
FLOP: TASKS FOR FITNESS LANDSCAPES OF PRO-
TEIN FAMILIES USING SEQUENCE- AND STRUCTURE-
BASED REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Protein engineering has the potential to create optimized protein variants with im-
proved properties and function. An initial step in the protein optimization process
typically consists of a search among natural (wildtype) sequences to find the nat-
urally occurring protein with the most desirable properties. This chosen candidate
is then the basis for the second step: a more local optimization procedure, explor-
ing the space of variants separated from this candidate by a few mutations. While
advances in protein representation learning promise to facilitate the exploration of
wildtype space, results from real-life cases are often underwhelming, and progress
in the area difficult to track. In this paper, we have carefully curated a representa-
tive benchmark dataset, which reflects industrially-relevant scenarios for the initial
wildtype exploration of protein engineering. We focus on the exploration within a
protein family or superfamily, and investigate the downstream predictive power of
various dominating protein representation paradigms, i.e., transformer-based lan-
guage representations, structure-based representations, and evolution-based repre-
sentations. Our benchmark highlights the importance of coherent split strategies,
and how we can be misled into overly optimistic estimates of the state of the field.
We hope our benchmark can drive further methodological developments in this
important field.

1 INTRODUCTION

The goal of protein engineering is to optimize proteins towards a particular trait of interest. This
has applications both for industrial purposes and drug design. There is clear potential for machine
learning to aid in this process. By predicting which protein sequences are most promising for exper-
imental characterization, we can accelerate the exploration of the “fitness landscape” of the protein
in question (Wittmann et al., 2021). The optimization process of proteins and enzymes typically
proceeds in multiple stages. An initial step is to navigate the protein landscape to find a suitable,
naturally occurring protein (also denoted as a wildtype) with the desired properties. This process is
often limited to a particular protein family, where the members share an evolutionary history which
has resulted in a similar function. This chosen protein will then form the basis for a second phase in
the engineering process: localized optimization, where novel variants of the wildtype are examined
through various assays.

Regression of functional landscapes is challenging for multiple reasons. It is typically a data-scarce
problem, although high-throughput experimental techniques are improving this, and underlying
structure typically exists in the dataset, careful considerations of the experimental setup are required.
In recent years, we have seen considerable efforts into defining benchmarks to help the Machine
Learning community make progress in this field. These efforts have, however, primarily focused on
the second stage, i.e., variant effect prediction. In this paper, we argue for the importance of creat-
ing clearly defined benchmark tasks for the first stage as well. We present three challenging tasks
as well as a careful analysis of the experimental design, demonstrating how poor choices can lead
to dramatic overestimation of performance. Finally, we make available our input data in a variety
of representations: sequence-based embeddings obtained through recent state-of-the-art language
models, structure-based representations from folding and inverse folding models, and evolutionary-
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Figure 1: Schematic over dataset splitting, representations, and cross-validation process. A: Three
datasets each containing sequences for a single protein family or superfamily with corresponding
continuous assay values are collected. The protein structures are predicted with AlphaFold2. B:
A stratified sequence identity splitting procedure generates partitions A, B, and C. These partitions
are designed to (1) be homologically different from each other, (2) to contain similar number of
sequences, and (3) to match the full datasets target distribution. C: Six protein representations are
for all sequences generated across the three datasets. D: Exhaustive cross-validation is applied to
obtain accurate test estimates across the datasets using three different regression models.

based representations obtained from multiple sequence alignments. Our benchmark thus also gives
a perspective on the relative information content in these fundamentally different modalities.

2 RELATED WORK

Benchmarks have long played an important role in driving progress in protein-related prediction
tasks. The most well-known is perhaps the rolling CASP benchmark, which is arguably respon-
sible for the recent breakthroughs in protein structure prediction (Bourne, 2003; Moult, 2005;
Kryshtafovych et al., 2021). For the prediction of protein stability and function, several studies
have in recent years curated relevant experimental datasets for use as benchmarks to the machine
learning community. The TAPE benchmark was an early such example designed to test protein
sequence representations on a set of diverse downstream tasks (Rao et al., 2019). Two of these
tasks were related to protein engineering: stability prediction on variants of a set of 12 designed
proteins (Rocklin et al., 2017) and characterization of the functional landscape of green fluorescent
protein (Sarkisyan et al., 2016). The PEER benchmark (Xu et al., 2022) expanded on the TAPE
benchmark with many additional tasks. In the function/stability category, this included prediction
of β-lactamase activity (Gray et al., 2018), and a binary solubility classification task on a diverse set
of proteins. Focusing entirely on variant effects, the recent ProteinGym benchmark has assembled
a large set of Deep Mutational Scanning (DMS) assays and made them available as substitution and
insertion-deletion prediction tasks (Notin et al., 2022)). While the above all consider protein se-
quence inputs, the recent Atom3D benchmark (Townshend et al., 2022) presents various prediction
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tasks using 3D structure as input, including predicting amino acid identity from structural environ-
ments (for general proteins), and mutation effects on protein binding, using data originating from
the SKEMPI database (Moal & Fernández-Recio, 2012; Jankauskaite et al., 2019).

Most closely related to this current paper is the FLIP benchmark, which dedicates itself to the pre-
diction of functional fitness landscapes of proteins for protein engineering. Their study includes
three tasks: one on the prediction of protein stability of general proteins (i.e. distributed over many
families) using data from the Meltome Atlas (Jarzab et al., 2020), and two tasks focused on mu-
tations at specific, functionally relevant, sites of proteins GB1 (Wu et al., 2016) and AAV (Bryant
et al., 2021)).

Most of the functional tasks in current benchmarks are concerned with protein sequences that are
derived from a single naturally-occurring sequence by one or more mutations. Characterizing the
functional effects of such variants is critical for protein engineering. However, in the protein engi-
neering pipeline, the optimization of variants is typically preceded by an earlier stage of wildtype
discovery, where the goal is to search among wildtype proteins to find the optimal starting point
for the subsequent variant optimization process. Typically, this involves looking for a suitable pro-
tein with a particular function, and will thus restrict the wildtype search within a particular protein
family or superfamily. The tasks we are interested in are thus the characterization of functional
landscapes of wildtype proteins within a family or superfamily. This is not addressed in any of the
current benchmarks. As a natural complement to the FLIP benchmark, we therefore here present
a novel benchmark titled FLOP. Our curated datasets all consist of functionally characterized wild-
type sequences from a single family or superfamily, where the tasks are defined as regression tasks.
As inputs, we provide sequence embeddings from state-of-the-art protein language models such as
ESM-1B and ESM-2 (Rives et al., 2020; Hsu et al., 2022b). We also provide structure-based rep-
resentations obtained from 3D structures predicted by AlphaFold2 (Jumper et al., 2021). Finally,
since we restrict ourselves to protein families, we also provide embeddings obtained from multiple
sequence alignments of the input sequences, e.g. by using the EVE variational autoencoder model
(Frazer et al., 2021).

3 EXPERIMENTAL SETUP

The domain we explore in this work is characterized by data scarcity, requiring special care in the
design of the experimental setup. Figure 1 shows an overall schematic of the final benchmarking
process.

3.1 DATASET SPLITTING

With the proliferation of large datasets and computationally demanding models, a common learning
paradigm in machine learning is to rely on holdout validation, whereby fixed training, validation,
and testing sets are created. This is often achieved by randomly splitting the dataset into appropri-
ately sized partitions. There are two limitations to this method when considering biological datasets
of limited sizes. Firstly, randomly splitting a dataset into subsets assumes that the data points are
sampled i.i.d. This is however not the case for members of a protein family which share common an-
cestors. Significant data leakage can thus inadvertently appear when protein sequences that are close
in evolutionary space are placed in separate splits. Secondly, when the size of a dataset is limited to
hundreds, a holdout validation approach will often lead to biased results, where the method might
not generalize well. An additional issue with splitting small datasets for the purpose of supervised
learning is that the target values might not be well-balanced. This can result in splits which follow
different target distributions thus leading to poor generalizability.

A common method of avoiding the issue of non-i.i.d. protein sequences is to use identity-based
clustering, whereby the sequence identity between clusters is limited to a certain threshold (Li et al.,
2001; Gı́slason et al., 2021a). These clusters can then be aggregated into separate training, val-
idation, and test splits for holdout validation. The second point regarding the potential issues of
holdout validation for small datasets is however often not explicitly dealt with when considering
protein landscapes, since the sizes of popular datasets often diminish the negative effects hereof. A
traditional way of estimating unbiased generalization errors – and hence directly deal with this issue
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– is by the use of cross-validation (CV). If possible, stratification of the generated partitions on the
target values might further reduce the variance of the estimated errors (Kohavi, 1995).

To handle these potential issues, we rely on a sequence identity-based, stratified cross-validation
procedure which ensures the following:

• Partitions are generated that are guaranteed to be homologically different thereby minimis-
ing data leakage.

• Exhaustive cross-validation minimizes the potential bias which might occur when relying
on holdout validation.

• The target distribution is accurately reflected by the generated partitions via stratification
on discretized target values thus reducing the variance.

• The number of sequences in each partition is similar to reduce the variance between con-
secutive CV rounds.

To generate these high-quality data partitions, we use the four-phase procedure described in Gı́slason
et al. (2021a) to create label-balanced dataset splits. This procedure ensures that each generated par-
tition does not share sequences that have global sequence identity above a dataset-specific threshold
as determined using ggsearch36 (Pearson & Lipman, 1988). We concretely use the “GraphPart”
implementation in Gı́slason et al. (2021b). We begin the procedure from an initial sequence identity
threshold using stratification labels, and increase the threshold until the generated partitions are of
sufficient sizes, i.e., where each partition contains at least 25 % of the sequences (in the case of
three partitions). The stratification is handled by creating a binary label which indicates whether a
protein has low or high target value. In the case of uni- or multimodal datasets, this procedure can
be analogously extended.

3.2 REPRESENTATIONS

To accurately reflect the current paradigms of state-of-the-art protein representations, we choose
representatives from three major categories.

As a baseline, we will rely on a multiple sequence alignment (MSA) over the proteins of interest.
This allows for an alignment of proteins with different sequence lengths such that the dimensionality
is fixed. The sequences in an MSA are assumed to share an evolutionary history, whereby the MSA-
algorithm captures the coevolution of related sequences (Chatzou et al., 2016). Using this alignment
for a protein family, the amino acids are encoded in a 1-of-20 fashion. The representation for each
protein is thus an MSA-length by 20 dimensional matrix, which is flattened to create a fixed-sized
vector input. The MSAs for each labelled protein family is generated using MAFFT (Katoh et al.,
2002).

Protein language models (PLMs) that are trained on hundreds of millions of protein sequences in an
unsupervised fashion have proved to be competitive representations for a multitude of tasks (Rives
et al., 2020; Meier et al., 2021; Rao et al., 2021). We here choose the popular ESM-1B (Rives et al.,
2020) and the more recent ESM-2 models (Lin et al., 2022). These models generate embeddings for
each amino acid in a sequence. To fix the dimensionality for proteins of different lengths within a
family, we perform mean-pooling over the residue dimension. Despite this coarsening operation, it
has proved competitive with retaining the full residue-wise representation as seen in Dallago et al.
(2021). We use the 650M and 3B parameter models for ESM-1B and ESM-2, respetively.

The second protein representation category we include is structure-based. With the rise of Al-
phaFold2 (Jumper et al., 2021) and the availability of protein structures (Tunyasuvunakool et al.,
2021), representations can now be developed which directly use the protein structure. We include
two such representations. We obtain the first of these by extracting the final embeddings from
the Evoformer-modules of the AlphaFold2 model (Jumper et al., 2021) using ColabFold ((Mirdita
et al., 2022)). We denote these representations as ”Evoformer (AF2)”. These embeddings have been
shown to perform well for structure-related prediction tasks (Hu et al., 2022). For our second model,
we include the ESM-IF1 (also known as the GVP-Transformer) from Hsu et al. (2022b). This model
combines the geometric vector perceptron (Jing et al., 2021b;a) with a transformer model (Vaswani
et al., 2017) to leverage both structural and sequential information. To fix the dimensionality of the
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variably-sized matrix representations that result from the Evoformer (AF2) and ESM-IF1, we use
the same mean-pooling scheme as for the sequence-based PLM representations.

The third category of representations we investigate, we denote as evolutionary-based representa-
tions. These models can leverage the evolutionary history of proteins, often based on MSAs (e.g.,
EVE, (Frazer et al., 2021), DeepSequence, and EVcouplings (Hopf et al., 2019)). For each curated
dataset, we train EVE on its protein family and extract the latent representations of our labelled
sequences. We include EVE since it and its DeepSequence-precursor continue to show competitive
performance (Hesslow et al., 2022; Hsu et al., 2022a). Since EVE is trained in a fully unsupervised
manner, we enrich our limited collections of sequences with additional members of the respective
protein families using the InterPro-database (Blum et al., 2021). This increases the available se-
quences during the structuring of the latent spaces from an order of hundreds to tens of thousands of
sequences for each landscape. Additional technical details on EVE can be found in Appendix A.1.

3.3 REGRESSORS

The purpose of this benchmark is to provide simple baselines for the regression tasks using different
input representations. We have therefore chosen three simple yet representative regression models:

• A KNN-regressor as a non-parametric distance-based model.

• A ridge-regressor as a regularized linear model.

• A random forest-regressor as a tree-based ensemble method.

For each combination of the generated CV partitions, we perform a hyperparameter optimization
on the current validation partition and evaluate the best-performing predictor on the current test
partition. The hyperparameter grids can be seen in Appendix A.2. More complex regressors are ex-
pected to have improved performance over these baseline models, and we thus hope for the creation
of novel regressors for the task of protein fitness through this benchmark.

4 DATASETS

4.1 CM

Motivation. Identification of an enzyme with high catalytic activity is of primary importance. How-
ever, predicting the activity level of enzymes using physics-based methods remains a great challenge
(Tiwari et al., 2012). Recent progress in high throughput screening allows one to measure the activ-
ity of enzyme sequences of high diversity, but with low experimental cost. These kind of datasets
are very valuable for learning the global fitness landscapes.

Landscape. This dataset contains the catalytic activity of natural chorismate mutase (CM) homol-
ogous proteins, as well as artificial sequences which follow the same pattern of variations, e.g.,
conservation and co-evolution of residues (Russ et al., 2020). The artificial sequences generated
by Monte Carlo simulations at low temperatures exhibit catalytic levels comparable to the natural
homologs and have therefore been included in the dataset. The target value of the prediction task
is the catalytic activity of each CM sequence. The MSA used for EVE was generated by FAMSA
(Deorowicz et al., 2016).

Split. We perform an additional filtering of the dataset, where we ignore sequences with target
values less than 0.42, corresponding to inactive proteins (Russ et al., 2020). During the dataset
splitting process, a number of sequences are removed to allow for partitioning at seqeunce identity
threshold of 0.35. The final dataset size is thus 715 proteins. A summary can be found in Table 1.

4.2 PPAT

Motivation. PPAT (phosphopantetheine adenylyltransferase) is composed of around 160 amino
acids and is an essential enzyme that catalyzes the second-to-last step in the CoA biosynthetic path-
way. The target value for this prediction task is the fitness score, which reflects the ability of PPAT
homologs to complement a knockout E. coli strain. The fitness of homologs can be affected by
factors such as protein misfolding, mismatched metabolic flux or environmental mismatches etc.
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Landscape. This dataset contains fitness scores of 615 different PPAT homologs, which are obtained
by a novel DNA synthesis/assembly technology DropSynth, followed by a multiplexed functional
assay to measure how well each PPAT homolog can rescue a knockout phenotype (Plesa et al., 2018).

Split. The dataset is split using the described procedure resulting in a threshold of 0.55. The MSA
is generated and processed in the same way for EVE as the CM dataset. Details can be seen in Table
1.

4.3 TIM

Motivation. One of the most important properties for enzymes in industrial applications is ther-
mostability, since running applications at higher temperatures allow for faster reaction rates. Many
efforts have been made to identify naturally thermostable enzymes, e.g. from thermophiles. How-
ever, predicting stability of individual proteins accurately has proven challenging; the fitness
landscape is non-smooth and a single mutation can lead to a significant shift in thermostability
(Pezeshgi Modarres et al., 2018).

Landscape. The Meltome Atlas contains thermostability measurements of proteins across the tree
of life, captured in thermal profiling experiments using mass spectrometry (Jarzab et al., 2020).
Prediction tasks of the full dataset and of individual proteomes has been attempted (Dallago et al.,
2021). As reported in (Jarzab et al., 2020; Gado et al., 2020), the dominant factor has been shown to
be the growth temperature of the donor organism. However, structural features are known to be im-
portant determinants for thermostability, since thermostability is the preservation of structure under
thermal stress (Ahmed et al., 2022; Kumwenda et al., 2013). Thus, proteins sharing the same struc-
tural fold may provide an easier starting point and help identify common structural determinants of
thermostability. Members of the Aldolase-type TIM barrel superfamily (InterPro entry IPR013785)
form a β/α barrel, and include a wide range of enzymatic functions such as aldolases, synthases,
etc. (Blum et al., 2021). The TIM barrel is typically the dominant structural domain in the mem-
ber proteins, and expected to be the main signal in the thermal profiling experiments (Jarzab et al.,
2020).

Split. Due to the broad diversity of the included proteins, sequence identity-based partitioning can be
done at a threshold of 0.10. This however had the adverse affect of creating very dissimilar partitions.
The threshold was therefore artificially set to 0.5, which ensured proper mixing of proteins within
the generated partitions. To generate MSAs, normal sequence alignment tools are unable to handle
the distant homologs and produce meaningful alignments, so we used Foldseek to construct a query
based structural alignment (Kempen et al., 2022) for EVE. For the one-hot encoded MSA, we used
Caretta (Akdel et al., 2020). We attempted to use Caretta to align the extended superfamily. This
however proved infeasible given the number of proteins.

4.4 SUMMARY

A summary of the datasets including their total sizes, partition sizes (A, B, and C refer to the gen-
erated partitions), between-partition sequence identity threshold (%ID), target value, and median
pair-wise sequence identity can be seen in Table 1, the latter of which highlights the diversity – and
difficulty – of the datasets.

5 RESULTS

Spearman’s rank correlation between the predictions and targets over the three datasets using our
CV procedure can be seen in Figure 2 and Table 2. During the first phase of protein engineering,

Table 1: Summary of datasets and splits.

# Total # in A # in B # in C %ID Target value Median %ID
CM 715 265 204 246 0.35 Catalytic activity 0.43
PPAT 615 182 234 199 0.55 Fitness score 0.45
TIM 218 72 72 72 0.50 Thermostability 0.12
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Figure 2: Spearman’s correlation coefficient between predictions and targets over test partitions,
grouped by dataset and regressor. Standard error is shown as vertical bars.

Table 2: Benchmark results (Spearman’s rank correlation). We report the mean over the test parti-
tions and the standard error. The best result has been highlighted for each dataset.

KNN Ridge RandomForest

CM

ESM-1B 0.17± 0.02 0.20± 0.02 0.26± 0.02
ESM-2 0.15± 0.03 0.22± 0.03 0.27± 0.04
ESM-IF1 0.17± 0.04 0.21± 0.03 0.27± 0.03
EVE 0.18± 0.02 0.12± 0.02 0.27± 0.02
Evoformer (AF2) 0.11± 0.03 0.16± 0.03 0.26± 0.04
MSA (1-HOT) 0.14± 0.04 0.24± 0.04 0.29 ± 0.03

PPAT

ESM-1B 0.08± 0.02 0.18 ± 0.02 0.15± 0.03
ESM-2 0.11± 0.02 0.15± 0.02 0.12± 0.02
ESM-IF1 0.09± 0.02 0.16± 0.01 0.12± 0.01
EVE 0.05± 0.01 0.09± 0.02 0.07± 0.01
Evoformer (AF2) 0.09± 0.03 0.09± 0.05 0.15± 0.02
MSA (1-HOT) 0.09± 0.04 0.07± 0.02 0.07± 0.02

TIM

ESM-1B 0.21± 0.04 0.24± 0.06 0.26± 0.06
ESM-2 0.26± 0.05 0.32 ± 0.03 0.30± 0.03
ESM-IF1 0.07± 0.03 0.08± 0.08 0.06± 0.08
EVE −0.02± 0.04 −0.01± 0.04 −0.08± 0.04
Evoformer (AF2) 0.13± 0.04 0.21± 0.06 0.20± 0.04
MSA (1-HOT) 0.11± 0.05 0.03± 0.04 0.04± 0.03

the highest performing proteins are of interest. It is thus the ranking, and not the absolute values
of the errors that indicate the performance, despite the regressors being optimized using the mean
squared error. We observe that the regression tasks on our datasets are challenging with maximum
averaged correlations of only 0.32. We generally see similar performance from the three regressors
in all configurations with only minor differences, such as the KNN slightly underperforming for all
three landscapes. While the performance using the different protein representations is similar, we
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do observe minor patterns. We see stable and competitive results from the sequence-based PLMs
(ESM-1B and ESM-2) as well as from the AlphaFold2-extracted Evoformer embeddings.

5.1 CM

The performance on the CM dataset is not strongly dependent on the input representations as these
provide similar results for the three regressors, respectively. It is however clear that the random
forest regressor has an advantage when compared to the neighbour-based and linear models. This
indicates that further exploration of complex non-linear regression models are viable to improve the
results. The only representation that has a slight edge is the one-hot encoded MSA representation.

5.2 PPAT

The PLM representations have a clear advantage on the PPAT dataset, where we see both ESM-
1B, ESM-2, and ESM-IF1 performing well, the first outperforming all other representations. We
furthermore see competitive performance from the AlphaFold2 embeddings.

5.3 TIM

The performance on the TIM dataset is strikingly different when compared to the previous
datasets. Here, the sequence-based PLM embeddings significantly outperform both the structure-
and alignment-based models with ESM-2 coming out well ahead. The poor performances of the
one-hot encoded MSA and especially the EVE representations indicate that either the alignment of
the superfamily is inaccurate or the method is not optimal for such distinct proteins, as also reflected
by the low pair-wise sequence identity in Table 1.

6 DESIGN CHOICES

For the CM dataset, we chose to only include the active sequences in our modeling. This is poten-
tially questionable given the inherent difficulties of being in the small-data regime. Two alternatives
would be (1) to cast the prediction task as classification and then use all sequences (as seen in Ni-
jkamp et al. (2022)) or (2) to simply include all sequences in the regression task. The issue with
(1) is that in the wildtype exploration phase, knowing whether a protein is inactive or active is not
sufficient information to proceed to the local optimization phase. A higher resolution is favorable,
which is why regression is preferred. To demonstrate why we do not report the results of (2) as
our primary task, we have included them in the top row of Figure 3. This shows that if we perform
regression on a distinctly bimodal dataset (such as CM), the results will be inflated. The models are
able to distinguish between the modalities of the target distribution which drives the Spearman cor-
relation to overly-optimistic values. The caveat here, is that this requires knowing the target labels
a priori. This process thus assumes that a preceding classification-screening has been performed to
obtain only active sequences.

In the second row of Figure 3, we see the predictive performance on the PPAT dataset when us-
ing random splitting instead of cross-validation. The random splitting was achieved by generating
three random, equally-size permutations of the proteins (with no repetition). Training, validation,
and testing was then performed on these three partitions. This was repeated a total of five times to
decrease bias and obtain error bars. While the results overall look similar to the CV-results from
Figure 2, we do see slightly better results. That the results are not significantly better is not surpris-
ing. The stratified, sequence identity-based CV procedure that we employ, can be considered a type
of “informed random splitting”. What we avoid with this procedure when comparing to random
splitting is placing two very similar sequences in separate partitions, which can be considered data
leakage. Similarly, we avoid imbalance in the partitions, which becomes more important when the
dataset sizes decrease, avoiding partitions with only inactive sequences. This however also shows
that repeated random splitting of wildtype protein datasets is not as detrimental as is often the case
for variant datasets (Bork & Koonin, 1998).

In the third row of Figure 3 we see the results of performing holdout validation on the TIM dataset.
We used the generated CV partitions once, instead of performing the CV loop. This shows that
creating stratified, homologically different partitions is not sufficient to achieve nuanced results. A
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Figure 3: Spearman’s correlation coefficient between predictions and targets over test partitions,
grouped by dataset and regressor. Standard error is shown as vertical bars. *: Regression on both
active and inactive proteins. **: Repeated random splitting. ***: Holdout validation.

clear difference between the third row of Figures 2 and 3 is the lack of error bars in the latter (with
the exception of EVE, see Appendix A.1), which gives an overly optimistic impression of the results.
We furthermore observe that the results are generally better than when performing CV. Interestingly,
we see that the difference between regression models is emphasized in the given partition which can
again give a biased impression of the actual predictive performance.

For completeness, the tabulated values of Figure 3 can be seen in Table 3 in Appendix A.3.

7 CONCLUSION

In this work we have presented a novel benchmark dataset which investigates an unexplored do-
main of machine learning-driven protein engineering: the navigation of global fitness landscapes for
single protein families. The curation itself of relevant labelled datasets proved challenging and the
creation of new comprehensive family-wide datasets is bound to ease and improve future model de-
velopment and applicability. We have here highlighted the importance of careful learning schemes
in the evaluation of our models to ensure reliable estimates of generalizability. While the sequence-
based PLM representations consistently yielded good results, the difference in performance is not
significant among all the representations. We also saw cases where a simple one-hot encoded MSA
was competitive, highlighting the intricacies of creating meaningful representations. Our attempt at
creating useful superfamily alignments proved challenging and highlights an area where improve-
ments can be made.

We hope that FLOP will pave the way for modeling global fitness landscapes of protein families
and accelerate the further development of complex regression models and novel protein representa-
tions, the combination of which is will drive protein engineering for drug discovery and sustainable
biotechnology forward.
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8 REPRODUCIBILITY STATEMENT

All code and data used in the this work will be made publicly available. This includes (but is not
limited to) code that has been used to

• preprocess raw data files

• perform splitting of the datasets according to the described procedure

• generate all representations used

• train, validate, and test all regression models.

We will additionally provide all representations and data files for further use, e.g., the representations
themselves, AlphaFold predicted structures, csv-files mapping proteins to CV-partitions and target
values, etc.

All code will be made available via a Github-repository, while all data will be made available for
download through a hosted service.
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A APPENDIX

A.1 EVE FOR PROTEIN FAMILIES

Due to the stochastic training process, we train EVE on each fitness landscape using three different
random seeds. The reported performance will thus be the average over the predictions using the
three different representations for each sequence.
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While EVE was originally used to predict variant effects of single wildtype proteins, it can be used
on any MSA. This however means that the built-in preprocessing requires a reference wildtype
sequence. This query sequence is then used to trim and otherwise clean the remaining sequences
in the MSA. Since no single wildtype is representative for our protein families, we instead generate
an artificial query sequence. Given the full-length MSA, we iterate through all of our labelled
sequences (a minor part of the full MSA), and create a query sequence which has any amino acid
(we chose ’A’) at any position in the MSA, where any of the labelled sequences also have an amino
acid. The remaining positions are filled with gaps. For example, say that sequences --A-T-H
and -AT--J- are two labelled sequences from the MSA. The corresponding query sequence would
thus be -AA-AAA. The query sequence is only used in the preprocessing, e.g., conserve the columns,
where the labelled sequences have occupancy, and to remove columns where none do. The query
sequence is thus not included in the actual model training. This results in a query-centric bias
(Detlefsen et al., 2022) of our latent spaces which ensures the preservation of our limited labelled
sequences. Alternative preprocessing is equally viable which can avoid the creation of the artificial
query sequence.

A.2 REGRESSOR HYPERPARAMETERS

In each CV iteration, the three regressors were optimized via a grid search. The regressors were
trained with all configurations on the training set, and the models providing the lowest mean squared
error on the validation set was used to predict on the test set. The following hyperparameters were
used:

• KNeigborsRegressor(): The number of neighbours was chosen among: 1, 2, 5, 10,
25.

• Ridge(random state=0): Regularization strength was chosen among: 0.0001, 0.001,
0.01, 0.1, 1, 10, 25

• RandomForestRegressor(random state=0, max features="sqrt"):
Minimum samples to split was chosen among 2, 5.

We use the scikit-learn implementations of the regressors (Buitinck et al., 2013). The parameters not
explicitly defined above were thus the default parameters. Several other grids for the three models
were examined but provided no significant performance increases.
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A.3 SUPPLEMENTARY EXPERIMENTS

Table 3: Misleading test results (Spearman correlation, *: Regression on both active and inactive
proteins. **: Repeated random splitting. ***: Holdout validation.)

KNN Ridge RandomForest

CM*

ESM-1B 0.58± 0.01 0.63± 0.01 0.64± 0.01
ESM-2 0.59± 0.01 0.65± 0.01 0.66 ± 0.01
ESM-IF1 0.53± 0.01 0.57± 0.01 0.60± 0.01
EVE 0.55± 0.01 0.53± 0.01 0.60± 0.01
Evoformer (AF2) 0.47± 0.0 0.54± 0.02 0.59± 0.01
MSA (1-HOT) 0.54± 0.01 0.62± 0.01 0.62± 0.01

PPAT**

ESM-1B 0.12± 0.03 0.22± 0.03 0.21± 0.04
ESM-2 0.11± 0.05 0.20± 0.04 0.19± 0.02
ESM-IF1 0.14± 0.04 0.17± 0.02 0.17± 0.04
EVE 0.12± 0.03 0.11± 0.02 0.14± 0.02
Evoformer (AF2) 0.13± 0.03 0.08± 0.01 0.25 ± 0.02
MSA (1-HOT) 0.08± 0.03 0.07± 0.02 0.10± 0.02

TIM***

ESM-1B 0.32 0.35 0.35
ESM-2 0.40 0.33 0.40
ESM-IF1 0.10 0.32 0.24
EVE 0.17± 0.07 0.17± 0.04 −0.17± 0.05
Evoformer (AF2) 0.19 0.40 0.28
MSA (1-HOT) 0.24 0.10 0.05
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