
Pre-Training Graph Contrastive Masked Autoencoders
are Strong Distillers for EEG

Xinxu Wei 1 Kanhao Zhao 2 Yong Jiao 2 Hua Xie 3 Lifang He 4 Yu Zhang 2 1

Abstract
Effectively utilizing extensive unlabeled high-
density EEG data to improve performance in sce-
narios with limited labeled low-density EEG data
presents a significant challenge. In this paper,
we address this challenge by formulating it as a
graph transfer learning and knowledge distilla-
tion problem. We propose a Unified Pre-trained
Graph Contrastive Masked Autoencoder Distiller,
named EEG-DisGCMAE, to bridge the gap be-
tween unlabeled and labeled as well as high- and
low-density EEG data. Our approach introduces
a novel unified graph self-supervised pre-training
paradigm, which seamlessly integrates the graph
contrastive pre-training with the graph masked
autoencoder pre-training. Furthermore, we pro-
pose a graph topology distillation loss function,
allowing a lightweight student model trained on
low-density data to learn from a teacher model
trained on high-density data during pre-training
and fine-tuning. This method effectively handles
missing electrodes through contrastive distillation.
We validate the effectiveness of EEG-DisGCMAE
across four classification tasks using two clinical
EEG datasets with abundant data. The source
code is available at https://github.com/
weixinxu666/EEG_DisGCMAE.

1. Introduction
Electroencephalography (EEG) is a pivotal tool for eluci-
dating neural dysfunctions, making it indispensable for the
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clinical diagnosis of brain disorders (Sanei & Chambers,
2013). Manual analysis of resting-state EEG (rs-EEG) sig-
nals often suffers from low accuracy due to their inherent
complexity. In contrast, computer-aided diagnostic methods
offer substantial improvements in diagnostic performance.
Traditional methods typically involve extracting temporal
and spatial features from EEG signals and applying machine
learning techniques to develop effective classifiers (Trivedi
et al., 2016). Recent advances have seen deep graph learn-
ing revolutionize EEG signal analysis. Instead of treating
EEG data as conventional numerical inputs, researchers now
represent it as non-Euclidean graph data. Graph Neural Net-
works (GNNs) (Kipf & Welling, 2016) are employed to cap-
ture the intricate features and topological structures inherent
in these graphs. This innovative approach has markedly
enhanced the accuracy and reliability of EEG-based diag-
nostics, showcasing the potential of GNNs in advancing
applications (Song et al., 2018).

Despite these advancements, several critical issues remain
unresolved. Firstly, acquiring a substantial amount of accu-
rately labeled clinical rs-EEG data for supervised training
on a specific task is challenging due to the complexities
involved in data collection (Siuly et al., 2016). Models
trained on these limited labeled datasets often exhibit poor
accuracy and generalization (Lashgari et al., 2020). Thus,
a significant but underexplored research problem is how to
effectively utilize this vast amount of unlabeled data to en-
hance model performance and robustness (Tang et al., 2021).
Secondly, the performance of EEG devices varies markedly
with the precision of the data they capture. High-density
(HD) EEG devices, with their extensive array of electrodes,
record high-resolution brain signals, greatly improving the
accuracy of diagnostic tasks (Stoyell et al., 2021). However,
these devices are often prohibitively expensive and cum-
bersome, limiting their practical deployment. Conversely,
low-density (LD) EEG devices, which are more afford-
able and easier to deploy (Justesen et al., 2019), capture
lower-resolution signals, thus reducing diagnostic accuracy
(Cataldo et al., 2022). Addressing how to leverage rich infor-
mation from HD EEG to enhance diagnostic performance
with LD EEG, which is more portable, is crucial for making
LD EEG-based diagnostics more accessible and practical
(Kuang et al., 2021).
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In this paper, we address these challenges through a series
of innovative methods. We construct graphs from EEG
data and apply GNNs to extract topological features and
train the model effectively. To leverage unlabeled EEG
data to enhance performance on limited labeled data, we
frame this as a Graph Transfer Learning (GTL) problem.
We propose a graph self-supervised pre-training approach
(Xie et al., 2022) on a large volume of heterogeneous unla-
beled EEG graphs. This pre-trained model is subsequently
fine-tuned on the scarce labeled data, allowing knowledge
acquired from the extensive unlabeled dataset to improve
performance on the labeled data. We introduce a novel uni-
fied graph self-supervised pre-training paradigm, GCMAE-
PT, which combines Graph Contrastive Pre-training (GCL-
PT) (Qiu et al., 2020) with Graph Masked Autoencoder
Pre-training (GMAE-PT) (Hou et al., 2022). This approach
integrates contrastive and generative pre-training by recon-
structing contrastive samples and contrasting the recon-
structed samples, enabling them to jointly supervise and
optimize each other, thereby enhancing overall model per-
formance. To improve model performance with HD EEG
data when training on LD EEG data, we address this as a
Graph Knowledge Distillation (GKD) problem (Yang et al.,
2020) and design a Graph Topology Distillation (GTD) loss
function. This allows a student model trained on LD EEG
to learn from a teacher model with HD EEG by accounting
for missing electrodes through contrastive distillation, while
simultaneously compressing model parameters. Moreover,
to ensure that models pre-trained with GTL excel as dis-
tillers in downstream GKD tasks, we integrate GTL and
GKD by contrasting the queries and keys of the teacher and
student models during the GTL pre-training process. This
integration demonstrates that our unified pre-trained graph
contrastive masked autoencoders serve as effective distillers,
providing a robust solution for EEG analysis.

2. Related Works
2.1. Graph Neural Networks for EEG Modeling

Recent advancements in Graph Neural Networks (GNNs)
have demonstrated their potential in enhancing the model-
ing and interpretation of EEG data. Notably, the Dynami-
cal Graph Convolutional Neural Network (DGCNN) (Song
et al., 2018) was introduced to improve emotion recogni-
tion by dynamically learning the interrelationships among
EEG channels. Similarly, the Regularized Graph Neural
Network (RGNN) (Zhong et al., 2020) applied a regular-
ization strategy to advance emotion recognition from EEG
data. Liu et al. (Liu et al., 2023) tackled a similar problem
by developing a novel method for emotion recognition from
few-channel EEG signals, integrating deep feature aggre-
gation with transfer learning. For medical EEG field, Tang
et al. (Tang et al., 2021) employed self-supervised GNNs

to advance seizure detection and classification, achieving
significant improvements in identifying rare seizure types.

2.2. Self-Supervised Graph Pre-Training

Self-supervised learning (SSL) pre-training (Zhang et al.,
2022b) has proven effective in harnessing extensive unla-
beled datasets. Two predominant SSL methods are con-
trastive learning-based (CL-PT) pre-training, originating
from computer vision, and generative-based masked au-
toencoders (MAE-PT) pre-training, adapted from natural
language processing (NLP). These pre-training techniques
have been extended to graph models. For instance, GCC
(Qiu et al., 2020), GraphCL (You et al., 2020) and GRACE
(Zhu et al., 2020) were among the pioneers in applying
contrastive learning to graphs by leveraging graph augmen-
tation to generate sample pairs and construct contrastive
losses. Concurrently, GraphMAE (Hou et al., 2022), Graph-
MAE2 (Hou et al., 2023) and GPT-GNN (Hu et al., 2020)
adapted the generative masked pre-training approach from
NLP (Devlin et al., 2018) to graphs. These methods involve
masking nodes and edges, followed by reconstruction, en-
abling graphs to capture and refine local topological features.
Although these methods have been widely applied in CV,
NLP, and graphs domains, only CMAE (Huang et al., 2023)
has combined CL-based and MAE-based methods, and it
has only been applied in the CV field. To the best of our
knowledge, no method has elegantly integrated GCL-PT
and GMAE-PT methods in the graph domain.

2.3. Graph Knowledge Distillation

Graph knowledge distillation focuses on transferring knowl-
edge from a complex, large-scale model (teacher) to a more
streamlined and efficient model (student), thus preserving
performance while reducing computational demands. G-
CRD (Joshi et al., 2022) introduced a distillation loss func-
tion for GNN-to-GNN transfer, employing a contrastive
learning strategy to enhance similarity among nodes of the
same class and increase separation between different classes.
MSKD (Zhang et al., 2022a) proposed a multi-teacher dis-
tillation approach, integrating various teacher GNN models
of different scales into a single student GNN model. Ap-
proaches such as Graph-MLP (Hu et al., 2021), and VQ-
Graph (Yang et al., 2024) focused on transferring knowledge
from structure-aware teacher GNNs to structure-agnostic
student MLPs.

3. Methodology
3.1. EEG Graph Construction

An EEG graph can be formally represented as G =
(V,A,X ). The matrix X ∈ Rn×d represents the node fea-
tures, with n indicating the number of nodes (or electrodes)
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Figure 1: The proposed EEG-DisGCMAE framework consists of two main stages: a pretext pre-training (PT) stage and a
downstream fine-tuning (FT) stage. Note that we can perform two types of fine-tuning: ‘Tuned’ refers to fine-tuning all the
parameters of the model, while ‘Frozen’ means freezing most layers of the model and only fine-tuning the parameters of the
top-level layers. Note that the encoders (Enco) of our model can be adopted Graph Transformer or vanilla GCNs.

and d specifying the dimensionality of the feature vector
associated with each node. A ∈ Rn×n denotes the adja-
cency matrix. The EEG graph is derived from the original
EEG time series signals recorded by EEG caps, where n
represents the number of channels or electrodes. To convert
resting-state EEG (rs-EEG) time series into graph represen-
tations, we first apply band-pass filtering to extract EEG
signals within the following frequency bands: θ (4-8 Hz), α
(8-14 Hz), β (14-30 Hz), and γ (30-50 Hz). Subsequently,
we compute the power spectral density (PSD) features for
each band, selecting the α band for this study. These PSD
features are utilized as node features for the EEG graph.
The Pearson correlation is then computed between nodes to
construct the adjacency matrix, which represents the edge
connectivity.

3.2. Unified Graph Pre-Training for Distillation

To fully leverage the extensive amount of unlabeled EEG
data, we propose a graph self-supervised pre-training ap-
proach to pre-train EEG models from the graph-based
perspective. Our motivation stems from the observation
that prior research has predominantly focused on either
contrastive-based or generative-based pre-training methods
for EEG time series, with limited studies addressing these
techniques within the context of EEG graph models. To ad-
dress this gap, we introduce a unified graph self-supervised
pre-training paradigm, termed GCMAE-PT, based on the
following assumptions:

Assumption 1: (Combining GCL and GMAE for Enhanced

Distillation) Hybridizing contrastive-based and generative-
based pre-training by simultaneously reconstructing con-
trastive pairs and contrasting the reconstructed samples
provides a more robust distiller, rather than applying these
methods separately or in sequence.

Assumption 2: (Joint Pre-Training of Teacher and Student
Models) Both the teacher and student models benefit from
joint pre-training through the contrasting of each other’s
positive and negative pairs, leading to improved distillation
performance.

Consider two types of EEG graph inputs: the high-density
EEG graph Gh = (Vh,Ah,X h) ∈ Rm×d and the low-
density EEG graph Gl = (V l,Al,X l) ∈ Rn×d, where m
and n represent the number of nodes (or electrodes) in Gh
and Gl, respectively, and m ≥ n. Note that Gl can be
regarded as a subgraph of Gh. Additionally, two graph
encoders are employed: a teacher graph encoder with exten-
sive parameters and robust feature extraction capabilities,
and a lightweight student graph encoder with fewer pa-
rameters and comparatively lower learning capacity. It is
noteworthy that Ah and Al can be dynamically learned and
adjusted throughout the training process. The teacher and
student models are adaptable to different types of GNNs,
such as transductive spectral-based traditional GCNs (like
DGCNN(Song et al., 2018)) or spatial-based graph trans-
formers (Yun et al., 2019).

Since V l is derived from Vh, that is V l ⊆ Vh, we partition
the complete node set Vh (the Complete/HD Set) in Gh into
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the Deleted Set Vd and the Remaining/LD Set V l. The set
Vd comprises (m− n) nodes present in Gh but absent from
Gl, representing the removed electrodes/nodes. Conversely,
V l includes the n nodes retained in Gl. The relationships
among these sets can be expressed as V l = Vh−Vd, where
V l ⊆ Vh, Vd ⊆ Vh, Vd ∩ V l = ∅, and Vd ∪ V l = Vh.
Thus, the complete set is composed of the deleted set and
the remaining LD set.

As illustrated in Fig.1, to construct the contrastive-based
pre-training paradigm, graph augmentation techniques (You
et al., 2020) are initially applied to HD and LD graphs
by randomly dropping nodes and removing edges. This
process yields Query graphs (Qh, Ql) and Key graphs (Kh,
Kl). Finally, the total augmented graphs are denoted as Ĝh
and Ĝl. This can be formulated as:

Ĝh = Mix(Qh,Kh) = Aug(Gh)

Ĝl = Mix(Ql,Kl) = Aug(Gl)
(1)

Where Aug(.) means graph augmentation and Mix(.) repre-
sents the integration of two graph sets.

To achieve the goal of reconstructing the contrastive pairs
as outlined in Assumption 1, the masked graphs for GMAE-
PT are constructed from the mixed contrastive augmented
samples by substituting the dropped nodes with learnable
embeddings. Subsequently, both the teacher and student
encoders are employed to encode the masked graphs into
the graph embeddings. To accomplish GMAE-PT, graph de-
coders for both teacher and student encoders are utilized to
reconstruct the masked graph embeddings into the original
input graphs by applying the MSE Loss as the reconstruction
loss LRec on both the reconstructed node features X̃ and
graph structures Ã = X̃ · X̃ tr (Yang et al., 2024).

LRec =
∥∥∥X − X̃

∥∥∥2
2
+
∥∥∥A− X̃ · X̃ tr

∥∥∥2
2

(2)

where X̃ tr means the transpose of X̃ . Then the recon-
structed HD and LD query (Q̃h, Q̃l) and key (K̃h, K̃l)
graphs are split out from the reconstructed G̃h and G̃l.

To achieving the goal of contrasting the reconstructed sam-
ples in Assumption 1, the reconstructed HD and LD query
and key graphs are mixed with the original contrastive sam-
ples generated by augmentation as additional contrastive
HD and LD query and key samples to form the extended
contrastive HD and LD query (Qh

ex, Ql
ex) and key (Kh

ex,
Kl

ex) samples.

Qh
ex = {Qh, Q̃h} Ql

ex = {Ql, Q̃l}
Kh

ex = {Kh, K̃h} Kl
ex = {Kl, K̃l}

(3)

To achieve the goal of joint the teacher and student pre-
training via contrasting the reconstructed samples in As-
sumption 2, the extended key samples of both are mixed to

form a larger Key Samples Pool Khl
ex.

Khl
ex = {Kh, K̃h,Kl, K̃l} = KQ({Khl+

ex ,Khl−
ex }) (4)

Following (He et al., 2020; Qiu et al., 2020), we adopt a
Key Queue, denoted as KQ(.), to store a large number of
mixed extended key samples pool and key encoders for both
teacher and student to convert Khl

ex to be key embeddings
for jointly pre-training the teacher and student encoders via
a joint contrastive loss function (Qiu et al., 2020) as follows:

LT
cl = − log

(
exp(Qh

ex · Khl+
ex /τ)∑K

i=0 exp(Qh
ex · Khl−

ex /τ)

)

LS
cl = − log

(
exp(Ql

ex · Khl+
ex /τ)∑K

i=0 exp(Ql
ex · Khl−

ex /τ)

) (5)

where τ represents the temperature coefficient.

Then, as shown in Fig. 6 (d) in the supplementary, we
simultaneously contrast the extended HD queries and LD
queries with all the mixed extended keys in the queue, which
consists of both HD and LD keys with the corresponding
HD and LD reconstructed keys, to construct the positive and
negative pairs with their corresponding positive and negative
keys {Khl+

ex ,Khl−
ex } in the queue, computing contrastive

loss to jointly optimize the query and key encoders of both
teacher and student models. Therefore, the joint contrastive
loss function for GCL-PT LJoint

cl is composed of the teacher
contrastive lossLT

cl and the student contrastive lossLS
cl. And

the joint reconstruction loss function LJoint
Rec for GMAE-PT

consists of the teacher reconstruction loss LT
Rec and the

student reconstruction loss LS
Rec as follows:

LJoint
cl = LT

cl + LS
cl LJoint

Rec = LT
Rec + LS

Rec (6)

The overall loss LPretrain for both the teahcer and student
encoders pre-training is composed of the contrastive-based
loss LJoint

cl and the generative-based loss LJoint
Rec .

LPretrain = LJoint
cl + LJoint

Rec (7)

3.3. Graph Topology Distillation for HD-LD EEG

In the downstream stage, the pre-trained models are fine-
tuned for specific classification tasks using limited labeled
EEG data. We employ the Cross-Entropy loss for classi-
fication. To transfer logit-based knowledge, we adopt the
classic logit distillation loss Llogits

Dis (Hinton et al., 2015),
using KL divergence to align the predicted logit distribu-
tions, allowing the pre-trained student model to mimic the
logits of the pre-trained teacher model. Moreover, since
Gh contains more nodes than Gl, the topological informa-
tion Ah learned by the pre-trained teacher model from the
high-density graph is more precise and discriminative than
Al, learned by the pre-trained student model from the low-
density graph. These topological features capture the spatial
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connectivity of EEG electrodes, which is crucial for task
performance. Thus, distilling the topological knowledge
from the pre-trained teacher model into the pre-trained stu-
dent model is essential to boost the performance of the
pre-trained student model. To address this, we propose the
Graph Topology Distillation loss. To quantify the similarity
between node features Xi of node vi and Xj of node vj in
the graph, we employ a similarity kernel function (Joshi
et al., 2022). This function computes the similarity Zij for
both Gh and Gl. Specifically, we adopt the Linear Kernel as
the node similarity function F(.), defined as follows:

Zh
ij = F(X h

i ,X h
j ) = X h

i · X h
j

Zl
ij = F(X l

i ,X l
j ) = X l

i · X l
j

(8)

Note that {vi, vj} ∈ (Vh ∩ V l) and {vi, vj} /∈ Vd. Guided
by positive and negative pairs in Ah and the influence of
the GTD loss, we aim to pull similar positive node pairs
P+
ij closer and push dissimilar negative node pairs P−

ij far-
ther apart in Al. This process first requires defining and
selecting P+

ij and P−
ij for both HD and LD graphs. As

described earlier, three node sets are involved: the com-
plete/HD set, the deleted/removed set, and the remaining/LD
set. Since LD graphs is formed by removing certain elec-
trodes/channels/nodes Vd from Vh, the removed electrodes
Vd significantly influence the topological structure of LD
graphs.
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Figure 2: The intuitive diagram for the selection of positive
and negative sample pairs in GTD Loss.

Positive and Negative Nodes Selection: As described in
the equations above, in LD graphs, if two nodes vi and vj are
either directly connected (1-hop) or indirectly connected (2-
hop) through a removed node vk in Vd, acting as a mediator
in the graph embedding of HD graphs learned by the teacher
model, these node pairs vij are treated as positive contrastive
pairs. Conversely, if node pairs vij are connected in the
embedding LD graphs learned by the student model but are
neither directly nor indirectly connected in the embedding
learned by the pre-trained teacher model, they are treated as
negative contrastive pairs.

As shown in Fig. 2, we provide an intuitive illustration for
the selection of positive and negative pairs. In the HD graph,
the blue nodes represent the nodes that are retained in the
LD graph, while the pink nodes represent those that exist
only in the HD graph but are absent in the LD graph (i.e., the
information lost in the LD graph, which is what we aim to

distill). In the LD graph, the pink nodes and their associated
edges are removed. As shown, (P5, Oz) and (Fz, T8) are
directly connected as first-order neighbors in the HD graph,
making them positive pairs. Meanwhile, (P5, P8), (P5, T8),
and (P8, T8) are second-order neighbors via the pink nodes,
so they are also considered positive pairs according to our
rules. However, (Oz, P8), (Fz, T8), and (Fz, P8) are neither
first-order neighbors nor second-order neighbors via the
pink nodes in the HD graph. Yet, they become first-order
neighbors in the LD graph, thus qualifying as negative pairs
that need correction.

Once the positive and negative pairs are identified, we apply
KL divergence as the distillation function. In the numerator,
it is used to align the kernel feature distributions learned
by the pre-trained teacher and student models for positive
pairs, encouraging the pre-trained student model to replicate
the topological distribution of the pre-trained teacher model
and increase the similarity of positive pairs in the embed-
dings learned by the student model. In the denominator, KL
divergence is also employed to adjust the erroneous topolog-
ical distribution learned from negative pairs by the student
model.

LPos =
∑

(i,j)∈P+

KL
(
softmax(Zl

ij) ∥ softmax(Zh
ij)
)

LNeg =
∑

(i,j)∈P−

KL
(
softmax(Zl

ij) ∥ softmax(Zh
ij)
) (9)

The final GTD loss function LGTD
Dis in the contrastive format

is as follows:

LGTD
Dis =

LPos/CPos

LNeg/CNeg + ϵ
(10)

where CPos and CNeg are the counts of P+
ij and P−

ij . ϵ is a
constant to avoid division by zero errors.

Finally, we integrate all the loss functions to form the total
Fine-tune loss LFinetune:

LFinetune = LCE + LLogits
Dis + LGTD

Dis (11)

3.4. Special Case for the Proposed GTD Loss

The GTD loss is primarily designed to distill topological
knowledge from Gh to Gl. However, there is a special case
known as H2H distillation, where Gl and Gh have the same
number of nodes, meaning V l = Vh and Vd = ∅. In this
scenario, no nodes are removed, and only the connections
in Al and Ah may differ. With slight modifications, our
loss function can also be applied to this special case. The
modified GTD loss for the H2H distillation scenario is given
as follows:

P+
ij = I

(
Ah

ij > 0
)

P−
ij = I

(
Al

ij > 0 and Ah
ij = 0

)
(12)
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In this special case, GTD loss does not consider Vd. The
learning objective becomes utilizing the learned Ah learned
from the teacher model to correct incorrectly edges in Ah

learned from the student model, thereby making Al as close
to Ah as possible.

4. Algorithm Pipeline of GTD Loss
To clarify the GTD loss calculation, we present the pipeline
as shown in Algorithm 1.

Algorithm 1 GTD Loss Calculation
Input: X l, V l, Al, X h, Vh, Ah, Vd

Parameter: F(.), θ, ϵ
Output: LGTD

Dis

1: Normalize Al, Ah

2: Apply threshold: Al ← (Al > θ), Ah ← (Ah > θ)
3: Compute kernel matrices: Z l = F(X l), Zh = F(X h)
4: Assert: |V l| ≤ |Vh|
5: if |V l| ≠ |Vh| then
6: Extract sub-matrices Ah

sub = Ah[V l,V l]
7: Direct connections: Ah

1−hop = (Ah
sub > 0)

8: Indirect connections: Ah
2−hop = Ah[Vd, : V l]

9: LPos = KL(Z l||Zh) | (Ah
1−hop ∨ Ah

2−hop)

10: LNeg = KL(Z l||Zh) | (Al∧¬(Ah
1−hop∨Ah

2−hop))
11: else
12: LPos = KL(Z l||Zh) | (Ah > 0)
13: LNeg = KL(Z l||Zh) | (Al > 0 ∧ Ah = 0)
14: end if
15: LPosAvg = LPos

Cpos

16: LNegAvg =
LNeg

Cneg

17: return LGTD
Dis =

LPosAvg

LNegAvg+ϵ

5. Experiments
5.1. Implementation details

During pre-training, we used a batch size of 128. For down-
stream fine-tuning, we used a batch size of 32. Both pre-
training and fine-tuning were optimized using the Adam
optimizer.

5.2. EEG Datasets and Downstream Tasks

We evaluated our EEG-DisGCMAE framework on two clin-
ical datasets with rs-EEG time series: the Establishing Mod-
erators and Biosignatures of Antidepressant Response in
Clinical Care (EMBARC) (Trivedi et al., 2016) and the
Healthy Brain Network (HBN) (Alexander et al., 2017).
The EMBARC dataset comprises EEG data from 308 eye-
open and 308 eye-closed samples, while the HBN dataset
includes 1,594 eye-open and 1,745 eye-closed samples. De-

tailed dataset preprocessing information is provided in the
appendices. For EMBARC, we performed binary classifica-
tion tasks: sex classification in Major Depressive Disorder
(MDD) patients (Male vs Female) and depression sever-
ity classification based on the Hamilton Depression Rating
Scale (HAMD17) (Williams, 1988) (Mild vs Severe De-
pression) (Boessen et al., 2013). For HBN, we conducted bi-
nary classifications for MDD (Healthy vs MDD) and Autism
Spectrum Disorder (ASD) (Healthy vs ASD). Additional
details can be found in the appendices. We tested three
EEG electrode density levels: high-density (HD), medium-
density (MD), and low-density (LD). In EMBARC, these
densities correspond to the 10-20 EEG system electrode
distributions of 64 (HD), 32 (MD), and 16 (LD) electrodes,
respectively. For HBN, the densities correspond to 128
(HD), 64 (MD), and 32 (LD) electrodes.

5.3. Comparative Experiment Analysis

We compared the proposed EEG-DisGCMAE against five
classes of methods: Traditional machine learning methods
(MLP, LSTM), GNN-based models (GCN, GFormer, Hyper-
GCN (Feng et al., 2019)), EEG-specific models (EEGNet
(Lawhern et al., 2018), DGCNN, EEG-Conformer (Song
et al., 2022), RGNN), Graph contrastive pre-training Mod-
els (GCC, GraphCL, GRACE), and Graph generative pre-
training Models (GraphMAE, GPT-GNN, GraphMAE2).
In addition, we compare our method with LaBraM (Jiang
et al.), a time-series EEG model that performs pre-training
directly on the raw time-series data. As demonstrated in
Table 1, our model outperforms all other state-of-the-art
methods. Notably, pre-training-based models, including
those based on GCL-PT (GCC, GraphCL, GRACE) and
GMAE-PT (GraphMAE, GPT-GNN, GraphMAE2), utilize
large Graph Transformers as their backbone in this study.
In contrast, our method can be suitable to both spatial-
based Graph Transofrmer and spectral-based vanilla GCNs
(DGCNN) as the backbone. We evaluated both tiny and
large model sizes. As illustrated in Fig. 3(a), our tiny
model, with only 1.3M parameters, performs comparably
to pre-training-based methods with larger models (5.7M pa-
rameters). Moreover, our large-tiny model, despite having a
similar parameter size to others, significantly outperforms
them by about 5% in both AUROC and accuracy. This
demonstrates that our approach achieves a superior balance
between performance and efficiency, delivering high perfor-
mance with a more compact parameter set. As illustrated in
Fig. 3(b), we investigated the relationship between model
parameters and performance across three factors: model
size, model type, and varying input EEG densities. It is
evident that when the model type and input EEG density are
fixed, the large-size model outperforms the tiny-size model.
For a given model, reducing the input density (i.e., using LD
data) leads to a decline in performance compared to using
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Table 1: Performance comparison of different methods on two clinical EEG datasets for different classification tasks. Our
teacher and student model can adopt both spectral-based GCNs (DGCNN) or spatial-based Graph Transformer as the
backbone, whereas other graph pre-training models utilize large Graph Transformers. The experiments encompass both
high-density and low-density EEG scenarios. Metrics are reported as AUROC(%)/ACC(%).

Method HBN MDD HBN ASD EMBARC Sex EMBARC Severity
HD LD HD LD HD LD HD LD

MLP 73.2/75.7 71.6/72.5 58.3/61.1 56.3/59.4 68.0/71.3 65.7/67.4 61.5/63.7 59.4/62.6
LSTM 76.7/79.2 73.7/76.8 60.3/64.6 58.4/61.8 69.0/71.8 67.3/69.3 62.8/66.0 61.2/63.8
GCN 75.8/77.6 72.3/76.4 60.5/63.7 59.2/61.8 69.1/72.8 66.7/69.6 63.5/66.2 60.7/63.3

GFormer 80.4/83.6 76.3/80.4 62.7/64.2 61.5/62.8 71.8/74.4 68.1/71.6 66.2/69.8 64.7/66.8
Hyper-GCN 77.6/80.8 75.4/77.7 60.1/64.5 59.7/63.1 70.5/73.8 67.6/72.3 64.7/68.3 63.0/66.2

EEGNet 80.6/82.9 76.3/80.1 62.0/64.6 59.3/62.8 71.1/74.0 66.6/70.3 65.4/70.1 62.4/65.2
EEG Conformer 79.3/83.1 77.5/79.8 61.6/64.3 60.3/62.4 72.2/74.8 67.9/70.7 64.7/66.3 64.2/64.8

RGNN 79.4/82.5 76.8/79.2 60.3/62.6 58.4/63.2 71.8/73.5 68.7/71.5 64.7/66.2 62.5/65.1
DGCNN 77.1/81.7 74.2/78.7 61.3/63.8 59.3/62.7 70.6/73.2 66.6/72.3 65.4/67.8 62.7/64.2

GCC 82.2/85.1 80.4/82.8 64.3/66.1 63.2/62.1 72.9/75.7 69.5/73.7 68.5/71.1 66.1/68.7
GRACE 83.7/84.6 79.9/81.8 63.7/66.8 61.6/63.9 73.2/74.9 70.7/72.8 67.3/71.8 66.7/67.6
GraphCL 81.7/83.9 78.6/80.6 64.6/65.4 63.4/64.1 72.8/75.4 68.5/73.5 69.4/72.6 67.3/69.2

GraphMAE 82.8/85.3 79.5/83.3 65.1/64.7 62.5/62.9 72.6/76.3 70.2/73.8 69.4/69.8 65.8/68.5
GPT-GNN 83.3/85.2 80.7/82.2 65.6/66.9 64.3/65.0 71.2/74.7 68.5/72.9 68.3/70.4 65.4/67.1

GraphMAE2 83.5/85.7 81.3/83.0 65.3/65.9 62.5/65.9 72.2/75.6 69.5/73.2 70.5/70.0 66.2/68.3
Ours-Tiny (DGCNN) 84.8/85.4 81.6/82.4 66.1/66.4 63.4/64.1 73.4/76.7 71.8/75.6 68.6/71.9 66.8/69.3
Ours-Large (DGCNN) 86.6/87.4 84.4/85.3 67.3/68.8 66.7/65.9 75.4/77.8 74.5/76.3 71.5/74.6 69.2/72.8
Ours-Tiny (Gformer) 85.3/86.8 82.6/84.3 66.6/67.8 64.7/65.7 75.2/77.1 73.3/75.3 68.7/73.5 67.3/72.1
Ours-Large (Gformer) 87.4/87.8 84.8/86.9 68.6/69.4 66.8/67.4 76.6/77.9 75.7/76.8 72.3/77.2 70.6/74.0

HD data. However, after pre-training and distillation, the
performance of the initially less effective tiny-size model
improves significantly, reaching a level comparable to that
of the large-size teacher model using HD data without pre-
training. This demonstrates that our GCMAE-PT and GTD
loss can enhance model performance while maintaining a
lightweight parameter set without compromising efficiency.

(a) (b)

Figure 3: (a) compares model sizes and performance where
‘L’ denotes large-size models, and (b) examines the same
factors across different model types. Both analyses were
conducted on the HBN dataset for MDD classification. Mod-
els of the same color belong to the same category, and circle
size represents the number of parameters, with larger circles
indicating higher parameter counts. In (b), the model back-
bone is a vanilla GCN (DGCNN).

5.3.1. ANALYSIS OF EEG PATTERNS FOR MASKING
AND RECONSTRUCTION

To illustrate the effectiveness of our proposed pre-training
method, we visualized EEG data patterns across various

densities, masking ratios, and reconstruction methods, as
depicted in Fig. 4. Fig. 4(a) shows clear and well-connected
activated regions with no masking. As we increased the
masking ratio in Figs. 4(b), 4(c), and 4(d), the activated
regions diminish and connectivity deteriorates, reflecting
increased information loss. Fig. 4(e) demonstrates the effec-
tiveness of our reconstruction method with 50% masking,
revealing a pattern that closely resembles the unmasked data
in Fig. 4(a), with improved activation and high reconstruc-
tion accuracy.

5.4. Ablation Study Analysis

5.4.1. ELECTRODE DENSITY AND MODEL SIZE

Table 2 presents ablation experiments examining EEG
graphs with varying densities (HD/MD/LD) and model
types (teacher/student) with different sizes (tiny/large). The
results reveal that as electrode density decreases, perfor-
mance on EEG recognition tasks deteriorates. The decline
is more pronounced when reducing density from MD to LD
than from HD to MD. This is because, while the reduction
from HD to MD removes redundant electrodes, MD still
retains essential information, preserving performance. How-
ever, reducing from MD to LD results in the loss of critical
electrodes, leading to a significant performance drop. Ad-
ditionally, ablation experiments comparing different model
sizes, including tiny and large versions of the spatial-based
graph transformer and spectral-based DGCNN, indicate
that the teacher model consistently outperforms the student
model of the same size. The tiny teacher model performs
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(a) (b) (c) (d) (e) (f)

Figure 4: Ablation studies of EEG patterns on the EMBARC datasets for MDD severity classification task. (a) is the pattern
of original HD EEG w/o masking. (b), (c) and (d) are patterns of HD EEG w/ 25%, 50% and 75% masking ratios and
reconstructed by vanilla GMAE-PT, respectively. (e) is the pattern of HD EEG w/ 50% masking ratio and reconstrcted by
our proposed GCMAE-PT. (f) is the pattern of original MD EEG w/o masking. The MSE losses value for (b), (c), (d), and
(e) are 0.25, 0.31, 0.44, and 0.17, respectively.

similarly to the large student model, and within the same
model type, the large model substantially exceeds the tiny
model in performance.

Table 2: The ablation explores the impact of varying EEG
densities (HD/MD/LD), model types (teacher/student), and
sizes (tiny/large) on performance. ‘T’ denotes teacher mod-
els and ‘S’ denotes student models. The experiments were
conducted on the HBN dataset for the MDD classification
task, with all models evaluated without pre-training. Metrics
are reported as AUROC(%)/ACC(%).

Density GFormer-Large (T) Gformer-Tiny (S)
Tiny Large Tiny Large

LD 72.6/76.4 76.3/80.4 72.7/75.4 74.2/78.7
MD 75.6/78.1 78.7/82.5 74.3/77.2 76.0/80.5
HD 77.7/80.4 80.4/83.6 75.6/78.4 77.1/81.7

5.4.2. ABLATION STUDY OF DIFFERENT DISTILLATION
LOSS FUNCTIONS

We compared the proposed GTD loss with several com-
monly used graph distillation loss functions. As shown in
the Table 3, our GTD loss outperforms other graph distil-
lation losses. Furthermore, we observed that combining
our GTD loss with the traditional logits distillation loss
yields the best distillation performance, as it enables the
model to distill both semantic information from the logits
and structural information from the topology learned via
GTD loss.

5.4.3. ANALYSIS OF PRE-TRAINING METHODS

As detailed in Table 4, we compared our GCMAE-PT with
three other pre-training approaches: graph contrastive pre-
training (GCL-PT) (You et al., 2020), graph masked autoen-
coder pre-training (GMAE-PT) (Hou et al., 2022), and a
sequential combination of GCL-PT and GMAE-PT (Seq.
Comb.). Following pre-training, we evaluated the models
on downstream classification tasks. The results indicate that
our framework surpasses GCL-PT, GMAE-PT, and their
sequential combination. This underscores that sequentially

Table 3: Ablation studies on logits distill loss and our GTD
loss. T and S denote teacher and student. The experiments
are conducted on the HBN dataset for MDD classification.

GKD Methods w/o Pre-Training w/ Pre-Training
HD-T-Large LD-S-Tiny HD-T-Large LD-S-Tiny

Baseline 80.4/83.6 72.7/75.4 85.2/86.5 77.6/79.4
+ Logits - 73.6/77.3 - 79.6/80.7

+ Proposed - 73.8/78.5 - 80.2/81.5
+ Union - 75.0/79.2 - 81.6/82.4
+ LSP - 73.1/76.7 - 78.8/80.7

+ G-CRD - 73.4/77.8 - 79.3/80.3

combining contrastive and generative pre-training methods
does not achieve optimal performance. Our approach, which
seamlessly integrates these techniques into a cohesive frame-
work with explicit and implicit mutual supervision, delivers
superior results.

Table 4: Ablation studies were conducted on our GCMAE-
PT, comparing it with GCL-PT, GMAE-PT, and their se-
quential combination (Seq. Comb.). ‘T’ and ‘S’ represent
the teacher and student models, respectively. The experi-
ments were performed on the HBN and EMBARC datasets.
Baseline results can be found in Table 2. The teacher model
uses HD inputs with a large-size configuration, while the
student model uses LD inputs with a tiny-size configuration.

GPT Methods HBN MDD EMBARC Sex
HD-T-Large LD-S-Tiny HD-T-Large LD-S-Tiny

Baseline 80.4/83.6 72.7/75.4 71.8/74.4 64.2/69.3
GCL-PT 82.2/85.1 74.3/75.9 72.9/75.7 66.4/71.5

GMAE-PT 82.8/85.3 75.1/76.6 72.6/76.3 67.1/71.7
Seq. Comb. 83.3/85.9 75.6/78.1 73.3/77.1 67.6/72.5
GCMAE-PT 85.2/86.5 77.6/79.4 74.7/78.4 68.8/73.3

6. Experiments for Model Robust Analysis
To evaluate the robustness of our model, we introduce per-
turbations to the EEG data by adding Gaussian noise to the
raw signals and randomly dropping electrode channels. As
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Table 5: Performance on HBN MDD before and after EEG
perturbations.

Model Before Pertur. After Perturbation
Add Noise Drop Electrodes

GCN 76.4% 72.8% 71.4%
GFormer 80.4% 74.6% 75.7%

GraphMAE 83.3% 78.5% 77.8%
Ours 86.9% 83.7% 84.0%

shown in the Table 5, all models exhibit performance degra-
dation under perturbations. However, our model shows the
smallest performance drop, indicating superior robustness
and stronger resistance to adversarial perturbations. This
advantage can be attributed to our carefully designed pre-
training strategy, which incorporates robustness-aware com-
ponents, such as the reconstruction of masked electrodes in
GMAE-PT, thereby enhancing the model’s ability to handle
corrupted inputs.

7. Analysis of (Pre-)Training and Distillation
As shown in Fig. 5, we visualized the optimization process
of the loss curves, including contrastive loss, reconstruc-
tion loss, and GTD loss, during both the pre-training and
fine-tuning stages. Fig. 5(a) shows that during pre-training,
we jointly optimized the contrastive loss and reconstruc-
tion loss for both the teacher and student models. All four
losses converge effectively during optimization. Notably,
the contrastive loss for both the teacher and student models
exhibit similar optimization trends, as do the reconstruc-
tion losses. Fig. 5(b) illustrates the impact of the proposed
GCMAE-PT and GTD loss on downstream classification
tasks. We present the optimization curves for the general
Cross-Entropy (CE) loss, as well as the optimization curves
after applying GCMAE-PT, GTD loss, and both combined.
It is clear that the CE loss is better optimized with the ap-
plication of GCMAE-PT and GTD loss. This confirms that
both pre-training with GCMAE-PT and GTD loss enhance
the performance of downstream classification tasks.

(a) (b)

Figure 5: Illustrations of loss curves in both the pre-training
stage (a) and fine-tuning stage (b). We applied early stop-
ping to prevent overfitting. This also indicates that GTD loss
effectively accelerates convergence and avoids overfitting.

8. Conclusion
In this paper, we present an innovative framework for EEG
pre-training and distillation, which effectively integrates
contrastive-based and generative-based graph pre-training
paradigms. Furthermore, our framework incorporates a
specifically designed EEG graph topology distillation loss
function, tailored for the distillation process from high-
density to low-density EEG data.

Impact Statement
Our proposed framework not only holds significant algorith-
mic innovation but also demonstrates strong practical appli-
cation value. At the algorithmic level, our framework is the
first to integrate the two mainstream pre-training paradigms
within the realm of graph networks, while also combining
graph pre-training with graph distillation. From an appli-
cation perspective, we address a novel yet highly practical
problem: how to distill high-density EEG into low-density
EEG. The practical value of this lies in enabling our algo-
rithm to achieve performance comparable to HD EEG data
using more affordable and accessible LD EEG data, thereby
reducing the challenges and costs associated with obtaining
advanced equipment.
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A. Preliminaries of Dynamic GNNs
In traditional GNNs, the adjacency matrixA is static. However, in this paper, we adopt dynamic GNNs, where the adjacency
matrix can be dynamically adjusted during training to suit the specific task better. This approach allows the model to adapt
the graph structure based on the input data and learning objectives. In such models, the edge weights αij between nodes
(i, j) are learned during training. The edge weights can be computed as:

αij = σ (f (Xi,Xj)) (13)

where f(·) is a function for calculating edge weights, and σ is an activation function (e.g., Sigmoid). The dynamic adjacency
matrix A is then updated based on these weights, typically using a thresholding mechanism:

Aij =

{
1, if αij > θ

0, otherwise
(14)

where θ is a threshold. During message passing, the dynamic adjacency matrix influences how messages are aggregated
from neighboring nodes:

mi =
∑

j∈N (i)

αijWxj (15)

Here, αij represents the dynamically computed edge weight used to weight the messages from neighbors. Node features are
updated as follows:

X (l+1)
i = σ

(
W(l)X (l)

i + b(l) +mi

)
(16)

By dynamically adjusting the adjacency matrix, dynamic GNNs can capture more complex and evolving relationships within
the graph, thereby enhancing flexibility and overall performance.

B. Details of Motivation and Problem
B.1. GTL for Unlabeled/Labeled EEG

Many existing methods primarily focus on training models with limited labeled EEG data, overlooking the potential of
abundant unlabeled data. These methods emphasize novel GNN architectures but fail to fully leverage the available data.
Additionally, they do not exploit high-density (HD) EEG data to improve models for low-density (LD) scenarios. This
underscores the need for strategies that integrate both labeled and unlabeled data, and use HD data to enhance performance
in LD contexts.

Moreover, most pre-training methods are directly applied to EEG time series, with very few addressing the issue from the
perspective of large-scale graph pre-training. In contrast, our approach proposes pre-training EEG graph models using a
graph-based pre-training perspective. This not only aims to transfer knowledge from unlabeled EEG data to tasks on labeled
EEG data but also benefits HD-to-LD distillation. This is based on the following observation:

Observation: An LD EEG graph can be viewed as an HD EEG graph with specific nodes removed. In graph contrastive
self-supervised pre-training, contrastive views are obtained by graph augmentation, such as removing nodes and edges.
Another graph pre-training method, graph masked autoencoders pre-training, operates by masking node features and then
reconstructing them. The relationships between these methods are formulated as follows:

Density Decrease︸ ︷︷ ︸
Electrodes Loss

⇐⇒ Node Dropping︸ ︷︷ ︸
GCL Augmentation

⇐⇒ Node Masking︸ ︷︷ ︸
GMAE Masking

(17)

Based on this observation, we propose a novel unified graph self-supervised pre-training paradigm called GCMAE-PT.
This approach intricately combines Graph Contrastive Pre-training (Qiu et al., 2020; You et al., 2020) with Graph Masked
Autoencoders Pre-training (Hou et al., 2022), allowing us to model and capture the relationships among the three entities
described in Eq. 18.

B.2. GKD for High/Low-Density EEG

As previously mentioned, an LD EEG graph can be viewed as an HD EEG graph with specific nodes removed. Consequently,
HD EEG contains many features that LD EEG lacks. We naturally formulate this as a graph knowledge distillation (GKD)
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Figure 6: Illustration of our proposed pipeline and other previous contrastive pre-training and masked autoencoder pre-
training. (a) Classical graph contrastive pre-training, which contrasts query and key samples. (b) Moco-like contrastive pre-
training via a key momentum encoder. (c) Graph masked autoencoder pre-training through masking and then reconstructing
graph samples. (d) Our proposed graph contrastive masked autoencoder pre-training framework. We simultaneously
pre-train the teacher and student models by contrasting their reconstruction samples and reconstrucing their contrastive
samples (query and key).
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task, focusing on how to transfer information from HD EEG data to LD EEG applications, which is a data-level distillation
process. Additionally, if a more complex teacher model with a larger number of parameters is used to extract features from
HD EEG data, and a simpler student model with fewer parameters is used for LD EEG data, this involves model-level
distillation. The aim is to deploy the lightweight student model while ensuring that its performance approaches, or even
surpasses, that of the more cumbersome teacher model.

Therefore, the GKD process can be represented by the following formula:

Teacher Model︸ ︷︷ ︸
HD EEG Data

Compress (Model-level)−−−−−−−−−−−−→
Distill (Data-level)

Student Model︸ ︷︷ ︸
LD EEG Data

(18)

C. Illustrations of the Proposed Two Assumptions
As illustrated in Fig. 7, we have visually presented the overall pipeline of our model through an illustrative diagram. As
shown, the entire pipeline is constructed based on the two assumptions we proposed in Section 3.2.

Contrastive
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Reconstruct
Samples

GMAE

Contrastive
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Contrast

Contrast Contrast

Contrast

Mask Mask
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Figure 7: The schematic diagram of two assumption in Section 3.2. For assumption 1, we unify the GCL and GMAE
pre-training paradigms by contrasting the reconstruction samples of GMAE in GCL and reconstructing the contrastive
samples of GCL in GMAE. For assumption 2, we simultaneously pre-train the teacher and student models by contrasting
their contrastive and reconstruction samples of GCL and GMAE, enable the encoders to be distillers via the help of GTD
Loss.

D. Data Collection and Pre-proccessing
D.1. EEG Data Quantity Statistics

The EMBARC dataset consists of EEG signals collected from 308 subjects in both eye-open and eye-closed states. The EEG
time series were sampled at 250Hz, with each trial lasting approximately 200 seconds. Similarly, in the HBN dataset, EEG
signals were collected in both eye-open and eye-closed states, with 1,594 subjects for the eye-open condition and 1,764
subjects for the eye-closed condition. The duration of the recordings is also around 200 seconds, with the same sampling
frequency of 250Hz. Both EMBARC and HBN datasets use the 10-20 EEG standard system, with EMBARC employing a
64-electrode cap and HBN using a 128-electrode cap.

D.2. Explanation of Unlabeled Data

Collecting EEG recordings, each patient diagnosed with a particular mental disorder can be classified as a labeled subject.
Patients with EEG diagnosed as other disorders or healthy controls, are categorized as unlabeled data. In clinical, the
amount of labeled data diagnosed as certain disorders was limited. Therefore, models trained exclusively on such sparse
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labeled data are prone to underfitting, undermining their predictive performance. However, by broadening the scope to
include aggregated data from a range of disorders to form a comprehensive unlabeled or mixed-labeled dataset, pre-training
models on this enriched dataset can mitigate the constraints imposed by data scarcity. This approach enhances the model’s
generalizability and improves performance, even in the face of limited labeled examples.

D.3. Construction and Augmentation of Pre-Training Graph Datasets

To construct the pre-training dataset, we combined the data from both the eye-open and eye-closed states from these two
datasets. For EEG data augmentation, we applied a sliding window sampling method for each subject in the EMBARC and
HBN datasets. EEG time series segments were extracted every 50 seconds, with a 20-second overlap between consecutive
segments. The formula for calculating the number of segments for each subject is as follows:

Segments per Subject =
⌊

Total length−Window length
Window length− Overlap length

⌋
+ 1 (19)

Additionally, we combined the entire time series for each subject with the extracted segments. For each time series segment,
we computed the Power Spectral Density features and then constructed the EEG graph samples. The formula for calculating
the total number of samples used in the construction of the pre-training datasets is as follows:

Total Samples = (Segments per Subject + 1)× Subjects (20)

Note that the term Subjects here refers to the combination of EEG segments from both EMBARC and HBN datasets,
including both eye-open and eye-closed EEG samples. Ultimately, we obtain approximately 4,000 samples (308 + 308 +
1,594 + 1,764 ≈ 4,000), resulting in about 24,000 EEG graph samples for the graph self-supervised pre-training corpus.

D.4. (Pre-)Training and Evaluation Settings

For pre-training on the EMBARC dataset, we addressed the issue of dataset size disparity between EMBARC and the HBN
dataset, which both originate from the same EEG system. Specifically, we downsampled the 128 channels of the HBN data
to 64, 32, and 16 channels, maintaining the same arrangement. These downsampled data were then combined with the
corresponding density datasets from EMBARC to create a unified pre-training dataset. Note that, as the EMBARC dataset
does not include 128 channels, the 128-channel HD pre-training dataset does not incorporate data from EMBARC (HBN
only).

For downstream task fine-tuning, due to the limited amount of labeled data, we employed 10-fold cross-validation with 10
runs for all model training. The Adam optimizer (Kingma, 2014) was used to optimize the training process. Pre-training
was performed over 200 epochs, while downstream fine-tuning was carried out for 400 epochs.

D.5. Construction of Downstream Datasets

Table 6 provides the quantity of labeled data for four downstream classification tasks across the EMBARC and HBN datasets.

In the EMBARC dataset, the number of subjects is consistent across eye-open and eye-closed conditions. For the MDD sex
classification task, there are 296 subjects with varying levels of depression (all diagnosed with depression) and 12 normal
subjects. Among the depressed individuals, there are 194 males and 102 females. For the depression severity classification
task, 166 subjects are diagnosed with severe depression (HAMD17 score > 17) (Boessen et al., 2013), and 130 subjects are
diagnosed with mild depression (HAMD17 score ≤ 17).

The HBN dataset, which includes a range of diseases, has significantly fewer labeled samples compared to the total data
volume due to the high number of samples without explicit MDD and ASD diagnostic labels. Additionally, the number of
labeled subjects differs between eye-open and eye-closed conditions. In the eye-open data, there are 178 healthy controls,
109 MDD patients, and 234 ASD patients. In the eye-closed data, there are 187 healthy controls, 120 MDD patients, and
245 ASD patients.

To ensure a large-scale pre-training dataset, we utilized slicing operations to expand the dataset size. However, for
constructing labeled datasets for downstream tasks, slicing was not employed. Instead, we calculated the PSD features for
the entire 200-second EEG time series.
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D.6. Comparison between the Pre-training Dataset and Downstream Datasets

For the pre-training dataset, which includes both labeled and unlabeled data, we applied slicing operations to significantly
increase the dataset size. In contrast, for the downstream dataset, particularly for the HBN data, the labeled data constitutes
only a small fraction of the total dataset, and no slicing operations were performed. In this context, it is crucial to leverage
the pre-training dataset effectively to enhance model performance on the limited labeled data available.

Table 6: Labeled data distribution of the EMBARC and HBN datasets. ’HC’ means healthy control.

Datasets EMBARC HBN
Sex Severity MDD ASD

Eye-open Female: 194 Severe: 166 Patient: 109 Patient: 234
Male: 102 Mild: 130 HC: 178 HC: 178

Eye-closed Female: 194 Severe: 166 Patient: 120 Patient: 245
Male: 102 Mild: 130 HC: 187 HC: 187

Figure 8: Ablation studies on different node and edge dropping (for GCL-PT) and masking (for GMAE-PT) ratios. A 50%
masking ratio for both nodes and edges achieves the best performance.

E. Different Configurations of Teacher and Student Models

Table 7: Comparison of Model Configurations. Note that DGCNN is a spectral-based vanilla GCNs model (DGCNN), while
GFormer means the spatial-based Graph Transformer model. We considered both types of graph models to demonstrate the
versatility of our pipeline.

Model Encoder Sizes Layers Dimensions Heads Position Embedding Params
(S) (L) (D) (H) (P) (PM)

Teacher DGCNN Large 8 128 - % 5.7M
GFormer Large 8 128 8 ! 6.9M

Student DGCNN Tiny 4 64 - % 1.3M
GFormer Tiny 4 64 4 ! 1.4M

DGCNN and Graph Transformer are two representative types of graph neural networks (GNNs). DGCNN is a message-
passing-based GNN, while the Graph Transformer is a spatial-attention-based GNN. In terms of performance, GNNs
represented by DGCNN are relatively lightweight but tend to achieve lower accuracy. In contrast, GNNs represented by
Graph Transformers generally yield better performance, albeit with higher model complexity and computational cost.
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Table 8: Subject-dependent and subject-independent results on EMBARC (PSD+Pearson) and SEED (DE+Coherence)
using LD EEG data.

Model Sex Classification (EMBARC) Emotion Recognition (SEED)
Subject-Dependent Subject-Independent Subject-Dependent Subject-Independent

Graph Transformer 71.6% 68.2% 86.4% 75.4%
GraphMAE 73.8% 70.6% 88.6% 78.1%

Ours 76.8% 74.1% 93.6% 84.3%

F. Subject-Dependent/Independent Experiments
Table 8 reports the performance of different models on two representative datasets, EMBARC and SEED (Duan et al., 2013),
under both subject-dependent and subject-independent settings. For the EMBARC dataset, we constructed EEG graphs
using Power Spectral Density (PSD) as node features and Pearson correlation as the connectivity metric. In contrast, the
SEED dataset employed Differential Entropy (DE) (Duan et al., 2013) features and coherence-based functional connectivity
to construct the EEG graph. Notably, our proposed model achieves the best performance across all settings, significantly
outperforming baselines.

More importantly, despite being pre-trained or optimized primarily on medical data, our model generalizes remarkably
well to the SEED dataset for the task of emotion recognition. This demonstrates the strong transferability of our model
across different EEG datasets, feature types, and functional connectivity metrics, highlighting its robustness and versatility
in real-world cross-dataset scenarios.

G. Ablation Study on Different Connectivity (Spatial/Functional) for EEG Graph Construction
We construct EEG graphs using two primary approaches: functional connectivity-based methods and spatial distance-based
methods. The functional connectivity-based methods include Pearson correlation, coherence, and mutual information. As
shown in the Table 9, the coherence-based graph construction yields the best performance, while the spatial distance-based
method performs the worst. This is likely because the strength of functional connectivity between EEG electrodes does not
necessarily correlate with their physical distance, electrodes that are far apart spatially may still exhibit strong connections
due to similar functional activity.

Table 9: Comparison of EEG graph construction methods using different connectivity measures.

Model Functional Connectivity Spatial Connectivity
Pearson Correlation Coherence Mutual Information Spatial Distance

Graph Transformer 71.6% 73.1% 71.9% 67.5%
GraphMAE 73.8% 74.7% 73.8% 68.5%

Ours 76.8% 78.1% 77.5% 72.8%

H. Ablation study on different EEG bands
As shown in Table 10, we performed ablation studies on various EEG frequency bands across four tasks on two datasets and
observed that the alpha band consistently yielded the best performance across all tasks. Consequently, we selected the alpha
band as our primary configuration.

Table 10: Ablation experiments on performance of different EEG bands. The model employed is a tiny-sized student model
obtained through pre-training and distillation with LD EEG input.

Datasets Downstream Tasks Alpha Beta Gamma Theta All Bands

HBN MDD Diagnosis 84.8/85.4 82.6/84.1 81.3/82.5 79.6/80.6 86.3/87.6
ASD Diagnosis 66.1/66.4 61.4/64.1 63.3/63.5 60.7/62.6 68.7/70.2

EMBARC MDD Sex 73.4/76.7 71.6/72.4 70.3/70.9 68.5/72.9 74.6/79.0
MDD Severity 68.6/71.9 66.3/67.2 64.5/66.8 63.7/66.2 70.1/74.5
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I. Similarity Kernel Selection for GTD loss
We follow (Joshi et al., 2022) and try different similarity kernels to measure the distance between nodes. All four kernels are
shown in the following formula:

Linear Kernel: Zij = F(Xi,Xj) = Xi · Xj

Euclidean Kernel: Zij = F(Xi,Xj) = ∥Xi −Xj∥2
Polynomial Kernel: Zij = F(Xi,Xj) = (Xi · Xj + c)d

RBF Kernel: Zij = F(Xi,Xj) = exp(−γ∥Xi −Xj∥22)

(21)

(a) (b)

Figure 9: The ablation studies of distillation across different density settings (a) and kernels (b).

As shown in Fig. 9, we conducted ablation experiments on the GTD loss. Figure 9(a) illustrates the results of distillation
in three scenarios: high-to-low (H2L), high-to-medium (H2M), and high-to-high (H2H). Note that H2H is a special case.
Although the GTD loss is designed primarily for high-to-low density distillation, it can also be applied to high-to-high
density distillation as an exception.

The optimization curves for H2L and H2M show good convergence. However, in the special case of H2H, while the
optimization curve also converges, the gradient descent is less pronounced. This suggests that although GTD loss can still
be applied in the H2H scenario, it is less effective. This is because GTD loss mainly focuses on nodes that are removed,
and since no nodes are removed in H2H, the distillation’s primary goal is to correct the student model’s misinterpretation
of connectivity. Consequently, there is less knowledge to distill compared to H2L and H2M scenarios, resulting in a less
noticeable decrease in the optimization curve. In contrast, the optimization curve for H2L shows the most significant
decrease, followed by H2M.

Figure 9(b) presents the results of ablation experiments with different similarity kernels. The experimental results indicate
that only the GTD loss using polynomial and linear kernels achieved good convergence during optimization. Among these,
the linear kernel provided the best distillation effect, which is why we selected it as the primary kernel for our GTD loss.

J. Clinical Interpretation of EEG Patterns
By grounding our visual findings in these established studies, we provide a clearer link between the reconstructed EEG
patterns and their clinical implications, emphasizing the robustness and diagnostic utility of our approach.

To address the clinical relevance of our EEG pattern reconstructions, we link the visual patterns presented in Figure 3 to
established clinical findings in MDD research. The unmasked EEG pattern in Figure 4(a) reveals clear activations in the
frontal and central regions, which are crucial areas involved in cognitive processing and emotional regulation. These regions
are frequently highlighted in MDD studies due to their role in mood and executive function. Specifically, the prefrontal
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cortex, anterior cingulate cortex, and related regions are implicated in emotional processing and regulation, with MDD
patients often showing disrupted activity in these areas (Davidson et al., 2002; Price & Drevets, 2012). Reduced activation
in these areas can reflect difficulties in cognitive control and emotional regulation, key features of depressive symptoms.

As the masking ratio increases (Figures 4b-d), the patterns show a noticeable decline in activation and connectivity,
particularly in the frontal and central regions. This aligns with findings in MDD literature, where disrupted functional
connectivity, especially in the frontocingulate networks, is a well-documented feature of the disorder. For example,
alterations in prefrontal connectivity are often associated with the severity of depressive symptoms and the inability to
regulate negative emotions (Pizzagalli, 2011). The degradation observed in Figures 4b-d is consistent with the hypothesis
that higher masking ratios simulate information loss, highlighting the importance of intact frontal connectivity for accurate
MDD classification. Critically, Figure 4(e), which displays the reconstructed pattern using our proposed GCMAE-PT with
50% masking, closely resembles the unmasked pattern seen in Figure 4(a). The reconstructed data retain key activations in
the frontal and parietal regions, indicating that our method effectively preserves clinically relevant EEG features even under
challenging conditions. This preservation is crucial because altered activity in these regions, particularly in the alpha and
theta bands, is often linked to cognitive and emotional dysregulation in MDD patients (Thibodeau et al., 2006; Knyazev,
2007). For instance, lower alpha activity in the frontal regions has been associated with greater emotional dysregulation,
while changes in theta activity are linked to altered cognitive processes, both of which are core characteristics of MDD.

The preserved patterns in Figure 4(e) suggest that GCMAE-PT can maintain these clinically significant EEG characteristics,
which are essential for accurate classification of MDD severity. This finding not only demonstrates the robustness of
our reconstruction method but also aligns with known clinical markers of MDD, supporting the practical relevance of
our approach. Furthermore, the ability to accurately reconstruct these key patterns contributes directly to classification
tasks, as regions showing consistent and clinically significant alterations are critical for distinguishing between different
severity levels of MDD. By maintaining the integrity of essential EEG features under masking, our method ensures that the
reconstructed data remain informative and diagnostically valuable, potentially leading to better predictive performance in
clinical settings.

K. Experiments on Very-Low Density Situation
To further test the generalization ability of our model in extreme scenarios, we evaluated it under a very low-density
(VLD) condition. Specifically, we tested the extreme case with EEG data using only 8 electrodes. As shown in Table 11,
our proposed pre-training framework and the corresponding GTD loss are able to tackle the extreme case with very few
electrodes.

Table 11: Experiments on the very low-density (VLD) situation. HD -> LD/VLD means high-density to (very)low-density
distillation.

PT Methods FT Loss HD -> LD HD -> VLD
Sex Severity Sex Severity

GCL-PT w/o GTD 1.8%↑ 1.7%↑ 1.5%↑ 2.0%↑
GMAE-PT w/o GTD 1.6%↑ 1.5%↑ 2.1%↑ 2.4%↑

GCMAE-PT (Ours) w/o GTD 2.9%↑ 3.8%↑ 3.5%↑ 4.4%↑

L. Experiments of Different Fine-tuning Paradigms

Table 12: Experiments on the effectiveness and efficiency of different fine-tuning (FT) methods. The experiments are
conducted on HBN dataset for MDD classification. The unit of fine-tuning speed is seconds (s), and the unit of memory cost
is gigabytes (G). The input data consists of 128-channel HD EEG graphs, and the model uses a large-size graph transformer.

Fine-tuning Methods Effectiveness Efficiency
AUROC ACC FT Speed Memory Cost

Vanilla FT 80.4% 83.6% 183s 1.0G
Parameter-Efficient FT 78.7% 83.4% 86s 0.3G
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As shown in Table 12, we evaluated two distinct fine-tuning paradigms. The first, termed Vanilla FT, involves fine-tuning all
parameters of the pre-trained encoder. The second, referred to as parameter-efficient FT, entails freezing the lower layers of
the pre-trained encoder and fine-tuning only the parameters of the upper layers, such as the fully connected layers. It is
evident that parameter-efficient FT, which requires fewer parameters to be optimized, results in a fine-tuning speed three
times faster and memory usage one-third that of Vanilla FT. However, this approach incurs a slight performance trade-off
compared to Vanilla FT.

M. Analysis of Shared Key Pool Queue
The reason for implementing the proposed teacher-student shared key pool queue is that we have two types of original input
data: HD and LD EEG graphs. Through the key pool queue, we allow high-density and low-density EEG key samples to
share the same gradient update process within a batch. This approach also enables both the teacher and student models to
simultaneously capture shared patterns between these two types of data.

N. Experiments on Held-Out Validation
In the pre-training dataset of the previous experiment, as shown in Table 13, we integrated heterogeneous EEG data from
different diseases to pretrain our model. To further validate the reliability of our model, we conducted a held-out validation
experiment.

Table 13: Ablation studies on the proposed pre-training framework and the GTD loss. The held-out validation means
we pre-train the model only on the HBN dataset and fine-tune the model to the EMBARC dataset. HD -> LD means
high-density to low-density distillation. ’All’ means HBN + EMBARC. ↑ means performance improvement in terms of
accuracy. The downstream task is conducted on the EMBARC dataset for MDD severity classification task. The backbone
model is the spatial-based Graph Transformer.

PT Methods FT Loss Datasets Distill Performance
Pre-Train Fine-Tune HD -> MD HD -> LD

GCL-PT w/o GTD HBN EMBARC 1.5%↑ 1.7%↑
GMAE-PT w/o GTD HBN EMBARC 1.7%↑ 1.5%↑
Seq. Comb. w/o GTD HBN EMBARC 2.0%↑ 2.1%↑

GCMAE-PT (Held-Out) w/o GTD HBN EMBARC 3.1%↑ 3.0%↑
GCMAE-PT (Ours) w/o GTD All EMBARC 3.7%↑ 3.8%↑

GCL-PT w/ GTD HBN EMBARC 2.3%↑ 2.2%↑
GMAE-PT w/ GTD HBN EMBARC 2.2%↑ 2.5%↑
Seq. Comb. w/ GTD HBN EMBARC 2.7%↑ 3.1%↑

GCMAE-PT (Held-Out) w/ GTD HBN EMBARC 4.4%↑ 5.0%↑
GCMAE-PT (Ours) w/ GTD All EMBARC 4.7%↑ 5.6%↑

O. Challenges, Limitations, and Future Works
EEG graph self-supervised pre-training offers a promising avenue for leveraging extensive EEG data, paving the way for
large-scale graph-based EEG models. Our proposed GCMAE-PT method is well-suited as a pre-training approach for
large-scale EEG foundation model. However, a key challenge is unifying data with varying electrode configurations across
different EEG systems to address data heterogeneity. In our study, while constructing a unified EEG pre-training dataset from
multiple sources, we faced the constraint of all datasets being from the same EEG system (10-20 system). To standardize the
data, we reduced the number of electrodes in datasets with more electrodes to match those with fewer electrodes, creating a
unified pre-training dataset. This approach, however, leads to a loss of information from removed electrodes and restricts
the use of datasets with fewer electrodes for pre-training on datasets with more electrodes. Addressing the challenge of
integrating EEG data with differing electrode counts from various systems, while preserving electrode precision, is crucial
for developing a comprehensive pre-training dataset. Successfully overcoming this issue could enable large-scale graph
pre-training and establish a robust EEG graph foundation model, representing a significant advancement in the field.
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