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Abstract

We present a lightweight audio-preprocessing pipeline that boosts simple classifiers1

for multi-species sound identification in Colombian soundscapes. Developed for2

BirdCLEF 2025 and evaluated on recordings from Reserva Natural El Silencio3

(Magdalena Medio Valley), the pipeline isolates vocalizations, removes silence,4

and filters noise to produce cleaner BirdNET embeddings. We train MLP and5

CNN models on raw vs. cleaned inputs. Results in multi-taxon species classifi-6

cation show that improving signal quality can offset model complexity, where a7

cleaned-input MLP matches or surpasses deeper baselines with modest compute.8

This underscores the value of preprocessing for bioacoustic monitoring in noisy,9

resource-limited settings and demonstrates that robust baselines can be built with10

accessible computing resources common in biodiversity-rich developing countries.11

1 Introduction12

Passive acoustic monitoring (PAM) has become a powerful and non-invasive tool for biodiversity13

assessment, enabling the continuous recording of animal vocalizations in diverse ecosystems [1; 2; 3].14

In biologically rich tropical countries such as Colombia, PAM provides valuable insights into species15

presence, distribution, and ecological dynamics. The El Silencio Natural Reserve, one of the study16

sites for BirdCLEF 2025 [4], protects a diverse taxa, making it a valuable location for acoustic17

biodiversity monitoring. In this context, the BirdCLEF 2025 challenge aims to develop automated18

methods to identify various taxonomic groups, including birds, amphibians, mammals, and insects,19

from soundscape recordings collected in the reserve. However, analyzing the data from these20

soundscapes presents significant challenges due to overlapping vocalizations, background noise from21

anthropogenic sources, and strong class imbalances across species.22

Despite the growing success of deep learning models such as BirdNET in large-scale bird identification23

tasks [5], most efforts in bioacoustics continue to rely on complex architectures or heavily supervised24

frameworks that require extensive annotated datasets. While these models often perform effectively25

within specific taxonomic groups (e.g., birds), their scalability and adaptability across other taxa (e.g.,26

amphibians, mammals, or insects) remain limited [6; 7]. Furthermore, pipelines typically assume27

well-conditioned input data, placing limited attention on the signal preprocessing stage [8; 9].28

In multi-species classification scenarios, especially those involving diverse vocal repertoires and29

heterogeneous sound environments, signal quality critically affects the separability of acoustic30

features. Although deep learning models offer powerful solutions, their performance can degrade in31

the presence of noise or misaligned inputs, conditions common in tropical soundscapes. As species32

vocalizations vary in frequency range, duration, and intensity, inadequate preprocessing may obscure33

biologically relevant information, ultimately limiting classification accuracy regardless of model34

complexity. We hypothesize that by enhancing signal quality through targeted preprocessing, it is35

possible to enable lightweight and general-purpose models to perform competitively, offering an36

efficient alternative for biodiversity-rich but computationally constrained contexts such as Colombia.37

In this work, we propose a lightweight preprocessing pipeline tailored for the multi-species classifica-38

tion task of BirdCLEF 2025. By applying preprocessing steps such as silence removal, vocalization39

isolation, and controlled Gaussian noise addition, we enhance the clarity and informativeness of the40
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input representation. We extract acoustic embeddings using the BirdNET Analyzer [5] and pass41

them to simple classifiers, including multilayer perceptrons (MLPs) and generic convolutional neural42

networks (CNNs). Our results suggest that preprocessing is not merely a preliminary step but a43

critical enabler of robust and scalable species classification.44

2 Materials and Methods45

2.1 Materials: The dataset used in this study (taken from BirdCLEF 2025) includes labeled and46

unlabeled recordings from 206 species across four taxonomic groups: Aves, Amphibia, Mammalia,47

and Insecta. Recordings were sourced from Xeno-canto, iNaturalist, and the Colombian Sound48

Archive, all resampled to 32 kHz, and collected at El Silencio Natural Reserve (6°45’N, 74°12’W)49

[4]. Aves dominate with 146 species (70.9%) and 27,648 recordings, followed by amphibians (3450

species, 16.5%, 583 recordings), insects (17 species, 8.3%, 155 recordings), and mammals (9 species,51

4.4%, 178 recordings). Gathered in a tropical rainforest under ecological restoration, these recordings52

illustrate the value of passive acoustic monitoring (PAM) as a scalable tool for assessing biodiversity53

and conservation outcomes.54

2.2 Multiespecies classification methodology: This study focuses on the impact of preprocess-55

ing strategies on training robust audio classifiers [9], making the preprocessing pipeline a central56

component of the methodology. The overall structure follows the standard workflow in species identi-57

fication tasks [10]: segmentation, preprocessing, feature extraction, and classification (Figure 1). All58

recordings were segmented into uniform five-second clips, which were then processed through steps59

such as Gaussian noise addition, silence removal, and voice cleaning to enhance signal clarity and60

consistency. From these refined segments, we extracted BirdNET embeddings, compact descriptors of61

species vocalizations, and compared models trained on embeddings from both raw and preprocessed62

audio. Finally, the embeddings were classified using lightweight models, including convolutional63

neural networks (CNNs) and multilayer perceptrons (MLPs), highlighting the often-underestimated64

importance of preprocessing in enabling efficient and scalable bioacoustic classification systems.65
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Figure 1: Multi-species classification methodology

2.2.1 Segmentation: Initially, all audio recordings are segmented into fixed-length clips of five66

seconds. This duration facilitates capturing complete vocalization events while ensuring uniform67

input dimensions for downstream processing. Segments shorter than five seconds but longer than two68

seconds are extended using a tiling technique, wherein the original audio content is repeated until69

the desired length is reached. This standardization is crucial for embedding generation and model70

training, as it enables batch processing and ensures consistent input size across the dataset.71

2.2.2 Preprocessing: After obtaining the fixed-duration segments, a series of preprocessing tech-72

niques are applied to increase the quality and consistency of the data. These transformations, designed73

to improve signal clarity and standardization, aim to facilitate the learning of discriminative features74

by classifiers, ultimately optimizing performance across evaluation metrics. The complete pipeline is75

described below:76

Band-Limited Gaussian Noise: The first preprocessing step handled inconsistencies in the source77

audio files, some of which had been up-sampled to 32 kHz or filtered (e.g., bandpass, lowpass),78

resulting in spectrograms with empty frequency bands that produced ‘black’ regions of zero energy.79

These irregularities, common in datasets from public repositories like Xeno-canto, can bias training80

and interfere with silence detection. To mitigate this, we applied a band-limited Gaussian noise81

augmentation strategy that injects low-level noise into inactive spectral regions, effectively filling the82

black bands, normalizing information content across samples, and improving the consistency of83

signal-based silence detection.84

85
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Silence Cleaning:86

After correcting the zero-energy bands, we removed minimally informative audio, including silence87

and low-relevance background sounds. We manually filtered out non-bird classes, while automation88

was used for bird vocalizations. Each five-second segment was divided into ten 500-ms windows, and89

we calculated the variance of kurtosis across these windows. Flat signals, such as silence or steady90

noise, resulted in low variance, whereas bird calls exhibited higher variance. We then excluded the91

bottom 5% of segments based on kurtosis variance, effectively removing low-content audio while92

preserving the diversity of valid vocalizations.93

Voice Cleaning: Improving the performance of both feature extraction and classification models94

requires incorporating a voice removal step. Human speech added by field recordists is present in95

several recordings and introduces noise into the feature extraction process. We used a pre-trained96

VGG-19 model to identify human voices in five-second segments. Therefore, it classified segments97

with human voice identifiers. For non-bird species, segments classified as voice were manually98

verified due to the lower data proportion. Ultimately, segments identified as human voice were99

removed from the labeled dataset.100

Downsample: According to the labeled dataset, we observed imbalance in the number of audio101

segments for each species within each taxonomic group. To balance the dataset, we first calculated102

the median of audio segments for all non-bird and bird species separately. Then, we applied random103

downsampling to values slightly above the median: 500 for the bird group and 15 for the non-bird104

group. After this, the dataset was divided into train (60%), validation (20%), and test (20%).105

Data Augmentation: In this step, species with fewer audio segments than the median were106

augmented up to that threshold, making the prior filtering of silence and voice cleaning essential107

to avoid introducing noise that could degrade performance. Augmentation was applied only to108

underrepresented bird and non-bird species in the training set, using techniques such as white noise109

addition, time-shifting, and background noise from the ff1010bird dataset [11; 12; 13], thereby110

increasing sample diversity and supporting better generalization of the classifier.111

112

2.2.3 BirdNET Embeddings:113

After preprocessing and cleaning, feature extraction was carried out using embeddings generated114

by the BirdNET Analyzer [5], a widely used CNN-based tool trained on spectrograms of bird115

vocalizations. This open-source framework offers a strong accuracy–efficiency trade-off [14]. We116

used v2.4, which outputs a 1024-dimensional embedding per three-second snippet. Since our117

inputs are five seconds, each segment yields two vectors that we aggregated into a single 1024-D118

representation via average pooling.119

Embeddings Concatenation:120

To add temporal context, for each five-second segment we concatenate its 1024-D vector with those121

of the next two segments (repeating the last available if needed), forming a 3,072-D input. This122

sliding window captures onsets, offsets, and inter-call gaps beyond single-segment scope, improving123

robustness and generalization in complex soundscapes (see Appendix A.2).124

2.2.4 Training Classifier: Following the principle of “Clean Data and Simple Models,” we prioritized125

lightweight architectures that balance efficiency and performance, utilizing the strength of the126

extracted embeddings to reduce training data and computational demands. To capture patterns127

within the embeddings, we fine-tuned Convolutional Neural Networks (ResNet-18 and ResNet-34128

[15]), reshaping each embedding into a 32 × 96 matrix for compatibility with 2D convolutions129

and adapting input/output layers to the task. In parallel, we evaluated a Multi-Layer Perceptron130

(MLP), with hyperparameters (learning rate, hidden layers, neurons) optimized via Optuna, under131

the hypothesis that sufficiently informative embeddings allow even simple classifiers to achieve132

competitive performance.133

Evaluation Metrics: We evaluated the performance of our multi-species classification models using134

standard metrics on a held-out test set comprising 30% of the dataset. F1-score, precision, and135

accuracy were reported to provide a broad overview of model performance and enable comparison136

across evaluation dimensions. However, our main evaluation metric was Recall, as it best reflects the137

model’s ability to correctly identify each species and minimizes false negatives, an essential factor in138

biodiversity monitoring to avoid underestimating richness or overlooking rare taxa.139
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3 Results140

Table 1 summarizes the performance of the models across multiple evaluation metrics. The MLP141

trained on raw embeddings achieved the highest internal scores in precision, accuracy, weighted142

F1, and weighted recall. However, when evaluated on the BirdCLEF 2025 Kaggle test set (unseen143

data), the MLP trained on balanced and preprocessed embeddings obtained the best score (0.756).144

Although the raw MLP appeared stronger on internal evaluation, the balanced MLP demonstrated145

superior generalization, underscoring the importance of addressing data imbalance in multi-species146

classification tasks. This conclusion is further supported by the learning curves presented in Appendix147

A.3, which show reduced overfitting and improved consistency for the balanced MLP.148

Table 1: Comparison of models across evaluation metrics. While the MLP trained on raw data leads
in internal metrics, the balanced MLP with cleaned data achieves the highest Kaggle score (0.756),
indicating superior generalization.

Model Precision - W Accuracy F1 - W Recall - W Kaggle Score

Resnet 18 0,77 0,76 0,76 0,7 0,657
MLP Raw 0,89 0,89 0,88 0,89 0,728

MLP Balanced 0,84 0,83 0,83 0,83 0,756

Figure 2 reports recall per species for a subset of birds, comparing cleaned data (blue) versus raw149

data (orange). We observe a consistent recall gain for most classes with cleaning. Overall, cleaning150

raises class-wise performance and supports the global idea that with better signal quality, a simple151

MLP may match or even surpass more complex models. Recall is particularly relevant in biodiversity152

monitoring because it measures the model’s ability to correctly identify species and minimize false153

negatives; failing to detect a species that is actually present could lead to underestimating local154

richness or overlooking rare and conservation-critical taxa.155

Figure 2: Recall by species for a subset of classes. Blue: cleaned data; orange: raw data. Cleaning
improves recall for most species, reinforcing that better signal quality enables strong performance
with simple models.

4 Conclusions156

This study shows that targeted preprocessing including silence removal, human voice filtering, and157

Gaussian noise compensation is crucial for enabling lightweight models such as MLPs and basic158

CNNs to achieve competitive performance in multi-species classification. Although raw embeddings159

showed stronger results on internal metrics, the balanced and preprocessed datasets achieved better160

generalization on the BirdCLEF 2025 Kaggle test set, a dataset entirely unseen by the models.161

Demonstrating that data quality can outweigh model complexity, particularly in computationally162

constrained contexts. Learning curves further confirmed that preprocessing reduces overfitting and163

supports robustness across diverse acoustic environments, highlighting its value for bioacoustic164

monitoring (see Appendix A.3 for details). Nonetheless, challenges remain due to class imbalance165

and the underrepresentation of certain species. Future directions include refining automated noise166

and silence detection, exploring additional lightweight architectures such as compact transformers,167

and improving the pipeline to handle longer recordings and diverse ecological soundscapes, with168

the objective of increasing robustness against acoustic variability and ultimately advancing scalable,169

accessible, and reliable conservation tools.170
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A Appendix215

A.1 Code and Data216

The code and original datasets used in this study are openly available for reproducibil-217

ity and further research at the following links: https://anonymous.4open.science/218

r/NeurIPS-BirdCLEF-25/README.md and https://www.kaggle.com/competitions/219

birdclef-2025/data.220

A.2 Embeddings concatenation221

For each five-second audio segment, we concatenated its corresponding embedding, with size 1024222

according to the aggregation process, with those of the next two consecutive segments from the223

same audio file. This results in a single input vector of size 3072 (3 × 1024), tripling the temporal224

window considered by the model. For example, in Fig.1 there’s an audio with 4 segments, and the first225

concatenated embedding is the union of Audio0_0, Audio0_1, Audio0_2. In cases where fewer than226

two additional segments were available (e.g., at the end of an audio file), the last available segment227

was repeated to maintain a consistent input size228

Audio0_0

Audio0_1

Audio0_2

Audio0_3

Audio0_0 Audio0_1 Audio0_2

Audio0_1 Audio0_2 Audio0_3

Audio0_2 Audio0_3 Audio0_3

Audio0_3 Audio0_3 Audio0_3

Fig. A 1: Embeddings concatenation description

A.3 Loss Train and Validation Curves in MLP229

The following figure shows the comparison between the loss curves for both models: using raw and230

clean embeddings. It shows the training and validation loss curves, and models were trained up to 50231

epochs. It can be noticed an overfitting effect in the case of the MLP raw model, and in the case of232

the MLP clean model, the difference between the train and validation curves in each epoch is lower233

than that of the MLP raw, showing better generalization.234
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(a) Loss curve for MLP model with raw embeddings.
Validation curve indicates overfitting.
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(b) Loss curve for MLP with clean embeddings. Valida-
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Fig. A 2: Loss curve for MLP models
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