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Abstract

Molecular Relational Learning (MRL), aim-001
ing to understand interactions between molec-002
ular pairs, plays a pivotal role in advancing003
biochemical research. Recently, the adoption004
of large language models (LLMs), known for005
their vast knowledge repositories and advanced006
logical inference capabilities, has emerged as007
a promising way for efficient and effective008
MRL. Despite their potential, these methods009
predominantly rely on textual data, thus not010
fully harnessing the wealth of structural infor-011
mation inherent in molecular graphs. More-012
over, the absence of a unified framework ex-013
acerbates the issue of insufficient data ex-014
ploitation, as it hinders the sharing of in-015
teraction mechanism learned across various016
datasets. To address these challenges, this017
work proposes a novel LLM-based multi-modal018
framework for Molecular inTeraction model-019
ing following Chain-of-Thought (CoT) the-020
ory, termed MolTC, which effectively inte-021
grate graphical information of two molecules022
in pair. For achieving a unified training023
paradigm, MolTC innovatively develops a Dy-024
namic Parameter-sharing Strategy for cross-025
dataset information exchange. Moreover, to026
train this integrated framework efficiently, we027
introduce a Multi-hierarchical CoT theory to028
refine its training paradigm, and conduct a com-029
prehensive Molecular Interactive Instructions030
dataset for the development of biochemical031
LLMs involving MRL. Our experiments, con-032
ducted across twelve datasets involving over033
4,000,000 molecular pairs, exhibit the supe-034
riority of our method over current GNN and035
LLM-based baselines. Code is available at036
https://anonymous.4open.science/r/MolTC-F.037

1 Introduction038

Molecular Relational Learning (MRL) (Lee et al.,039

2023a), aiming to understand interactions between040

molecular pairs, has gained significant interest041

due to its wide range of applications (Roden042

et al., 2020). For example, Drug-Drug Interactions043

(DDIs) are critical in pharmacology and drug de- 044

velopment (Lin et al., 2020), while solute-solvent 045

interactions (SSIs) are fundamental in solution 046

chemistry and the design of chemical processes 047

(Varghese and Mushrif, 2019; Chung et al., 2022). 048

However, the exhaustive experimental validation of 049

these interactions is notoriously time-consuming 050

and costly. In response, adopting large language 051

models (LLMs) (Brown et al., 2020; Taylor et al., 052

2022), known for their vast knowledge repositories 053

and advanced logical inference capabilities, has 054

emerged as an efficient and effective alternative for 055

MRL (Park et al., 2022; Jha et al., 2022a). 056

Despite their promise, a primary concern of cur- 057

rent LLM-based paradigm is the insufficient data 058

exploitation. Specifically, they predominantly rely 059

on the textual data such as SMILES (Simplified 060

Molecular Input Line Entry System) and property 061

descriptions, thus not fully harnessing the wealth of 062

structural information inherent in molecular graphs 063

(Sagawa and Kojima, 2023), as indicated in Figure 064

1 (a). Current studies have indicated that it is chal- 065

lenging for LLMs to fully understand the complex 066

graphs based solely on textual data, hence, it’s cru- 067

cial to explicitly model these structures given their 068

significance in MRL (Park et al., 2022). 069

Compounding this concern is the absence of a 070

unified framework for LLM-based MRL (Livne 071

et al., 2023; Pei et al., 2023). Concretely, this ab- 072

sence impedes the sharing and integration of inter- 073

action mechanisms learned across various datasets, 074

leading to a fragmentation in collective insights. Es- 075

pecially, it poses a catastrophic challenge for tasks 076

with a limited number of labeled pairs (Chung et al., 077

2022), where LLMs often struggle with due to the 078

high risk of overfitting, as illustrated in Figure 1 079

(b). Worse still, such limited datasets are prevalent 080

in MRL since the experimental acquisition is often 081

constrained by high costs (Lee et al., 2023a). 082

To overcome these limitations, in this work, 083

we propose MolTC, a unified multi-modal frame- 084
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(a) Current Methods (b) Challenges of the Current Methods (c) The Framework of  Our MolTC

Figure 1: Comparison between the current methods leveraging LLMs to model molecule interactions and our
MolTC. (a) The prevailing paradigm of current methods. (b) The challenge of applying the current paradigm to
the tasks involving datasets with a small number of samples. (c) The framework of our proposed MolTC, which is
enhanced by the principle of CoT. Best viewed in color.

work for Molecular inTeraction modeling follow-085

ing the Chain-of-thought theory (Wei et al., 2022).086

As depicted in Figure 1 (c), MolTC employs the087

Graph Neural Networks (GNNs) (Kipf and Welling,088

2017), known for their proficiency in graph mod-089

eling, to explicitly gather graphical information of090

molecular pairs, and integrates them into the input091

space of LLMs by two meticulously crafted projec-092

tors. In response to empirical findings that LLMs093

may confuse two input molecules in pair, MolTC094

incorporates the molecules’ SMILES information095

to reinforce the concept of molecular order. More096

importantly, to achieve a unified learning paradigm,097

MolTC develops a Dynamic Parameter-sharing098

strategy for bolstering cross-dataset information099

exchange, which can boost the efficiency and effec-100

tiveness simultaneously.101

Based on these, a two-pronged approach is devel-102

oped to train this integrated framework efficiently:103

(1) Training Paradigm Refinement: As shown in104

Figure 1 (c), we introduce a Multi-hierarchical CoT105

theory to guide the training paradigm of MolTC.106

Concretely, the broad-grained CoT guides the pre-107

training stage to identify individual molecular prop-108

erties before predicting interactions, ensuring an109

acute awareness of each molecule’s unique at-110

tribute. For quantitative interaction tasks, which are111

challenging for LLMs, a fine-grained CoT enables112

the fine-tuning stage to initially predict a range, and113

then progressively refining it to a precise value.114

(2) Dataset Foundation Construction: In sight115

of the absence of a comprehensive MRL datasets116

for biochemical LLMs, we construct a Molecular 117

inTeractive instructions dataset, termed MoT- 118

instruction. Specifically, we first conduct twelve 119

well-established MRL datasets across various do- 120

main, and source their detailed molecular prop- 121

erties from authoritative biochemical databases. 122

Based on this, we meticulously compile these 123

properties and empirically determine their opti- 124

mal instructions. These process ensures that MoT- 125

instructions can not only enhance the performance 126

of our MolTC, but also contribute to the develop- 127

ment of other biochemical LLMs involving MRL. 128

Our contributions can be summarized as follows: 129

• We identify the issue of insufficient data exploita- 130

tion in current LLM-based MRL, and take the 131

first attempt to develop a unified multi-modal 132

framework for LLM-based MRL, named MolTC. 133

• We introduce the multi-hierarchical CoT theory 134

to enhance the MolTC’s training process, espe- 135

cially for quantitative interaction tasks. 136

• We construct MoT-instructions, the first compre- 137

hensive instruction dataset in MRL domain, to 138

enhance the development of biochemical LLMs 139

involving MRL. 140

• Our experiments, across over 4,000,000 molec- 141

ular pairs in various domains such as DDI and 142

SSI, demonstrate the superiority of our method 143

over current GNN and LLM-based baselines. 144

2 Methodology 145

In this section, we detail our MolTC, which har- 146

nesses the power of LLMs for comprehending 147
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molecular interactions. We begin with the intro-148

duction of model framework in Section 2.1. Taking149

a step further, the training paradigm guided by the150

principle of Multi-hierarchical CoT is outlined in151

Section 2.2. Moreover, the dynamic parameter152

sharing strategy tailored for MolTC and our devel-153

oped datasets, MoT-instructions, are elaborated in154

Section 2.3 and 2.4, respectively.155

2.1 Framework of MolTC156

Here we introduce four key components of157

MolTC’s framework: Graph Encoder, Represen-158

tation Projector, SIMLES Injector, and the back-159

bone LLM. The specific instantiation details of160

each module can be found in the experimental sec-161

tion and the appendix.162

Graph Encoder. The first step of extracting inter-163

actions is to precisely encode the molecular graphs.164

In sight of this, we utilize two GNN-based encoders165

to capture the embedding of the given molecular166

pairs, leveraging the GNN’s robust capability in167

aggregating structural information. More formally,168

let Ga = {Va, Ea} and Gb = {Vb, Eb} denote the169

input pair, where V, E represent atomic nodes and170

the chemical bonds, respectively. The two graph171

encoders fenc1 and fenc2 perform aggregating to172

obtain the atomic embedding:173

Ha = [h1
a,h

2
a, . . . ,h

|Va|
a ] = fenc1(Ga),

Hb = [h1
b ,h

2
b , . . . ,h

|Vb|
b ] = fenc2(Gb),

(1)174

where hi
a and hi

b denote to the embedding of the i-175

th atom in molecule Ga and Gb; Va and Vb represent176

the number of nodes.177

Representation Projector. After acquiring molec-178

ular pair representations Ha and Hb, the next step179

is to map them into the backbone LLM’s hidden180

space using Projectors fpro1 and fpro2. These pro-181

jectors serve as pivotal connectors, translating Ha182

and Hb into LLM-comprehensible encodings Ma183

and Mb. Drawing inspiration from the state-of-the-184

art vision-language models, we instantiate fpro1185

and fpro2 by Querying Transformers (Q-Formers)186

(Li et al., 2023a; Dai et al.). More formally,187

Ma = [m1
a,m

2
a, . . . ,m

q
a] = fpro1(Ha),

Mb = [m1
b ,m

2
b , . . . ,m

q
b ] = fpro2(Hb),

(2)188

where q denotes the number of learnable query189

tokens of Q-Former’s transformer.190

In detail, our Projectors, based on the BERT ar-191

chitecture, incorporate an additional cross-attention192

module positioned between the self-attention and 193

feed-forward modules. This instantiation offers 194

two key benefits. Firstly, it supports seamless in- 195

tegration with conventional BERT-based text en- 196

coders, allowing fpro1 and fpro2 pre-training with 197

extensive molecular graph-text pairs. Secondly, 198

it maintains compatibility with various input di- 199

mensions d, and allows adjustments in the size of 200

learnable query tokens to align with the LLM’s 201

token embedding size. These advantages lay a 202

solid foundation for the thorough interaction of 203

two molecules during the LLM’s inference pro- 204

cess. Future work will also explore more projector 205

designs, such as streamlining it through specially 206

tailored MLPs (Yang et al., 2023). 207

SMILES Tokenization. When directly analyzing 208

the representations Ma and Mb with LLMs, our ex- 209

periments suggest a potential confusion by LLMs 210

in distinguishing the properties of each molecule 211

in a pair. This observation naturally inspires us 212

to integrate textual information of the molecules 213

to strengthen the concept of their sequential order. 214

Here MolTC employs SMILES due to its ubiquity 215

and specificity. Additionally, SMILES serves as 216

a conduit, linking the task-specific prompts with 217

the corresponding biochemical knowledge stored 218

within the LLM. Therefore, we directly input the 219

SMILES of both molecules into the backbone 220

LLM, utilizing the inherent encoder to acquire their 221

tokens Sa and Sb. 222

Backbone LLM. MolTC leverages Galactica, a 223

decoder-only transformer built on the OPT frame- 224

work, as its backbone LLM. Pretrained on an ex- 225

tensive collection of scientific literature, Galactica 226

demonstrates exceptional proficiency in biochem- 227

istry knowledge. This expertise, particularly in 228

parsing molecular sequences such as SMILES and 229

SELFIES strings, enables Galactica to adeptly cap- 230

ture the properties crucial for molecular interac- 231

tions. Specifically, the goal of MolTC is to harness 232

Galactica’s advanced inferential skills to interpret 233

the contextual interactions between two molecular 234

sets of token collections, {Ma,Sa} and {Mb,Sb}. 235

More formally, we denote an integrated prompt 236

sequence as follows: 237

X = {P,Ma,Sa,Mb,Sb} = [x1,x2, ...,xl]

s.t. P ∼ Pr,
(3) 238

where l is the integrated input length, P denotes 239

the task-specific prompt, and Pr represents a col- 240

lection of various manually designed prompts, each 241
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tailored for the molecular interaction task r. The242

generation process adopts a causal mask to generate243

a response encapsulating key interactive properties244

with length T :245

X̂ = [x̂1, x̂2, ..., x̂T ]. (4)246

Utilizing Galactica’s autoregressive framework, the247

training objective involves regressing the target re-248

sponse based on the input prompt X. Specifically,249

the output for i-th token x̂i, is computed based on250

its preceding tokens as follows for t ∈ (1, T ):251

p
(
X̂[1:t]|X

)
=

t∏
i=1

p
(
x̂i|X, X̂[1:i−1]

)
. (5)252

2.2 Training Paradigm of MolTC253

In this part, we elaborate the training paradigm of254

MolTC, including pretraining and fine-tuning pro-255

cesses, which is guided by the principle of Multi-256

hierarchical CoT, as shown in Figure 2.257

2.2.1 Broad-grained CoT Guided Pretraining258

Given the challenge of directly understanding com-259

plex interactions between two input molecules in260

pair, the broad-grained CoT guides MolTC to ini-261

tially identify individual molecular properties. By262

thoroughly understanding each molecule’s charac-263

teristics, MolTC establishes a solid foundation for264

accurately predicting their interactions. Specifi-265

cally, in the pretraining stage, the prompt is uni-266

formly designed as follows:267

Prompt for Pretraining Stage

Input
Prompt

<SMILES1>, <GraEmb1>, the front
is the first molecule, followed by
the second molecule: <SMILES2>.
<GraEmb2>. Please provide the
biochemical properties of the two
molecules one by one.

Target
Response

The properties of the first
molecule are [Property1], and
the properties of the second
molecule are [Property2].

268

This prompt design enable MolTC to delin-269

eate key properties of two molecules sequentially.270

Based on it, MolTC utilize the generation loss of271

the backbone LLM to train Graph Encoders, fenc1272

and fenc2, as well as the Representation Projectors,273

fpro1 and fpro2. Notably, during this phase, the274

backbone LLM remains frozen.275

Projector

Graph
Encoder

The first 

property is 

<Property1>.

The second 

property is 

<Property2>.

Pretraining
Stage

Graph
Encoder

Projector

LLM

Projector

Graph
Encoder

Fine-Tuning
Stage

Graph
Encoder

Projector

Hence, the 

interaction is 

[Interaction].

……

LLM

Figure 2: The training process of our MolTC. The flame
symbol denotes the parameter update, the snowflake
symbol indicates the parameter freezing, and the chain
symbol depicts the parameter sharing between two mod-
ules. Best viewed in color.

Dataset Construction for Pretraining. To ensure 276

backbone LLM can understand the individual char- 277

acteristics of each molecule, it is pivotal to prepare 278

a comprehensive dataset comprising molecule pairs 279

and their corresponding biochemical properties. To 280

this end, (1) we first conduct an extensive survey of 281

various authoritative biochemical database such as 282

PubChem1 and Drugbank (Kim et al., 2023), and 283

collect a large amount of molecule-textual proper- 284

ties pairs; (2) then, recognizing the variability in 285

annotation quality within this dataset, we augment 286

and enrich molecular descriptions that were less 287

extensively annotated; (3) subsequently, to simu- 288

late diverse molecular interactions, we generated 289

molecular pairs by randomly grouping two distinct 290

molecules from the above database. This random 291

pairing facilitates a broad spectrum of molecular 292

combinations, exposing the pretraining stage to di- 293

verse interaction scenarios, thus naturally enhanc- 294

ing the generalizability of our MolTC. 295

2.2.2 Fine-grained CoT Guided Fine-tuning 296

During the fine-tuning phase, MolTC is trained 297

to enable the backbone LLM to generate interac- 298

tion properties based on the properties of individ- 299

ual molecules it initially identifies. To this end, 300

prompts in the fine-tuning stage should be crafted 301

for specific downstream task. For example, in DDI 302

tasks, we construct the following prompt: 303

1https://pubchem.ncbi.nlm.nih.gov
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Prompt for DDI Tasks (Fine-tuning)

Input
Prompt

<SMILES1>, <GraEmb1>, the front
is the first molecule, followed by
the second molecule: <SMILES2>.
<GraEmb2>. What are the side ef-
fects of these two drugs?

Target
Response

The property of the first molecule
is [Property1], while the prop-
erty of the second molecule is
[Property2]. Hence, the first
drug molecule may increase the
photosensitizing activities of the
second drug molecule.

304

Despite the effectiveness of this prompt design,305

LLMs face notable challenges in quantitative anal-306

ysis, especially in complex molecular interaction307

contexts such as SSI and chromophore-solvent308

interaction (CSI). Our experiments in Section 3309

highlight this difficulty, demonstrating that LLMs310

tend to exhibit indecision regarding the quantita-311

tive values in their outputs. To address this, a fine-312

grained CoT concept is introduced to refine the313

training paradigm. Specifically, the backbone LLM314

is guided to initially suggest a range for the target315

numerical value, then progressively refining it to a316

precise value. Take a meticulously prompt for SSI317

tasks as an example:318

Prompt for SSI Tasks (Fine-tuning)

Input
Prompt

<SMILES1>, <GraEmb1>, the front
is the first molecule, followed by
the second molecule: <SMILES2>.
<GraEmb2>. What is the solvation
Gibbs free energy of this pair of
molecules?

Target
Response

The property of the first molecule
is [Property1], while the prop-
erty of the second molecule is
[Property2]. Hence, the solva-
tion Gibbs free energy of these
two molecules is above 3.0 and
below 3.5, so the accurate value
is 3.24791.

319

This step-wise refinement process fosters a more320

accurate and reliable resolution of numerically-321

intensive challenges. Based on these prompts, in322

the fine-tuning stage, the parameters in backbone323

LLM are updated through Low-Rank Adaptation 324

(LoRA) (Hu et al., 2021) strategy, known for its ef- 325

ficiency in tailoring the LLM to the requirements of 326

downstream tasks and minimal memory demands 327

in storing gradients. Meanwhile, to ensure that 328

other modules are optimally adjusted to suit the 329

specifics of the downstream tasks, Graph Encoders 330

fenc1 and fenc2, as well as Representation Projec- 331

tors fpro1 and fpro2 are trained following the gen- 332

eration loss of the backbone LLM. 333

2.3 Dynamic Parameter Sharing Strategy 334

To implement the above training paradigm effec- 335

tively, we introduce a novel parameter-sharing strat- 336

egy, inspired by key biochemical insights: 337

(1) The Importance of Role-Playing: A molecule’s 338

role in an interaction crucially influences the out- 339

come. For example, in SSI scenario like the water- 340

ethanol pair, utilizing water and ethanol as solvents, 341

respectively, yields different energy releases (Re- 342

ichardt, 2021). Sometimes, a reversal of roles can 343

even result in the absence of interaction. 344

(2) The Importance of Input Order: In cer- 345

tain molecular pairs, the sequence of introducing 346

molecules significantly impacts the interactions. 347

For instance, the order of drug introduction can 348

lead to varying therapeutic effects. 349

(3) The Importance of Role and Order-Specific 350

Feature Extraction: The role and input order of 351

molecules determine the relevance of their struc- 352

tural features. For example, a chemical group in a 353

solute-solvent pair may be crucial for the release 354

of Gibbs free energy when in the solute, but less so 355

in the solvent (Reichardt, 2021; J et al., 2022). 356

These insights inspire MolTC to adaptively pri- 357

oritize distinct key information, creating unique 358

tokens for the same molecule based on its role 359

and order. To enable this nuanced learning while 360

also capitalizing on the shared aspects of molecular 361

learning, we introduce the following parameter- 362

sharing strategy, as shown in Figure 2: 363

(1) The GNN-based Encoders fenc1 and fenc2, 364

which focus on extracting molecular graph struc- 365

tures, share parameters during both pretraining and 366

fine-tuning stages to enhance learning efficiency. 367

(2) The Qformer-based Projectors fpro1 and fpro2, 368

tasked with aligning molecular structures to seman- 369

tic information, share parameters during pretrain- 370

ing stage to promote generalization and robustness. 371

However, in the fine-tuning stage, we cease sharing 372
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to allow customized semantic mappings tailored to373

the varying roles and orders.374

In summary, this strategy is tailored to balance375

the need for role and order-based distinctively learn-376

ing with the efficiency gained from commonalities377

across molecular pairs.378

2.4 Construction of MoT-instructions379

Given the absence of a comprehensive instruction380

datasets tailored for LLM-based MRL, we aim to381

develop a molecular interactive instructions dataset,382

termed MoT-instructions. This dataset is designed383

to fulfill several key criteria: (1) it should include384

extensive molecular pairs capable of interaction,385

covering a broad spectrum of domains, (2) it should386

detail important biochemical properties of each387

molecule within these pairs, and (3) it should elab-388

orate the resultant properties from molecular in-389

teractions. Specifically, MoT-instructions are con-390

structed through a three-step process as follows.391

(1) We begin by aggregating twelve representa-392

tive molecular interaction datasets across various393

widely recognized biochemical tasks, such as DDI,394

SSI, and CSI. Following this, we engage in a sys-395

tematic search for textual descriptions of the bio-396

chemical properties of each molecule involved in397

these interactions. Specifically, we source this in-398

formation from authoritative biochemical databases399

such as DrugBank and PubChem.400

(2) The next critical step is the experimental de-401

termination of the optimal instructions. Specif-402

ically, for all molecular pairs in step (1), we first403

deconstruct the lengthy molecular properties into404

a series of questions and answers, a format more405

comprehensible to LLMs (Taylor et al., 2022). The406

granularity of this deconstruction is decided based407

on the performance of our MolTC. For more chal-408

lenging quantitative tasks, instructions guided by409

fine-grained CoT are required to provide a numeri-410

cal range before specifying a concrete value. Given411

the vast number of possible correct ranges, exhaus-412

tive testing is impractical. Therefore, we initially413

determine the optimal range for a small subset of414

datasets using a grid search, guided by the pre-415

dictive performance of MolTC. Subsequently, we416

derive statistics, such as mean and standard devia-417

tion, from these datasets to establish a relationship418

between statistics and optimal ranges. Finally, for419

other datasets, we determine their optimal range420

based on this established rule.421

(3) The final step in our dataset construction in-422

volved filtering out pairs that lacked sufficient infor- 423

mation on molecule properties or interaction data. 424

Specifically, partial properties of a molecular pair 425

are often missing in some datasets. To maximize 426

the utilization of information from these datasets, 427

we consider extracting each property within them 428

as a separate dataset. This approach allows us to 429

naturally omit missing values without wasting other 430

information present in the molecular pair. 431

3 Experiment 432

In this section, we aim to answer the following 433

research questions: 434

• RQ1: Is MolTC capable of generating the inter- 435

active property, involving the qualitative knowl- 436

edge, of the given molecular pair? 437

• RQ2: Does MolTC have the ability to generate 438

the interactive property, involving the quantita- 439

tive property, for a given molecular pair? 440

• RQ3: What is the impact of the proposed strate- 441

gies, such as the CoT enhancement strategy and 442

SMILES injection strategy, on the inference pro- 443

cess of our MolTC? 444

3.1 Experimental Setting 445

We evaluate MolTC on twelve well-established 446

downstream molecule interaction tasks involving 447

qualitative and quantitative analysis. Here we pro- 448

vide a brief overview of our experimental setup. 449

Detailed descriptions are presented in the appendix. 450

Datasets. We employ 12 datasets across various 451

domains such as DDI, SSI, and CSI. Specifically, 452

we collect Drugbank (Version 5.0.3), ZhangDDI 453

(Zhang et al., 2017), ChChMiner (Zitnik et al., 454

2018), DeepDDI (Ryu et al., 2018), TWOSIDES 455

(Tatonetti et al., 2012), Chromophore (Joung et al., 456

2020), MNSol (Marenich et al., 2020), CompSol 457

(Moine et al., 2017), Abraham (Grubbs et al., 2010), 458

CombiSolv (Vermeire and Green, 2021), FreeSolv 459

(Mobley and Guthrie, 2014) and CombiSolv-QM 460

(Vermeire and Green, 2021). 461

Baselines. For a comprehensive evaluation, we 462

conduct various baseline methods encompassing 463

distinct categories such as methods based on: 464

GNNs, DL models other than GNN, and LLMs. 465

Specifically, For DDI task, we employ GoGNN 466

(Wang et al., 2020), MHCADDI (Deac et al., 2019), 467

DeepDDI (Ryu et al., 2018), SSI-DDI, CGIB (Lee 468

et al., 2023a), CMRL (Lee et al., 2023b), MDF-SA- 469

DDI (Lin et al., 2022), DSN-DDI (Li et al., 2023c) 470
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Table 1: Comparative performance of various methods in qualitative interactive tasks. The best-performing methods
are highlighted with a gray background, while the second-best methods are underscored for emphasis.

Baseline Model Drugbank ZhangDDI ChChMiner DeepDDI
Accuracy AUC-ROC Accuracy AUC-ROC Accuracy AUC-ROC Accuracy AUC-ROC

GNN
Based

GoGNN 84.78±0.57 91.63±0.66 84.10±0.46 92.35±0.48 91.17±0.46 96.64±0.40 93.54±0.35 92.71±0.27

SSI-DDI 94.12±0.33 98.38±0.31 86.97±0.37 93.76±0.34 93.26±0.31 97.81±0.22 95.27±0.25 98.42±0.31

DSN-DDI 94.93±0.14 99.01±0.12 87.65±0.13 94.63±0.18 84.30±0.17 94.25±0.26 95.64±0.18 98.01±0.16

CMRL 94.83±0.12 98.76±0.10 87.78±0.36 94.68±0.23 94.23±0.26 98.37±0.12 96.37±0.34 98.98±0.31

CGIB 94.68±0.34 98.60±0.25 87.32±0.71 94.18±0.60 94.25±0.39 98.45±0.31 96.23±0.52 98.45±0.64

ML
Based

DeepDDI 93.15±0.25 98.06±0.54 83.35±0.49 91.13±0.58 90.34±0.62 95.73±0.37 92.39±0.38 98.11±0.42

MHCADDI 78.50±0.80 86.33±0.35 77.86±0.59 86.94±0.68 84.26±0.54 89.33±0.82 87.01±0.77 88.64±0.83

MDF-SA-DDI 93.86±0.31 97.65±0.29 86.89±0.25 94.03±0.23 93.64±0.20 98.10±0.19 95.12±0.30 97.84±0.36

LLM
Based

Galactica 79.16±0.35 86.23±0.33 67.20±0.46 78.74±0.58 74.61±0.44 83.51±0.63 71.50±0.41 79.07±0.41

Chem T5 85.83±0.31 91.97±0.38 72.34±0.42 89.31±0.30 80.79±0.52 85.65±0.46 75.58±0.66 84.42±0.43

MolCA 87.95±0.52 94.00±0.37 68.21±0.59 88.53±0.62 90.15±0.43 92.92±0.60 82.95±0.58 88.52±0.77

MolT5 89.49±0.47 93.08±0.26 76.46±0.30 89.06±0.33 84.70±0.25 91.18±0.32 86.82±0.46 90.08±0.57

MolTC (Ours) 95.98±0.15 99.12±0.31 89.40±0.12 95.48±0.18 95.59±0.20 98.66±0.09 96.70±0.26 99.05±0.32

Table 2: Comparative performance of various methods in quantitative interactive tasks. The best-performing
methods are highlighted with a gray background, while the second-best methods are underscored for emphasis.

Baseline Model FreeSolv Abraham CompSol CombiSolv
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GNN
Based

CIGIN 0.589±0.053 0.931±0.066 0.314±0.004 0.607±0.011 0.197±0.003 0.349±0.005 0.288±0.005 0.664±0.012

D-MPNN 0.702±0.014 1.231±0.029 0.484±0.012 0.705±0.025 0.205±0.006 0.373±0.007 0.482±0.013 0.895±0.055

GEM 0.598±0.018 1.188±0.049 0.254±0.004 0.531±0.005 0.203±0.006 0.337±0.007 0.290±0.009 0.783±0.020

CGIB 0.541±0.009 0.917±0.055 0.258±0.008 0.530±0.009 0.178±0.004 0.301±0.003 0.230±0.004 0.394±0.009

ML
Based

GOVER 0.636±0.026 1.074±0.049 0.347±0.005 0.625±0.016 0.184±0.005 0.371±0.014 0.412±0.016 0.728±0.034

SolvBert 0.602±0.029 1.034±0.044 0.496±0.007 0.693±0.014 0.192±0.008 0.353±0.008 0.418±0.018 0.711±0.020

Uni-Mol 0.575±0.060 1.012±0.070 0.355±0.007 0.602±0.024 0.198±0.002 0.344±0.003 0.267±0.005 0.669±0.017

SMD 0.599±0.037 1.202±0.036 0.400±0.022 0.646±0.037 0.199±0.006 0.348±0.007 0.657±0.011 1.023±0.029

LLM
Based

Galactica 0.882±0.010 1.438±0.066 0.645±0.008 1.064±0.016 0.594±0.006 0.854±0.008 0.831±0.018 1.486±0.035

Chem T5 0.802±0.036 1.377±0.057 0.629±0.010 0.910±0.017 0.445±0.008 0.734±0.010 0.882±0.015 1.297±0.024

MolCA 0.760±0.033 1.271±0.039 0.581±0.007 0.897±0.008 0.467±0.006 0.716±0.022 0.648±0.033 1.125±0.035

MolT5 0.705±0.047 1.135±0.069 0.549±0.008 0.832±0.006 0.476±0.003 0.695±0.013 0.652±0.023 1.124±0.027

MolTC (Ours) 0.502±0.011 0.684±0.042 0.194±0.009 0.388±0.010 0.171±0.006 0.295±0.004 0.172±0.004 0.465±0.008

as the backbone. For SSI and CSI tasks, we utilize471

D-MPNN (Vermeire and Green, 2021), SolvBert472

(Yu et al., 2023), SMD (Meng et al., 2023), CGIB473

(Lee et al., 2023a), CIGIN (Pathak et al., 2020),474

GEM (Fang et al., 2022), GOVER (Rong et al.,475

2020), Uni-Mol (Zhou et al., 2023) as the back-476

bone. Furthermore, all downstream tasks adopt477

LLM-based methods, such as Galactica (Taylor478

et al., 2022), Chem T5 (Christofidellis et al., 2023),479

MolT5 (Edwards et al., 2022) and MolCA (Liu480

et al., 2023) as the backbone.481

Metrics. For qualitative tasks, we employ pre-482

diction Accuracy and AUC-ROC (Area Under the483

Receiver Operating Characteristic curve) as com-484

parative metrics, while for quantitative tasks, MAE485

(Mean Absolute Error) and RMSE (Root Mean486

Square Error) are utilized as the standards.487

3.2 Qualitative Prediction Performance (RQ1) 488

Table 1 exhibits the performance in qualitative in- 489

teractive tasks. Due to page width limitations, only 490

a subset of the results is presented, with additional 491

results detailed in the appendix. From Table 1, we 492

deduce the following observations: 493

Obs.1: MolTC consistently outshines its counter- 494

parts in qualitative interaction predictions, While 495

GNN-based methods demonstrate commendable 496

performance, maintaining over 90% accuracy 497

across numerous datasets, MolTC transcends these 498

figures in every evaluated scenario. For instance, it 499

marks a notable 1.05% improvement in accuracy 500

on the drugback dataset, a feat attributable to the 501

synergy between the LLMs’ reasoning faculties 502

and the GNNs’ proficiency in graph modeling. 503
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Table 3: Performance comparison of various models on
different datasets.

Dataset Metric w/o SMILES w/o CoT

Broad Fine

DDI

Accuracy 6.42±0.13 2.01±0.05 −
Rate (↓) 7.08 % 2.13 % −

ACC-AUC 7.87±0.32 2.98±0.08 −
Rate (↓) 8.22 % 3.10 % −

SSI

MAE 0.025±0.004 0.010±0.002 0.036±0.007

Rate (↑) 11.32 % 4.56 % 16.40 %

RMSE 0.045±0.007 0.014±0.003 0.054±0.009

Rate (↑) 9.47 % 2.95 % 11.37 %

CSI
Abs.

MAE 2.06±0.11 0.51±0.03 2.65±0.16

Rate (↑) 15.03 % 3.72 % 19.34 %

RMSE 3.37±0.20 1.18±0.12 4.84±0.29

Rate (↑) 15.18 % 5.31 % 21.80 %

CSI
Emis.

MAE 3.10±0.17 0.85±0.04 4.42±0.36

Rate (↑) 16.23 % 5.23 % 23.14 %

RMSE 4.99±0.28 1.47±0.12 7.29±0.44

Rate (↑) 18.34 % 5.40 % 26.80 %

CSI
Life.

MAE 0.085±0.003 0.026±0.002 0.072±0.004

Rate (↑) 13.70 % 4.19 % 11.61 %

RMSE 0.101±0.010 0.034±0.008 0.093±0.010

Rate (↑) 12.16 % 4.09 % 11.20 %

Obs.2: The variability of MolTC’s outcomes,504

as indicated by the standard deviation, is consis-505

tently minimal in comparison to other models,506

On average, the standard deviation for MolTC507

is 35.41% lower than GNN-based models and508

46.86% lower than LLM-based models. The preci-509

sion in MolTC’s performance is largely attributed510

to the training paradigm enhanced by the multi-511

hierarchical CoT, which ensures a meticulous and512

accurate inference process.513

3.3 Quantitative Prediction Performance514

(RQ2)515

Table 2 shows the performance in a subset of quan-516

titative tasks, with an exhaustive set of results de-517

tailed in the appendix. The datasets offer four-518

dimensional molecular information, comprising519

atom type, chirality tag, bond type, and bond direc-520

tion. Key observations from Table 2 include:521

Obs.3: MolTC continues to lead in quantitative522

analysis tasks, an area typically challenging for523

LLMs. Despite the strong baseline set by CGIB,524

characterized by low MAE and RMSE across525

datasets, MolTC outperforms it in every metric.526

For instance, it achieves a 23.98% reduction in527

RMSE on the CombiSolv dataset relative to CGIB.528

This underscores the advantage of adeptly leverag-529

ing the interaction between SMILE representations530

and molecular graph structures. 531

Obs.4: LLM-based models, in general, exhibit sub- 532

par performance in quantitative tasks compared to 533

traditional DL-based models, attributed to their in- 534

adequacy in sharing and transferring learned molec- 535

ular interaction insights across datasets and the ab- 536

sence of CoT-guided inference. 537

3.4 Ablation Study (RQ3) 538

Table 3 presents an ablation study aimed at dis- 539

secting the influence of SMILE auxiliary analy- 540

sis and the optimized training paradigms based on 541

Broad-grained and Fine-grained CoT. For the CSI 542

dataset, properties such as the maximum absorp- 543

tion wavelength (Absorption), maximum emission 544

wavelength (Emission), and excited state lifetime 545

(Lifetime) are denoted as Abs., Emis., and Life., 546

respectively. Key observations are as follows: 547

Obs.5: The three studied ablations exhibit signifi- 548

cant influence on the results. For example, the col- 549

lective impact of these three ablations registers an 550

average drop of 12.77%, affirming the substantial 551

enhancement imparted by the proposed strategies. 552

Obs.6: The most pronounced effect is observed 553

with the ablation of the Fine-grained CoT paradigm, 554

which incurs an average accuracy decrement of 555

18.82%. This underscores the pivotal role of guid- 556

ing the LLM to deduce a numerical range, a strat- 557

egy particularly beneficial for quantitative analysis 558

tasks, typically a challenging domain for LLMs. 559

Obs.7: The least pronounced, yet significant, im- 560

pact stems from the optimization of the Broad- 561

grained CoT training paradigm, with an average 562

accuracy reduction of 4.35%. Its importance is par- 563

ticularly underscored for molecular pairs involving 564

larger and more complex molecules, where directly 565

predicting interactive property by LLMs is arduous. 566

4 Conclusion 567

This work focuses on molecule rationale learning, 568

which plays a pivotal role in predicting molecular 569

interactions. Specifically, we introduce a novel, uni- 570

fied LLM-based framework for predicting molec- 571

ular interactive properties, termed MolTC. To ef- 572

ficiently train it, we propose a multi-tiered CoT 573

principle to guide the training paradigm. Exper- 574

iments conducted across twelve varied datasets 575

demonstrate the superiority of our method over 576

the current GNN and LLM-based baselines. This 577

breakthrough sets a new standard for integrating 578

multimodal data in LLM-based MRL. 579
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Limitations580

While this research has undergone extensive testing581

across a diverse array of datasets covering various582

domains, it does have certain limitations. Specifi-583

cally, the study has not been subjected to datasets584

comprising exceptionally large molecules, which585

represent extreme cases. Furthermore, the method-586

ologies employed in this research have not yet been587

adapted or evaluated in contexts requiring few-shot588

or zero-shot learning scenarios. Future endeavors589

will focus on expanding the scope of this study to590

encompass these areas.591

Ethics Statement592

This work is primarily foundational in molecular593

relational learning, focusing on the development594

of a unified LLM-based paradigm. Its primary595

aim is to contribute to the academic community by596

enhancing the understanding and implementation597

of the molecular relational modeling process. We598

do not foresee any direct, immediate, or negative599

societal impacts stemming from the outcomes of600

our research.601
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recently, adopting LLM has emerged as a promis-899

ing alternative for efficient and effective molecular900

relational learning, which are known for their vast901

knowledge repositories and advanced logical infer-902

ence capabilities. Specifically,903

• (Park et al., 2022; Jha et al., 2022a,b) focus on904

employ LLM to optimize protein-protein inter-905

actions (PPI) tasks. In this context, proteins906

are represented as residue contact graphs, also907

known as amino acid graphs, where each node908

is a residue (Jha et al., 2022b). Notably, (Jha909

et al., 2022b) leverages the superior encoding ca-910

pabilities of the biochemical LLMs, where the911

input to the LLM is the protein sequence, and the912

output is a feature vector for each amino acid in913

the sequence. This output is then used as node914

features in the residue contact graph to enhance915

the prediction of PPI tasks.916

• (Sagawa and Kojima, 2023; Chen et al., 2023;917

Livne et al., 2023; Shi et al., 2023) focus using918

LLMs to optimize chemical reactions. Specif-919

ically, (Shi et al., 2023) selects in-context reac-920

tion examples with varying confidence scores921

closest to the target reaction query, encourag-922

ing large models to understand the relationships923

between these reactions. (Sagawa and Kojima,924

2023) focuses on optimizing low-sample organic925

chemical applications by pretraining them with926

extensive compound libraries and fine-tuning927

with smaller in-house datasets for specific tasks.928

(Livne et al., 2023) introduces a new foundational929

model, nach0, capable of solving various chem-930

ical and biological tasks, including molecular931

synthesis.932

• (Li et al., 2023b; Pei et al., 2023) focus on us-933

ing LLMs to optimize tasks related to drug934

molecules. Specifically, (Pei et al., 2023) en-935

riches cross-modal integration in biology with936

chemical knowledge and natural language asso-937

ciations, achieving significant results in multiple938

drug-target interaction prediction tasks. Mean-939

while, (Li et al., 2023b) concentrates on few-shot940

drug pair synergy prediction.941

B Experiments942

Here, we provide a detailed experimental setup943

along with additional results. It is important to944

note that for aspects such as dataset division and945

hyperparameter configurations in baselines, we fol-946

lowed the settings established by CGIB (Lee et al.,947

2023a). Moreover, all settings can be found in our 948

code https://anonymous.4open.science/r/MolTC-F. 949

B.1 Datasets 950

We employ 12 datasets across various domains such 951

as DDI, SSI and CSI. 952

Drugbank (version 5.0.3). this dataset consists 953

of 1704 drugs, 191400 drug pairs, and defines 86 954

distinct DDI event types. Essential drug informa- 955

tion, including DrugBank ID, drug name, molecu- 956

lar SMILES, and target. provided. 957

ZhangDDI. (Zhang et al., 2017) it contains 548 958

drugs and 48,548 pairwise interaction data and mul- 959

tiple types of similarity information about these 960

drug pairs. 961

ChChMiner. (Zitnik et al., 2018) it contains 1,322 962

drugs and 48,514 labeled DDIs, obtained through 963

drug labels andscientific publications. 964

DeepDDI. (Ryu et al., 2018) contains 192,284 la- 965

beled DDIs and their detailed side-effect informa- 966

tion, which is extracted from Drugbank. 967

TWOSIDES. (Tatonetti et al., 2012) it collected 968

555 drugs and their 3,576,513 pairwise interactions 969

involving 1318 interaction types from TWOSIDES. 970

Chromophore. (Joung et al., 2020) contains 971

20,236 combinations of 7,016 chromophores and 972

365 solvents which are given in the SMILES string 973

format. All optical properties are based on sci- 974

entific publications and unreliable experimental 975

results are excluded after examination of absorp- 976

tion and emission spectra. In this dataset, we mea- 977

sure our model performance on predicting maxi- 978

mum absorption wavelength (Absorption), maxi- 979

mum emission wavelength (Emission) and excited 980

state lifetime (Lifetime) properties which are im- 981

portant parameters for the design of chromophores 982

for specific applications. We delete the NaN values 983

to create each dataset which is not reported in the 984

original scientific publications. Moreover, for Life- 985

time data, we use log normalized target value since 986

the target value of the dataset is highly skewed 987

inducing training instability. 988

MNSol. (Marenich et al., 2020) contains 3,037 989

experimental free energies of solvation or transfer 990

energies of 790 unique solutes and 92 solvents.In 991

this work, we consider 2,275 combinations of 372 992

unique solutes and 86 solvents following previous 993

work. 994

FreeSolv. (Mobley and Guthrie, 2014) provides 995

643 experimental and calculated hydration free en- 996

ergy of small molecules in water. In this work, we 997
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consider 560 experimental results following previ-998

ous work.999

CompSol. (Moine et al., 2017) dataset is proposed1000

to show how solvation energies are influenced by1001

hydrogen-bonding association effects. We consider1002

3,548 combinations of 442 unique solutes and 2591003

solvents in the dataset following previous work.1004

Abraham. (Grubbs et al., 2010) dataset is a col-1005

lection of data published by the Abraham research1006

group at College London. We consider 6,091 com-1007

binations of 1,038 unique solutes and 122 solvents1008

following previous work.1009

CombiSolv. (Vermeire and Green, 2021) con-1010

tains all the data of MNSol, FreeSolv, CompSol,1011

and Abraham, resulting in 10,145 combinations of1012

1,368 solutes and 291 solvents.1013

CombiSolv-QM. (Vermeire and Green, 2021)1014

is generated with 1 million combinations of1015

284 commonly used solvents and 11,029 so-1016

lutes. Those 1 million data points are randomly1017

selected from all possible solvent–solute com-1018

binations. Solvents and solutes with elements1019

H,B,C,N,O, F, P, S, Cl, Br and I are included1020

with a solute molar mass ranging from 2.02 g/mol1021

to 1776.89 g/mol.1022

B.2 Baselines1023

We use both specific task conventional deep learn-1024

ing models and current biochemical LLMs as the1025

baselines. Specifically, for qualitative tasks:1026

GoGNN. (Wang et al., 2020) It extracts features1027

from structured entity graphs and entity interaction1028

graphs in a hierarchical manner. We also propose a1029

dual attention mechanism that enables the model to1030

preserve the importance of neighbors in both levels1031

of the graph.1032

MHCADDI. (Deac et al., 2019) A gated informa-1033

tion transfer neural network is used to control the1034

extraction of substructures and then interact based1035

on an attention mechanism.1036

DeepDDI. (Ryu et al., 2018) First, the structural1037

similarity profile is calculated between the two in-1038

put drugs and other drugs, and then prediction is1039

completed based on the deep neural network.1040

SSI-DDI. (Nyamabo et al., 2021) it use a 4-layer1041

GAT network to extract substructures at different1042

levels, and finally complete the final prediction1043

based on the co-attention mechanism1044

CGIB. (Lee et al., 2023a) Based on the graph con-1045

ditional information bottleneck theory, conditional1046

subgraphs are extracted to complete the interaction1047

between molecules. 1048

CMRL. (Lee et al., 2023b) it detects the core sub- 1049

structure that is causally related to chemical reac- 1050

tions. we introduce a novel conditional intervention 1051

framework whose intervention is conditioned on 1052

the paired molecule. With the conditional interven- 1053

tion framework. 1054

MDF-SA-DDI. (Lin et al., 2022) it predicts inter- 1055

action (DDI) events based on multi-source drug 1056

fusion, multi-source feature fusion and transformer 1057

self-attention mechanism. 1058

DSN-DDI. (Li et al., 2023c) it employs local and 1059

global representation learning modules iteratively 1060

and learns drug substructures from the single drug 1061

‘intra-view’) and the drug pair (‘inter-view’) simul- 1062

taneously. 1063

For quantitative task, we employ the following 1064

baselines: 1065

D-MPNN (Vermeire and Green, 2021) it employes 1066

a transfer learning approach to predict solvation 1067

free energies, integrating quantum calculation fun- 1068

damentals with the heightened accuracy of experi- 1069

mental measurements through two new databases, 1070

CombiSolv-QM and CombiSolv-Exp. 1071

SolvBert. (Yu et al., 2023) it interprets solute 1072

and solvent interactions through their combined 1073

SMILES representation. Pre-trained using unsu- 1074

pervised learning with a substantial computational 1075

solvation free energy database, SolvBERT is adapt- 1076

able to predict experimental solvation free energy 1077

or solubility by fine-tuning on specific databases. 1078

SMD. (Meng et al., 2023) utilizes the quantum 1079

charge density of a solute and a continuum repre- 1080

sentation of the solvent. It breaks down solvation 1081

free energy into two components: bulk electrostatic 1082

contribution, treated through a self-consistent reac- 1083

tion field using IEF-PCM, and a cavity-dispersion- 1084

solvent-structure term, accounting for short-range 1085

interactions in the solvation shell based on atomic 1086

surface areas with geometry-dependent constants. 1087

CIGIN. (Pathak et al., 2020) is a method based 1088

on graph neural networks. The proposed model 1089

adopts an end-to-end framework consisting of three 1090

essential phases: message passing, interaction, and 1091

prediction. In the final phase, these stages are lever- 1092

aged to predict solvation free energies. 1093

GEM. (Fang et al., 2022) exhibits a uniquely de- 1094

signed geometry-based graph neural network archi- 1095

tecture, complemented by several dedicated self- 1096

supervised learning strategies at the geometry level. 1097

That aims to acquire comprehensive molecular ge- 1098
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Table 4: Comparative performance of various methods in qualitative and quantitative interactive tasks. The best-
performing methods are highlighted with a gray background, while the second-best methods are underscored for
emphasis.

Domains Datasets Metrics Baselines Ours
Galactica Chem T5 MolCA MolT5 MolTC

DDI TWOSIDES ACC 82.01± 1.76 84.43± 2.58 90.07± 1.86 92.73± 1.65 98.42± 0.72
AUCROC 87.99± 2.41 89.52± 1.64 93.68± 0.83 94.00± 0.61 99.02± 0.14

SSI MNSol MAE 0.584± 0.095 0.504± 0.038 0.491± 0.053 0.449± 0.081 0.324± 0.019
RMSE 1.002± 0.101 0.973± 0.079 0.930± 0.062 0.858± 0.069 0.585± 0.023

CSI
Absorption RMSE 43.16± 1.38 38.70± 1.84 36.53± 2.03 38.01± 2.27 28.28± 2.20
Emission RMSE 49.85± 2.47 46.18± 2.28 43.35± 1.94 46.06± 1.65 35.43± 1.88
Lifetime RMSE 1.951± 0.115 1.633± 0.069 1.480± 0.092 1.394± 0.145 1.198± 0.073

Table 5: Comparative performance of various methods
in CombiSolv-QM. The best-performing methods are
highlighted with a gray background, while the second-
best methods are underscored for emphasis.

Baseline Model CombiSolv-QM
MAE RMSE

GNN
Based

CIGIN 0.077±0.002 0.176±0.004

D-MPNN 0.116±0.006 0.208±0.005

GEM 0.079±0.003 0.162±0.002

CGIB 0.074±0.004 0.150±0.005

ML
Based

GOVER 0.094±0.003 0.277±0.005

SolvBert 0.102±0.005 0.318±0.006

Uni-Mol 0.089±0.006 0.214±0.005

SMD 0.107±0.004 0.341±0.003

LLM
Based

Galactica 0.303±0.004 0.601±0.008

Chem T5 0.321±0.006 0.555±0.008

MolCA 0.298±0.004 0.545±0.007

MolT5 0.214±0.004 0.339±0.009

MolTC (Ours) 0.072±0.002 0.140±0.003

ometry knowledge for accurate prediction of molec-1099

ular properties.1100

GOVER. (Rong et al., 2020) captures rich struc-1101

tural information from extensive unlabeled molec-1102

ular data through self-supervised tasks, employ-1103

ing a flexible Transformer-style architecture inte-1104

grated with Message Passing Networks. This al-1105

lows GROVER to be trained efficiently on large-1106

scale datasets without supervision, addressing data1107

scarcity and bias challenges.1108

Uni-Mol.(Zhou et al., 2023) incorporates two pre-1109

trained models featuring the SE(3) Transformer1110

architecture: a molecular model pre-trained on1111

209 million molecular conformations and a pocket1112

model pre-trained on 3 million candidate protein1113

pocket data. Additionally, Uni-Mol integrates1114

various fine-tuning strategies to effectively ap-1115

ply these pre-trained models across diverse down-1116

stream tasks.1117

B.3 Modules 1118

In our experiments, the two graph encoder are in- 1119

stantiated by the five-layer GINE (Hu et al., 2019). 1120

We conduct 2 million molecules from the ZINC15 1121

(Sterling and Irwin, 2015) dataset to pretrain them 1122

by contrastive learning following (Liu et al., 2023). 1123

Similarly, two projector are initialized with the 1124

encoder-only transformer, Sci-BERT, which is pre- 1125

trained on scientific publications (Beltagy et al., 1126

2019), while its cross-attention modules are ran- 1127

domly initialized. More detailed pretraining pro- 1128

cess of our Q-Formors follows the training process 1129

in (Liu et al., 2023), such as there are 8 query to- 1130

kens in Q-Formers (Nq = 8). Note that for LLM- 1131

based baselines, we fine-tune the backbone LLMs 1132

on task-specific datasets for fair comparison. Their 1133

prediction is considered accurate only if the outputs 1134

include words or numbers that correctly depict the 1135

interaction in question, without presenting any that 1136

describe alternative interactions. 1137

B.4 Training Epochs 1138

During the fine-tuning phase, the number of epochs 1139

varies for different tasks. For example, for the DDI 1140

task, we typically fine-tune for 100 epochs. For 1141

SSI datasets with more than 3000 molecular pairs, 1142

we initially fine-tune on the CombiSolv-QM (Ver- 1143

meire and Green, 2021) dataset for 100 epochs, 1144

followed by an additional 30 epochs on their re- 1145

spective datasets. For SSI datasets with fewer than 1146

3000 molecular pairs, this number is adjusted to 20. 1147

Furthermore, both the fine-tuning and pre-training 1148

phases employ the same configuration for the op- 1149

timizer and learning rate scheduler, as detailed in 1150

the following section. 1151
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B.5 Training Strategy1152

We employ the AdamW optimizer (Loshchilov1153

and Hutter, 2017) with a weight decay set at1154

0.05. Our learning rate strategy utilizes a com-1155

bination of linear warm-up and cosine decay, opti-1156

mizing the training process by initially increasing1157

the learning rate to promote faster convergence,1158

and then gradually decreasing it according to a1159

cosine curve to fine-tune the model parameters.1160

LoRA is implemented using the Open Delta li-1161

brary (Ding et al., 2022), and the PEFT library1162

(Mangrulkar et al., 2022). LoRA’s rank r is set1163

to 16, while LoRA is applied to Galactica’s mod-1164

ules of [q_proj,v_proj,out_proj,fc1, fc2]1165

following (Liu et al., 2023). This configuration1166

yields a LoRA adapter with 12M parameters which1167

constitutes merely 0.94% of the parametersin the1168

Galactica1.3B.1169

B.6 More Experimental Results1170

Table 4 presents the experimental results not shown1171

in the main text due to length constraints. Note that1172

the three datasets in the CSI domain are all derived1173

by splitting the Chromophore dataset. As discussed1174

in Section 3.3, for a fair comparison, we limited1175

the input features to four-dimensional molecular1176

information, comprising atom type, chirality tag,1177

bond type, and bond direction. Given the difficulty1178

of convergence for some DL-based baselines under1179

this setting, we only showcased the performance1180

of the LLM-based baselines. Meanwhile, consider-1181

ing that our SSI tasks are firstly fine-tuned on the1182

CombiSolv-QM dataset, we present the compre-1183

hensive results of this dataset, as shown in Table 5.1184

Observations from Table 4 and 5 are largely con-1185

sistent with those in the main experimental section.1186

That is, across all tasks, our MolTC outperforms1187

the LLM-based baseline methods in a large margin.1188

C Future Work1189

In this paper, we introduce a novel unified frame-1190

work, leveraging LLM technology to predict molec-1191

ular interactive properties. The future development1192

directions of this project are twofold. First, there1193

is an emphasis on expanding its application scope,1194

for instance, applying it to downstream tasks such1195

as few-shot learning. Second, we aim to enhance1196

its capabilities by incorporating technologies like1197

graph explainability (Fang et al., 2023a,b), graph1198

sampling (Wang et al., 2022, 2023; Fang et al.,1199

2024), and spatio-temporal modeling (Xia et al.,1200

2023; Wu et al., 2023), making it more compre- 1201

hensive or enabling it to process multiple inputs 1202

simultaneously, instead of just two. 1203
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