty of solving bi-level optimization (See Appendix B). Secondly, as mentioned
in Section 1, the optimal transformation technique or combination thereof remains unclear.
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Table 10: The generalization validation of FAA. We use ϵ of 8.
Attack DenseNet121 EfficientNet InceptionV3

PGD (Madry et al., 2018) 29.88 24.76 22.14
PGD+Ours 91.61 83.14 80.72

DI (Xie et al., 2019) 40.25 36.02 33.98
DI+Ours 92.18 83.18 80.82

SGM (Wu et al., 2020) 57.36 52.72 49.36
SGM+Ours 92.29 83.19 81.89

Figure 9: The visualization of flatness. A lower value represents better flatness.

E.9 COMPARISON OF ATTACKS ON REAL-WORLD CV APPLICATION

Table 11 reports the attack performance of VT, SSA, and FAA on classification and object detection
in Google MLaaS platforms. The results demonstrate the superiority of FAA over the baselines.

Table 11: The effectiveness of attacks against real-world applications. We report the total number of
samples scored by 1, 2, and 3 for each attack.

Classification Object Detection

VT 56 32
SSA 71 48
Our 92 76

F SCORE IMPLICATION

We begin by gathering predictions from Google MLaaS platforms for both label detection and object
detection over crafted adversarial examples. We assign scores to these predictions along five discrete
levels, with scores of 1 through 5 indicating the degree of accuracy: totally wrong, slightly incorrect,
strange but not incorrect, relatively reasonable, and precise. A score of 1 suggests that the images
do not contain the objects predicted. A score of 2 indicates minor errors in the predictions, such as
identifying flowers instead of trees in a tree image. A score of 3 suggests that the main object in the
image is not correctly recognized, for example, predicting stones, roads, or tires for a car image. A
score of 4 denotes accurately identifying the general type of the main object in the images, while a
score of 5 indicates that the system can fully and correctly identify the main object in the image. Next,
a volunteer (See Section 7 for more information on the recruitment of volunteers and the evaluation
procedure) is asked to rate the consistency between the predictions and the images based on these
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scores For search engines, a similar evaluation procedure is followed, where we assess the similarity
between the retrieved images and their corresponding original images.

G A VISUALIZATION OF DIFFERENT ATTACKS AGAINST GOOGLE SERVICE
AND SEARCH ENGINES

Figure 10 shows a visualization of different attacks against Google Service, and we use the format
{attack method}-{task} to denote the attack used to craft adversarial examples and the corresponding
test task.

For image classification, consistent with our intuition, the original image is predicted into plant-related
categories. However, the returned predictions for the adversarial examples produced via VR and
SSA are close to the ground-truth label of the original image. Therefore, the adversarial examples
cannot be deemed to be threats against Google Cloud Vision. In contrast, the adversarial examples
generated by our method indeed mislead Google Cloud Vision, where the predictions with the highest
confidence are bird, water, and beak, and these predictions are fairly irrelevant to the original images.

For object detection, we can obtain similar conclusions. The original image is correctly detected. The
adversarial examples produced by VR seem to fool Google Cloud Vision to some extent, while SSA
can fully mislead Google Cloud Vision. Also, our adversarial examples trick Google Cloud Vision
with higher confidence than VR.

Figure 11 visualizes an example of FAA against four state-of-the-art search engines. We observe
that search engines fetch high-quality and similar images for normal samples. However, when we
input the generated adversarial examples, the quality of retrieved images noticeably deteriorates,
particularly in the case of Baidu.
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(a) Original-Classification (b) VR-Classification

(c) SSA-Classification (d) Ours-Classification

(e) Original-Object-Detection (f) VR-Object-Detection

(g) SSA-Object-Detection (h) Ours-Object-Detection

Figure 10: The attack results on Google Cloud Vision including image classification and object
detection tasks. We do not know any knowledge of it and the proxy model is ResNet50.
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(a) Original-Google (b) Ours-Google

(c) Original-Bing (d) Ours-Bing

(e) Original-Yandex (f) Ours-Yandex

(g) Original-Baidu (h) Ours-Baidu

Figure 11: An example for attacking four state-of-the-art search engines.
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