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Abstract

The Retrieval Question Answering (ReQA)
task employs the retrieval-augmented frame-
work, composed of a retriever and generator.
The generator formulates the answer based on
the documents retrieved by the retriever. Incor-
porating Large Language Models (LLMs) as
generators is beneficial due to their advanced
QA capabilities, but they are typically too large
to be fine-tuned with budget constraints while
some of them are only accessible via APIs. To
tackle this issue and further improve ReQA per-
formance, we propose a trainable Pluggable
Reward-Driven Contextual Adapter (PRCA),
keeping the generator as a black box. Po-
sitioned between the retriever and generator
in a Pluggable manner, PRCA refines the re-
trieved information by operating in a token-
autoregressive strategy via maximizing rewards
of the reinforcement learning phase. Our ex-
periments validate PRCA’s effectiveness in en-
hancing ReQA performance on three datasets
by up to 20% improvement to fit black-box
LLMs into existing frameworks, demonstrating
its considerable potential in the LLMs era.

1 Introduction

Retrieval Question Answering (ReQA) tasks in-
volve generating appropriate answers to given ques-
tions, utilizing relevant contextual documents. To
achieve this, retrieval augmentation is employed
(Chen et al., 2017; Pan et al., 2019; Izacard and
Grave, 2021), and comprised of two key compo-
nents: a retriever and a generator. The retriever’s
role is to retrieve relevant documents from a large
corpus in response to the question, while the gener-
ator uses this contextual information to formulate
accurate answers. Such systems alleviate the prob-
lem of hallucinations (Shuster et al., 2021), thereby
enhancing the overall accuracy of the output.
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Figure 1: A comparison between two paradigms for
information retrieval and generation. The upper section
showcases the traditional method where a query is pro-
cessed by a retriever that scans a corpus to fetch the
Top-K documents and then fed to a white-box genera-
tor. The lower section introduces our proposed PRCA
method, which processes extracted Top-K documents
from the retriever before feeding them to black-box
generator to achieve better performance for in-domain
tasks.

Recent advances in Large Language Models
(LLMs) such as the generative pre-trained trans-
former (GPT) series (Brown et al., 2020; Ouyang
et al., 2022; OpenAI, 2023) have demonstrated
remarkable potential, notably in their zero-shot
and few-shot abilities within the realm of QA
tasks. Owing to these capabilities, LLMs are ex-
cellent choices as generators within the retrieval-
augmented framework. However, due to the vast
parameters of LLMs, fine-tuning them becomes
exceedingly difficult within a limited computation
budget. Furthermore, certain LLMs such as GPT-4
(OpenAI, 2023) are closed-source, making it im-
possible to fine-tune them. To achieve optimal
results on specific datasets, fine-tuning retrieval-
augmented models becomes necessary (Guu et al.,
2020; Lewis et al., 2020b; An et al., 2021). Previ-
ous attempts to integrate LLMs into the retrieval-
augmented framework have met with partial suc-



cess but also come with limitations. (Shi et al.,
2023) utilized the logits from the final layer of the
LLMs when calculating the loss function, which
may not be available to certain powerful LLMs that
served via APIs. (Ma et al., 2023) involved fre-
quently invoking pricy LLMs and overlooked the
impact of the input token length on the accuracy
and effectiveness of the system.

To overcome these hurdles, we propose a train-
able Pluggable Reward-driven Context Adapter
(PRCA) that enables one to fine-tune the adapter
instead of LLMs under the retrieval-augmented
framework on specific datasets and achieve
higher performance. Furthermore, PRCA distills
the retrieved documents information guided by
rewards from the generator through reinforcement
learning. The distillation of retrieval information
through PRCA reduces the length of text input to
the generator and constructs a context of superior
quality, which mitigates the hallucination issues
during the answer generation. As shown in Figure
1, PRCA is placed between the retriever and the
generator, forming a PRCA-based Paradigm where
both the generator and the retriever remain frozen.
In general, the introduction of the PRCA-based
paradigm brings the following advantages:

Black-box LLMs Integration With the use
of PRCA, LLMs can be treated as a black box
integrated into the retrieval-augmented framework,
eliminating the need for resource-intensive fine-
tuning and restrictions on closed-nature models.

Robustness PRCA serves as a pluggable
adapter that is compatible with various retrievers
and generators because PRCA-based paradigm
keeps both the generator and retriever frozen.

Efficiency The PRCA-based paradigm en-
sures the efficiency of the framework by reducing
the text length inputted into the generator and can
adapt to different retrieval corpus.

2 Related Work

2.1 The Potential of LLMs as Black-Box
Models

LLMs have demonstrated remarkable capabilities
in downstream QA tasks, even in scenarios with
limited or no training data (Wei et al., 2022). This
emergence capability enables them to efficiently
tackle such tasks, making them potential candidates

for black-box models in inference. Furthermore,
the non-open-source nature and large parameter
size of these models further contribute to their in-
clination towards being perceived as black boxes.

On one hand, LLMs like GPT-4 (OpenAI, 2023)
and PaLM (Scao et al., 2023) have showcased im-
pressive performance in QA tasks. However, their
closed source nature restricts access to these mod-
els, making API-based utilization the only feasi-
ble option, thereby categorizing them as black-box
models.

On the other hand, training LLMs, exemplified
by models like Bloom (Scao et al., 2022) and GLM-
130B (Zeng et al., 2023), impose substantial com-
putational demands. Specifically, training Bloom
took 3.5 months using 384 NVIDIA A100 80GB
GPUs. Similarly, GLM-130B requires a two-month
training period on a cluster of 96 DGX-A100 GPU
servers. These resource requirements make it ex-
tremely challenging for the majority of researchers
to deploy these models. Moreover, LLMs exhibit
rapid development speeds. For instance, from
LLaMA (Touvron et al., 2023) to Alpaca (Taori
et al., 2023) and now Vicuna (Peng et al., 2023),
the iterations are completed within a month. It
is evident that the speed of training models lags
behind the pace of model iterations. Consequen-
tially, tuning small-size adapters for any sequence-
to-sequence LLMs on downstream tasks could be
a simpler and more efficient approach.

2.2 Retrieval-Augmented Framework

Various retrieval augmented ideas have been pro-
gressively developed and applied to improve the
performance in the ReQA task.

In the initial stage of research, independent
statistical similarity-base retrievers like TF-IDF
(Sparck Jones, 1972) and BM25 (Robertson and
Zaragoza, 2009) were used as fundamental retrieval
engines. They helped in extracting the most rel-
evant documents from the corpus for QA tasks
(Chen et al., 2017; Izacard and Grave, 2021).

The concept of vectorization was subsequently
introduced, where both questions and documents
were represented as vectors, and vector similar-
ity became a critical parameter for retrieval. This
paradigm shift was led by methods such as dense
retrieval, as embodied by DPR (Karpukhin et al.,
2020). Models based on contrastive learning like
SimCSE (Gao et al., 2021) and Contriver (Izac-
ard et al., 2022a), along with sentence-level se-



mantic models such as Sentence-BERT (Reimers
and Gurevych, 2019), represented this era. These
methods can be seen as pre-trained retrievers that
boosted the effectiveness of the ReQA task.

Further development led to the fusion of retrieval
and generation components within the ReQA
frameworks. This was implemented in systems
like REALM (Guu et al., 2020) and RAG (Lewis
et al., 2020b), where retrievers were co-trained with
generators, further refining the performance in the
ReQA task.

Recently, advanced approaches like Atlas (Izac-
ard et al., 2022b) and RETRO (Borgeaud et al.,
2022) have been introduced which could achieve
performance comparable to large-scale models like
Palm (Chowdhery et al., 2022) and GPT3 (Brown
et al., 2020) with significantly fewer parameters.

3 Methodology

3.1 Two-Stage Training for PRCA

PRCA is designed to take sequences composed of
the given query and the Top-K relevant documents
retrieved by the retriever. The purpose of PRCA
is to distill this collection of results, presenting
a concise and effective context to the generator,
while keeping both the retriever and the genera-
tor frozen. This PRCA-based paradigm introduces
two challenges: the effectiveness of the retrieval
cannot be directly evaluated due to its heavy depen-
dence on the responses generated by the genera-
tor, and learning the mapping relationship between
the generator’s outputs and the input sequence via
backpropagation is obstructed due to the black-box
generator. To tackle these issues, we propose a two-
stage training strategy for PRCA, as illustrated in
Figure 2. In the contextual stage, supervised learn-
ing is employed to train PRCA, encouraging it to
output context-rich extractions from the input text.
During the reward-driven stage, the generator is
treated as a reward model. The difference between
the generated answer and the ground truth serves as
a reward signal to further train PRCA. This process
effectively optimizes the information distillation
to be more beneficial for the generator to answer
accurately.

3.2 Contextual Extraction Stage

In the contextual extraction stage, we train PRCA
to extract textual information. Given an input
text Sinput, PRCA generates an output sequence
Cextracted, representing the context derived from the
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Figure 2: An illustration of the two-stage sequential
training process for the PRCA. In the first “Contex-
tual Extraction Stage”, PRCA module is pre-trained on
domain abstractive summarization tasks. The second
“Reward-Driven Stage”, demonstrates the interaction be-
tween retrieved Top-K documents and the PRCA. Here,
the PRCA refines the query using both the documents
and the original query, producing an optimal context.
This context is processed by a generator to obtain a
reward, signifying the quality and relevance of the con-
text, with the feedback loop aiding in further refining
the model’s output and performance.

input text. The objective of the training process is
to minimize the discrepancy between Cextracted and
the ground truth context Ctruth and the loss function
is demonstrated as follows:

min
θ

L(θ) = − 1

N

N∑
i=1

C
(i)
truth log(fPRCA(S

(i)
input; θ))

(1)
where θ represents the parameters of PRCA

In the context extraction stage, PRCA is ini-
tialized from a BART-Large model pre-trained on
CNN Daily Mail dataset (Lewis et al., 2020a).

3.3 Reward-Driven Stage

In the reward-driven stage, the objective is to align
the extracted context Cextracted from the previous
stage with the downstream generator, ensuring that
the text distilled by PRCA serves effectively to
guide the generator’s answering. Given the black-
box nature of the generator, a direct update of
PRCA is not feasible. Therefore, we resort to rein-
forcement learning to optimize PRCA’s parameters.
Specifically, the generator offers rewards to guide
the update of PRCA’s parameter, targeting to im-
prove answer quality. The reward is based on the
ROUGE-L score between the generated answer O



and the ground truth O∗. Meanwhile, it’s vital that
PRCA retains its skill of information extraction
from long texts, as learned in the contextual extrac-
tion stage. Our objective is twofold: maximizing
generator’s reward and maintaining similarity be-
tween updated and original parameters of PRCA
after contextual extraction training. Catering to the
reward-driven training where policy actions ma-
nipulate sequence tokens, policy optimization, par-
ticularly via Proximal Policy Optimization (PPO)
(Schulman et al., 2017; Stiennon et al., 2020), is
the preferred method. However, when employing a
black-box generator as a reward model, we identify
certain limitations of using PPO.

In (2), we present the PPO’s objective function
J(θ). This function strives to optimize the advan-
tage, a value derived from the Generalized Advan-
tage Estimation (GAE) (Schulman et al., 2016).
The GAE leverages both γ and λ as discounting
factors, adjusting the estimated advantage based
on the temporal difference δVt+l, as depicted in (3).
Here, Et[min(rt(θ) ·AGAE

t , clip(rt(θ), 1− ϵ, 1 +
ϵ) ·AGAE

t )] captures the expected advantage. The
clip function serves to prevent excessive policy
updates by constraining the policy update step, en-
suring stability in the learning process. The term
β(V (st) − Rt)

2 is a squared-error term between
V (st) and Rt. This term seeks to minimize the
difference between the predicted and actual value,
ensuring accurate value predictions. However, the
critic network V is usually initialized to have the
same parameter as the reward model (Yao et al.,
2023; Fazzie et al., 2023), which is inapplicable
when the reward models are black-boxed. Addition-
ally, the APIs from vendors usually have limited
amount of return parameters which may cause the
computation of Rt impossible.

max
θ

J(θ) = Et[min(rt(θ) ·AGAE
t ,

clip(rt(θ), 1− ϵ, 1 + ϵ) ·AGAE
t )]

− β(V (st)−Rt)
2 (2)

where rt(θ) = πθ(at|st)
πθori

(at|st) is the ratio of the up-
dated policy πθ to the original policy πθori ; at
represents the action (the next token); st is the state
(the sequence of previous tokens); ϵ is the clip-
ping parameter; V is a critic network; V (st) is the
predicted value of state st; β is a coefficient that
weights the squared-error term; Rt is the expected
return at time t.

A
GAE(γ,λ)
t =

T∑
l=0

(γλ)lδVt+l (3)

where δVt+l = Rt+l + γV (st+l+1) − V (st+l);
γ and λ as discounting and GAE parameters
respectively.

To tackle this issue, we introduce a strategy to
estimate Rt. In the PRCA, when the token ⟨EOS⟩
is generated, we can obtain the reward REOS by
comparing the generated answer against the ground
truth. We consider it an accumulation of the reward
Rt achieved at each time step t for the generated to-
ken. As for Rt, it serves as a target in J(θ) to train
the critic network V (s) for fitting, symbolizing the
average reward of the current action, thereby as-
sessing the advantage of the current policy. For
each token, the greater the probability of genera-
tion, the more important this token is perceived by
the current policy, so we consider its contribution
to the total reward to be greater. Therefore, we
regard the probability of generating each token as
the weight of REOS , and the representation of Rt

is given by the following:

Rt = REOS ∗ eπθ(at|st)∑K
t=1 e

πθ(at|st)
(4)

REOS = ROUGE-L(O,O∗)

− β ·DKL(πθ||πθori) (5)

ROUGE-L =
LCS(X,Y )

max(|X|, |Y |)
(6)

where K is the number of tokens in one gener-
ated context, LCS(X,Y ) denotes the length of the
longest common subsequence between sequence
X and sequence Y , and |X| and |Y | denote the
lengths of sequences X and Y , respectively.

This method mitigates the challenges associated
with calculating Rt when interpreting the black-
box generator as a reward model. A substantial
advantage it confers is the requirement of invok-
ing the reward model only once for each context
generation. Compared to the original PPO that
employs the reward model for every token com-
putation, our approach reduces the reward model
usage to 1

K , which is cost-effective especially when
using LLMs as generators.



Table 1: Overview of the data quantities used for train-
ing and testing across three benchmark datasets.

Dataset Train / Test # of Q # of C # of A

SQuAD Train 87.6k 18.9k 87.6k
Test 10.6k 2.1k 10.6k

HotpotQA Train 90.4k 483.5k 90.4k
Test 7.4k 66.5k 7.4k

TopiQCQA Train 45.5k 45.5k 45.5k
Test 2.5k 2.5k 2.5k

4 Experimental Setup

4.1 Datasets

We performed our experiments on three QA
datasets: SQuAD (Rajpurkar et al., 2016), Hot-
potQA (Yang et al., 2018) and TopiOCQA (Ad-
lakha et al., 2022). The complexity of three datasets
increases sequentially: SQuAD is a dataset that
matches questions, documents, and answers in a
one-to-one manner. HotpotQA is a multi-hop QA
dataset, requiring the synthesis of correct answers
from multiple documents. TopiOCQA is a conver-
sational QA dataset with topic switching.

To align these datasets with our ReQA task, we
reconstructed all three datasets into the form of
(Q,C,A), where Q and A denote the question and
answer pair, and C represents a corpus composed
of all the documents in the dataset respectively. In
Table 1, we present the number of questions and
answers employed in the PRCA training and testing
phases for every dataset. Additionally, we provide
the quantity of documents contained within each
respective corpus.

4.2 Baseline Retrievers and Generators

We conducted experiments with five different
retrievers, specifically BM25 (Robertson and
Zaragoza, 2009), SentenceBert (Reimers and
Gurevych, 2019), DPR (Karpukhin et al., 2020),
SimCSE (Gao et al., 2021), and Contriver (Izac-
ard et al., 2022a). We also utilized five generators
which are T5-large (Raffel et al., 2020), Phoenix-
7B (Chen et al., 2023), Vicuna-7B (Peng et al.,
2023), ChatGLM (Du et al., 2022) and GPT-3.5 1

to assess the effectiveness of PRCA. Note that both
the retrievers and generators remain frozen through
the experiment.

By pairing every retriever with each generator,

1Our experiments were conducted with the default version
of GPT-3.5-turbo and GPT-4 between May and June 2023 via
https://openai.com.

Table 2: Hyperparameters settings used in the experi-
ments.

Hyperparameters Value

Learning rate 5× 10−5

Batch size 1/2/4
Num beams 3
Temperature 1

Early Stopping True
Topk 0.0
Topp 1.0

we established a total of seventy-five baseline con-
figurations on three datasets. For each configura-
tion, we evaluated the performance with and with-
out the application of PRCA and the difference
serves as an indicator of the effectiveness of our
proposed approach.

4.3 GPT-4 Assessment

Notably, we used GPT-4 for evaluation rather than
traditional metrics like F1 and BLEU, as these met-
rics often misjudged semantically similar sentences.
LLMs often output longer textual explanations for
answers, even when the correct answer might be
a word or two. Despite attempts to constrain an-
swer lengths, the results weren’t ideal. We then
evaluated predictions using both manual methods
and GPT-4 against golden answers. GPT-4’s evalu-
ations showed correctness rates of 96%, 93%, and
92% across three datasets, demonstrating its relia-
bility and alignment with human judgment.

Specifically, the template for GPT-4 assessment
is shown as follows. Finally, the accuracy rate
of answering “Yes” is counted as the evaluation
metric.

Template for GPT-4 Assessment

Prompt: You are now an intelligent assess-
ment assistant. Based on the question and
the golden answer, judge whether the pre-
dicted answer correctly answers the question
and give only a Yes or No.
Question:
Golden Answer:
Predicted Answer:

Expected Output: Yes / No

4.4 Hyperparameter Configurations

To achieve optimal results in our PRCA training,
careful selection of hyperparameters is pivotal. The



Table 3: Comparative results of performance for different retriever and generator combinations in the presence and
absence of PRCA integration. The results are based on the evaluation using three benchmark datasets: SQuAD,
HotpotQA, and TopiOCQA, and focus on the selection of the Top-5 most relevant documents.

Retriever Generator SQuAD HotpotQA TopiOCQA

BM25

T5 0.74-0.03 0.35+0.01 0.27+0.08
Phoenix 0.61+0.02 0.31+0.09 0.25+0.03
Vicuna 0.59+0.09 0.19+0.13 0.23+0.10

ChatGLM 0.67+0.03 0.36+0.04 0.35+0.03
GPT-3.5 0.75+0.02 0.48+0.06 0.44+0.04

SentenceBert

T5 0.48-0.06 0.20+0.05 0.28+0.05
Phoenix 0.42+0.04 0.13+0.10 0.26+0.08
Vicuna 0.36+0.09 0.22+0.03 0.23+0.05

ChatGLM 0.57+0.04 0.16+0.08 0.28+0.04
GPT-3.5 0.6+0.02 0.34+0.03 0.47+0.03

DPR

T5 0.57+0 0.23+0.02 0.20+0.09
Phoenix 0.56+0.01 0.15+0.09 0.15+0.16
Vicuna 0.42+0.06 0.16+0.11 0.15+0.14

ChatGLM 0.53+0.0 0.16+0.04 0.31+0.07
GPT-3.5 0.69+0.04 0.41+0.02 0.34+0.06

SimSCE

T5 0.75+0.01 0.28+0.02 0.18+0.09
Phoenix 0.67+0.02 0.17+0.10 0.17+0.13
Vicuna 0.47+0.06 0.19+0.06 0.10+0.20

ChatGLM 0.75+0.05 0.17+0.05 0.21+0.06
GPT-3.5 0.77+0.04 0.37+0.05 0.31+0.06

Contriver

T5 0.80-0.08 0.35+0.03 0.18+0.11
Phoenix 0.69+0.02 0.10+0.11 0.16+0.18
Vicuna 0.58+0.08 0.17+0.12 0.14+0.19

ChatGLM 0.71+0.05 0.13+0.09 0.23+0.05
GPT-3.5 0.80+0.02 0.37+0.05 0.30+0.08

‘+’ indicates an improvement in performance metrics upon the incorporation of PRCA. The color coding provides a visual
representation of the effect: Green signifies a positive enhancement in performance, while Red indicates a decrement.

configuration settings employed in our experiment
are stated in Table 2.

5 Results and Analysis

5.1 Overall Performance

As delineated in Table 3, among the seventy-five
configurations, our experimental results suggest
that the inclusion of PRCA improves performance
in seventy-one configurations. On average, we ob-
serve an enhancement of 3%, 6%, and 9% on the
SQuAD, HotpotQA, and TopiOCQA datasets, re-
spectively. This demonstrates that PRCA possesses
robustness and can enhance the performance of dif-
ferent combinations of retrievers and generators
on the ReQA task. As illustrated in Figure 3, the
improvements rendered by PRCA to the generators
are significant across all three datasets. Particularly
on the TopiOCQA dataset, the average improve-
ment for generator Vicuna across five different re-
trievers reaches 14%. Notably, when SimSCE is
the retriever, the enhancement offered by PRCA is
20%.

In Figure 3, we notice that the improvement to

generator performance by PRCA across the three
datasets is incremental, while the original perfor-
mance of the generators across the three datasets
is decremental without PRCA, correlating directly
with the complexity of the datasets. This is be-
cause when faced with more complex issues, such
as multi-hop questions in HotpotQA and topic tran-
sitions in multi-turn QA in TopiOCQA, PRCA re-
serves and integrates critical information which is
beneficial for generators from the retrieved doc-
uments. This attribute of PRCA alleviate issues
where generators struggle with lengthy texts, fail-
ing to answer questions correctly or producing hal-
lucinations, thus enhancing performance.

However, the inclusion of PRCA has a negative
effect on the performance of the generator T5 on
the SQuAD dataset. This is because the SQuAD
dataset is relatively simple, where the answer often
directly corresponds to a phrase in the text. As an
encoder-decoder architecture model, T5 tends to
extract answers directly rather than infer in-depth
based on the context. Therefore, without infor-
mation distillation by PRCA from the retrieved



Figure 3: Comparison of performance of different gen-
erators (T5, Phoenix, Vicuna, ChatGLM, and GPT-3.5)
on three benchmark datasets: SQuAD, HotpotQA, and
TopicOCQA. The horizontal axis represents the GPT-4
assessment accuracy. Bars depict the performance levels
of each generator, with green and red arrows indicating
the enhanced or diminished effects due to PRCA inte-
gration, respectively.

documents, T5 performs well because its features
fit well in handling this dataset, capable of directly
extracting answers from the context. But under the
effect of PRCA, the structure of the text might be
altered, and T5’s direct answer extraction may lead
to some errors, thereby reducing performance.

While in a few configurations, the characteristics
of PRCA may have negative effects, for the vast
majority of configurations, our experiments vali-
date that under PRCA-based paradigm, PRCA can
effectively enhance the performance in the ReQA
task, demonstrating robustness.

5.2 Efficiency of PRCA

PRCA represents an effective approach for
enhancing the performance of the ReQA task
without significantly increasing computational
demand. Its efficiency is manifested in optimizing
parameters to achieve superior results and in
simplifying input text, thereby aiding generators in
managing complex text.

Parameter Efficiency Figure 4 portrays a
comparative analysis between the generators,
which gain the maximum improvements with
PRCA, and the GPT-3.5 model which operates
without PRCA, across 3 datasets. PRCA boasts
roughly 0.4 billion parameters, the most signif-
icantly improved generators encompass about
7 billion parameters on average, while GPT-3.5
has approximately 1.75 trillion parameters. As
demonstrated in Figure 4, with a marginal
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Figure 4: Performance comparison between PRCA-
enhanced baseline models and GPT-3.5 across SQuAD,
HotpotQA, and TopicOCQA. Light and dark blue bars
represent baseline and GPT-3.5 performance, while
striped green indicates PRCA’s improvement.

Table 4: PRCA inference speed test results.

Dataset Precision GPU Batch Size Inference Speed
(token/s)

PRCA float32 A100 1 126
PRCA float32 A100 2 231
PRCA float32 A100 4 492

parameter increment, the performance of these
generators improved by 12.0%, 27.1%, and 64.5%
respectively. Hence, PRCA has great potential to
be an efficient way to boost the performance of
ReQA task while keeping computational resources
consumption acceptable. During the inference
process, a fully-trained PRCA will perform only
standard forward propagation and hence introduce
limited impact on inference latency. Our inference
latency test on SQUAD was reported in Table 4.
This low latency ensures that the system maintains
a smooth process without significant delays after
integrating PRCA, underscoring the high efficiency
of PRCA in boosting system performance.

Input Simplification As illustrated in Figure 5,
we analyzed the relationship between reward and
token count during reward-driven stage for a QA
pair in the HotpotQA dataset, with and without
PRCA. There’s a discernible difference in the re-
ward trajectories with and without PRCA. Both
reward curves ascend with the increase in token



Figure 5: A depiction of reward trajectories over in-
creasing token counts during the reward-driven stage
for a QA pair within the HotpotQA dataset. Distinct
lines represent rewards achieved with and without the
implementation of PRCA, underscoring PRCA’s ability
to extract more concise and high-quality text.

count, but the gradient of ascent with PRCA is no-
ticeably steeper. This implies that when PRCA is
in action, the generator reaches its optimal perfor-
mance with a significantly reduced token count.

Under the influence of PRCA, the generator can
derive the correct answer with approximately four
times fewer tokens. This indicates that PRCA can
distill the retrieved text while ensuring the qual-
ity of the generated answer. This simplification
process filters out redundant information, thereby
promoting the generator to extract answers more
accurately using a more streamlined context. More-
over, the reduction in token count enables the gen-
erator to process text faster and produce outputs
more promptly. Overall, PRCA’s efficiency in infor-
mation distillation greatly bolsters the generator’s
capacity to manage and interpret complex text.

5.3 Impact of Top-K Selection

We conducted parameter sensitivity experiments
to observe the performance of PRCA when the
number of retrieved relevant documents changes.
The results presented in Figure 6 show that on the
SQuAD dataset, both the performance with and
without PRCA improve as the number of retrieved
documents increases, while the addition of PRCA
consistently provides a positive effect across dif-
ferent Top-K values. Since the dataset is relatively
simple, with the increased likelihood of the correct
answer being included in the retrieved documents,
both trends exhibit an upward trajectory.

In contrast, without the implementation of
PRCA, there is a noticeable drop in performance on
the HotpotQA and TopiOCQA datasets when more
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Figure 6: Comparison of performance with and with-
out PRCA with the different number of retrieved docu-
ments.

documents are added. This decline is attributed
to the model’s diminishing capability to generate
accurate answers to complex questions due to the
rise in distracting information and the onset of hal-
lucination problems. However, by implementing
PRCA, these adverse effects are systematically al-
leviated, which not only reduces the onset of hallu-
cinations but also enhances the generator’s ability
to handle complex queries amidst distractions.

In general, at different Top-K values, PRCA
demonstrates positive effects across all three
datasets, thereby illustrating the universal appli-
cability of PRCA regardless of the quantity of re-
trieved documents.

5.4 Case Study

When answering the form of Mersenne primes
problem, the retrieved text contains two distinct
sources of information. One directly specifies the
form as 2p-1, accurately reflecting the nature of
Mersenne primes. The other source misguidedly
introduces “factorial primes” as an answer. With-
out PRCA’s intervention, this diversion leads the
generator astray, resulting in an erroneous answer
of “factorial primes”. However, when PRCA is
engaged, it sifts through the information, priori-
tizing the accurate context. This refined context
extraction steers the generator towards the correct
answer.



Case Study without and with PRCA

Question:
Of what form do Mersenne primes take?
Golden Answer: 2p-1
Part of Retrieved Documents: [Golden
Answer Source] Mersenne primes are
prime numbers that are of the form

::::
2p-1,

where p is an arbitrary prime. [Pre-
dicted Answer Source] The Sieve of Er-
atosthenes, attributed to Eratosthenes, is a
simple method to compute primes, although
the large primes found today with comput-
ers are not generated this way. are prime.
Prime numbers of this form are known as

:::::::
factorial

:::::::
primes.

Predicted Answer without PRCA: Facto-
rial primes

Context through PRCA: Mersenne primes
are prime numbers that are of the form 2p-1,
where p is an arbitrary prime. The Lu-
cas–Lehmer test is particularly fast for num-
bers of this form, so many of the largest
primes found today are Mersenne primes.
Predicted Answer with PRCA: 2p-1

Note: “–” denotes key information
relevant to the question, “~” represents
predicted answers.

5.5 Ablation Study of PRCA

We assessed the impact of PRCA on three datasets
using the configurations from section 5.2, which
showed maximum improvements. The evaluation
is conducted with and without the reward-driven
stage to observe the impact of PRCA on the per-
formance. As illustrated in Figure 7, without the
reward-driven training stage, the effect of PRCA on
the entire configuration becomes adverse because
PRCA merely simplifies the text without discerning
which information is beneficial for the generator
to answer questions, resulting in the omission of
useful text. In contrast, once the training process
incorporates the reward-driven stage, the quality of
the context becomes directly aligned with reward
values, assisting PRCA in more effectively distill-
ing pertinent information. Therefore, the reward-
driven stage is vital, allowing PRCA to retain key
details while simplifying text, enhancing its overall
effect.
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Figure 7: An illustration showcasing the impact of the
reward-driven stage on PRCA’s performance.

6 Conclusion

In conclusion, this research successfully introduces
a PRCA-based paradigm for ReQA tasks, tack-
ling the inherent challenges of fine-tuning LLMs
in the retrieval-enhancement framework, especially
given their vast parameter size and closed-source
natures. PRCA innovatively distills retrieved docu-
ments via generator rewards, leading to a marked
improvement in the ReQA task’s performance. Ex-
perimental outcomes consistently demonstrate the
robustness and effectiveness of PRCA when paired
with various retrievers and generators, indicating
its potential to be widely deployed as an adapter on
the ReQA task.

Limitations

While PRCA has shown effectiveness in improving
ReQA task performance, it has limitations, includ-
ing dependency on generators, convergence issues,
and limited integration with retrievers. The reward
during reinforcement learning training is derived
from the generator, requiring PRCA retraining with
different generators, which can be time-consuming.
PRCA may also experience difficulties converging
in a single training session, which impacts the sta-
bility and consistency of its performance. Lastly,
PRCA’s operation as a pluggable adapter limits its
ability to train jointly with retrievers, which means
if the retrieval quality is not up to par, PRCA’s
effectiveness could be compromised.
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