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Abstract

Multimodal speech recognition aims to im-001
prove the performance of automatic speech002
recognition (ASR) systems by leveraging ad-003
ditional visual information that is usually as-004
sociated to the audio input. While previous005
approaches make crucial use of strong visual006
representations, e.g. by finetuning pretrained007
image recognition networks, significantly less008
attention has been paid to its counterpart: the009
speech component. In this work, we investigate010
ways of improving the base speech recognition011
system by following similar techniques to the012
ones used for the visual encoder, namely, trans-013
ferring representations and data augmentation.014
First, we show that starting from a pretrained015
ASR significantly improves the state-of-the-art016
performance; interestingly, even when building017
upon a strong unimodal system, we still find018
gains by including the visual modality. Sec-019
ond, we employ speech data augmentation tech-020
niques to encourage the multimodal system to021
attend to the visual stimuli. This technique022
replaces previously used word masking and023
comes with the benefits of being conceptually024
simpler and yielding consistent improvements025
in the multimodal setting. We back up our026
conclusions by empirical results on three multi-027
modal datasets, including the newly introduced028
Localized Narratives.029

1 Introduction030

With the advent of video sharing platforms (such031

as YouTube or Vimeo), multimodal data involving032

audio, visual and language are becoming ubiqui-033

tous. In many types of video, such as instructional034

videos, documentaries, movies, what is spoken is035

related (grounded) to the visual channel. In this pa-036

per we build upon this observation and address the037

task of automatic speech recognition in the context038

of visual information, also known as multimodal039

speech recognition. Concretely, we assume that we040

have two inputs (the acoustic signal and a related041

visual modality, such as a video or an image) and042

we want to output the transcription of the input 043

utterance. 044

The recent work on multimodal speech recog- 045

nition makes crucial use of deep end-to-end ar- 046

chitectures (Palaskar et al., 2018; Caglayan et al., 047

2019; Srinivasan et al., 2020a,b,c; Paraskevopoulos 048

et al., 2020; Ghorbani et al., 2021). We follow their 049

suite and develop an end-to-end multimodal speech 050

recognition system. Compared to previous work, 051

we first experiment with two fusion mechanisms for 052

combining the audio and visual modalities—either 053

concatenation along the embedding dimension or 054

concatenation along the temporal dimension. Sec- 055

ond, and more importantly, we improve the pipeline 056

by focusing on the speech component by (i) trans- 057

ferring pretrained speech representations and (ii) 058

performing audio-level data augmentations. 059

Transferring representations. All recent pa- 060

pers on multimodal speech recognition transfer 061

visual representations, obtained as activations or 062

softmax predictions of a pretrained visual clas- 063

sification network. Depending on the training 064

classes (objects, as in (Sun et al., 2016; Moriya 065

and Jones, 2018; Palaskar et al., 2018; Srinivasan 066

et al., 2020b); scenes, as in (Miao and Metze, 2016; 067

Gupta et al., 2017; Srinivasan et al., 2020a); ac- 068

tions, as in (Miao and Metze, 2016; Caglayan et al., 069

2019; Paraskevopoulos et al., 2020); faces, as in 070

(Miao and Metze, 2016; Moriya and Jones, 2019)), 071

the visual encoder is more sensible to pick up cer- 072

tain types of visual information. However, none of 073

these prior works make use of pretrained speech 074

representations. In this paper we not only show the 075

importance of starting from a good representation 076

for both the audio and visual channels, but crucially 077

we provide an answer to question of whether the 078

visual information is helpful for a stronger baseline 079

system. 080

Data augmentation. Augmenting the training 081

set with perturbed samples is a common technique 082

to enforce invariants for high-capacity deep learn- 083
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ing models. For image classification, images are084

altered by horizontal flips and small affine transfor-085

mations, while for speech recognition the speed of086

an utterance is modified by time warping. We use087

these ideas, in particular those related to speech088

augmentation, to improve the multimodal models.089

Our intuition is that perturbing the audio signal090

will make the model more reliant on the visual091

channel. The inspiration stems from the work of092

Srinivasan et al. which have shown that multi-093

modal models improve over the baseline ASR even094

when audio-image pairs are mismatched (incongru-095

ent) (Srinivasan et al., 2019), but if the multimodal096

models were trained on masked audio signals, this097

behaviour is alleviated (Srinivasan et al., 2020a).098

Compared to the previous approaches (Srinivasan099

et al., 2019, 2020a,b), we do not limit ourselves100

to temporal masking of words, but randomly mask101

temporal and frequency segments, as in (Park et al.,102

2019); as a consequence our approach is more gen-103

eral and convenient to use. Another key distinction104

is that we do not carry the evaluation on the masked105

data, but consider the more realistic scenario of as-106

suming clean speech at test time and performing107

alterations only at train time.108

To summarize our contributions are: (i) improve109

the speech component of multimodal models by110

transfer learning and data augmentation; (ii) ex-111

plore fusion techniques for the audio and visual112

modalities; (iii) report state-of-the-art performance113

on multiple multimodal speech recognition datasets114

such as Flickr8K and How2, and new results on the115

recently introduced Localized Narratives dataset.116

2 Related work117

In this section we discuss the main categories of118

multimodal models and present our task in the con-119

text of related problems.120

A taxonomy of multimodal models. Per-121

haps unsurprisingly, the techniques for multi-122

modal speech recognition have been following the123

trends in speech processing and computer vision.124

Based on the choices of the two main components125

(namely, the audio and visual pipelines), we distin-126

guish three types of systems.127

The first approaches (Mukherjee and Roy, 2003;128

Fleischman and Roy, 2008) date back to the 2000s129

and rely on the Hidden Markov Models and Gaus-130

sian Mixture Models (the HMM-GMM paradigm)131

for speech recognition and hand-crafted features for132

the visual channel. These methods also assumed133

more constrained and simplified settings to account 134

for the lack of data. 135

The second category of multimodal systems 136

(Miao and Metze, 2016; Gupta et al., 2017; Sun 137

et al., 2016; Moriya and Jones, 2018; Oneat, ă and 138

Cucu, 2021) uses Hidden Markov Models and Deep 139

Neural Networks (the HMM-DNN paradigm) for 140

speech recognition, while the visual component re- 141

lies on pretrained networks. While many of these 142

approaches fuse the two components at the last 143

stage (language modeling) (Gupta et al., 2017; Sun 144

et al., 2016; Moriya and Jones, 2018; Oneat, ă and 145

Cucu, 2021), a notable exception is the work of 146

Miao and Metze (2016), which advocates for early 147

fusion, at the audio level, based on the observation 148

that the acoustic conditions can correlate with the 149

visual context. 150

Finally, the latest type of models leverage recent 151

developments in end-to-end architectures and train- 152

ing (Palaskar et al., 2018; Caglayan et al., 2019; 153

Srinivasan et al., 2020a,b,c; Paraskevopoulos et al., 154

2020; Ghorbani et al., 2021). For the audio part, the 155

most common model involves recurrent networks 156

for encoder and decoders, coupled through an atten- 157

tion mechanism, but other variants include using a 158

connectionist temporal classification (CTC) model 159

(as done in (Palaskar et al., 2018)) or the Trans- 160

former architecture, which involves attention-only 161

layers (as done in (Paraskevopoulos et al., 2020)). 162

Various fusion levels have been explored: encoder, 163

decoder, and also at acoustic level. Of course these 164

can be combined as done by Caglayan et al. (2019). 165

Our approach falls into the latter category, of 166

end-to-end architectures. We share similarities to 167

the work of Paraskevopoulos et al. (2020), in that 168

we employ Transformer architecture and sub-word 169

modeling, however our base speech recognition sys- 170

tem is much stronger and we focus our empirical 171

evaluation on the importance of transfered repre- 172

sentations. 173

Related tasks. We distinguish our work from 174

two closely related tasks, which also make use 175

of audio and visual input modalities. A first task 176

is audio-visual speech recognition (Mroueh et al., 177

2015; Petridis et al., 2018; Afouras et al., 2018), 178

which also attempts to improve speech recognition, 179

but it uses lip movement information. A key differ- 180

ence to our methodology is that for the lip-based 181

recognition there is a much tighter (although ar- 182

guably more difficult to model) relation between 183

the video and the transcriptions, while for multi- 184
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modal speech recognition, the relationship is at a185

semantic level and might affect only a few words,186

which have visual grounding. A second task is187

learning audio-visual correspondences, but with-188

out depending on the textual annotations. This189

formulation has the advantage of relying on less190

supervision and finds many uses, such as represen-191

tation learning (Harwath et al., 2016; Harwath and192

Glass, 2015), learning linguistic units (Harwath193

et al., 2019), semantic keyword spotting (Kamper194

et al., 2019), speech-based image retrieval (Syn-195

naeve et al., 2014; Harwath et al., 2016, 2018) and196

speech-based object localization (Harwath et al.,197

2018).198

3 Methodology199

In speech recognition, an audio input a is mapped200

to a transcription t, usually represented as a se-201

quence of tokens. In the usual encoder-decoder202

instantiation the output is obtained by composing203

the two components: t = Dec(Enc(a)). In the204

case of multimodal speech recognition, we assume205

that we have access to an additional input—the vi-206

sual channel v. The visual information is processed207

by a separate encoder, Encv, and integrated into208

the network by a fusion function, which we denote209

by “▷◁”:210

t = Dec(Enc(a) ▷◁ Encv(v)).211

Next, we discuss each of the components: speech212

encoder and decoder in §3.1, visual encoder in §3.2,213

fusion in §3.3.214

3.1 Speech recognition system215

The backbone of the multimodal system the is an216

end-to-end automatic speech recognition system.217

We use a Transformer network, which is based on218

self-attention modules for the encoder and atten-219

tion modules in the decoder to pool information220

from the audio stream. The network predicts to-221

kens in an autoregressive fashion, by modelling the222

probability of the next token given the audio and223

previously predicted tokens, p(tk|t<k,a).224

Transfer learning. Instead of starting the train-225

ing of the multimodal speech recognition system226

from scratch, we explore initializing the speech227

components (encoder and decoder) from a pre-228

trained speech recognition model. The base system229

is a pretrained ASR system on a large unimodal230

dataset, the LibriSpeech corpus (Panayotov et al.,231

2015), whose weigths we transfer and then adapt 232

on the target multimodal dataset via finetuning. 233

Data augmentations. We extend the set of 234

speech samples with perturbed versions of the sig- 235

nal in order to make the system more robust and to 236

encourage the decoder to attend to the visual com- 237

ponent. The augmentations are based on SpecAug- 238

ment (Park et al., 2019) and include time warping, 239

frequency masking and time masking. The same 240

transformations were used for training the base uni- 241

modal system on LibriSpeech and we also apply 242

them when training the multimodal system. Previ- 243

ous approaches (Srinivasan et al., 2019, 2020a,c) 244

used temporal masking, but in their case the re- 245

moved segments corresponded to words (such as 246

nouns and places). As such, these methods rely on 247

additional components such as audio-text align- 248

ment and part-of-speech tagging, while our ap- 249

proach is unstructured and, consequently, free of 250

these dependencies. Moreover, previous methods 251

investigated masking with a different goal in mind 252

(not as a data augmentation technique): to quantify 253

how well the visual component is able to retrieve 254

the masked words at test time. 255

3.2 Visual encoder 256

The visual encoder summarizes the information 257

present at the input of the visual channel. We as- 258

sume an image at input and build upon the popular 259

ResNet architecture (He et al., 2016), which was 260

also used in previous works on multimodal speech 261

recognition, e.g., (Caglayan et al., 2019; Srinivasan 262

et al., 2019, 2020a). The visual encoder is initial- 263

ized with the weights of a pretrained model on 264

the ImageNet dataset (Russakovsky et al., 2015) 265

and uses intermediate network activations as its 266

encoding. Depending at which layer we take the 267

activations, we obtain either (i) a single feature 268

vector or (ii) a sequence of feature vectors. Con- 269

cretely, the activations before the softmax layer 270

(and after the global average pooling layer) yield 271

a single fixed-sized vector, which encodes global 272

information from the entire image. If we take the 273

activations from one layer before (that is, before 274

the global average pooling layer), we obtain a 7 275

× 7 grid of embeddings, which we sequence as a 276

list of K = 49 embeddings. This second approach 277

encodes more local information, which we hope 278

will allow the model to use more fine-grained char- 279

acteristics of the image. On top of the sequence 280

of embeddings we optionally learn layers of gated 281
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Figure 1: The two proposed fusion mechanisms of the audio and visual modalities: emb, fuses along the embedding
dimension (left); seq, fuses along the sequence dimension (right). Additional operations (dense projection, denoted
by π; repeat operation, denoted by ρ) ensure matching dimensions and better adapted embeddings. The subscript (D
or T ) indicates the axis along which each transformation is applied (embedding dimension or sequence dimension).
The symbol “▷◁” denotes concatenation.

multilayer perceptrons (gMLP) (Liu et al., 2021), a282

recently introduced substitute for self-attention lay-283

ers, which alternates channel-wise with sequence-284

wise dense layers. Compared to the attention layer,285

the gMLP architecture requires less computation286

and memory, while still maintaining the perfor-287

mance.288

Relation to prior work. Most of prior work289

uses a single global feature vector to encode the290

visual information, some notable exceptions be-291

ing (Paraskevopoulos et al., 2020) and (Srinivasan292

et al., 2020c). The method in (Paraskevopoulos293

et al., 2020) works on video sequences and ex-294

tracts a feature vector for each video frame, while295

in (Srinivasan et al., 2020b) the authors extract296

ResNet features for K = 16 object proposals ob-297

tained from a detection network. Compared to the298

latter approach, our approach does not require a299

pretrained detection module and hence is simpler300

and can be trained with less supervision.301

3.3 Fusion mechanisms302

Our fusion techniques combine the speech and vi-303

sual embeddings (as produced by each of the two304

encoders) before feeding them into the decoder. In305

the following we assume that speech embeddings306

have dimension T ×Da, while visual embeddings307

have dimension K ×Dv (the first axis, of length308

K, can correspond to a list of boxes in an image309

or a list of frames in a video). We experiment with310

two fusion approaches, either along the embedding311

dimension (emb) or along the sequence dimensions312

(seq); these two variants are illustrated in Figure 1.313

The choice of fusion is also influenced by the vi-314

sual encoder: if we represent the visual input with315

a single feature vector (K = 1) it is possible to316

concatenate along the embedding dimension, while317

if we use a list of visual features (K > 1) then 318

the concatenation along the sequence dimension is 319

more suitable. 320

Fusing along the embedding dimension (emb). 321

In this case we fuse the speech and visual features 322

along the dimension of the embeddings. More 323

precisely, we first project the two inputs into a com- 324

mon subspace and replicate the visual embedding 325

T times, then we concatenate the two representa- 326

tions and, finally, project the output to have dimen- 327

sion Da. In this case, the fusion procedure outputs 328

a matrix of the same size as the input speech ma- 329

trix, T × Da. Retaining the original dimension 330

has a number of advantages: it allows us to main- 331

tain the same decoder size as in the unimodal case 332

(enabling transfer learning and fairer comparisons) 333

and to use residual connections (from speech to the 334

fused features), which are known to help learning. 335

Fusing along the sequence dimension (seq). 336

When the embeddings of the two input modalities 337

are both sequences, it makes sense to concatenate 338

the visual and speech features along the sequence 339

dimension (temporal for speech and patch-wise for 340

the image). As the decoder attends along sequential 341

dimension of the input, this operation will become 342

more expensive after the fusion. However, the seq 343

fusion has the advantage of being more flexible 344

than the emb variant, since the decoder has the 345

option of pooling separately the audio and visual 346

features, without mixing the two. 347

Relation to previous work. Many of the previ- 348

ous approaches were based on recurrent networks 349

and the common ways of incorporating the visual 350

context were (i) to set the first decoded “word” as 351

the visual embedding (Sun et al., 2016; Moriya 352

and Jones, 2018), or (ii) to initialize the hidden 353

state of the recurrence with the visual embedding 354
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(Caglayan et al., 2019). Another method, encoun-355

tered especially for adapting acoustic features, was356

visual adaptive training (Miao and Metze, 2016;357

Palaskar et al., 2018), which amounts to applying358

a linear transformation parameterized by the vi-359

sual encoding. While concatenation of features360

was previously employed (Miao and Metze, 2016;361

Palaskar et al., 2018) it was not used in the con-362

text of Transformer architectures. When the visual363

information is a sequence, attention-based meth-364

ods are a popular choice (Srinivasan et al., 2020b;365

Paraskevopoulos et al., 2020; Ghorbani et al., 2021).366

All these methods pool independently across the367

audio and visual streams, whereas in our case the368

seq method pools over both of them simultaneously.369

The methods in (Srinivasan et al., 2020b; Ghorbani370

et al., 2021) attend to the visual sequence based371

on the previously decoded word (as we do), while372

(Paraskevopoulos et al., 2020) pools based on the373

audio. The main distinction between (Ghorbani374

et al., 2021) and (Srinivasan et al., 2020b) is that375

the former simply concatenates the two pooled rep-376

resentations, while the latter predicts which of the377

two modalities (visual or audio) should be preferred378

through a second, hierarchical attention layer.379

4 Experimental setup380

In this section we present the experimental setup,381

including the multimodal datasets (§4.1) and addi-382

tional implementation details (§4.2).383

4.1 Datasets384

We carry out the evaluation on three datasets that385

contain the three desired modalities (audio, visual,386

language).387

Flickr8K (Hodosh et al., 2013; Harwath and388

Glass, 2015) consists of 8K images, each described389

by five captions. The original dataset (Hodosh390

et al., 2013) contained only the visual and language391

modalities, and it was later extended with audio392

recordings of the read captions by (Harwath and393

Glass, 2015).394

How2 (Sanabria et al., 2018) contains instruc-395

tional videos downloaded from YouTube and396

comes with additional shot information and tran-397

scriptions. We use the 300h variant, which totals398

around 13.5K videos (190K shots). The dataset399

consists of pre-extracted audio and visual features,400

but, in order to use pretrained models, we had to401

use the original videos; the raw data was kindly402

provided by the authors, upon request.403

Localized Narratives (Pont-Tuset et al., 2020) 404

is a recently introduced dataset, that extends four 405

popular image datasets (Flickr30K (Young et al., 406

2014), COCO (Lin et al., 2014), ADE20K (Zhou 407

et al., 2019), Open Images (Kuznetsova et al., 408

2020)) with new captions, audio recordings and 409

mouse traces (which locate the spoken words in 410

the image). Compared to the original datasets, the 411

captions are richer and the audio component is 412

challenging due to noisy recording conditions and 413

accented speech. We use this dataset to carry out an 414

ablation study. In order to be able to perform such 415

extensive studies we (i) use only the Flickr30K 416

part, (ii) segment the audio into sentences (based 417

on the provided transcripts), (iii) remove utterances 418

longer than 15 seconds, (iv) subsample half of 419

the utterances. This procedure is applied on all 420

three splits (training, validation, testing) and yields 421

around 32K, 1K, 1K samples, respectively. 422

4.2 Implementation details 423

The implementation is based on the ESPnet frame- 424

work (Watanabe et al., 2018) and our code is avail- 425

able online.1 426

The speech recognition component is a Trans- 427

former architecture, which is pretrained on the Lib- 428

riSpeech dataset (Panayotov et al., 2015). The sys- 429

tem outputs tokens from a vocabulary with 5000 430

elements, which was obtained by subword segmen- 431

tation using an unigram language model (Kudo, 432

2018); we don’t use an external language model. 433

For finetuning, we train for 50 epochs for the 434

smaller datasets (Flickr8K and Localized Narra- 435

tives) and 30 epochs for the larger dataset (How2). 436

For optimization, the learning rate is warmed up 437

linearly from 3.2 × 10−8 to 8 × 10−4 over 25K 438

batches, after which it is decreased as a function 439

of 1/s2 in the step number s. At test time, we 440

ensemble the ten best models by averaging their 441

weights; this technique gives small, but consistent 442

improvements over predicting with only the best 443

model. 444

The visual encoder is a ResNet architecture with 445

either 18 or 50 layers, pretrained on the ImageNet 446

dataset (Russakovsky et al., 2015), yielding 512 or 447

2048-dimensional embeddings, respectively. The 448

input image is rescaled to 224 × 224 pixels and 449

standardized using the ImageNet statistics. We per- 450

form image data augmentation by random horizon- 451

1We will provide the link after the anonymization period
has passed.
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tal flipping. The How2 dataset contains video, but452

since our visual embedding works on images, we453

use only the middle frame. As the videos are shots454

and hence stable in terms of viewpoint change, we455

expect a single frame to encode enough informa-456

tion,457

For the fuse seq variant we use two gMLP layers,458

as this choice gave slightly better results than the459

two other variants that we have experimented with460

(zero and one layer).461

5 Experiments462

This section presents the empirical evaluation of463

the proposed methodology. First, in §5.1 we com-464

pare our best unimodal and multimodal systems to465

baseline and state-of-the-art approaches. Second,466

in §5.2 we present an ablation study over the main467

individual contributions: transfer learning and data468

augmentations.469

5.1 Main results470

Table 1 presents speech recognition performance471

for four of our systems: two unimodal variants472

(a pretrained ASR, used as a baseline, and its fine-473

tuned counterpart based on adapting the pretrained474

method on each dataset) and two multimodal vari-475

ants (both trained by finetuning all components, but476

differing in the fusion techniques, emb or seq, as477

described in §3.3). Both multimodal methods use478

the SpecAugment data augmentation and a ResNet479

with 50 layers as the visual encoder. We contrast480

our approaches to state-of-the-art methods. Previ-481

ous studies evaluate usually on a single dataset,482

for example, Flickr8K (Sun et al., 2016; Srini-483

vasan et al., 2020b) or How2 (Paraskevopoulos484

et al., 2020; Ghorbani et al., 2021), while we report485

performance on three datasets: the two aforemen-486

tioned ones and Localized Narratives (on which we487

are the first to report multimodal speech recogni-488

tion performance).489

We observe that the pretrained method already im-490

proves over previous work on Flickr8K, although491

its results are poorer on How2 and Localized Narra-492

tives due to data mismatch. However, by finetuning,493

the speech-only unimodal system significantly out-494

performs the current state-of-the-art, yielding rel-495

ative improvements of 72% and 31% on Flickr8K496

and How2, respectively. The results for the mul-497

timodal systems, which include the visual infor-498

mation, are better than the unimodal results in the499

case of How2 and Localized Narratives dataset;500

for Flickr8K it is difficult to improve presumably 501

because it is a clean dataset for which the ASR 502

already works well and many of its errors are not 503

visually grounded. Among the two fusing methods 504

the results are mixed, the fusion along the embed- 505

ding dimension, emb, being the better method on 506

two of the three datasets. 507

5.2 Ablation 508

In this subsection we carry two main ablation stud- 509

ies to better understand the impact of data augmen- 510

tation and the importance of transferring represen- 511

tations. 512

Data augmentations. We evaluate the impact 513

of the SpecAugment data augmentation technique 514

in three scenarios: for the unimodal system and for 515

the two multimodal variants using the two feature 516

fusion techniques (emb and seq). For all cases, we 517

perform finetuning of all components and for the 518

visual-based systems we use the 50-layer ResNet. 519

Table 2 reveals that speech data augmentation 520

is important for the multimodal systems, yielding 521

improvements in five out of the six cases. These re- 522

sults suggest that perturbing the audio signal might 523

help the multimodal models rely more on the vi- 524

sual encoder and eventually produce better results. 525

Surprisingly, the unimodal variants have seen little 526

benefit from data augmentation, with the exception 527

of the results on the How2 dataset. 528

Transferring representations. We conduct an 529

extensive ablation study over the impact of initial- 530

ization (random or pretrained) and training proce- 531

dure (fixed or finetuned weights) for each of the 532

components of the model (audio encoder, visual 533

encoder, decoder). These experiments are carried 534

only on the Localized Narratives dataset and for 535

the multimodal setting we use only the emb fusing 536

method. Additionally, we investigate the impact of 537

visual encoder’s capacity by varying the number of 538

layers in the ResNet architecture: 18 or 50. The 539

results are presented in Table 3. 540

Rows 1–5 show the results for the unimodal sys- 541

tem, corresponding to a standard, speech-only ASR. 542

We observe that the pretrained variant, without any 543

finetuning (row 1) is underperforming, most likely, 544

due to the large mismatch in both terms of audio 545

(speech is noisy and accented) and language data. 546

On the other hand, ignoring the availability of pre- 547

trained representations (row 2) is also not ideal: 548

training the network from scratch, as is customary 549

done in previous works, produces better, but still 550

6



method visual fuse Flickr8K How2 Loc. Nar.

(Sun et al., 2016)
14.8 — —

Ë 13.8 — —

(Srinivasan et al., 2020b)
13.6 — —

Ë 14.1 — —

(Paraskevopoulos et al., 2020)
— 19.2 —

Ë — 18.4 —

(Ghorbani et al., 2021)
— 17.7 —

Ë — 17.2 —

pretrain 11.1 26.9 49.3
finetune 3.8 11.8 4.3
finetune Ë emb 4.3 11.1 3.9
finetune Ë seq 4.7 10.8 4.0

Table 1: Comparison to state-of-the-art approaches on the test sets of three multimodal datasets (Flickr8K, How2
and Localized Narratives) in terms of word error rate (lower values are better). Visual indicates those variants that
use the visual channel as input in addition to the speech.

visual fuse aug. Flickr8K How2 Loc. Nar.

— 3.8 11.8 4.3
— Ë 4.2 11.2 4.5

Ë emb 4.8 11.8 4.1
Ë emb Ë 4.3 11.1 3.9

Ë seq 4.0 11.8 4.2
Ë seq Ë 4.7 10.8 4.0

Table 2: Evaluation of the impact of audio augmenta-
tions (aug.) on the test sets of the three multimodal
datasets in terms of word error rate. All models are
finetuned and the multimodal variants use the ResNet50
as visual encoder.

unsatisfactory transcriptions. Rows 3 and 4 show551

the results for the case when the encoder is fixed552

and the decoder is trained: either from scratch (row553

3) or by finetuning the pretrained weights (row 4).554

Since the decoder of an end-to-end ASR model555

plays also the role of a language model, this pro-556

cedure is akin to language adaptation and results557

in significant boosts in performance for both vari-558

ants. Finally, finetuning both components (row 5)559

yields the best results, with a relative improvement560

of around 30%.561

Rows 6–13 present the results for the multimodal562

systems, using a visual encoder with 18 (rows 6–9)563

or 50 layers (rows 10–13). For this set of experi-564

ments, we use only with the finetuning approach,565

as the results of the unimodal system have showed566

that this technique is superior. We also always567

adapt the decoder because the speech-vision fusion 568

affects the distribution of features. Note that the 569

fused features are projected to the same embedding 570

dimension as the speech features, which enables 571

sharing the pretrained decoder weights. The projec- 572

tion layers in the fusion layer are always trainable. 573

We first note that including visual information 574

improves over the single-stream system in all sce- 575

narios: either if we keep the encoders fixed (rows 576

6 and 10 vs row 4) or if we finetune the encoders 577

(rows 9 and 13 vs row 5). Second, we observe that 578

we obtain better results as we allow for more com- 579

ponents to be finetuned, with the last column indi- 580

cating a correlation between the number of train- 581

able parameters and the performance. The best re- 582

sults are achieved when finetuning all components 583

(rows 9 and 13). Finally, increasing the capacity 584

of the visual encoder yields similar results. We 585

do see slight improvements for the cases when we 586

finetune the speech encoder (row 12 vs row 8; row 587

13 vs row 9), potentially suggesting the coupling 588

between the two modalities needs to be accounted 589

also by the encoders and not only the decoders. 590

6 Conclusions 591

In this paper, we extend and build upon state-of-the- 592

art approaches for multimodal speech recognition. 593

We employ a Transformer ASR architecture as a 594

baseline system in which we inject visual informa- 595

tion through a ResNet image encoder. In contrast to 596

the previous methods, we use pretrained representa- 597

tions for both the speech and visual channels. This 598
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audio encoder visual encoder decoder
WER (%)

num. trainable
params (×106)init train init train network init train

1  µ — — —  µ 49.3 0
2 ç b — — — ç b 22.5 99.4
3  µ — — — ç b 9.1 32.9
4  µ — — —  b 6.3 32.9
5  b — — —  b 4.3 99.4

6  µ  µ ResNet18  b 5.8 33.2
7  µ  b ResNet18  b 5.5 44.4
8  b  µ ResNet18  b 4.3 99.6
9  b  b ResNet18  b 4.2 110.8

10  µ  µ ResNet50  b 5.9 33.4
11  µ  b ResNet50  b 5.6 56.9
12  b  µ ResNet50  b 4.1 99.8
13  b  b ResNet50  b 4.1 123.3

Table 3: Transferring representations—evaluation on the test set of the Localized Narratives dataset. For each of the
three components of the model (audio encoder, visual encoder, decoder), we indicate how the model’s weights are
initialized (either random ç or shared from a pretrained model ) and trained (either fixed µ or finetuned b). For
each setting we report the word error rate (WER) and the number of trainable parameters. The visual information is
fused with the emb method. For these experiments, we did not use audio augmentations.

leads to substantial improvements over the state599

of the art on two standard multimodal datasets:600

Flickr8K and How2. In addition, we explore a se-601

ries of fusion techniques for the speech and visual602

embeddings. Finally, our work also reports two603

ablation studies which provide important insights604

on the role of using speech augmentation before605

training the multimodal network and the individual606

contribution of finetuning the various components607

of the system.608

For future work we plan to perform a detailed609

qualitative analysis revealing the exact benefits of610

introducing the visual modality as input to the ASR611

system. A similar avenue for further research is612

investigatating which parts of the inputs (audio, im-613

age, previously predicted tokens) contribute more614

to the output. We believe that modern tools for615

explainable machine learning (Kokhlikyan et al.,616

2020; Samek et al., 2021; Joshi et al., 2021) can617

help us better understand the complicated interac-618

tions that arise in the multimodal network.619
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