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ABSTRACT

Minimax problems are receiving an increasing amount of attention in a wide range
of applications in machine learning (ML), for instance, reinforcement learning, ro-
bust optimization, adversarial learning, and distributed computing, to mention but
a few. Current studies focus on the fundamental understanding of general minimax
problems with an emphasis on convergence behavior. As a comparison, there is
far less work to study the generalization performance. Additionally, existing gen-
eralization bounds are almost all derived in expectation, and the high probability
bounds are all presented in the slow order O(1/

√
n), where n is the sample size.

In this paper, we provide improved generalization analyses and obtain sharper
high probability generalization bounds for most existing generalization measures
of minimax problems. We then use the improved learning bounds to establish
high probability generalization bounds with fast rates for classical empirical sad-
dle point (ESP) solution and several popular gradient-based optimization algo-
rithms, including gradient descent ascent (GDA), stochastic gradient descent as-
cent (SGDA), proximal point method (PPM), extra-gradient (EG), and optimistic
gradient descent ascent (OGDA). In summary, we provide a systematical analysis
of sharper generalization bounds of minimax problems.

1 INTRODUCTION

Minimax learning problems have achieved great success over a broad range of learning tasks in ma-
chine learning, with examples including reinforcement learning (Du et al., 2017; Dai et al., 2018),
robust optimization (Chen et al., 2017; Namkoong & Duchi, 2017), adversarial learning (Goodfel-
low et al., 2014), distributed computing (Razaviyayn et al., 2020; Shamma, 2008; Mateos et al.,
2010), and AUC maximization (Lei & Ying, 2021b), to just name a few. This framework is formu-
lated as a zero-sum game characterized as two groups of decision variables, one for minimization
and one for maximization. The coupling of the two groups of variables makes analysis of minimax
problems more complex than the standard statistical learning theory setting, with only one mini-
mization operator (Liu et al., 2021b; Yin et al., 2020; Li & Liu, 2021; Li et al., 2018; Liu et al.,
2020; Li & Liu, 2021). Researchers have designed various optimization algorithms, for instance,
gradient descent ascent (GDA), stochastic gradient descent ascent (SGDA), proximal point method
(PPM), extra-gradient (EG), and optimistic gradient descent ascent (OGDA), to solve the minimax
optimization problem (Farnia & Ozdaglar, 2021). Current theoretical research in ML literature is
mainly devoted to the convergence rate and optimality of these minimax optimization algorithms in
different setting, such as convex-concave settings (Nemirovski et al., 2008), nonconvex-concave set-
ting (Rafique et al., 2018), strongly convex-strongly-concave setting (Balamurugan & Bach, 2016),
and nonconvex-nonconcave setting (Liu et al., 2021a; Yang et al., 2020). In contrast, there is far
less work on the generalization performance analysis, which is an important measure to indicate the
performance of the learned model based on training samples when generalized to the test data.

To the best of our knowledge, there is only three work on the generalization bounds of minimax op-
timization algorithms (Zhang et al., 2021a; Farnia & Ozdaglar, 2021; Lei et al., 2021). Among them,
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(Zhang et al., 2021a) studies the generalization bounds for ESP solution to minimax problems, (Far-
nia & Ozdaglar, 2021) analyzes the generalization properties of several gradient-based optimization
algorithms: GDA, SGDA, GDmax and PPM, and (Lei et al., 2021) provides a systematical gen-
eralization analysis of SGDA. However, in the above-mentioned papers, almost all generalization
bounds are derived in expectation. Only two high probability bounds exist, proposed in (Lei et al.,
2021). Unfortunately, they are of the slow order O (1/

√
n).

It is known that the high probability bound is beneficial to understand the robustness of optimization
algorithms (Bousquet et al., 2020; Klochkov & Zhivotovskiy, 2021) and is much more challenging
to be derived (Bousquet et al., 2020; Lei et al., 2021; Lv et al., 2021). In this paper, our goal is
to provide the sharper high probability generalization bounds for minimax learning problems. We
leverage the lens of algorithmic stability, which is also served as an important tool in (Zhang et al.,
2021a; Farnia & Ozdaglar, 2021; Lei et al., 2021). Our contributions are summarized below.

1. In view of the coupling construction between the minimization variable and the maximization
variable, minimax learning problems have many generalization measures (Lei et al., 2021; Farnia
& Ozdaglar, 2021; Zhang et al., 2021a). In this paper, we provide improved stability analyses for
almost all existing generalization measures, based on which we establish sharper high probability
generalization bounds. These developed learning bounds can be employed to derive generalization
bounds with fast rates for stable minimax learning algorithms.

2. The generalization performance of the ESP solution and gradient-based optimization algorithms
stands a central place in the learning theory of minimax problems (Lei et al., 2021). In this paper, we
develop high probability generalization bounds with fast rates for ESP solution and several popular
gradient-based optimization algorithms: GDA, SGDA, PPM, EG, and OGDA. Overall, we provide
a systematical analysis of sharper generalization bounds for minimax learning problems.

2 RELATED WORK

Algorithmic stability. Algorithmic stability is a fundamental concept in learning theory (Bousquet
& Elisseeff, 2002), which has a deep connection with learnability (Rakhlin et al., 2005; Shalev-
Shwartz & Ben-David, 2014; Shalev-Shwartz et al., 2010). A training algorithm is stable if small
changes in the training set lead to small differences in the output predictions of the trained model.
Different algorithmic stability measures have been developed, including uniform stability (Bousquet
& Elisseeff, 2002; Feldman & Vondrak, 2018; 2019; Klochkov & Zhivotovskiy, 2021; Hardt et al.,
2016; Lei et al., 2020), uniform argument stability (Liu et al., 2017; Bassily et al., 2020), hypothesis
stability (Bousquet & Elisseeff, 2002; Charles & Papailiopoulos, 2018), hypothesis set stability (Fos-
ter et al., 2019), on average stability (Shalev-Shwartz et al., 2010; Lei & Ying, 2020; Kuzborskij &
Lampert, 2018; Zhang et al., 2021b; Lei & Ying, 2021a), locally elastic stability (Deng et al., 2021),
collective stability (London et al., 2016), and PAC-Bayesian stability (Li et al., 2020). These stabil-
ity measures have been extensively studied in the generalization analysis of the standard statistical
learning theory setting (Chen et al., 2018; Zhang et al., 2021b). Several stability measures have also
been extended to minimax learning problems, for instance, weak stability, argument stability, and
uniform stability (Farnia & Ozdaglar, 2021; Zhang et al., 2021a; Lei et al., 2021). In related work
(Farnia & Ozdaglar, 2021; Zhang et al., 2021a; Lei et al., 2021), they mostly focus on the expecta-
tion form of these stability measures since they are to derive bounds in expectation. In this paper,
we will focus on the last two measures, which are often used when establishing high probability
generalization bounds (Feldman & Vondrak, 2018; 2019; Klochkov & Zhivotovskiy, 2021).

Convergence analysis. Convergence analysis has been widely studied in different settings, includ-
ing convex-concave learning (Nemirovski, 2005; Nedic & Ozdaglar, 2009; Mokhtari et al., 2020;
Cherukuri et al., 2017; Mokhtari et al., 2019; Balamurugan & Bach, 2016; Hsieh et al., 2019; Yan
et al., 2020; Lin et al., 2020b; Wang & Li, 2020; Yoon & Ryu, 2021), nonconvex-concave learning
(Rafique et al., 2018; Kong & Monteiro, 2019; Luo et al., 2020; Grnarova et al., 2017; Thekumpara-
mpil et al., 2019; Lu et al., 2020; Namkoong & Duchi, 2016; Sanjabi et al., 2018; Nouiehed et al.,
2019; Lin et al., 2020a; Sinha et al., 2017; Chen et al., 2021), and nonconvex-nonconcave learning
(Heusel et al., 2017; Balduzzi et al., 2018; Daskalakis & Panageas, 2018; Mertikopoulos et al., 2019;
Loizou et al., 2020; Yang et al., 2020; Liu et al., 2021a; Lin et al., 2018; Diakonikolas et al., 2021;
Wang et al., 2020; Loizou et al., 2021; Fiez & Ratliff, 2021). There are so many studies on conver-
gence. Thus, considering the length limit, the references listed here are not complete. Please refer
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to the related references concerning the above work. We investigate the generalization performance
of minimax problems instead of the convergence behavior. Note that the convergence analysis also
plays an essential role in this paper, formalized as strong PD empirical risk (please refer to Defi-
nition 1), which is defined on the function value difference and referred to as optimization error or
primal-dual gap in some convergence literature (Lei et al., 2021; Nemirovski, 2005; Mokhtari et al.,
2019; 2020).

3 PRELIMINARIES

Let X and Y be two parameter spaces in Rd. Let P be a probability measure defined on a sample
space Z . We define f : X ×Y ×Z 7→ R and consider the following minimax optimization problem

min
x∈X

max
y∈Y

F (x,y) := Ez∼P[f(x,y; z)]. (1)

The above minimax objective represents an expectation of a cost function f(x,y; z) for minimiza-
tion variable x, maximization variable y and data variable z. Unfortunately, we typically are not
available to the underlying distribution P. In practice, F is approximated by the corresponding em-
pirical risk. Let S = {z1, ..., zn} be a dataset whose samples are independent drawn according to P,
the empirical risk is defined as

FS(x,y) =
1

n

n∑
i=1

f(x,y; zi). (2)

Let the output of a (randomized) algorithmA on a dataset S beA(S) := (Ax(S), Ay(S)) ∈ X ×Y .
Since A(S) is just an empirical approximated solution of the true minimax optimization problem,
we are interested in studying how well A(S) generalizes to the unseen data. As claimed in (Farnia
& Ozdaglar, 2021; Lei et al., 2021), the coupling between the minimization variable and the maxi-
mization variable in (1) makes minimax problems have many different generalization performance
measures. These measures are collected in (Lei et al., 2021). For better readability, we use their
symbols. Let E be the expectation with respect to (w.r.t.) the randomness of algorithm A and the
dataset S. These generalization measures are listed below.
Definition 1. (Lei et al., 2021) There are four groups of generalization measures.

1 (Primal Measures.) The primal population risk of a model x is defined as R(x) =
supy∈Y F (x,y), and the corresponding primal empirical risk is defined as RS(x) =
supy∈Y FS(x,y). Then, when using empirical risk RS(x) to bound R(x), we call this error of
the model x the primal generalization error. While using optimal infx∈X R(x) to bound R(x), we
call this error of the model x the excess primal population risk.

2 (Plain Measure.) When using FS(x,y) to bound F (x,y), we call the this error of a model (x,y)
the plain generalization error.

3 (Strong Measures.) The strong primal-dual (PD) population risk of a model (x,y) is defined as

4s(x,y) = sup
y′∈Y

F (x,y′)− inf
x′∈X

F (x′,y),

and the corresponding strong PD empirical risk is defined as

4sS(x,y) = sup
y′∈Y

FS(x,y′)− inf
x′∈X

FS(x′,y).

Then, the strong PD generalization error4s(x,y)−4sS(x,y) of the model (x,y) is defined as(
sup
y′∈Y

F (x,y′)− sup
y′∈Y

FS(x,y′)
)

+
(

inf
x′∈X

FS(x′,y)− inf
x′∈X

F (x′,y)
)
.

4 (Weak Measures.) The weak PD population risk of a (randomized) model (x,y) is defined as

4w(x,y) = sup
y′∈Y

E[F (x,y′)]− inf
x′∈X

E[F (x′,y)],

and the corresponding weak PD empirical risk is defined as

4wS (x,y) = sup
y′∈Y

E[FS(x,y′)]− inf
x′∈X

E[FS(x′,y)].
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Then, the weak PD generalization error4w(x,y)−4wS (x,y) of the model (x,y) is defined as(
sup
y′∈Y

E[F (x,y′)]− sup
y′∈Y

E[FS(x,y′)]
)

+
(

inf
x′∈X

E[FS(x′,y)]− inf
x′∈X

E[F (x′,y)]
)
.

Remark 1. We provide some discussions for the four groups of measures. (1. Primal Measures:)
In the context of GANs, the primal population risk R(x) represents a divergence measure between
the learned and true distributions, and in the context of adversarial training it represents the learner’s
risk under adversarial perturbations (Farnia & Ozdaglar, 2021). One would be interested in the re-
lationship between R(x) and its corresponding empirical risk RS(x), and the relationship between
R(x) and its infimum infx′∈X R(x′). (2. Plain Measure:) This generalization measure is a direct
extension of the standard generalization error in the minimization optimization. (3. Strong Mea-
sures:) 4sS(x,y) is referred to as the primal-dual gap in the optimization literature. 4s(x,y) is
the primal-dual gap of the population risk. 4s(x,y) − 4sS(x,y) studies the difference between
the population primal-dual gap and its empirical counterpart. (4. Weak Measures:) The difference
between the strong and weak measures is that weak measures take the expectation over the ran-
domness of the dataset and the algorithm, for instance, supy′∈Y F (x,y′)− infx′∈X F (x′,y) in the
strong measures and supy′∈Y E[F (x,y′)]− infx′∈X E[F (x′,y)] in the weak measures. Therefore,
the upper bounds of weak measures hold in expectation, while the upper bounds of strong measures
hold uniformly for any dataset.

Denote theLp norm of a random variableZ as ‖Z‖p = (EZ |Z|p)1/p. Let ‖·‖ be the Euclidean norm
and 〈·, ·〉 be the inner product. A differentiable function g : W 7→ R is called µ-strongly-convex in
w if the following inequality holds for every w1,w2:

g(w1)− g(w2) ≥ 〈∇g(w2),w1 −w2〉+
µ

2
‖w1 −w1‖2,

where∇ is the gradient operator. We say g is µ-strongly-concave if −g is µ-strongly-convex.
Definition 2. Let g : X × Y 7→ R. Assume that X and Y are convex feasible sets. Then

1. g is µ-strongly-convex-strongly-concave (µ-SC-SC) if g(·,y) is µ-strongly-convex for any y ∈ Y
and g(x, ·) is µ-strongly-concave for any x ∈ X .

2. g is convex-concave (C-C) if g is 0-SC-SC.

We then introduce the definition of algorithmic stability this paper used. Algorithmic stability plays
an important role in studying the generalization behavior of a learning algorithm. Intuitively, an
algorithm A : Zn 7→ (X ,Y) is said to be stable if the output model (Ax(S), Ay(S)) is insensitive
to perturbations. Let S′ be a neighboring dataset that differs at most one single example to S.
Definition 3 (Algorithmic Stability). Let A be a learning algorithm and ε > 0.

1. We say A is ε-uniformly-stable if for any training datasets S, S′ ∈ Zn we have
sup
z

[f(Ax(S), Ay(S); z)− f(Ax(S′), Ay(S′); z)] ≤ ε.

2. We say A is ε-argument-stable if for any training datasets S, S′ ∈ Zn we have
‖Ax(S)−Ax(S′)‖+ ‖Ay(S)−Ay(S′)‖ ≤ ε.

From Definition 3, one can see that the uniform stability measures the sensitivity of the function
values, while the argument stability measures the sensitivity of the arguments.

We finally introduce two standard assumptions in minimax problems. Assumption 1 implies f is
Lipschitz continuous w.r.t. both x and y, while Assumption 2 implies f is smooth w.r.t. (x,y).
Assumption 1 (Lipschitz continuity). Let L > 0. Assume that for any x ∈ X , y ∈ Y and z ∈ Z ,
f(x,y; z) satisfies

‖∇xf(x,y; z)‖ ≤ L and ‖∇yf(x,y; z)‖ ≤ L.
Assumption 2 (Smoothness). Let β > 0. Assume that for any x1,x2 ∈ X , y1,y2 ∈ Y and z ∈ Z ,
f(x,y; z) satisfies∥∥∥∥(∇xf(x1,y1; z)−∇xf(x2,y2; z)

∇yf(x1,y1; z)−∇yf(x2,y2; z)

)∥∥∥∥ ≤ β ∥∥∥∥(x1 − x2

y1 − y2

)∥∥∥∥ .
Under Assumption 1, the argument stability implies the uniform stability. Therefore, the argument
stability is the main stability measure that we will focus on.
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4 MAIN RESULTS

In this section, we provide sharper high probability bounds for the generalization measures of Defi-
nition 1, shown as follows.

Theorem 1. Let A be a learning algorithm and ε > 0. Suppose |f(x,y; z)| ≤M for some M > 0
and x ∈ X ,y ∈ Y, z ∈ Z . Fixed any η > 0. There exists an absolute positive constant C.

(a.) If the algorithm A is ε-uniformly stable, then for any δ > 0, with probability at least 1− δ,

F (Ax(S), Ay(S)) ≤ (1 + η)FS(Ax(S), Ay(S)) + C
1 + η

η

(M
n

log(1/δ) + ε log2 n log
1

δ

)
.

(b.) Assume that for all x, the function y 7→ F (x,y) is µ-strongly-concave. If the algorithm A is
ε-argument stable and Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ,

R(Ax(S)) ≤ (1 + η)RS(Ax(S)) + C
1 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
Lε log2 n log

1

δ

)
.

(c.) Assume that for all x and y, the function F (x,y) is µ-SC-SC. If the algorithm A is ε-argument
stable and Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ,

4s (Ax(S), Ay(S)) ≤ 4sS(Ax(S), Ay(S)) + ηES 4sS (Ax(S), Ay(S))

+ C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
εL log2 n

)
log
(1

δ

)
.

(d.) Assume that for all x and y, the function F (x,y) is µ-SC-SC. If the algorithm A is ε-argument
stable and Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ,

4s (Ax(S), Ay(S))−4sS(Ax(S), Ay(S)) ≤ ηES 4sS (Ax(S), Ay(S))

+ C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
εL log2 n

)
log
(1

δ

)
.

(e.) Assume that for all x, the function y 7→ F (x,y) is µ-strongly-concave. If the algorithm A is
ε-argument stable and Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ,

R(Ax(S)) ≤ (1 + η) inf
x∈X

R(x)

+ C
2 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
Lε log2 n log

1

δ
+4sS(Ax(S), Ay(S))

)
.

According to Definition 1 and Jensen’s inequality, we know that 4w(x,y) ≤ E[4s(x,y)] and
4wS (x,y) ≤ E[4sS(x,y)]. By this connection, we have 4w(x,y) −4wS (x,y) ≤ E[4s(x,y)] +
|E[4sS(x,y)]|. We therefore obtain the following results for4w(x,y) and4w(x,y)−4wS (x,y).

Corollary 1. Suppose the same conditions as Theorem 1 hold.

(f.) If the assumptions of Part (c) in Theorem 1 hold, then with probability at least 1− δ,

4w (Ax(S), Ay(S)) ≤ (1 + η)E4sS (Ax(S), Ay(S))

+ C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
εL log2 n

)
log
(1

δ

)
.

(g.) If the assumptions of Part (d) in Theorem 1 hold, then with probability at least 1− δ,

4w (Ax(S), Ay(S))−4wS (Ax(S), Ay(S)) ≤ |E4sS (Ax(S), Ay(S))|

+ (1 + η)E4sS (Ax(S), Ay(S)) +C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
εL log2 n

)
log
(1

δ

)
.
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Remark 2. In Theorem 1, we have established a quantitative connection between the generalization
measures and the stability measures. The complete proof of Theorem 1 is provided in Appendix A.

Part (a) provides the relationship between the uniform stability and the plain generalization er-
ror of (Ax(S), Ay(S)). If the uniform stability of algorithm A is of fast order O(1/n), then
F (Ax(S), Ay(S)) is bounded by (1 + η)O

(
FS(Ax(S), Ay(S)) + logn log(1/δ)

nη

)
. Usually for a

well-trained model (Ax(S), Ay(S)) over the training set, the empirical risk FS(Ax(S), Ay(S)) is
small or even zero (Lever et al., 2013; Yang et al., 2019; Cortes et al., 2021). If the empirical risk is
of order O(1/n), then we can choose a proper constant for η and the plain generalization error will
be of fast order O

( logn log(1/δ)
n

)
. It is O(1/n) when we hide the logarithmic term. In the related

work, (Lei et al., 2021) also establish the plain generalization error bound under the same assump-
tions, but their bound is of slow order O

(
ε log n log(1/δ) + Mn−

1
2

√
log(1/δ)

)
. Even if they get

a sharper bound for stability measure ε, the influence of O
(
n−

1
2

√
log(1/δ)

)
can not disappear. By

comparison, we have completely removed the O(1/
√
n) term. Thus, our plain generalization error

bound enables the fast O(1/n) rate when the empirical risk is small.

Part (b) provides the connection between the argument stability and the primal generalization error.
Similar to the analysis of Part (a), if both the argument stability of algorithm A and RS(Ax(S))
are of order O(1/n), then the primal generalization error implies a fast O

(
1/n

)
rate. Consider-

ing that we assume the function f is well-behaved, i.e., Lipschitz continuity, smoothness, and the
strong-concavity of its population risk F , and that RS(Ax(S)) is data-dependent, thus it is reason-
able to assume RS(Ax(S)) is small for a well-trained model Ax(S) (Lever et al., 2013; Yang et al.,
2019; Cortes et al., 2021). In (Lei et al., 2021), they also establish a bound for primal general-
ization error under the same assumptions. However, their bound is O

(
Lβµ−1εlogn log(1/δ) +

Mn−
1
2

√
log(1/δ)

)
, limited to the O(1/

√
n) order. In contrast, we successfully removed the

O(1/
√
n) term, which makes the fast rate possible. (Farnia & Ozdaglar, 2021) studies the expected

primal generalization error, i.e., bounding ES,A[R(Ax(S))] by ES,A[RS(Ax(S))]. They establish
the connection between the stability measure and the expected error under the same assumptions
as Part (b), which is then used to derive generalization bounds for (S)GDA, (S)GDmax, and PPM
algorithms. By comparison, our bound is derived in high probability.

Part (c) provides the relationship between the argument stability and the strong PD population risk.
If both the argument stability of algorithm A and the strong PD empirical risk are all of the order
O(1/n), the strong PD population risk will be of the fast order O(1/n). Note that in our proof for
the gradient-based optimization algorithms, the strong PD empirical risk mainly has a dependence
on the iterative number T (see Lemma 8 of GDA, Lemma 11 of SGDA, etc.). To obtain sharper
generalization bounds, we require T to be associated with n, such as T = O(n2) for GDA, the
strong PD empirical risk finally has a dependence on the sample size n. To our best knowledge,
this is the first high probability strong PD population risk bound. The expected version of this
risk is studied for the ESP solution in (Zhang et al., 2021a). However, the discussion there does
not establish the connection between stability and generalization. Their analysis is restricted to the
specific ESP problem. Under the same assumptions, they provide the upper bound of orderO (1/n).
Compared with their result, our result is presented in high probability. Additionally, our strong PD
population risk bound is applicable for any stable minimax optimization algorithms.

Part (d) provides the connection between the argument stability and the strong PD generalization
error. Similarly, if both the argument stability of algorithm A and the strong PD empirical risk are
all of O(1/n) order, the strong PD generalization error will be of the fast order O(1/n). Although
Part (c) and Part (d) have a similar upper bound, they are different generalization measures (Lei
et al., 2021). To our best knowledge, this is also the first high probability strong PD generalization
error bound. The expected version of this generalization error is studied in (Lei et al., 2021), that
is ES,A [4s(Ax(S), Ay(S))−4sS(Ax(S), Ay(S))]. Under the same assumptions, their expected
strong PD generalization error is bounded by (1 + β/µ)L

√
2ε, which can also be used to obtain

O (1/n) order rate when ε is of order O(1/n). However, this bound is provided for the expected
error, while our bound is high probabilistic and holds uniformly for any dataset.

Part (e) provides the relationship between the argument stability and the excess primal population
risk. Similar to the analysis of Part (a) and Part (b), if the argument stability of algorithm A, the
strong PD empirical risk, and infx∈X R(x) are all of the orderO(1/n), the excess primal population
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risk will also be of the fast order O(1/n). Meanwhile, in the minimization learning problems,
assuming the optimal population risk F ∗ is small or even zero, i.e., F ∗ ≤ O(1/n), can be found
in (Lei & Ying, 2021a; Zhang et al., 2017; Zhang & Zhou, 2019; Srebro et al., 2010; Lei & Ying,
2020). Note that the optimal population risk F ∗ = O(1/n) just to show that the improved bound can
be got under low noise conditions. F ∗ should be independent of n. Similar to the assumption on F ∗
and considering that we assume the function f is well-behaved, it will also be reasonable to assume
infx∈X R(x) is small. High probability excess primal population risk bound is also studied for
SGDA in (Lei et al., 2021). Their bound, however, is of slow order O

(
(β/µ)n−

1
2 log n log2(1/δ)

)
and is restricted to SGDA. By comparison, our result in Part (e) enables O(1/n) bounds for stable
minimax learning algorithms since we have completely removed the O(1/

√
n) term.

We discuss a noteworthy difference between (Farnia & Ozdaglar, 2021; Lei et al., 2021) and ours.
In Part (a), Part (b), and Part (e), we study the upper bounds of F (Ax(S), Ay(S)), R(Ax(S)) (w.r.t.
RS(Ax(S))), and R(Ax(S)) (w.r.t. infx∈X R(x)), respectively, while (Lei et al., 2021; Farnia &
Ozdaglar, 2021) study the upper bounds of F (Ax(S), Ay(S))− FS(Ax(S), Ay(S)), R(Ax(S))−
RS(Ax(S)), and R(Ax(S)) − infx∈X R(x) (or their expected forms). One of our motivations to
study such forms is that, in practice, we are often directly interested in the true risk, i.e., how the
learned models behave on the testing data, such as F (Ax(S), Ay(S)), instead of the error between
the true risk and empirical risk. Note that in the above comparison between Theorem 1 and the
results in (Lei et al., 2021; Farnia & Ozdaglar, 2021), we all take the right side of the generalization
bound inequalities to compare, which is fair since our bounds can be written as F (Ax(S), Ay(S))−
FS(Ax(S), Ay(S)) ≤ ηFS(Ax(S), Ay(S)) + C 1+η

η (Mn log(1/δ) + ε log2 n log 1
δ ), etc.

Remark 3. From Remark 2, one can see that compared with (Zhang et al., 2021a; Farnia &
Ozdaglar, 2021; Lei et al., 2021), we have established sharper high probability generalization
bounds. In the applications of Section 5, we will establish O(1/n) order bounds for two terms
in Theorem 1: stability measures and strong PD empirical risk. Hence, the strong PD population
risk and the strong PD generalization error will be of the fast orderO(1/n) when applying Theorem
1 to these applications. These bounds are clearly of order O(1/n) and sharper than the results in
(Zhang et al., 2021a; Farnia & Ozdaglar, 2021; Lei et al., 2021). For the plain generalization er-
ror, the primal generalization error, and the excess primal population risk, to obtain O(1/n) order
bounds for these applications, we need to assume the extra corresponding terms F (Ax(S), Ay(S)),
R(Ax(S)), and infx∈X R(x) are of order O(1/n), respectively. The clear motivation is that in
practice, learning algorithms achieve a small or even zero empirical risk, as discussed in Remark 2.

Remark 4. This remark discusses η in Part (a), Part (b), and Part (e). (1:) When establishing sharper
generalization error bound (i.e., Pf −Pnf ), the existence of η is common in the standard statistical
learning theory. Specifically, in the uniform localized convergence theory, the generalization error
bound in (Bartlett et al., 2005) is of the form Pf ≤ η

η−1Pnf + O(ηr∗ + η log(1/δ)
n ) with η >

1 (see Theorem 3.3 and Theorem 4.1). In the PAC-Bayesian theory, the generalization bounds
in (Catoni, 2007) (see Theorem 1.2.6), (Lever et al., 2013) (see Theorem 6), (Yang et al., 2019)
(see Proposition 3.1 and Theorem 4.3), etc., also have η. For instance, the Catoni’s bound is of
the form PQ ≤ 1

1−e−η
(
ηPnQ + O(KL(Q‖Prior)+log(1/δ)

n )
)

with η > 0 (Catoni, 2007). In the
algorithmic stability theory, Theorem 1.2 in (Klochkov & Zhivotovskiy, 2021) is of the form Pf ≤
(1 + η)Pnf + 1+η

η O((ε log n + 1
n ) log( 1

δ )) with η > 0. In the recent Cortes’s deviation margin
bounds (Cortes et al., 2021), they also imply a multiplier η. The above bounds can be transformed
into the form of empirical risk multiplied by 1 + η, similar to our results. It is discussed in (Lever
et al., 2013; Yang et al., 2019; Cortes et al., 2021; Bartlett et al., 2005; Klochkov & Zhivotovskiy,
2021) that this type of generalization error bound can obtain a fast rate when the empirical risk
is small. Note that Part (e) also involves generalization error bounds due to the decomposition,
see (31). The above generalization error analysis thus holds for Part (e). (2:) Furthermore, in
(10), we show that F (Ax(S), Ay(S)) − FS(Ax(S), Ay(S)) ≤ O

(
(
MF (Ax(S),Ay(S)) log(1/δ)

n )
1
2 +

ε log( 1
δ )
)
, where M means that |f(x,y; z)| ≤M,∀x,y, z. Using the elementary inequality

√
ab ≤

ηa + 1
η b for any a, b, η > 0 and by some rearrangements, the form of Part (a) appears. This is

the reason why η exists. The corresponding bound in (Lei et al., 2021) is F (Ax(S), Ay(S)) −
FS(Ax(S), Ay(S)) ≤ O

(
ε log n log( 1

δ ) + Mn−
1
2 log1/2( 1

δ )
)
. Focusing on the dominated term,

it is clear that F (Ax(S), Ay(S)) � M since F (Ax(S), Ay(S)) is data-dependent, which implies
that our plain generalization error bound is sharper. Similar analysis holds for Part (b) and Part (e).
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Reference Algorithm Assumption Generalization Measure Learning Bound

Zhang ESP SC-SC, Lip Weak PD Risk O(1/n)
SC-SC, Lip, S (E.) Strong PD Risk O(1/n)

R-ESP C-C, Lip Weak PD Risk O(1/
√
n)

Farnia

SGDA SC-SC, Lip, S (E.) Primal generalization O(1/n)
SGDmax SC-SC, Lip, S (E.) Primal generalization O(1/n)

GDA SC-SC, Lip, S (E.) Primal generalization O(1/n)
GDmax SC-SC, Lip, S (E.) Primal generalization O(1/n)

PPM SC-SC, Lip, S (E.) Primal generalization O(1/n)
PPM C-C, Lip, S (E.) Primal generalization O(1/

√
n)

SGDA Lip, S (E.) Primal generalization O
(
T

βc
βc+1 /n

)
SGDmax NC-SC, Lip, S (E.) Primal generalization O

(
T

(k+1)βc
(k+10Lβ+1 /n

)

Lei SGDA

C-C, Lip Weak PD Risk O(1/
√
n)

C-C, Lip, S Weak PD Risk O(1/
√
n)

SC-SC, Lip Weak PD Risk O(
√

log n/n)
SC-SC, Lip, S Weak PD Risk O(log n/n)
C-SC, Lip, S (E.) Excess Primal Risk O(1/

√
n)

C-SC, Lip, S (H.P.) Excess Primal Risk O(log n/
√
n)

C-C, Lip (H.P.) Plain Generalization O(log n/
√
n)

WC-WC, Lip Weak PD Generalization O
(
T

2cµ
2cµ+3 /n

2cµ+1
2cµ+3

)
V-WC-WC, Lip, S Weak PD Generalization O

(
1/
√
n
)

AGDA NC-SC, PL, Lip, S (E.) Excess Primal Risk O
(
n−

cβ+1
2cβ+1

)

Ours

ESP

SC-SC, Lip, LN Plain Generalization O(log n/n)
SC-SC, Lip, S, LN Primal Generalization O(log n/n)

SC-SC, Lip, S Strong PD Risk O(log n/n)
SC-SC, Lip, S Strong PD Generalization O(log n/n)

SC-SC, Lip, S, LN Excess Primal Risk O(log n/n)

GDA

SC-SC, Lip, LN Plain Generalization O((log n)3/2/n)
SC-SC, Lip, S, LN Primal Generalization O((log n)3/2/n)

SC-SC, Lip, S Strong PD Risk O((log n)3/2/n)
SC-SC, Lip, S Strong PD Generalization O((log n)3/2/n)

SC-SC, Lip, S, LN Excess Primal Risk O((log n)3/2/n)

SGDA

SC-SC, Lip, LN Plain Generalization O(log n/n)
SC-SC, Lip, S, LN Primal Generalization O(log n/n)

SC-SC, Lip, S Strong PD Risk O(log n/n)
SC-SC, Lip, S Strong PD Generalization O(log n/n)

SC-SC, Lip, S, LN Excess Primal Risk O(log n/n)

PPM

SC-SC, Lip, S, LN Plain Generalization O(log n/n)
SC-SC, Lip, S, LN Primal Generalization O(log n/n)

SC-SC, Lip, S Strong PD Risk O(log n/n)
SC-SC, Lip, S Strong PD Generalization O(log n/n)

SC-SC, Lip, S, LN Excess Primal Risk O(log n/n)

EG

SC-SC, Lip, S, LN Plain Generalization O(log n/n)
SC-SC, Lip, S, LN Primal Generalization O(log n/n)

SC-SC, Lip, S Strong PD Risk O(log n/n)
SC-SC, Lip, S Strong PD Generalization O(log n/n)

SC-SC, Lip, S, LN Excess Primal Risk O(log n/n)

OGDA

SC-SC, Lip, S, LN Plain Generalization O(log n/n)
SC-SC, Lip, S, LN Primal Generalization O(log n/n)

SC-SC, Lip, S Strong PD Risk O(log n/n)
SC-SC, Lip, S Strong PD Generalization O(log n/n)

SC-SC, Lip, S, LN Excess Primal Risk O(log n/n)

Table 1: Summary of Results. Here, “Zhang” means reference (Zhang et al., 2021a), “Farnia” means
reference (Farnia & Ozdaglar, 2021), and “Lei” means reference (Lei et al., 2021). The bounds are
established by choosing an optimal iterate number T . “LN” means the low noise condition, see
Section 5.1. Other auxiliary descriptions of Table 1 are shown in Appendix H.
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In summary, the above analyses from two different perspectives support our claim that Part (a), Part
(b), and Part (e) provide sharper high probability generalization bounds.
Remark 5. Different measures quantify different degrees of the generalization error. Thus, deriv-
ing bounds of different generalization measures requires different assumptions (Lei et al., 2021;
Zhang et al., 2021a; Farnia & Ozdaglar, 2021). Strong measures require stronger assumptions
compared with the weak (Lei et al., 2021). For instance, for the term supy∈Y F (Ax(S),y) in
4s(Ax(S), Ay(S)), one has to consider the fact that for different Ax(S), y is different, which
makes the proof more challenging. While in 4w(Ax(S), Ay(S)) and 4w(Ax(S), Ay(S)) −
4wS (Ax(S), Ay(S)), both the supremum over Ax(S) and Ay(S) are outside the expectation op-
erator, thus one does not need to consider the coupling between Ax(S) and y. The upper bounds
shown in Corollary 1 directly derived from Theorem 1 are sub-optimal since 4w(Ax(S), Ay(S))
and4w(Ax(S), Ay(S))−4wS (Ax(S), Ay(S)) are pretty weak generalization measures (Lei et al.,
2021). We list Corollary 1 here to suggest that, when Theorem 1 is established, the fast orderO(1/n)
is easy to be achieved for4w(Ax(S), Ay(S)) and4w(Ax(S), Ay(S))−4wS (Ax(S), Ay(S)). On
the other hand, the two weak generalization measures in (Zhang et al., 2021a) is studied for the
specific ESP solution, while Corollary 1 is applicable for any stable minimax learning algorithms, it
thus may be useful in some applications.

5 APPLICATIONS

We now apply Theorem 1 to the ESP solution and several gradient-based optimization algorithms:
GDA, SGDA, PPM, EG, and OGDA. Considering the length limit, we postpone the introductions
and theorems of these applications to the Appendix. Here, we list the generalization bounds of these
optimization algorithms in Table 1.

5.1 DESCRIPTIONS OF TABLE 1

Table 1 gives almost all existing generalization bounds in minimax learning. In Table 1, “LN” means
the low noise conditions, i.e., the corresponding F (Ax(S), Ay(S)), R(Ax(S)), or infx∈X R(x) of
these applications is of the order O(1/n). For instance, for the ESP solution (x̂∗S , ŷ

∗
S), we assume

F (x̂∗S , ŷ
∗
S), R(x̂∗S), and infx∈X R(x) are of the order O(1/n) for the plain generalization error, the

primal generalization error, and the excess primal population risk, respectively. For other learning
algorithms, please refer to the Remarks in the Appendix. In Table 1, we compare our results with
(Zhang et al., 2021a; Farnia & Ozdaglar, 2021; Lei et al., 2021) in the way described in the last
paragraph of Remark 2. (E.) denotes that the bound is derived in expectation, while (H.P.) denotes
high probability. Since our results are all established with high probability, we thus omit (H.P.) for
brevity. The descriptions of other notations are shown in Appendix H.

In Table 1, (Zhang et al., 2021a) and (Farnia & Ozdaglar, 2021) focus on the expected generalization
measures. We improve the learning bounds of the ESP solution in (Zhang et al., 2021a) to high prob-
ability guarantees. Compared with (Farnia & Ozdaglar, 2021), we have provided high probability
primal generalization error bounds for GDA, SGDA, and PPM. Additionally, we also study other
generalization measures. (Lei et al., 2021) focus on SGDA and mainly provide guarantees for weak
generalization measures, i.e., weak PD risk and weak PD generalization error. In contrast, we have
developed bounds for strong PD risk and strong PD generalization error. Note that the two type of
bounds don’t require the “LN” condition. Moreover, although (Lei et al., 2021) provides two high
probability bounds, however, in slow order. Note that in addition to the classical GDA, SGDA, and
PPM, we also provide sharper high probability bounds for EG and OGDA in that their widespread
use in training GANs (Mokhtari et al., 2019; Daskalakis et al., 2017; Liang & Stokes, 2019).

6 CONCLUSION

In this paper, we provide a systematical analysis of sharper generalization bounds for minimax
problems. We first establish sharper high probability bounds for almost all existing generalization
measures via algorithmic stability and then apply these bounds to several important applications. We
believe that our research can provide in-depth insights into minimax learning problems. For future
work, it would be important to relax the assumptions in this paper. Also, it would be interesting to
investigate how well other theoretical tools perform on the generalization of minimax problems.
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A PROOF OF THEOREM 1

We now provide proofs of Theorem 1. For better readability, we restate Theorem 1 below.
Theorem 2. Let A be a learning algorithm and ε > 0. Suppose |f(x,y; z)| ≤M for some M > 0
and x ∈ X ,y ∈ Y, z ∈ Z . Fixed any η > 0. There exists an absolute positive constant C.

(a.) If the algorithm A is ε-uniformly stable, then for any δ > 0, with probability at least 1− δ,

F (Ax(S), Ay(S)) ≤ (1 + η)FS(Ax(S), Ay(S)) + C
1 + η

η

(M
n

log(1/δ) + ε log2 n log
1

δ

)
.

(b.) Assume that for all x, the function y 7→ F (x,y) is µ-strongly-concave. If the algorithm A is
ε-argument stable and Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ,

R(Ax(S)) ≤ (1 + η)RS(Ax(S)) + C
1 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
Lε log2 n log

1

δ

)
.

(c.) Assume that for all x and y, the function F (x,y) is µ-SC-SC. If the algorithm A is ε-argument
stable and Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ,

4s (Ax(S), Ay(S)) ≤ 4sS(Ax(S), Ay(S)) + ηES 4sS (Ax(S), Ay(S))

+ C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
εL log2 n

)
log
(1

δ

)
.

(d.) Assume that for all x and y, the function F (x,y) is µ-SC-SC. If the algorithm A is ε-argument
stable and Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ,

4s (Ax(S), Ay(S))−4sS(Ax(S), Ay(S)) ≤ ηES 4sS (Ax(S), Ay(S))

+ C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
εL log2 n

)
log
(1

δ

)
.

(e.) Assume that for all x, the function y 7→ F (x,y) is µ-strongly-concave. If the algorithm A is
ε-argument stable and Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ,

R(Ax(S)) ≤ (1 + η) inf
x∈X

R(x)

+ C
2 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
Lε log2 n log

1

δ
+4sS(Ax(S), Ay(S))

)
.

Remark 6. To prove sharper high probability bounds than (Lei et al., 2021), the concentration
inequality for a summation of weakly-dependent random variables proposed in (Bousquet et al.,
2020) (Lemma 2 in Appendix A) plays a key role in our analysis. However, the direct use of this
inequality will inevitably lead to a slow order bound since it contains a sampling error of slow order
O(1/

√
n). We exploit the proof techniques of the recent breakthrough work (Klochkov & Zhiv-

otovskiy, 2021) to make new constructions of gi(S) so that the parameter M in Lemma 2 is 0.
However, the proof techniques of (Klochkov & Zhivotovskiy, 2021) can not be directly extended
to minimax problems. The coupling construction between the minimization variables and the max-
imization variables makes the proofs of minimax problems more difficult than the minimization
problem studied by (Klochkov & Zhivotovskiy, 2021). We must proceed with novel decomposi-
tions for the generalization measures. Note that different decompositions are required for different
generalization measures. A pretty technical decomposition is exploited in the proof of Part (c).
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Moreover, the proof of minimax problems needs refined analyses due to the minimax structure. For
instance, in proving the primal generalization error, we need to quantify the fact that for different
Ax(S), the optimal y is different in R(Ax(S)). And the analysis of excess primal population risk in
Part (e) is different from the excess risk analysis in (Klochkov & Zhivotovskiy, 2021). The reason
is that the supremum operator in infx∈X R(x) makes the Bernstein condition used in (Klochkov
& Zhivotovskiy, 2021) not applicable for excess primal population risk. Additionally, (Klochkov
& Zhivotovskiy, 2021) only study ERM and GD, while we study more optimization algorithms:
SGDA, PPM, EG, and OGDA.
Remark 7. According to Definition 1 and Jensen’s inequality, we know that 4wS (x,y) ≤
E[4sS(x,y)]. Meanwhile, since we will provide the strong PD empirical risk bounds for several
important optimization algorithms in Section 5, it thus implies that we also establish bounds with
fast rates for4wS (x,y).

To begin the proof of Theorem 1, we first introduce some key lemmas on concentration inequalities.
The first lemma translates a moment bound into a high probability bound.
Lemma 1. (Bousquet et al., 2020) Let Z be a random variable with

‖Z‖p ≤
√
pa+ pb

for some a, b > 0 and for any p ≥ 2. Then for any δ ∈ (0, 1) we have, with probability at least
1− δ,

|Z| ≤ e
(
a

√
log
(e
δ

)
+ b log

(e
δ

))
,

where e is the base of the natural logarithm.

The second lemma establishes a concentration inequality for a summation of weakly-dependent
random variables.
Lemma 2. (Bousquet et al., 2020) Let S = {z1, ..., zn} be a set of independent random variables
each taking values in Z and M > 0. Denote [n] as the set {1, ..., n}. Define S\{zi} be set
{z1, ..., zi−1, zi+1, ..., zn}. Let g1, ..., gn be some functions gi : Zn 7→ R such that the following
inequalities hold for any i ∈ [n],

•
∣∣ES\{zi}[gi(S)]

∣∣ ≤M almost surely (a.s.),

• Ezi [gi(S)] = 0 a.s.,

• for any j ∈ [n] with j 6= i, and z′′j ∈ Z∣∣gi(S)− gi(z1, ..., zj−1, z
′′
j , zj+1, ..., zn)

∣∣ ≤ β.
Then, for any p ≥ 2 ∥∥∥ n∑

i=1

gi(S)
∥∥∥
p
≤ 12

√
2pnβdlog2 ne+ 4M

√
pn.

The following definition and lemma give the concentration inequality for non-negative weakly self-
bounded functions.
Definition 4. (Weakly Self-Bounded Function) Assume that a, b > 0. A function f : Zn 7→ [0,+∞)
is said to be (a, b)-weakly self-bounded if there exist functions fi : Zn−1 7→ [0,+∞) that satisfies
for all Zn ∈ Zn,

n∑
i=1

(f(Zn)− fi(Zn))2 ≤ af(Zn) + b.

Lemma 3. (Klochkov & Zhivotovskiy, 2021) Suppose that z1, ..., zn are independent random vari-
ables and the function f : Zn 7→ [0,+∞) is (a, b)-weakly self-bounded and the corresponding
function fi satisfy fi(Zn) ≥ f(Zn) for i = 1, ..., n and any Zn ∈ Zn. Then, for any t > 0,

Pr(Ef(z1, ..., zn) ≥ f(z1, ..., zn) + t) ≤ exp
(
− t2

2aEf(z1, ..., zn) + 2b

)
.
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The following lemma is the classical Bernstein concentration inequality.
Lemma 4. (Boucheron et al., 2013) Let z1, ..., zn be i.i.d. random variables and assume that E[zi] =
µ. Suppose |zi| ≤ c for any i. Then for any δ ∈ (0, 1), with probability at least 1− δ,∣∣∣ 1

n

n∑
i=1

zi − µ
∣∣∣ ≤√2σ2 log(1/δ)

n
+

2c log(1/δ)

3n
,

where σ2 is the variance of zi.

A.1 PROOF OF PART (A)

We first prove the plain generalization error bound.

Proof. Let S = {z1, ..., zn} be a set of independent random variables each taking values
in Z and S′ = {z′1, ..., z′n} be its independent copy. For any i ∈ [n], define S(i) =
{z1, ..., zi−1, z

′
i, zi+1, ..., zn} be a dataset by replacing the i-th sample in S with another i.i.d. sam-

ple z′i. We first have the following decomposition

nF (Ax(S), Ay(S))− nFS(Ax(S), Ay(S))

=

n∑
i=1

EZ [f(Ax(S), Ay(S);Z)− Ez′i [f(Ax(S(i)), Ay(S(i));Z)]]

+

n∑
i=1

Ez′i [EZ [f(Ax(S(i)), Ay(S(i));Z)]− f(Ax(S(i)), Ay(S(i)); zi)]

+

n∑
i=1

Ez′i [f(Ax(S(i)), Ay(S(i)); zi)]−
n∑
i=1

f(Ax(S), Ay(S); zi).

According to the definition of uniform stability (Part 1 of Definition 3), we have

nF (Ax(S), Ay(S))− nFS(Ax(S), Ay(S)) ≤ 2nε+

n∑
i=1

gi(S),

where we have introduced gi(S) = Ez′i [EZ [f(Ax(S(i)), Ay(S(i));Z)] −
f(Ax(S(i)), Ay(S(i)); zi)]. Thus, by a rearrangement, we have∣∣∣nF (Ax(S), Ay(S))− nFS(Ax(S), Ay(S))−

n∑
i=1

gi(S)
∣∣∣ ≤ 2nε. (3)

Then, for any i = 1, ..., n, we define hi(S) = gi(S) − ES\{zi}[gi(S)]. It is easy to verify that
ES\{zi}[hi(S)] = 0 and Ezi [hi(S)] = Ezi [gi(S)]− EziES\{zi}[gi(S)] = 0− 0 = 0. Also, for any
j ∈ [n] with j 6= i, and z′′j ∈ Z , we have the following inequality∣∣hi(S)− hi(z1, ..., zj−1, z

′′
j , zj+1, ..., zn)

∣∣ ≤ ∣∣gi(S)− gi(z1, ..., zj−1, z
′′
j , zj+1, ..., zn)

∣∣
+
∣∣ES\{zi}[gi(S)]− ES\{zi}[gi(z1, ..., zj−1, z

′′
j , zj+1, ..., zn)]

∣∣ .
For the first term |gi(S) − gi(z1, ..., zj−1, z

′′
j , zj+1, ..., zn)|, it can be bounded by 2ε

according to the definition of uniform stability. Similar result holds for the sec-
ond term

∣∣ES\{zi}[gi(S)]− ES\{zi}[gi(z1, ..., zj−1, z
′′
j , zj+1, ..., zn)]

∣∣ according to the defini-
tion of uniform stability. By a combination of the above analysis, we get |hi(S) −
hi(z1, ..., zj−1, z

′′
j , zj+1, ..., zn)| ≤ 4ε.

We thus have verified that the three conditions in Lemma 2 are satisfied for hi(S). There will hold
the following result for any p ≥ 2∥∥∥ n∑

i=1

hi(S)
∥∥∥
p
≤ 48

√
2εpndlog2 ne. (4)
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Furthermore, we can derive that

nF (Ax(S), Ay(S))− nFS(Ax(S), Ay(S))−
n∑
i=1

gi(S) +

n∑
i=1

hi(S)

=nF (Ax(S), Ay(S))− nFS(Ax(S), Ay(S))−
n∑
i=1

ES\{zi}[gi(S)]

=nF (Ax(S), Ay(S))− nFS(Ax(S), Ay(S))− nES′F (Ax(S′), Ay(S′))

+ nES′FS(Ax(S′), Ay(S′))

Due to the i.i.d. property between S and S′, we know that ES′F (Ax(S′), Ay(S′)) =
ESF (Ax(S), Ay(S)).

Thus, combined (3) with (4), we have

‖nF (Ax(S), Ay(S))− nFS(Ax(S), Ay(S))− nESF (Ax(S), Ay(S)) + nES′FS(Ax(S′), Ay(S′))‖p

≤
∥∥∥nF (Ax(S), Ay(S))− nFS(Ax(S), Ay(S))−

n∑
i=1

gi(S)
∥∥∥
p

+
∥∥∥ n∑
i=1

gi(S)− nESF (Ax(S), Ay(S)) + nES′FS(Ax(S′), Ay(S′))
∥∥∥
p

=
∥∥∥nF (Ax(S), Ay(S))− nFS(Ax(S), Ay(S))−

n∑
i=1

gi(S)
∥∥∥
p

+
∥∥∥ n∑
i=1

hi(S)
∥∥∥
p

≤ 2nε+ 48
√

2εpndlog2 ne
≤ 50

√
2εpndlog2 ne.

According to Lemma 1, for any δ ∈ (0, 1), with probability at least 1− δ/3, we have

F (Ax(S), Ay(S))− FS(Ax(S), Ay(S))

≤|ES′FS(Ax(S′), Ay(S′))− ESF (Ax(S), Ay(S))|+ 50
√

2eεdlog2 ne log(3e/δ). (5)

We now begin to bound the term ES′FS(Ax(S′), Ay(S′)) − ESF (Ax(S), Ay(S)). There holds
that ESES′FS(Ax(S′), Ay(S′)) = ESF (Ax(S), Ay(S)). We first consider the variance of
ES′f(Ax(S′), Ay(S′); zi). By the Jensen’s inequality, we have

Ezi [(ES′f(Ax(S′), Ay(S′); zi))
2] ≤ EziES′ [(f(Ax(S′), Ay(S′); zi))

2]

= EZES′ [(f(Ax(S′), Ay(S′);Z))2]

= EZES [(f(Ax(S), Ay(S);Z))2].

Then, by the Bernstein inequality in Lemma 4, we obtain the following inequality with probability
at least 1− δ/3,

|ES′FS(Ax(S′), Ay(S′))− ESF (Ax(S), Ay(S))| (6)

≤
√

2EZES [(f(Ax(S), Ay(S);Z))2] log(3/δ)

n
+

2M log(3/δ)

3n
.

Combined (5) with (6), we finally obtain that with probability at least 1− 2δ/3,

F (Ax(S), Ay(S))− FS(Ax(S), Ay(S))

≤
√

2EZES [(f(Ax(S), Ay(S);Z))2] log(3/δ)

n
+

2M log(3/δ)

3n
+ 50

√
2eεdlog2 ne log(3e/δ).

(7)

In the following, we define q = q(z1, ..., zn) = EZ [(f(Ax(S), Ay(S);Z))2] and qi =
qi(z1, ..., zn) = supzi∈Z q(z1, ..., zn). So there holds qi ≥ q for any i = 1, .., n and any
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{z1, ..., zn} ∈ Zn. Also, there holds that
n∑
i=1

(q − qi)2

=

n∑
i=1

(
EZ [(f(Ax(S), Ay(S);Z))2]− sup

zi∈Z
EZ [(f(Ax(S), Ay(S);Z))2]

)2

≤
n∑
i=1

ε2
(
EZ
[
f(Ax(S), Ay(S);Z) + sup

zi∈Z
f(Ax(S), Ay(S);Z)

])2

≤nε2 (2EZ [(f(Ax(S), Ay(S);Z))] + ε)
2

≤8nε2q + 2nε4, (8)
where the first inequality follows from the Jensen’s inequality and the definition of uniform stability,
and where the second inequality also follows from the definition of uniform stability.

From (8), we know that q is (8nε2, 2nε4) weakly self-bounded. Thus, by Lemma 3, we obtain that
with probability at least 1− δ/3,

ESEZ [(f(Ax(S), Ay(S);Z))2]− EZ [(f(Ax(S), Ay(S);Z))2]

≤
√

(16nε2ESEZ [(f(Ax(S), Ay(S);Z))2] + 4nε4) log(3/δ)

=

√(
ESEZ [(f(Ax(S), Ay(S);Z))

2
] +

1

4
ε2
)

16nε2 log(3/δ)

≤1

2

(
ESEZ [(f(Ax(S), Ay(S);Z))2] +

1

4
ε2
)

+ 8nε2 log(3/δ),

where the last inequality follows from that
√
ab ≤ a+b

2 for all a, b > 0.

Since EZ [(f(Ax(S), Ay(S);Z))2] ≤MF (Ax(S), Ay(S)), we have

ESEZ [(f(Ax(S), Ay(S);Z))2]− 2MF (Ax(S), Ay(S)) ≤ 1

4
ε2 + 16nε2 log(3/δ). (9)

Substituting (9) into (7), we finally obtain that with probability at least 1− δ,
F (Ax(S), Ay(S))− FS(Ax(S), Ay(S))

≤

√
(4MF (Ax(S), Ay(S)) + 1

2ε
2 + 32nε2 log(3/δ)) log(3/δ)

n

+
2M log(3/δ)

3n
+ 50
√

2eεdlog2 ne log(3e/δ). (10)

According to inequalities
√
ab ≤ ηa+ 1

η b and
√
a+ b ≤

√
a+
√
b for any a, b, η > 0, we have the

following inequality with probability at least 1− δ
F (Ax(S), Ay(S))− FS(Ax(S), Ay(S))

≤

√
( 1

2ε
2 + 32nε2 log(3/δ)) log(3/δ)

n
+

η

1 + η
F (Ax(S), Ay(S)) +

1 + η

η

4M log(3/δ)

n

+
2M log(3/δ)

3n
+ 50

√
2eεdlog2 ne log(3e/δ),

which implies that
F (Ax(S), Ay(S))− (1 + η)FS(Ax(S), Ay(S))

≤(1 + η)
(√ ( 1

2ε
2 + 32nε2 log(3/δ)) log(3/δ)

n
+

1 + η

η

4M log(3/δ)

n

+
2M log(3/δ)

3n
+ 50

√
2eεdlog2 ne log(3e/δ)

)
≤C 1 + η

η

(M
n

log(1/δ) + ε log2 n log(1/δ)
)
,
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where C is an absolute constant. The proof is complete.

A.2 PROOF OF PART (B)

We then prove the primal generalization error bound. Before presenting the proof, we first introduce
a lemma that quantifies the sensitivity of the optimal y and x w.r.t the perturbation of x and y
respectively.

Lemma 5. (Zhang et al., 2021a) Let f : X ×Y 7→ R. Assume that f is µ-strongly-convex-strongly-
concave. Suppose that for any x,x′ ∈ X and y,y′ ∈ Y we have

‖∇yf(x,y)−∇yf(x′,y)‖ ≤ β‖x− x′‖ and ‖∇xf(x,y)−∇xf(x,y′)‖ ≤ β‖y − y′‖.

Define x∗(y) = arg minx∈X h(x,y) and y∗(x) = arg maxy∈Y h(x,y) for any y and x respec-
tively. Then, for any x,x′ ∈ X and y,y′ ∈ Y there holds that

‖y∗(x)− y∗(x′)‖ ≤ β

µ
‖x− x′‖ and ‖x∗(y)− x∗(y′)‖ ≤ β

µ
‖y − y′‖.

The proof of Part (b) shares similar proof techniques with Part (a), but requires a novel decompo-
sition and several important changes. For instance, Lemma 5 should be needed to quantify the fact
that for different Ax(S), the optimal y is different in R(Ax(S)).

Proof. Let S = {z1, ..., zn} be a set of independent random variables each taking values
in Z and S′ = {z′1, ..., z′n} be its independent copy. For any i ∈ [n], define S(i) =
{z1, ..., zi−1, z

′
i, zi+1, ..., zn} be a dataset by replacing the i-th sample in S with another i.i.d. sam-

ple z′i. Denote y∗S = arg maxy∈Y F (Ax(S),y) and ŷ∗S = arg maxy∈Y FS(Ax(S),y). We have
the following decomposition

nR(Ax(S))− nRS(Ax(S))

=nF (Ax(S),y∗S)− nFS(Ax(S), ŷ∗S)

=

n∑
i=1

EZ [f(Ax(S),y∗S ;Z)− Ez′i [f(Ax(S(i)),y∗S(i) ;Z)]]

+

n∑
i=1

Ez′i [EZ [f(Ax(S(i)),y∗S(i) ;Z)]− f(Ax(S(i)),y∗S(i) ; zi)]

+

n∑
i=1

Ez′i [f(Ax(S(i)),y∗S(i) ; zi)]−
n∑
i=1

f(Ax(S), ŷ∗S ; zi). (11)

Firstly, we have

f(Ax(S),y∗S ;Z)− f(Ax(S(i)),y∗S(i) ;Z)

=f(Ax(S),y∗S ;Z)− f(Ax(S),y∗S(i) ;Z) + f(Ax(S),y∗S(i) ;Z)− f(Ax(S(i)),y∗S(i) ;Z)

≤L‖y∗S − y∗S(i)‖+ L‖Ax(S)−Ax(S(i))‖

≤
(

1 +
β

µ

)
L‖Ax(S)−Ax(S(i))‖

≤
(

1 +
β

µ

)
Lε, (12)

where the second inequality follows from Lemma 5 with the fact that F is smooth and µ-SC-SC.
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Secondly, we have

n∑
i=1

Ez′i [f(Ax(S(i)),y∗S(i) ; zi)]

=

n∑
i=1

Ez′i [f(Ax(S(i)),y∗S(i) ; zi)− f(Ax(S),y∗S ; zi) + f(Ax(S),y∗S ; zi)]

≤
n∑
i=1

Ez′i
(

1 +
β

µ

)
L‖Ax(S)−Ax(S(i))‖+

n∑
i=1

f(Ax(S),y∗S ; zi)

≤
(

1 +
β

µ

)
Lnε+

n∑
i=1

f(Ax(S),y∗S ; zi),

where the first and the last inequalities follow from (12). Substituting the above two results into
(11), we obtain that

nF (Ax(S),y∗S)− nFS(Ax(S), ŷ∗S)

≤2
(

1 +
β

µ

)
Lnε+

n∑
i=1

f(Ax(S),y∗S ; zi) +

n∑
i=1

gi(S)−
n∑
i=1

f(Ax(S), ŷ∗S ; zi)

≤2
(

1 +
β

µ

)
Lnε+

n∑
i=1

gi(S),

where the last inequality follows from the facts that
∑n
i=1 f(Ax(S),y∗S ; zi) −∑n

i=1 f(Ax(S), ŷ∗S ; zi) ≤ 0 and that we have introduced gi(S) = Ez′i [EZ [f(Ax(S(i)),y∗
S(i) ;Z)]−

f(Ax(S(i)),y∗
S(i) ; zi)].

Now we get

nF (Ax(S),y∗S)− nFS(Ax(S), ŷ∗S)−
n∑
i=1

gi(S) ≤ 2
(

1 +
β

µ

)
Lnε. (13)

For any i = 1, ..., n, we define hi(S) = gi(S)− ES\{zi}[gi(S)].

We also get that ES\{zi}[hi(S)] = 0 and Ezi [hi(S)] = Ezi [gi(S)]−EziES\{zi}[gi(S)] = 0−0 = 0.
Moreover, for any j ∈ [n] with j 6= i, and z′′j ∈ Z , we have the following inequality

|hi(S)− hi(z1, ..., zj−1, z
′′
j , zj+1, ..., zn)| ≤ |gi(S)− gi(z1, ..., zj−1, z

′′
j , zj+1, ..., zn)|

+ |ES\{zi}[gi(S)]− ES\{zi}[gi(z1, ..., zj−1, z
′′
j , zj+1, ..., zn)]|.

Denote S(i)
j as the set collected by replacing the j-th element of S(i) with z′′j . For the first term

|gi(S)− gi(z1, ..., zj−1, z
′′
j , zj+1, ..., zn)|, we have∣∣∣gi(S)− gi(z1, ..., zj−1, z

′′
j , zj+1, ..., zn)

∣∣∣
=
∣∣∣Ez′i[EZ [f(Ax(S(i)),y∗S(i) ;Z)]− f(Ax(S(i)),y∗S(i) ; zi)

]
− Ez′i

[
EZ [f(Ax(S

(i)
j ),y∗

S
(i)
j

;Z)]− f(Ax(S
(i)
j ),y∗

S
(i)
j

; zi)
]∣∣∣

≤
∣∣∣Ez′i[EZ [f(Ax(S(i)),y∗S(i) ;Z)]− f(Ax(S

(i)
j ),y∗

S
(i)
j

;Z)
]∣∣∣

+
∣∣∣Ez′i[f(Ax(S(i)),y∗S(i) ; zi)− f(Ax(S

(i)
j ),y∗

S
(i)
j

; zi)
]∣∣∣. (14)
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Furthermore, for any z, we have the following result which can help to bound the above inequality.∣∣∣f(Ax(S(i)),y∗S(i) ; z)− f(Ax(S
(i)
j ),y∗

S
(i)
j

; z)
∣∣∣

≤
∣∣∣f(Ax(S(i)),y∗S(i) ; z)− f(Ax(S(i)),y∗

S
(i)
j

; z)
∣∣∣+
∣∣∣f(Ax(S(i)),y∗

S
(i)
j

; z)− f(Ax(S
(i)
j ),y∗

S
(i)
j

; z)
∣∣∣

≤L
∥∥∥y∗S(i) − y∗

S
(i)
j

∥∥∥+ L
∥∥∥Ax(S(i))−Ax(S

(i)
j )
∥∥∥

≤
(β
µ

+ 1
)
L
∥∥∥Ax(S(i))−Ax(S

(i)
j )
∥∥∥

≤
(β
µ

+ 1
)
Lε, (15)

where the third inequality follows from Lemma 5. Thus, we can bound the first term by 2
(
β
µ+1

)
Lε.

By a similar analysis, the second term |ES\{zi}[gi(S)] − ES\{zi}[gi(z1, ..., zj−1, z
′′
j , zj+1, ..., zn)]|

can also be bounded by 2
(
β
µ + 1

)
Lε.

We now have verified that the three conditions in Lemma 2 are satisfied for hi(S). We obtain that
for any p ≥ 2, there holds∥∥∥ n∑

i=1

hi(S)
∥∥∥
p
≤ 48

√
2pn

(β
µ

+ 1
)
Lεdlog2 ne. (16)

Thus, combined (13) with (16), we derive that

‖nF (Ax(S),y∗S)− nFS(Ax(S), ŷ∗S)− nES′F (Ax(S′),y∗S′) + nES′FS(Ax(S′),y∗S′)‖p

=
∥∥∥nF (Ax(S),y∗S)−

n∑
i=1

gi(S) +

n∑
i=1

gi(S)−
n∑
i=1

ES\{zi}[gi(S)]
∥∥∥
p

≤
∥∥∥nF (Ax(S),y∗S)− nFS(Ax(S), ŷ∗S)−

n∑
i=1

gi(S)
∥∥∥
p

+
∥∥∥ n∑
i=1

hi(S)
∥∥∥
p

≤2
(

1 +
β

µ

)
Lnε+ 48

√
2pn

(β
µ

+ 1
)
Lεdlog2 ne

≤50
√

2
(

1 +
β

µ

)
εLpndlog2 ne. (17)

Then, according to Lemma 1, for any δ ∈ (0, 1), with probability at least 1− δ/3, we have

F (Ax(S),y∗S)− FS(Ax(S), ŷ∗S)

≤|ES′F (Ax(S′),y∗S′)− ES′FS(Ax(S′),y∗S′)|+ 50
√

2εeL
(

1 +
β

µ

)
dlog2 ne log(3e/δ). (18)

With a similar analysis to the proof of Part (a), we now begin to bound the variance of
ES′f(Ax(S′),y∗S′ ; zi).

Ezi [(ES′f(Ax(S′),y∗S′ ; zi))
2] ≤ EziES′ [(f(Ax(S′),y∗S′ ; zi))

2]

= EZES′ [(f(Ax(S′),y∗S′ ;Z))2]

= EZES [(f(Ax(S),y∗S ;Z))2].

There holds that ESES′FS(Ax(S′),y∗S′) = ES′F (Ax(S′),y∗S′). Then, by the Bernstein inequality
in Lemma 4, we obtain that with probability at least 1− δ/3,

|ES′F (Ax(S′),y∗S′)− ES′FS(Ax(S′),y∗S′)|

≤
√

2EZES [(f(Ax(S),y∗S ;Z))2] log(3/δ)

n
+

2M log(3/δ)

3n
. (19)
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Combined (18) with (19), we finally obtain that with probability at least 1− 2δ/3,

F (Ax(S),y∗S)− FS(Ax(S), ŷ∗S)

≤

√
2EZES [(f(Ax(S),y∗S ;Z))2] log

(
3
δ

)
n

+
2M log

(
3
δ

)
3n

+ 50
√

2εeL
β + µ

µ
dlog2 ne log

(3e

δ

)
.

(20)

In the following, we define q = q(z1, ..., zn) = EZ [(f(Ax(S),y∗S ;Z))2] and qi = qi(z1, ..., zn) =
supzi∈Z q(z1, ..., zn). So there holds qi ≥ q for any i = 1, .., n and any {z1, ..., zn} ∈ Zn. Also,
there holds that

n∑
i=1

(q − qi)2

=

n∑
i=1

(
EZ [(f(Ax(S),y∗S ;Z))2]− sup

zi∈Z
EZ [(f(Ax(S),y∗S ;Z))2]

)2

≤
n∑
i=1

(
EZ
[

sup
zi∈Z

(f(Ax(S),y∗S ;Z))2 − (f(Ax(S),y∗S ;Z))2
])2

≤n
(β
µ

+ 1
)2

L2ε2
(

2EZ [f(Ax(S),y∗S ;Z)] +
(β
µ

+ 1
)
Lε

)2

≤8n
(β
µ

+ 1
)2

L2ε2q + 2n
(β
µ

+ 1
)4

L4ε4,

where the first inequality follows from the Jensen’s inequality and the second inequality follows from

a similar analysis to (12) or (15). Now, we know that q is
(

8n
(
β
µ + 1

)2

L2ε2, 2n
(
β
µ + 1

)4

L4ε4
)

-
weakly self-bounded. Thus, by Lemma 3, we obtain the following inequality with probability at
least 1− δ/3,

ESEZ [(f(Ax(S),y∗S ;Z))2]− EZ [(f(Ax(S),y∗S ;Z))2]

≤

√(
16n

(β
µ

+ 1
)2

L2ε2ESEZ [(f(Ax(S),y∗S ;Z))2] + 4n
(β
µ

+ 1
)4

L4ε4
)

log(3/δ)

=

√(
ESEZ [(f(Ax(S),y∗S ;Z))2] +

1

4

(β
µ

+ 1
)2

L2ε2
)

16n
(β
µ

+ 1
)2

L2ε2 log(3/δ)

≤1

2

(
ESEZ [(f(Ax(S),y∗S ;Z))2] +

1

4

(β
µ

+ 1
)2

L2ε2
)

+ 8n
(β
µ

+ 1
)2

L2ε2 log(3/δ),

where the last inequality follows from
√
ab ≤ a+b

2 for all a, b > 0.

Since EZ [(f(Ax(S),y∗S ;Z))2] ≤MF (Ax(S),y∗S), we have

ESEZ [(f(Ax(S),y∗S ;Z))2]− 2MF (Ax(S),y∗S)

≤1

4

(β
µ

+ 1
)2

L2ε2 + 16n
(β
µ

+ 1
)2

L2ε2 log(3/δ). (21)

Plugging (21) into (20), we finally obtain that with probability at least 1− δ,

F (Ax(S),y∗S)− FS(Ax(S), ŷ∗S)

≤

√√√√(4MF (Ax(S),y∗S) + 1
2

(
β
µ + 1

)2

L2ε2 + 32n
(
β
µ + 1

)2

L2ε2 log(3/δ)
)

log(3/δ)

n

+
2M log(3/δ)

3n
+ 50

√
2εeL

β + µ

µ
dlog2 ne log(3e/δ). (22)
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By the elementary inequalities
√
ab ≤ ηa + 1

η b and
√
a+ b ≤

√
a +
√
b for any a, b, η > 0, we

have the following inequality with probability at least 1− δ

F (Ax(S),y∗S)− (1 + η)FS(Ax(S), ŷ∗S) ≤ C 1 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
Lε log2 n log

1

δ

)
,

where C is an absolute constant. The proof is complete.

A.3 PROOF OF PART (C)

We then prove the strong PD population risk bound. To begin, we introduce the following concen-
tration inequality, which is a moment version of the Bernstein inequality.
Lemma 6. (Boucheron et al., 2013) If z1, ..., zn are i.i.d., zero mean and |zi| ≤ M almost surely.
Then, for any p ≥ 2, ∥∥∥ n∑

i=1

zi

∥∥∥
p
≤ 6

√√√√( n∑
i=1

Ez2
i

)
p+ 4pM.

Proof. Let S = {z1, ..., zn} be a set of independent random variables each taking values
in Z and S′ = {z′1, ..., z′n} be its independent copy. For any i ∈ [n], define S(i) =
{z1, ..., zi−1, z

′
i, zi+1, ..., zn} be a dataset by replacing the i-th sample in S with another i.i.d.

sample z′i. Denote y∗S = arg maxy∈Y F (Ax(S),y), ŷ∗S = arg maxy∈Y FS(Ax(S),y), x∗S =
arg minx∈X F (x, Ay(S)) and x̂∗S = arg minx∈X FS(x, Ay(S)).

The proof of Part (c) requires a pretty technical error decomposition, i.e.,
4s (Ax(S), Ay(S))

=F (Ax(S),y∗S)− inf
x′∈X

F (x′, Ay(S))

=F (Ax(S),y∗S)− FS(Ax(S), ŷ∗S) + ES′FS(Ax(S′),y∗S′)− ESF (Ax(S),y∗S)

+ ESF (x∗S , Ay(S))− ES′FS(x∗S′ , Ay(S′)) + FS(x̂∗S , Ay(S))− inf
x′∈X

F (x′, Ay(S))

− ES′FS(Ax(S′),y∗S′) + ESF (Ax(S),y∗S) + ES′FS(x∗S′ , Ay(S′))− ESF (x∗S , Ay(S))

+ FS(Ax(S), ŷ∗S)− FS(x̂∗S , Ay(S)).

Let’s first consider the term F (Ax(S),y∗S) − FS(Ax(S), ŷ∗S) + ES′FS(Ax(S′),y∗S′) −
ESF (Ax(S),y∗S). It can be then decomposed into

F (Ax(S),y∗S)− FS(Ax(S), ŷ∗S) +
1

n

n∑
i=1

Ez′i
[
EZ [f(Ax(S(i)),y∗S(i) ;Z)]− f(Ax(S(i)),y∗S(i) ; zi)

]
− 1

n

n∑
i=1

Ez′i
[
EZ [f(Ax(S(i)),y∗S(i) ;Z)]− f(Ax(S(i)),y∗S(i) ; zi)

]
+ ES′FS(Ax(S′),y∗S′)

− ESF (Ax(S),y∗S),

which can be bounded by the proof techniques in the proof of Part (b). According to (17), we know
that

‖F (Ax(S),y∗S)− FS(Ax(S), ŷ∗S) + ES′FS(Ax(S′),y∗S′)− ESF (Ax(S),y∗S)‖p

≤50
√

2
(

1 +
β

µ

)
εLpdlog2 ne. (23)

For the second term ESF (x∗S , Ay(S)) − ES′FS(x∗S′ , Ay(S′)) + FS(x̂∗S , Ay(S)) −
infx′∈X F (x′, Ay(S)), we have the following decomposition
nFS(x̂∗S , Ay(S))− n inf

x′∈X
F (x′, Ay(S))

=nFS(x̂∗S , Ay(S))−
n∑
i=1

EZ
[
f(x∗S , Ay(S), Z)− Ez′i [f(x∗S(i) , Ay(S(i));Z)]

]
+

n∑
i=1

Ez′i
[
f(x∗S(i) , Ay(S(i)); zi)− EZ [f(x∗S(i) , Ay(S(i));Z)]

]
−

n∑
i=1

Ez′i
[
f(x∗S(i) , Ay(S(i)); zi)

]
.
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It is clear that
n∑
i=1

Ez′i
[
f(x∗S(i) , Ay(S(i)); zi)

]
=

n∑
i=1

Ez′i
[
f(x∗S(i) , Ay(S(i)); zi)− f(x∗S , Ay(S); zi) + f(x∗S , Ay(S); zi)

]
≥nFS(x̂∗S , Ay(S)) +

n∑
i=1

Ez′i
[
f(x∗S(i) , Ay(S(i)); zi)− f(x∗S , Ay(S); zi)

]
. (24)

Denote gi(S) = Ez′i
[
f(x∗

S(i) , Ay(S(i)); zi)− EZ [f(x∗
S(i) , Ay(S(i));Z)]

]
. By (24), we now get

nFS(x̂∗S , Ay(S))− n inf
x′∈X

F (x′, Ay(S))−
n∑
i=1

gi(S)

≤−
n∑
i=1

EZ
[
f(x∗S , Ay(S);Z)− Ez′i [f(x∗S(i) , Ay(S(i));Z)]

]
−

n∑
i=1

Ez′i
[
f(x∗S(i) , Ay(S(i)); zi)− f(x∗S , Ay(S); zi)

]
.

Furthermore, according to Lemma 5, we have∣∣∣f(x∗S , Ay(S);Z)− f(x∗S(i) , Ay(S(i));Z)
∣∣∣ ≤ (1 +

β

µ

)
L‖Ay(S)−Ay(S(i))‖.

Similarly,∣∣∣f(x∗S(i) , Ay(S(i)); zi)− f(x∗S , Ay(S); zi)
∣∣∣ ≤ (1 +

β

µ

)
L‖Ay(S)−Ay(S(i))‖.

Thus, we obtain ∣∣∣nFS(x̂∗S , Ay(S))− n inf
x′∈X

F (x′, Ay(S))−
n∑
i=1

gi(S)
∣∣∣

≤
n∑
i=1

2
(

1 +
β

µ

)
L‖Ay(S(i))−Ay(S)‖ ≤ 2n

(
1 +

β

µ

)
Lε, (25)

where the last inequality follows from the definition of argument stability (Part 2 of Definition 3).

Furthermore, we define hi(S) = gi(S) − ES\{zi}[gi(S)]. For hi(S), We have ES\{zi}[hi(S)] = 0
and Ezi [hi(S)] = Ezi [gi(S)] − EziES\{zi}[gi(S)] = 0 − 0 = 0. Moreover, for any j ∈ [n] with
j 6= i, and z′′j ∈ Z , we get

|hi(S)− hi(z1, ..., zj−1, z
′′
j , zj+1, ..., zn)| ≤ 2

(
1 +

β

µ

)
Lε,

where this inequality follows from a similar analysis to (14) and (15) of the proof of Part (b). We
thus can obtain that for any p ≥ 2, there holds∥∥∥ n∑

i=1

hi(S)
∥∥∥
p
≤ 48

√
2pn

(β
µ

+ 1
)
Lεdlog2 ne. (26)

Combined (25) with (26), we finally get the bound of the second term:∥∥∥ESF (x∗S , Ay(S))− ES′FS(x∗S′ , Ay(S′)) + FS(x̂∗S , Ay(S))− inf
x′∈X

F (x′, Ay(S))
∥∥∥
p

≤
∥∥∥FS(x̂∗S , Ay(S))− inf

x′∈X
F (x′, Ay(S))− 1

n

n∑
i=1

gi(S)
∥∥∥
p

+
∥∥∥ 1

n

n∑
i=1

hi(S)
∥∥∥
p

≤50
√

2
(

1 +
β

µ

)
εLpdlog2 ne. (27)
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We then consider the third term−ES′FS(Ax(S′),y∗S′)+ESF (Ax(S),y∗S)+ES′FS(x∗S′ , Ay(S′))−
ESF (x∗S , Ay(S)). It is clear that ES [ES′FS(x∗S′ , Ay(S′))] = ESF (x∗S , Ay(S)) and
ES [ES′FS(Ax(S′),y∗S′)] = ESF (Ax(S),y∗S).

Moreover, we having the following important property due to the strong convexity and strong con-
cavity of F ,

E
[
(ES′f(x∗S′ , Ay(S′); zi)− ES′f(Ax(S′),y∗S′ ; zi))

2
]

≤EES′
[
L2(‖x∗S′ −Ax(S′)‖+ ‖Ay(S′)− y∗S′‖)2

]
≤2L2EES′ [‖x∗S′ −Ax(S′)‖2 + ‖Ay(S′)− y∗S′‖2]

≤4L2µ−1EES′ [F (Ax(S′),y∗S′)− F (x∗S′ , Ax(S′))]

=4L2µ−1ES′ [F (Ax(S′),y∗S′)− F (x∗S′ , Ax(S′))], (28)
where the first inequality follows from Jensen’s inequality and the Lipschitz continuity of f (As-
sumption 1), the second inequality follows from that (a+ b)2 ≤ 2a2 + 2b2 and the third inequality
follows from the property of strong convexity and strong concavity of F and the optimality condi-
tion, derived as follows,

F (Ax(S′),y∗S′)− F (x∗S′ , Ax(S′))

=F (Ax(S′),y∗S′)− F (x∗S′ ,y
∗
S′) + F (x∗S′ ,y

∗
S′)− F (x∗S′ , Ax(S′))

≥µ
2

[
‖Ax(S′)− x∗S′‖2 + ‖y∗S′ −Ax(S′)‖

]
.

It is clear that E[(Z − EZ)2] ≤ E[Z2]. Therefore, by the variance bound in (28) and apply-
ing the moment Bernstein inequality in Lemma 6 to the sum of independent random variables
−ES′f(Ax(S′),y∗S′ ; zi)+ES′f(x∗S′ , Ay(S′); zi)+ESF (Ax(S),y∗S)−ESF (x∗S , Ay(S)), we have
the following inequality for all p ≥ 2,∥∥∥ 1

n

n∑
i=1

−ES′f(Ax(S′),y∗S′ ; zi) + ES′f(x∗S′ , Ay(S′); zi) + ESF (Ax(S),y∗S)− ESF (x∗S , Ay(S))
∥∥∥
p

≤ 6

√
ES′ [F (Ax(S′),y∗S′)− F (x∗S′ , Ax(S′))]

4L2p

nµ
+

16pM

n
.

From Definition 1, we know that the last term FS(Ax(S), ŷ∗S) − FS(x̂∗S , Ay(S)) is actually the
strong PD empirical risk4sS(Ax(S), Ay(S)).

Based on the above analysis, we have derived that for each p ≥ 2,∥∥∥F (Ax(S),y∗S)− inf
x′∈X

F (x′, Ay(S))−4sS(Ax(S), Ay(S))
∥∥∥
p

≤12

√
ES′ [F (Ax(S′),y∗S′)− F (x∗S′ , Ax(S′))]

pL2

nµ
+

16pM

n
+ 100

√
2
(

1 +
β

µ

)
εLpdlog2 ne

≤ η

1 + η
ES′ [F (Ax(S′),y∗S′)− F (x∗S′ , Ax(S′))] +

1 + η

η

12pL2

nµ
+

16pM

n

+ 100
√

2
(

1 +
β

µ

)
εLpdlog2 ne, (29)

where the last inequality holds since for any a, b, η > 0,
√
ab ≤ ηa+ b

η .

Taking p = 2 and using the Cauchy-Schwarz inequality, we obtain that

ES
[
F (Ax(S),y∗S)− inf

x′∈X
F (x′, Ay(S))−4sS(Ax(S), Ay(S))

]
≤‖F (Ax(S),y∗S)− inf

x′∈X
F (x′, Ay(S))−4sS(Ax(S), Ay(S))‖2

≤ η

1 + η
ES′ [F (Ax(S′),y∗S′)− F (x∗S′ , Ax(S′))] +

1 + η

η

24L2

nµ
+

32M

n

+ 200
√

2
(

1 +
β

µ

)
εLdlog2 ne.
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Since ES′ [F (Ax(S′),y∗S′) − F (x∗S′ , Ax(S′))] = ES [F (Ax(S),y∗S) − F (x∗S , Ax(S))], we finally
get

ES [F (Ax(S),y∗S)− inf
x′∈X

F (x′, Ay(S))]

≤(1 + η)
(
ES 4sS (Ax(S), Ay(S)) +

24L2(1 + η)

nµη
+

32M

n
+ 200

√
2
(

1 +
β

µ

)
εLdlog2 ne

)
.

Plugging this inequality into (29), we thus have that for each p ≥ 2,∥∥∥F (Ax(S),y∗S)− inf
x′∈X

F (x′, Ay(S))−4sS(Ax(S), Ay(S))
∥∥∥
p

≤η
(
ES 4sS (Ax(S), Ay(S)) +

24L2(1 + η)

nµη
+

32M

n
+ 200

√
2
(

1 +
β

µ

)
εLdlog2 ne

)
+

12pL2(1 + η)

nµη
+

16pM

n
+ 100

√
2
(

1 +
β

µ

)
εLpdlog2 ne.

According to Lemma 1, for any δ > 0, with probability at least 1− δ, there holds that

F (Ax(S),y∗S)− inf
x′∈X

F (x′, Ay(S)) ≤ 4sS(Ax(S), Ay(S)) + ηES 4sS (Ax(S), Ay(S))

+ C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
εL log2 n

)
log
(1

δ

)
, (30)

where C > 0 is an absolute constant. The proof is complete.

A.4 PROOF OF PART (D)

We now prove the strong PD generalization error bound.

Proof. From (30) in the proof of Part (c), we know that for any δ > 0, with probability at least 1−δ,
there holds that

4s (Ax(S), Ay(S))−4sS(Ax(S), Ay(S))

=F (Ax(S),y∗S)− inf
x′∈X

F (x′, Ay(S))−4sS(Ax(S), Ay(S))

≤ηES 4sS (Ax(S), Ay(S)) + C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
εL log2 n

)
log
(1

δ

)
.

Therefore, the proof is complete.

A.5 PROOF OF PART (E)

We finally prove the excess primal population risk bound.

Proof. Denote x∗ = arg minx∈X R(x) and y∗S = arg maxy∈Y F (Ax(S),y). Firstly, we have the
following decomposition

R(Ax(S))− inf
x′∈X

R(x′) = R(Ax(S))−RS(Ax(S)) +RS(Ax(S))− FS(x∗, Ay(S))

+ FS(x∗, Ay(S))− F (x∗, Ay(S)) + F (x∗, Ay(S))−R(x∗). (31)

Consider the first term R(Ax(S)) − RS(Ax(S)). From (22) of the Part (b), we know that with
probability at least 1− δ,

R(Ax(S))−RS(Ax(S)) ≤ 2M log(3/δ)

3n
+ 50
√

2εeL
β + µ

µ
dlog2 ne log(3e/δ)

+

√√√√(4MF (Ax(S),y∗S) + 1
2

(
β
µ + 1

)2

L2ε2 + 32n
(
β
µ + 1

)2

L2ε2 log(3/δ)
)

log(3/δ)

n
.
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For the second term RS(Ax(S)) − FS(x∗, Ay(S)), we have RS(Ax(S)) − FS(x∗, Ay(S)) ≤
RS(Ax(S))− infx′∈Y FS(x′, Ay(S)) = 4sS(Ax(S), Ay(S)).

Note that under Assumption 1, the argument stability implies the uniform stability. Therefore, for
the third term FS(x∗, Ay(S))−F (x∗, Ay(S)), from (10) of Part (a), we know that with probability
at least 1− δ

FS(x∗, Ay(S))− F (x∗, Ay(S)) ≤ 2M log(3/δ)

3n
+ 50
√

2eεdlog2 ne log(3e/δ)

+

√
(4MF (x∗, Ay(S)) + 1

2ε
2 + 32nε2 log(3/δ)) log(3/δ)

n
.

It is clear that F (x∗, Ay(S))−R(x∗) ≤ 0.

Since F (x∗, Ay(S)) ≤ supy′∈Y F (x∗,y′) = R(x∗) = infx′∈X R(x), based on the above results,
we have the following inequality with probability at least 1− 2δ

R(Ax(S))− inf
x′∈X

R(x)

≤

√√√√(4MF (Ax(S),y∗S) + 1
2

(
β
µ + 1

)2

L2ε2 + 32n
(
β
µ + 1

)2

L2ε2 log(3/δ)
)

log(3/δ)

n

+
4M log(3/δ)

3n
+

√
(4M infx′∈X R(x) + 1

2ε
2 + 32nε2 log(3/δ)) log(3/δ)

n

+ 50
√

2εeL
β + µ

µ
dlog2 ne log(3e/δ) +4sS(Ax(S), Ay(S)) + 50

√
2eεdlog2 ne log(3e/δ)

≤

√√√√( 1
2

(
β
µ + 1

)2

L2ε2 + 32n
(
β
µ + 1

)2

L2ε2 log(3/δ)
)

log(3/δ)

n
+

η

1 + η
F (Ax(S),y∗S)

+
1 + η

η

4M log(3/δ)

n
+

4M log(3/δ)

3n
+

√
( 1

2ε
2 + 32nε2 log(3/δ)) log(3/δ)

n

+
η

1 + η
inf

x′∈X
R(x) +

1 + η

η

4M log(3/δ)

n

+ 50
√

2εeL
β + µ

µ
dlog2 ne log(3e/δ) +4sS(Ax(S), Ay(S)) + 50

√
2eεdlog2 ne log(3e/δ),

where the last inequality follows from the elementary inequalities
√
ab ≤ ηa + 1

η b and
√
a+ b ≤

√
a +
√
b for any a, b > 0. Therefore, by a rearrangement, we have the following inequality with

probability at least 1− δ

R(Ax(S))− (1 + 2η) inf
x′∈X

R(x)

≤C 1 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
Lε log2 n log

1

δ
+4sS(Ax(S), Ay(S))

)
,

that is

R(Ax(S))− (1 + η) inf
x′∈X

R(x)

≤C 2 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
Lε log2 n log

1

δ
+4sS(Ax(S), Ay(S))

)
,

where C is an absolute constant. The proof is complete.

Till here, the proof of Theorem 1 is complete.
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B EMPIRICAL SADDLE POINT

Empirical saddle point (ESP) problem refers to problem (2), which is also known as sample average
approximation (SAA) (Zhang et al., 2021a). We denote (x̂∗S , ŷ

∗
S) as the ESP solution to (2), which

is analogy to the ERM in stochastic optimization (Shalev-Shwartz et al., 2010). We first provide the
main theorem of the ESP solution, as shown below.

Theorem 3. Assume for all z, the function (x,y) 7→ f(x,y; z) is µ-SC-SC. Suppose |f(x,y; z)| ≤
M for some M > 0 and x ∈ X ,y ∈ Y, z ∈ Z . Denote Ax(S) = x̂∗S and Ay(S) = ŷ∗S for
(x̂∗S , ŷ

∗
S). Fixed any η > 0. There exists an absolute positive constant C.

(a) If Assumption 1 holds, then for any δ > 0, with probability at least 1− δ, we have

F (x̂∗S , ŷ
∗
S) ≤ (1 + η)FS(x̂∗S , ŷ

∗
S) + C

1 + η

η

(M
n

log(1/δ) +
4L

nµ
log2 n log(1/δ)

)
.

(b) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

R(x̂∗S) ≤ (1 + η)RS(x̂∗S) + C
1 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)4L2

nµ
log2 n log

1

δ

)
.

(c) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

4s(x̂∗S , ŷ∗S) ≤ C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)4L2

nµ
log2 n

)
log
(1

δ

)
.

(d) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

4s (x̂∗S , ŷ
∗
S)−4sS(x̂∗S , ŷ

∗
S)

≤C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)4L2

nµ
log2 n

)
log
(1

δ

)
.

(e) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

R(x̂∗S) ≤ (1 + η) inf
x∈X

R(x) + C
2 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)4L2

nµ
log2 n log

1

δ

)
.

Proof. To prove Theorem 3, we should derive the strong PD empirical risk bound and the stability
bound of (x̂∗S , ŷ

∗
S). It is easy to verify that 4sS(x̂∗S , ŷ

∗
S) = 0 (Zhang et al., 2021a). We then

investigate the stability bound of (x̂∗S , ŷ
∗
S).

Let S = {z1, ..., zn} be a set of independent random variables each taking values in Z . For any
i ∈ [n], define S(i) = {z1, ..., zi−1, z

′
i, zi+1, ..., zn} be a dataset by replacing the i-th sample in

S with another i.i.d. sample z′i. We define FS(i) be the empirical risk on dataset S(i) and define
(x̂∗
S(i) , ŷ

∗
S(i)) be the ESP solution on dataset S(i).
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Then we have

FS(x̂∗S(i) , ŷ
∗
S)− FS(x̂∗S , ŷ

∗
S(i))

=
1

n

n∑
j=1

(
f(x̂∗S(i) , ŷ

∗
S ; zj)− f(x̂∗S , ŷ

∗
S(i) ; zj)

)
=

1

n

( n∑
j=1,j 6=i

(f(x̂∗S(i) , ŷ
∗
S ; zj)− f(x̂∗S , ŷ

∗
S(i) ; zj)) + f(x̂∗S(i) , ŷ

∗
S ; z′i)− f(x̂∗S , ŷ

∗
S(i) ; z

′
i)
)

+
1

n

(
f(x̂∗S(i) , ŷ

∗
S ; zi)− f(x̂∗S , ŷ

∗
S(i) ; zi)

)
− 1

n

(
f(x̂∗S(i) , ŷ

∗
S ; z′i)− f(x̂∗S , ŷ

∗
S(i) ; z

′
i)
)

=FS(i)(x̂∗S(i) , ŷ
∗
S)− FS(i)(x̂∗S , ŷ

∗
S(i))

+
1

n

(
f(x̂∗S(i) , ŷ

∗
S ; zi)− f(x̂∗S , ŷ

∗
S ; zi) + f(x̂∗S , ŷ

∗
S ; zi)− f(x̂∗S , ŷ

∗
S(i) ; zi)

)
− 1

n

(
f(x̂∗S(i) , ŷ

∗
S ; z′i)− f(x̂∗S , ŷ

∗
S ; z′i) + f(x̂∗S , ŷ

∗
S ; z′i)− f(x̂∗S , ŷ

∗
S(i) ; z

′
i)
)

≤FS(i)(x̂∗S(i) , ŷ
∗
S)− FS(i)(x̂∗S , ŷ

∗
S(i)) +

2L

n
(‖x̂∗S(i) − x̂∗S‖+ ‖ŷ∗S − ŷ∗S(i)‖)

=FS(i)(x̂∗S(i) , ŷ
∗
S)− FS(i)(x̂∗S(i) , ŷ

∗
S(i)) + FS(i)(x̂∗S(i) , ŷ

∗
S(i))− FS(i)(x̂∗S , ŷ

∗
S(i))

+
2L

n
(‖x̂∗S(i) − x̂∗S‖+ ‖ŷ∗S − ŷ∗S(i)‖)

≤− µ

2
‖x̂∗S(i) − x̂∗S‖2 −

µ

2
‖ŷ∗S − ŷ∗S(i)‖2 +

2L

n
(‖x̂∗S(i) − x̂∗S‖+ ‖ŷ∗S − ŷ∗S(i)‖),

where the first inequality follows from the Lipschitz continuous assumption, and where the second
inequality follows from the facts that the µ-SC-SC property of FS(i) and (x̂∗

S(i) , ŷ
∗
S(i)) is the ESP

solution of FS(i) .

Similarly, according to the µ-SC-SC property of FS , we have

FS(x̂∗S(i) , ŷ
∗
S)− FS(x̂∗S , ŷ

∗
S(i))

=FS(x̂∗S(i) , ŷ
∗
S)− FS(x̂∗S , ŷ

∗
S) + FS(x̂∗S , ŷ

∗
S)− FS(x̂∗S , ŷ

∗
S(i))

≥µ
2
‖x̂∗S(i) − x̂∗S‖2 +

µ

2
‖ŷ∗S − ŷ∗S(i)‖2 (32)

Based on the above results, we have

µ‖x̂∗S(i) − x̂∗S‖2 + µ‖ŷ∗S − ŷ∗S(i)‖2

≤2L

n
(‖x̂∗S(i) − x̂∗S‖+ ‖ŷ∗S − ŷ∗S(i)‖)

≤2L

n

√
2
√
‖x̂∗

S(i) − x̂∗S‖2 + ‖ŷ∗S − ŷ∗
S(i)‖2,

where the last inequality uses the Caucy-Schwarz inequality. Therefore, we have

‖x̂∗S(i) − x̂∗S‖+ ‖ŷ∗S − ŷ∗S(i)‖

≤
√

2(‖x̂∗
S(i) − x̂∗S‖2 + ‖ŷ∗S − ŷ∗

S(i)‖2)

≤4L

nµ
. (33)

Now, plugging this stability bound into Theorem 1, we obtain generalization bounds of the ESP
solution. The proof of Theorem 3 is complete.

Remark 8. When conditions in Theorem 3 hold, we obtain that (a) If Assumption 1 holds and
FS(x̂∗S , ŷ

∗
S) = O

(
1
n

)
, then for any δ > 0, with probability at least 1 − δ, the plain generalization

error of (x̂∗S , ŷ
∗
S) is of the orderO

(
log2 n
n log(1/δ)

)
. (b) If Assumptions 1 and 2 hold andRS(x̂∗S) =

O
(

1
n

)
, then for any δ > 0, with probability at least 1 − δ, the primal generalization error of
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(x̂∗S , ŷ
∗
S) is of the order O

(
log2 n
n log(1/δ)

)
. (c) If Assumptions 1 and 2 hold, then for any δ > 0,

with probability at least 1 − δ, the strong PD population risk and the strong PD generalization
error of (x̂∗S , ŷ

∗
S) are all of the order O

(
log2 n
n log(1/δ)

)
. (d) If Assumptions 1 and 2 hold and

infx∈X R(x) = O
(

1
n

)
, then for any δ > 0, with probability at least 1 − δ, the excess primal

population risk of (x̂∗S , ŷ
∗
S) is of the order O

(
log2 n
n log(1/δ)

)
.

Remark 9. (Zhang et al., 2021a) also studies the generalization bound of the ESP solution. They
provide O(1/n) order bounds for weak PD population risk and expected strong PD population
risk. Their proofs also show that the expected strong PD population risk is more difficult to an-
alyze than the former. They have to consider the fact that different x̂∗S corresponds to different
y, as discussed in Remark 5. Moreover, the expectation operator in expected strong PD popula-
tion risk also relaxes the difficulty of proof. Specifically, define S(i) be a dataset by replacing the
i-th sample in S with another i.i.d. sample z′i and y∗(x) = arg maxy∈Y F (x,y), there holds
the following important property E

[
supy∈Y F (x̂∗S ,y)

]
= 1

n

∑n
i=1 E

[
F (x̂∗

S(i) ,y
∗(x̂∗

S(i)))
]

=
1
n

∑n
i=1 E

[
f(x̂∗

S(i) ,y
∗(x̂∗

S(i)); zi)
]

because (x̂∗S ,y
∗(x̂∗S)) and (x̂∗

S(i) ,y
∗(x̂∗

S(i))) are identically dis-
tributed and the independence between zi and S(i). On the contrary, when there is no expectation
operator, we do not have this property and the proof is much more challenging.

C GRADIENT DESCENT ASCENT

We need some notations to state results on GDA. Specifically, assume the initial point satisfies
x1 = 0 and y1 = 0. Let {ηt} be a sequence of positive step sizes. At the t-th iteration, GDA
updates

xt+1 = xt − ηt∇xFS(xt,yt),

yt+1 = yt + ηt∇yFS(xt,yt). (34)

We denote the average of iterates by

x̄T =

∑T
t=1 xt
T

and ȳT =

∑T
t=1 yt
T

. (35)

Here, we first provide an important lemma to connect the argument stability with the strong PD
empirical risk, which will also be used in the remaining applications.

Lemma 7. For any i ∈ [n], define S(i) = {z1, ..., zi−1, z
′
i, zi+1, ..., zn}. Let (xt,yt) be the output

produced by FS on dataset S in running a minimax learning algorithm. Let (xit,y
i
t) be the corre-

sponding output produced by FS(i) on dataset S(i), where FS(i) is empirical risk on dataset S(i).
Suppose Assumption 1 holds. Assume for all z, the function (x,y) 7→ f(x,y; z) is µ-SC-SC. For
any S(i) and S, we have

‖xit − xt‖+ ‖yit − yt‖ ≤
4L

nµ
+ 4

√
1

µ

√
4sS(xt,yt).

Proof. Define (x̂∗
S(i) , ŷ

∗
S(i)) be the ESP solution on dataset S(i) and (x̂∗S , ŷ

∗
S) be the ESP solution

on dataset S. To prove the stability bound, we consider

‖xit − xt‖+ ‖yit − yt‖
=‖xit − x̂∗S(i) + x̂∗S(i) − x̂∗S + x̂∗S − xt‖+ ‖yit − ŷ∗S(i) + ŷ∗S(i) − ŷ∗S + ŷ∗S − yt‖
≤‖xit − x̂∗S(i)‖+ ‖x̂∗S(i) − x̂∗S‖+ ‖x̂∗S − xt‖+ ‖yit − ŷ∗S(i)‖+ ‖ŷ∗S(i) − ŷ∗S‖+ ‖ŷ∗S − yt‖

≤4L

nµ
+ ‖xit − x̂∗S(i)‖+ ‖x̂∗S − xt‖+ ‖yit − ŷ∗S(i)‖+ ‖ŷ∗S − yt‖

≤4L

nµ
+
√

2
√
‖xit − x̂∗

S(i)‖2 + ‖yit − ŷ∗
S(i)‖2 +

√
2
√
‖ŷ∗S − yt‖2 + ‖x̂∗S − xt‖2

≤4L

nµ
+

√
4

µ

√
FS(i)(xit, ŷ

∗
S(i))− FS(i)(x̂∗

S(i) ,y
i
t) +

√
4

µ

√
FS(xt, ŷ∗S)− FS(x̂∗S ,yt),
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where the second inequality uses the result in (33), the third inequality uses the Caucy-Schwarz
inequality, and the last inequality uses the strong convexity and strong concavity of FS(i) and
FS and the optimality condition (please refer to (32)). As will see in the rest paper, we bound
FS(i)(xit, ŷ

∗
S(i)) − FS(i)(x̂∗S(i) , ŷ

∗
S(i)) and FS(xt, ŷ

∗
S) − FS(x̂∗S ,yt) with the same upper bound

since they are all strong PD empirical risk. Thus, for brevity, we derive the following inequality

‖xit − xt‖+ ‖yit − yt‖

≤4L

nµ
+ 4

√
1

µ

√
FS(xt, ŷ∗S)− FS(x̂∗S ,yt)

≤4L

nµ
+ 4

√
1

µ

√
4sS(xt,yt).

The proof is complete.

Remark 10. Lemma 7 provides the connection between the stability bound and the strong PD em-
pirical risk. The subscript t here represents not only the output of an iterative optimization algorithm,
but any output of the empirical risk of any minimax learning algorithm.
Remark 11. In studying the stability bound of gradient-based optimization algorithms, a popular
approach is to use the property of smoothness to establish the nonexpansiveness of gradient mapping,
proposed in the seminal work (Hardt et al., 2016). (Farnia & Ozdaglar, 2021; Lei et al., 2021) extend
this approach to the minimax problems and use it to analyze the stability bound of SGDA, GDA,
PPM, etc. However, their stability bounds are often derived in expectation. In (Lei et al., 2021),
the authors also use the Chernoff bounds of Bernoulli variables to establish high probability stability
bounds when they are to derive high probability generalization bounds. Unfortunately, these stability
bounds are often of slow orderO(1/

√
n). To derive sharper stability bounds, we established Lemma

7.

The following lemma shows the strong PD empirical risk of GDA.
Lemma 8. Suppose Assumption 1 holds and FS(·, ·) be µ-SC-SC with µ > 0. Let {xt,yt} be the
sequence produced by (34) with ηt = 1

µ(t+t0) . Assume t0 ≥ 0. Suppose supx∈X ‖x‖ ≤ RX and
supy∈Y ‖y‖ ≤ RY . Then for (x̄T , ȳT ) in (35) we have

sup
y∈Y

FS(x̄T ,y)− inf
x∈X

FS(x, ȳT ) ≤ µt0(R2
X +R2

Y )

T
+
L2 log(eT )

µT
.

If t0 = 0, then

sup
y∈Y

FS(x̄T ,y)− inf
x∈X

FS(x, ȳT ) ≤ L2 log(eT )

µT
.

Proof. Firstly, we have

‖xt+1 − x‖2 = ‖xt − ηt∇xFS(xt,yt)− x‖2

= ‖xt − x‖2 + η2
t ‖∇xFS(xt,yt)‖2 + 2ηt〈x− xt,∇xFS(xt,yt)〉

≤ ‖xt − x‖2 + η2
tL

2 + 2ηt〈x− xt,∇xFS(xt,yt)〉,

where the first inequality holds because of Assumption 1. By the strong convexity of FS(·,yt), we
have

2ηt(FS(xt,yt)− FS(x,yt)) ≤ (1− ηtµ)‖xt − x‖2 − ‖xt+1 − x‖2 + η2
tL

2.

Since ηt = 1
µ(t+t0) , we further get

2

µ(t+ t0)
(FS(xt,yt)− FS(x,yt)) ≤

(
1− 1

(t+ t0)

)
‖xt − x‖2 − ‖xt+1 − x‖2 +

( 1

µ(t+ t0)

)2

L2.

Multiplying both sides by t+ t0, we have

2

µ
(FS(xt,yt)− FS(x,yt)) ≤ (t+ t0 − 1)‖xt − x‖2 − (t+ t0)‖xt+1 − x‖2 +

L2

µ2(t+ t0)
.
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Since x1 = 0 and
∑T
t=1 t

−1 ≤ log(eT ), by taking a summation of the above inequality from t = 1
to T , we obtain

T∑
t=1

(FS(xt,yt)− FS(x,yt)) ≤
µ

2
t0R

2
X +

L2 log(eT )

2µ
.

From the concavity of FS(x, ·) we get

T∑
t=1

(FS(xt,yt)− FS(x, ȳT )) ≤ µ

2
t0R

2
X +

L2 log(eT )

2µ
.

Since this inequality holds for any x, we get

T∑
t=1

(FS(xt,yt)− inf
x∈X

FS(x, ȳT )) ≤ µ

2
t0R

2
X +

L2 log(eT )

2µ
.

This implies that

1

T

T∑
t=1

(FS(xt,yt)− inf
x∈X

FS(x, ȳT )) ≤ µt0R
2
X

2T
+
L2 log(eT )

2µT
.

In a similar way, we have the following inequality

sup
y∈Y

FS(x̄T ,y)− 1

T

T∑
t=1

(FS(xt,yt)) ≤
µt0R

2
Y

2T
+
L2 log(eT )

2µT
.

Combined the above two inequalities together we get

sup
y∈Y

FS(x̄T ,y)− inf
x∈X

FS(x, ȳT ) ≤ µt0(R2
X +R2

Y )

T
+
L2 log(eT )

µT
.

For optimization algorithm GDA, substituting the strong PD empirical risk bound of (x̄T , ȳT ) into
Lemma 7, we get the following stability bound,

‖x̄iT − x̄T ‖+ ‖ȳiT − ȳT ‖ ≤
4L

nµ
+ 4

√
1

µ

√
4sS(x̄T , ȳT )

≤ 4L

nµ
+ 4

√
1

µ

√
µt0(R2

X +R2
Y )

T
+
L2 log(eT )

µT
. (36)

Furthermore, for any x ∈ X , y ∈ Y and z ∈ Z ,

f(x,y; z)− f(0, 0; z) ≤ L‖x− 0‖+ L‖y − 0‖ ≤ L(RY +RY ),

which implies that

f(x,y; z) ≤ sup
z∈Z

f(0, 0; z) + L(RY +RY ). (37)

Till here, plugging (37), the stability bound in (36) and the strong PD empirical risk bound in Lemma
8 into Theorem 1, we obtain generalization bounds of GDA.

We now write the main theorem of GDA.

Theorem 4. Assume for all z, the function (x,y) 7→ f(x,y; z) is µ-SC-SC. Suppose supx∈X ‖x‖ ≤
RX and supy∈Y ‖y‖ ≤ RY . Let {xt,yt} be produced by (34) with ηt = 1

µ(t+t0) . Assume t0 ≥ 0.
DenoteAx(S) = x̄T andAy(S) = ȳT for (x̄T , ȳT ) in (35). LetM = supz∈Z f(0, 0; z)+L(RX+
RY ). Fixed any η > 0. There exists an absolute positive constant C.
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(a) If Assumption 1 holds, then for any δ > 0, with probability at least 1− δ, we have

F (x̄T , ȳT ) ≤ (1 + η)FS(x̄T , ȳT )

+ C
1 + η

η

(M
n

log(1/δ) +
(4L

nµ
+ 4

√
1

µ

√
µt0(R2

X +R2
Y )

T
+
L2 log(eT )

µT

)
log2 n log(1/δ)

)
.

(b) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

R(x̄T ) ≤ (1 + η)RS(x̄T ) + C
1 + η

η

×
(M log 1

δ

n
+
β + µ

µ
L
(4L

nµ
+ 4

√
1

µ

√
µt0(R2

X +R2
Y )

T
+
L2 log(eT )

µT

)
log2 n log

1

δ

)
.

(c) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

4s (x̄T , ȳT ) ≤ (1 + η)
(µt0(R2

X +R2
Y )

T
+
L2 log(eT )

µT

)
+ C(1 + η)

×
(L2(1 + η)

nµη
+
M

n
+
β + µ

µ

(4L

nµ
+4

√
1

µ

√
µt0(R2

X +R2
Y )

T
+
L2 log(eT )

µT

)
L log2 n

)
log
(1

δ

)
.

(d) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

4s (x̄T , ȳT )−4sS(x̄T , ȳT ) ≤ η
(µt0(R2

X +R2
Y )

T
+
L2 log(eT )

µT

)
+ C(1 + η)

×
(L2(1 + η)

nµη
+
M

n
+
β + µ

µ

(4L

nµ
+4

√
1

µ

√
µt0(R2

X +R2
Y )

T
+
L2 log(eT )

µT

)
L log2 n

)
log
(1

δ

)
.

(e) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

R(x̄T ) ≤ (1 + η) inf
x∈X

R(x) + C
2 + η

η

(µt0(R2
X +R2

Y )

T
+
L2 log(eT )

µT

)
+C

2 + η

η

(M
n

log
1

δ
+
(β
µ

+1
)
L
(4L

nµ
+4

√
1

µ

√
µt0(R2

X +R2
Y )

T
+
L2 log(eT )

µT

)
log2 n log

1

δ

)
.

Remark 12. When conditions in Theorem 4 hold, we obtain that (a) If Assumption 1 holds and
FS(x̄T , ȳT ) = O

(
1
n

)
, then for any δ > 0, with probability at least 1 − δ, the plain generalization

error of (x̄T , ȳT ) of GDA is of the order O
((

1
n +

√
log T
T

)
log2 n log(1/δ)

)
. (b) If Assumptions

1 and 2 hold and RS(x̄T ) = O
(

1
n

)
, then for any δ > 0, with probability at least 1 − δ, the primal

generalization error of (x̄T , ȳT ) of GDA is of the order O
((

1
n +

√
log T
T

)
log2 n log(1/δ)

)
. (c)

If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1 − δ, the strong PD
population risk and the strong PD generalization error of (x̄T , ȳT ) of GDA are all of the order

O
((

1
n +

√
log T
T

)
log2 n log(1/δ)

)
. (d) If Assumptions 1 and 2 hold and infx∈X R(x) = O

(
1
n

)
,

then for any δ > 0, with probability at least 1 − δ, the excess primal population risk of (x̄T , ȳT )

of GDA is of the order O
((

1
n +

√
log T
T

)
log2 n log(1/δ)

)
. For the above bounds, we can take

T = O(n2) gradient evaluations to get bound of the order O
(

log3/2 n
n log(1/δ)

)
.

D STOCHASTIC GRADIENT DESCENT ASCENT

We need some notations to state results on SGDA. Specifically, assume the initial point satisfies
x1 = 0 and y1 = 0. Let {ηt} be a sequence of positive step sizes. At the t-th iteration, SGDA
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first randomly select an index it form the uniform distribution over [n] := {1, ..., n} and then do the
update

xt+1 = xt − ηt∇xf(xt,yt, zit),

yt+1 = yt + ηt∇yf(xt,yt, zit). (38)

We denote the average of iterates by

x̄T =

∑T
t=1 xt
T

and ȳT =

∑T
t=1 yt
T

. (39)

Let’s first introduce two concentration inequalities for martingales, which are required in deriving
the strong PD empirical risk bound of SGDA.

Lemma 9. (Boucheron et al., 2013) Let z1, ..., zn be a sequence of random variables such that
zk may depend the previous variables z1, ..., zk−1 for all k = 1, ..., n. Consider a sequence of
functionals ξk(z1, ..., zk), k = 1, ..., n. Assume |ξk − Ezk [ξk]| ≤ bk for each k. Let δ ∈ (0, 1). With
probability at least 1− δ

n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤
(

2

n∑
k=1

b2k log
1

δ

) 1
2

.

Lemma 10. (Tarres & Yao, 2014) Let {ξk}k∈N be a martingale difference sequence in Rd. Suppose
that almost surely ‖ξk‖ ≤ D and

∑t
k=1 E[‖ξk‖2|ξ1, ..., ξk−1] ≤ σ2

t . Then, for any 0 < δ < 1, the
following inequality holds with probability at least 1− δ

max
1≤j≤t

∥∥∥ j∑
k=1

ξk

∥∥∥ ≤ 2
(D

3
+ σt

)
log

2

δ
.

The following lemma shows the strong PD empirical risk bound of SGDA.

Lemma 11. Suppose Assumption 1 holds and FS(·, ·) be µ-SC-SC with µ > 0. Let {xt,yt} be the
sequence produced by (38) with ηt = 1

µ(t+t0) . Assume t0 ≥ 0. Suppose supx∈X ‖x‖ ≤ RX and
supy∈Y ‖y‖ ≤ RY . Let δ > 0. Then for (x̄T , ȳT ) in (39), with probability at least 1− δ we have

sup
y∈Y

FS(x̄T ,y)− inf
x∈X

FS(x, ȳT ) ≤ 2µt0(R2
X +R2

Y )

T
+
L2 log(eT )

µT

+
2(RX +RY )

T

(2L

3
+ 2L

√
T
)

log
6

δ
+

2L(RX +RY )(2T log(6/δ))
1
2

T
.

If t0 = 0, then with probability at least 1− δ we have

sup
y∈Y

FS(x̄T ,y)− inf
x∈X

FS(x, ȳT ) ≤ L2 log(eT )

µT
+

2(RX +RY )

T

(2L

3
+ 2L

√
T
)

log
6

δ

+
2L(RX +RY )(2T log(6/δ))

1
2

T
.

Proof. This proof follows from (Lei et al., 2021). Firstly, we have

‖xt+1 − x‖2 = ‖xt − ηt∇xf(xt,yt; zit)− x‖2

= ‖xt − x‖2 + η2
t ‖∇xf(xt,yt; zit)‖2 + 2ηt〈x− xt,∇xf(xt,yt; zit)〉

≤ ‖xt − x‖2 + η2
tL

2 + 2ηt〈x− xt,∇xf(xt,yt; zit)−∇xFS(xt,yt)〉+ 2ηt〈x− xt,∇xFS(xt,yt)〉,

where the first inequality holds because of Assumption 1. By the strong convexity of FS(·,yt), we
have

2ηt(FS(xt,yt)− FS(x,yt)) ≤ (1− ηtµ)‖xt − x‖2 − ‖xt+1 − x‖2 + η2
tL

2

+2ηt〈x− xt,∇xf(xt,yt; zit)−∇xFS(xt,yt)〉.
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Since ηt = 1
µ(t+t0) , we further get

2

µ(t+ t0)
(FS(xt,yt)− FS(x,yt)) ≤

(
1− 1

(t+ t0)

)
‖xt − x‖2 − ‖xt+1 − x‖2

+
( 1

µ(t+ t0)

)2

L2 +
2

µ(t+ t0)
〈x− xt,∇xf(xt,yt; zit)−∇xFS(xt,yt)〉.

Multiplying both sides by t+ t0, we have

2

µ
(FS(xt,yt)− FS(x,yt)) ≤ (t+ t0 − 1)‖xt − x‖2 − (t+ t0)‖xt+1 − x‖2 +

L2

µ2(t+ t0)

+
2

µ
〈x− xt,∇xf(xt,yt; zit)−∇xFS(xt,yt)〉.

Since x1 = 0 and
∑T
t=1 t

−1 ≤ log(eT ), by taking a summation of the above inequality from t = 1
to T , we obtain

T∑
t=1

(FS(xt,yt)− FS(x,yt)) ≤
µ

2
t0R

2
X +

L2 log(eT )

2µ

+

T∑
t=1

〈x,∇xf(xt,yt; zit)−∇xFS(xt,yt)〉+

T∑
t=1

〈xt,∇xFS(xt,yt)−∇xf(xt,yt; zit)〉.

From the concavity of FS(x, ·) we get
T∑
t=1

(FS(xt,yt)− FS(x, ȳT )) ≤ µ

2
t0R

2
X +

L2 log(eT )

2µ

+

T∑
t=1

〈x,∇xf(xt,yt; zit)−∇xFS(xt,yt)〉+

T∑
t=1

〈xt,∇xFS(xt,yt)−∇xf(xt,yt; zit)〉.

Since this inequality holds for any x, we get
T∑
t=1

(FS(xt,yt)− inf
x∈X

FS(x, ȳT )) ≤ µ

2
t0R

2
X +

L2 log(eT )

2µ

+

T∑
t=1

sup
x∈X
〈x,∇xf(xt,yt; zit)−∇xFS(xt,yt)〉+

T∑
t=1

〈xt,∇xFS(xt,yt)−∇xf(xt,yt; zit)〉.

By Schwarz’s inequality, we have
T∑
t=1

(FS(xt,yt)− inf
x∈X

FS(x, ȳT )) ≤ µ

2
t0R

2
X +

L2 log(eT )

2µ

+RX

∥∥∥ T∑
t=1

∇xf(xt,yt; zit)−∇xFS(xt,yt)
∥∥∥+

T∑
t=1

〈xt,∇xFS(xt,yt)−∇xf(xt,yt; zit)〉.

Denote ξt = 〈xt,∇xFS(xt,yt) − ∇xf(xt,yt; zit)〉. Since Eit [〈xt,∇xFS(xt,yt) −
∇xf(xt,yt; zit)〉] = 0, so {ξt|t = 1, ..., T} is a martingale difference sequence. By Schwarz’s
inequality and Assumption 1, we know that |〈xt,∇xFS(xt,yt) − ∇xf(xt,yt; zit)〉| ≤ 2LRX .
Then, according to Lemma 9, we have the following inequality with probability at least 1− δ/6

T∑
t=1

〈xt,∇xFS(xt,yt)−∇xf(xt,yt; zit)〉 ≤ 2LRX(2T log(6/δ))
1
2 .

Define ξ′t = ∇xf(xt,yt; zit)−∇xFS(xt,yt). Then we get ‖ξ′t‖ ≤ 2L and
T∑
t=1

E[‖ξ′t‖2|ξ′1, ..., ξ′t−1] ≤ 4TL2.
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Applying Lemma 10 to the martingale difference sequence {ξ′t}, we have the following inequality
with probability at least 1− δ/3∥∥∥ T∑

t=1

ξ′t

∥∥∥ ≤ 2
(2L

3
+ 2L

√
T
)

log
6

δ
.

That is, with probability at least 1− δ/3∥∥∥ T∑
t=1

∇xf(xt,yt; zit)−∇xFS(xt,yt)
∥∥∥ ≤ 2

(2L

3
+ 2L

√
T
)

log
6

δ
.

Combined with the above results, we finally have the following inequality with probability at least
1− δ/2

1

T

T∑
t=1

(FS(xt,yt)− inf
x∈X

FS(x, ȳT )) ≤ µt0R
2
X

2T
+
L2 log(eT )

2µT

+
2RX
T

(2L

3
+ 2L

√
T
)

log
6

δ
+

2LRX(2T log(6/δ))
1
2

T
.

In a similar way, we have the following inequality with probability at least 1− δ/2

sup
y∈Y

FS(x̄T ,y)− 1

T

T∑
t=1

(FS(xt,yt)) ≤
µt0R

2
Y

2T
+
L2 log(eT )

2µT

+
2RY
T

(2L

3
+ 2L

√
T
)

log
6

δ
+

2LRY (2T log(6/δ))
1
2

T
.

Combined the above two inequalities together we get the result with probability at least 1− δ

sup
y∈Y

FS(x̄T ,y)− inf
x∈X

FS(x, ȳT ) ≤ µt0(R2
X +R2

Y )

T
+
L2 log(eT )

µT

+
2(RX +RY )

T

(2L

3
+ 2L

√
T
)

log
6

δ
+

2L(RX +RY )(2T log(6/δ))
1
2

T
.

Denote E =
µt0(R2

X+R2
Y )

T + L2 log(eT )
µT +

2(RX+RY )( 2L
3 +2L

√
T ) log 6

δ

T + 2L(RX+RY )(2T log(6/δ))
1
2

T .
Now, plugging Lemma 11 to Lemma 7, we know that the argument stability bound of SGDA is

‖x̄iT − x̄T ‖+ ‖ȳiT − ȳT ‖ ≤
4L

nµ
+ 4

√
1

µ

√
4sS(x̄T , ȳT ) ≤ 4

√
1

µ

√
E +

4L

nµ
. (40)

Furthermore, for any x ∈ X , y ∈ Y and z ∈ Z ,

f(x,y; z) ≤ f(0, 0; z) + L‖x− 0‖+ L‖y − 0‖ ≤ sup
z∈Z

f(0, 0; z) + L(RX +RY ), (41)

Note that since SGDA is a randomized algorithm, thus we need the following variant of Theorem 1.
Theorem 5. Let A be a randomized learning algorithm and ε > 0. Suppose |f(x,y; z)| ≤ M for
some M > 0 and x ∈ X ,y ∈ Y, z ∈ Z . Fixed any η > 0. There exists an absolute positive
constant C.

(a.) If A has ε-uniform stability with probability at least 1 − δ′ for some δ′ ∈ (0, 1) over the
randomness of A, i.e.,

PrA

(
sup
z

[f(Ax(S), Ay(S); z)− f(Ax(S′), Ay(S′); z)]
)
≤ ε,

And if the randomness ofA is independent of the training set S. Then for any δ > 0, with probability
at least 1− δ′ − δ,

F (Ax(S), Ay(S)) ≤ (1 + η)FS(Ax(S), Ay(S)) + C
1 + η

η

(M
n

log(1/δ) + ε log2 n log
1

δ

)
.
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(b.) Assume that for all x, the function y 7→ F (x,y) is µ-strongly-concave. Suppose Assumptions
1 and 2 hold. If the algorithm A is ε-argument stable with probability at least 1 − δ′ for some
δ′ ∈ (0, 1) over the randomness of A, i.e.,

PrA

(
‖Ax(S)−Ax(S′)‖+ ‖Ay(S)−Ay(S′)‖

)
≤ ε.

And if the randomness ofA is independent of the training set S. Then for any δ > 0, with probability
at least 1− δ′ − δ,

R(Ax(S)) ≤ (1 + η)RS(Ax(S)) + C
1 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
Lε log2 n log

1

δ

)
.

(c.) Assume that for all x and y, the function F (x,y) is µ-SC-SC. Suppose Assumptions 1 and 2
hold. If the algorithm A is ε-argument stable with probability at least 1 − δ′ for some δ′ ∈ (0, 1)
over the randomness of A, i.e.,

PrA

(
‖Ax(S)−Ax(S′)‖+ ‖Ay(S)−Ay(S′)‖

)
≤ ε.

And if the randomness ofA is independent of the training set S. Then for any δ > 0, with probability
at least 1− δ′ − δ,

4s (Ax(S), Ay(S)) ≤ 4sS(Ax(S), Ay(S)) + ηES 4sS (Ax(S), Ay(S))

+ C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
εL log2 n

)
log
(1

δ

)
.

(d.) Assume that for all x and y, the function F (x,y) is µ-SC-SC. Suppose Assumptions 1 and 2
hold. If the algorithm A is ε-argument stable with probability at least 1 − δ′ for some δ′ ∈ (0, 1)
over the randomness of A, i.e.,

PrA

(
‖Ax(S)−Ax(S′)‖+ ‖Ay(S)−Ay(S′)‖

)
≤ ε.

And if the randomness ofA is independent of the training set S. Then for any δ > 0, with probability
at least 1− δ′ − δ,

4s (Ax(S), Ay(S))−4sS(Ax(S), Ay(S)) ≤ ηES 4sS (Ax(S), Ay(S))

+ C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
εL log2 n

)
log
(1

δ

)
.

(e.) Assume that for all x, the function y 7→ F (x,y) is µ-strongly-concave. Suppose Assumptions
1 and 2 hold. If the algorithm A is ε-argument stable with probability at least 1 − δ′ for some
δ′ ∈ (0, 1) over the randomness of A, i.e.,

PrA

(
‖Ax(S)−Ax(S′)‖+ ‖Ay(S)−Ay(S′)‖

)
≤ ε.

And if the randomness ofA is independent of the training set S. Then for any δ > 0, with probability
at least 1− δ′ − δ,

R(Ax(S)) ≤ (1 + η) inf
x∈X

R(x)

+ C
2 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
Lε log2 n log

1

δ
+4sS(Ax(S), Ay(S))

)
.

Therefore, plugging (41), the stability bound in (40) and the strong PD empirical risk bound in
Lemma 11 into Theorem 5, we obtain generalization bounds of SGDA. Now, we write the main
theorem of SGDA as follows.
Theorem 6. Assume for all z, the function (x,y) 7→ f(x,y; z) is µ-SC-SC. Suppose supx∈X ‖x‖ ≤
RX and supy∈Y ‖y‖ ≤ RY . Let {xt,yt} be produced by (38) with ηt = 1/(µ(t + t0)). Assume
t0 ≥ 0. Denote Ax(S) = x̄T and Ay(S) = ȳT for (x̄T , ȳT ) in (39). Fixed any η > 0. Let
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M = supz∈Z f(0, 0; z) + L(RX + RY ). Let E =
µt0(R2

X+R2
Y )

T + L2 log(eT )
µT + 2(RX+RY )

T

(
2L
3 +

2L
√
T
)

log 6
δ+ 2L(RX+RY )(2T log(6/δ))

1
2

T andB = 4L
nµ+4

√
1
µ

√
E. There exists an absolute positive

constant C.

(a) If Assumption 1 holds, then for any δ > 0, with probability at least 1− 2δ, we have

F (x̄T , ȳT ) ≤ (1 + η)FS(x̄T , ȳT ) + C
1 + η

η

(M
n

log(1/δ) +B log2 n log(1/δ)
)
.

(b) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− 2δ, we have

R(x̄T ) ≤ (1 + η)RS(x̄T ) + C
1 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
LB log2 n log

1

δ

)
.

(c) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− 2δ, we have

4s(x̄T , ȳT ) ≤ (1 + η)E + C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
BL log2 n

)
log
(1

δ

)
.

(d) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− 2δ, we have

4s (x̄T , ȳT )−4sS(x̄T , ȳT )

≤ ηE + C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
BL log2 n

)
log
(1

δ

)
.

(e) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− 2δ, we have

R(x̄T ) ≤ (1 + η) inf
x∈X

R(x) + C
2 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
LB log2 n log

1

δ
+ E

)
.

Remark 13. When conditions in Theorem 6 hold, we obtain that (a) If Assumption 1 holds and
FS(x̄T , ȳT ) = O

(
1
n

)
, then for any δ > 0, with probability at least 1 − δ, the plain gen-

eralization error of (x̄T , ȳT ) of SGDA is of the order O
((

1
n +

√
log(1/δ)

T
1
2

)
log2 n log(1/δ)

)
.

(b) If Assumptions 1 and 2 hold and RS(x̄T ) = O
(

1
n

)
, then for any δ > 0, with prob-

ability at least 1 − δ, the primal generalization error of (x̄T , ȳT ) of SGDA is of the order

O
((

1
n +

√
log(1/δ)

T
1
2

)
log2 n log(1/δ)

)
. (c) If Assumptions 1 and 2 hold, then for any δ > 0,

with probability at least 1 − δ, the strong PD population risk and strong PD generalization error of
(x̄T , ȳT ) of SGDA are all of the orderO

((
1
n +

√
log(1/δ)

T
1
2

)
log2 n log(1/δ)

)
. (d) If Assumptions 1

and 2 hold and infx∈X R(x) = O
(

1
n

)
, then for any δ > 0, with probability at least 1−δ, the excess

primal population risk of (x̄T , ȳT ) of SGDA is of the orderO
((

1
n +

√
log(1/δ)

T
1
2

)
log2 n log(1/δ)

)
.

For the above bounds, we can take T = O(n4) stochastic gradient evaluations to get bound of the
order O

(
logn
n log

3
2 (1/δ)

)
.

E PROXIMAL POINT METHOD

One of the classical algorithms studied for solving the minimax problem is the Proximal Point
method (Rockafellar, 1976). We denote the t-th iterate of PPM as (xt,yt). The averaged iterate is
defined as

x̄T =
1

T

T∑
t=1

xt and ȳT =
1

T

T∑
t=1

yt. (42)
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Given stepsize parameter ν, the PPM generates the iterate {xt+1,yt+1} by

arg min
x∈X

arg max
y∈Y

{
FS(x,y) +

1

2ν
‖x− xt‖ −

1

2ν
‖y − yt‖

}
. (43)

{xt+1,yt+1} is the unique solution since the objective function of problem (43) is strongly convex
in x and strongly concave in y. From the discussion in (Mokhtari et al., 2019), the update of PPM
can be written as

xt+1 = xt − ν∇xFS(xt+1,yt+1),

yt+1 = yt + ν∇yFS(xt+1,yt+1), (44)

Assume that the initial point satisfies x0 = 0 and y0 = 0.

We now begin to prove the strong PD empirical risk. Firstly, two lemmas are introduced.
Lemma 12. (Nemirovski, 2005) Define vector v = [x,y] ∈ R2d and the operator P : R2d 7→ R2d

as

P (v) = [∇xFS(x,y);−∇yFS(x,y)]. (45)

Consider (x̄T , ȳT ) in (42). Suppose the ESP solution exists. Assume the function FS(x,y) is
continuously differentiable in x and y. Assume that FS(x,y) is a convex function of x for any y
and is a concave function of y for any x. Then for any v = [x,y] ∈ R2d, we have

FS(x̄T ,y)− FS(x, ȳT ) ≤ 1

T

T∑
t=1

P (vt)
T (vt − v).

Lemma 13. (Mokhtari et al., 2019) Consider the sequence of iterates {vt} ∈ R2d generated by the
following update

vt+1 = vt − νP (vt+1),

where P is a monotone and Lipschitz continuous operator, and ν is a positive constant. Then for
any v ∈ R2d and for each t ≥ 1 we have

P (vt+1)T (vt+1 − v) =
1

2ν
‖vt − v‖2 − 1

2ν
‖vt+1 − v‖2 − 1

2ν
‖vt+1 − vt‖2.

The following lemma is the strong PD empirical risk bound of PPM.
Lemma 14. Let {xt,yt} be the iterates generated by PPM in (44). Assume ν is a positive constant.
Suppose the ESP solution exists. Assume that FS(x,y) is a convex function of x for any y and
is a concave function of y for any x. Suppose supx∈X ‖x‖ ≤ RX and supy∈Y ‖y‖ ≤ RY . If
Assumption 2 holds, then for all T ≥ 1, we have

sup
y∈Y

FS(x̄T ,y)− inf
x∈X

FS(x, ȳT ) ≤ R2
X +R2

Y

2νT
.

Proof. The update of the PPM in (44) can be written as

vt+1 = vt − νP (vt+1).

According to Lemma 1 in (Mokhtari et al., 2019), if FS(x,y) is convex-concave and Assumption 2
holds, then P (v) defined in (45) is monotone and Lipschitz continuous. According to Lemma 13,
we have

P (vt+1)T (vt+1 − v) =
1

2ν
‖vt − v‖2 − 1

2ν
‖vt+1 − v‖2 − 1

2ν
‖vt+1 − vt‖2.

Taking a summation of the above inequality from t = 0 to T − 1, we obtain

T−1∑
t=0

P (vt+1)T (vt+1 − v) ≤ 1

2ν
‖v0 − v‖2 − 1

2ν
‖vT − v‖2. (46)
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According to (46), we know that
T−1∑
t=0

P (vt+1)T (vt+1 − v) ≤ 1

2ν
‖v0 − v‖2

=
‖x0 − x‖2 + ‖y0 − y‖2

2ν
.

Combined this result with Lemma 12, we can write

FS(x̄T ,y)− FS(x, ȳT ) ≤ ‖x0 − x‖2 + ‖y0 − y‖2

2νT
,

which implies that

sup
y∈Y

FS(x̄T ,y)− inf
x∈X

FS(x, ȳT ) ≤ R2
X +R2

Y

2νT
.

The proof is complete.

Combined Lemma 7 and Lemma 14, we know that the argument stability bound of PPM is

‖x̄iT − x̄T ‖+ ‖ȳiT − ȳT ‖ ≤
4L

nµ
+ 4

√
1

µ

√
4sS(x̄T , ȳT )

≤ 4L

nµ
+ 4

√
1

µ

√
R2
X +R2

Y

2νT
. (47)

Furthermore, for any x ∈ X , y ∈ Y and z ∈ Z ,

f(x,y; z) ≤ f(0, 0; z) + L‖x− 0‖+ L‖y − 0‖ ≤ sup
z∈Z

f(0, 0; z) + L(RX +RY ), (48)

Therefore, plugging (48), the stability bound in (47) and the strong PD empirical risk bound in
Lemma 14 into Theorem 1, we obtain generalization bounds of PPM, shown as below.
Theorem 7. Assume for all z, the function (x,y) 7→ f(x,y; z) is µ-SC-SC. Suppose supx∈X ‖x‖ ≤
RX and supy∈Y ‖y‖ ≤ RY . Let {xt,yt} be produced by (44). Assume ν is a positive con-
stant. Denote Ax(S) = x̄T and Ay(S) = ȳT for (x̄T , ȳT ) in (42). Fixed any η > 0. Let

M = supz∈Z f(0, 0; z) + L(RX +RY ). Let E =
R2
X+R2

Y

2νT and B = 4L
nµ + 4

√
1
µ

√
E. There exists

an absolute positive constant C.

(a) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

F (x̄T , ȳT ) ≤ (1 + η)FS(x̄T , ȳT ) + C
1 + η

η

(M
n

log(1/δ) +B log2 n log(1/δ)
)
.

(b) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

R(x̄T ) ≤ (1 + η)RS(x̄T ) + C
1 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
LB log2 n log

1

δ

)
.

(c) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

4s(x̄T , ȳT ) ≤ (1 + η)E + C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
BL log2 n

)
log
(1

δ

)
.

(d) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

4s (x̄T , ȳT )−4sS(x̄T , ȳT )

≤ ηE + C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
BL log2 n

)
log
(1

δ

)
.

(e) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

R(x̄T )− (1 + η) inf
x∈X

R(x) ≤ C 2 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
LB log2 n log

1

δ
+ E

)
.
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Remark 14. When conditions in Theorem 7 hold, we obtain that (a) If Assumption 1 and 2 hold and
FS(x̄T , ȳT ) = O

(
1
n

)
, then for any δ > 0, with probability at least 1 − δ, the plain generalization

error of (x̄T , ȳT ) of PPM is of the order O
((

1
n +

√
1
T

)
log2 n log(1/δ)

)
. (b) If Assumptions

1 and 2 hold and RS(x̄T ) = O
(

1
n

)
, then for any δ > 0, with probability at least 1 − δ, the

primal generalization error of (x̄T , ȳT ) of PPM is of the order O
((

1
n +

√
1
T

)
log2 n log(1/δ)

)
.

(c) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1 − δ, the strong
PD population risk and strong PD generalization error of (x̄T , ȳT ) of PPM are all of the order

O
((

1
n +

√
1
T

)
log2 n log(1/δ)

)
. (d) If Assumptions 1 and 2 hold and infx∈X R(x) = O

(
1
n

)
,

then for any δ > 0, with probability at least 1− δ, the excess primal population risk of (x̄T , ȳT ) of

PPM is of the orderO
((

1
n+
√

1
T

)
log2 n log(1/δ)

)
. For the above bounds, we can take T = O(n2)

gradient evaluations to get bound of the order O
(

logn
n log(1/δ)

)
.

F EXTRAGRADIENT METHOD

EG is a classical algorithm for solving minimax problems introduced by (Korpelevich, 1976). We
now introduce some notations. Followed (Mokhtari et al., 2019), we consider the following update
of EG: given stepsize parameter ν, we first compute a set of mid-point iterates {xt+ 1

2
,yt+ 1

2
}

xt+ 1
2

= xt − ν∇xFS(xt,yt),

yt+ 1
2

= yt + ν∇yFS(xt,yt), (49)

we then compute the next iterates {xt+1,yt+1}

xt+1 = xt − ν∇xFS(xt+ 1
2
,yt+ 1

2
),

yt+1 = yt + ν∇yFS(xt+ 1
2
,yt+ 1

2
). (50)

Consider the averaged iterate

x̄T =
1

T

T∑
t=1

xt and ȳT =
1

T

T∑
t=1

yt. (51)

Assume that the initial point satisfies x0 = x−1/2 and y0 = y−1/2.

We now show the strong PD empirical risk bound for (x̄T , ȳT ) of EG.

Lemma 15. (Mokhtari et al., 2019) Let {xt,yt}, {xt+1/2,yt+1/2} be the iterates generated by the
EG updates in (49) and (50). Assume that the initial point satisfies x0 = x−1/2 and y0 = y−1/2.
Suppose the ESP solution (x̂∗, ŷ∗) exists. Assume that FS(x,y) is a convex function of x for any
y and is a concave function of y for any x. If Assumption 2 holds and the stepsize ν satisfies the
condition ν = c

2β for any c ∈ (0, 1), then:

(a) the iterates {xt,yt}, {xt+1/2,yt+1/2} stay within the compact convex set

D :=

{
(x,y)|‖x− x̂∗‖2 + ‖y − ŷ∗‖2 ≤

(
2 +

2

1− 4ν2β2

)
(‖x0 − x̂∗‖2 + ‖y0 − ŷ∗‖2)

}
.

(52)

(b) for all T ≥ 1, we have

sup
y:(x̄T ,y)∈D

FS(x̄T ,y)− inf
x:(x,ȳT )∈D

FS(x, ȳT ) ≤
2β(16 + 33

2(1−c2) )(‖x0 − x̂∗‖2 + ‖y0 − ŷ∗‖2)

T
.
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Combined Lemma 7 and Lemma 15, we know that the argument stability bound of EG is

‖x̄iT − x̄T ‖+ ‖ȳiT − ȳT ‖ ≤
4L

nµ
+ 4

√
1

µ

√
4sS(x̄T , ȳT )

≤ 4L

nµ
+ 4

√
1

µ

√
2β(16 + 33

2(1−c2) )(‖x0 − x̂∗‖2 + ‖y0 − ŷ∗‖2)

T
.

(53)

Furthermore, for any x ∈ X , y ∈ Y and z ∈ Z ,

f(x,y; z) ≤ f(x̂∗, ŷ∗; z) + L‖x− x̂∗‖+ L‖y − ŷ∗‖

≤ sup
z∈Z

f(x̂∗, ŷ∗; z) +
√

2L
√
‖x− x̂∗‖2 + ‖y − ŷ∗‖2

≤ sup
z∈Z

f(x̂∗, ŷ∗; z) + L

√(
4 +

4

1− 4ν2β2

)
(‖x0 − x̂∗‖2 + ‖y0 − ŷ∗‖2), (54)

where the first inequality follows from Assumption 1, the second inequality follows from Caucy-
Schwarz inequality and the last inequality follows from (52). Now, plugging (54), the stability
bound in (53) and the strong PD empirical risk bound in Lemma 15 into Theorem 1, we obtain
generalization bounds of EG. The main theorem is shown below.
Theorem 8. Assume for all z, the function (x,y) 7→ f(x,y; z) is µ-SC-SC. Let {xt,yt} and
{xt+1/2,yt+1/2} be the iterates produced by (49)-(50). Assume the stepsize ν satisfies the con-
dition ν = c

2β for any c ∈ (0, 1). Denote Ax(S) = x̄T and Ay(S) = ȳT for (x̄T , ȳT ) in
(51). Denote the ESP solution as (x̂∗, ŷ∗). Consider the compact convex set in (52). Fixed any

η > 0. Let M = supz∈Z f(x̂∗, ŷ∗; z) + L

√(
4 + 4

1−4ν2β2

)
(‖x0 − x̂∗‖2 + ‖y0 − ŷ∗‖2). Let

B =
2β(16+ 33

2(1−c2)
)(‖x0−x̂∗‖2+‖y0−ŷ∗‖2)

T and E = 4L
nµ + 4

√
1
µ

√
B. There exists an absolute posi-

tive constant C.

(a) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

F (x̄T , ȳT ) ≤ (1 + η)FS(x̄T , ȳT ) + C
1 + η

η

(M
n

log(1/δ) +B log2 n log(1/δ)
)
.

(b) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

R(x̄T ) ≤ (1 + η)RS(x̄T ) + C
1 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
LB log2 n log

1

δ

)
.

(c) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

4s(x̄T , ȳT ) ≤ (1 + η)E + C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
BL log2 n

)
log
(1

δ

)
.

(d) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

4s (x̄T , ȳT )−4sS(x̄T , ȳT )

≤ ηE + C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
BL log2 n

)
log
(1

δ

)
.

(e) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

R(x̄T ) ≤ (1 + η) inf
x∈X

R(x) + C
2 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
LB log2 n log

1

δ
+ E

)
.

Remark 15. When conditions in Theorem 8 hold, we obtain that (a) If Assumptions 1 and 2 hold and
FS(x̄T , ȳT ) = O

(
1
n

)
, then for any δ > 0, with probability at least 1 − δ, the plain generalization
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error of (x̄T , ȳT ) of EG is of the order O
((

1
n +

√
1
T

)
log2 n log(1/δ)

)
. (b) If Assumptions 1

and 2 hold and RS(x̄T ) = O
(

1
n

)
, then for any δ > 0, with probability at least 1 − δ, the primal

generalization error of (x̄T , ȳT ) of EG is of the order O
((

1
n +

√
1
T

)
log2 n log(1/δ)

)
. (c) If

Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1 − δ, the strong PD
population risk and the strong PD generalization error of (x̄T , ȳT ) of EG are all of the orderO

((
1
n+√

1
T

)
log2 n log(1/δ)

)
. (d) If Assumptions 1 and 2 hold and infx∈X R(x) = O

(
1
n

)
, then for

any δ > 0, with probability at least 1 − δ, the excess primal population risk of (x̄T , ȳT ) of EG

is O
((

1
n +

√
1
T

)
log2 n log(1/δ)

)
. For the above bounds, we can take T = O(n2) gradient

evaluations to get bound of the order O
(

logn
n log(1/δ)

)
.

G OPTIMISTIC GRADIENT DESCENT ASCENT

OGDA is introduced by Popov (1980), as a variant of the EG method. We introduce some notations
to state the result of OGDA. Given a stepsize parameter ν > 0, OGDA do the following update for
each t ≥ 0

xt+1 = xt − 2ν∇xFS(xt,yt) + ν∇xFS(xt−1,yt−1),

yt+1 = yt + 2ν∇yFS(xt,yt)− ν∇yFS(xt−1,yt−1). (55)

Assume that the initial point satisfies x0 = x−1 and y0 = y−1. Consider the averaged iterate

x̄T =
1

T

T∑
t=1

xt and ȳT =
1

T

T∑
t=1

yt. (56)

We first provide a lemma on the strong PD empirical risk of OGDA.
Lemma 16. (Mokhtari et al., 2019) Let {xt,yt} be the iterates generated by the OGDA updates in
(55). Assume that the initial point satisfies x0 = x−1 and y0 = y−1. Suppose the ESP solution
(x̂∗, ŷ∗) exists. Assume that FS(x,y) is a convex function of x for any y and is a concave function
of y for any x. If Assumption 2 holds and the stepsize ν satisfies 0 < ν ≤ 1

4β , then:

(a) the iterates {xt,yt} stay within the compact convex set

D :=
{

(x,y)|‖x− x̂∗‖2 + ‖y − ŷ∗‖2 ≤ 2(‖x0 − x̂∗‖2 + ‖y0 − ŷ∗‖2)
}
. (57)

(b) for all T ≥ 1, we have

sup
y:(x̄T ,y)∈D

FS(x̄T ,y)− inf
x:(x,ȳT )∈D

FS(x, ȳT ) ≤
(16β + 1

2ν )(‖x0 − x̂∗‖2 + ‖y0 − ŷ∗‖2)

T
.

Combined Lemma 7 and Lemma 16, we know that the argument stability bound of OGDA is

‖x̄iT − x̄T ‖+ ‖ȳiT − ȳT ‖ ≤
4L

nµ
+ 4

√
1

µ

√
4sS(x̄T , ȳT )

≤ 4L

nµ
+ 4

√
1

µ

√
(16β + 1

2ν )(‖x0 − x̂∗‖2 + ‖y0 − ŷ∗‖2)

T
. (58)

Moreover, similar to (54), we have

f(x,y; z) ≤ f(x̂∗, ŷ∗; z) + L‖x− x̂∗‖+ L‖y − ŷ∗‖

≤ sup
z∈Z

f(x̂∗, ŷ∗; z) + 2L
√
‖x0 − x̂∗‖2 + ‖y0 − ŷ∗‖2. (59)

Therefore, plugging (59), the stability bound in (58) and the strong PD empirical risk bound in
Lemma 16 into Theorem 1, we obtain generalization bounds of OGDA.
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Theorem 9. Assume for all z, the function (x,y) 7→ f(x,y; z) is µ-SC-SC. Let {xt,yt} be pro-
duced by (55). Assume the stepsize parameter ν satisfies 0 < ν ≤ 1

4β . Denote Ax(S) = x̄T and
Ay(S) = ȳT for (x̄T , ȳT ) in (56). Denote the ESP solution as (x̂∗, ŷ∗). Consider the compact con-
vex set in (57). Fixed any η > 0. Let M = supz∈Z f(x̂∗, ŷ∗; z) + 2L

√
‖x0 − x̂∗‖2 + ‖y0 − ŷ∗‖2.

Define B =
(16β+ 1

2ν )(‖x0−x̂∗‖2+‖y0−ŷ∗‖2)

T and E = 4L
nµ + 4

√
1
µ

√
B. There exists an absolute

positive constant C.

(a) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

F (x̄T , ȳT ) ≤ (1 + η)FS(x̄T , ȳT ) + C
1 + η

η

(M
n

log(1/δ) +B log2 n log(1/δ)
)
.

(b) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

R(x̄T ) ≤ (1 + η)RS(x̄T ) + C
1 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
LB log2 n log

1

δ

)
.

(c) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

4s(x̄T , ȳT ) ≤ (1 + η)E + C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
BL log2 n

)
log
(1

δ

)
.

(d) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

4s (x̄T , ȳT )−4sS(x̄T , ȳT )

≤ ηE + C(1 + η)
(L2(1 + η)

nµη
+
M

n
+
(

1 +
β

µ

)
BL log2 n

)
log
(1

δ

)
.

(e) If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1− δ, we have

R(x̄T ) ≤ (1 + η) inf
x∈X

R(x) + C
2 + η

η

(M
n

log
1

δ
+
(β
µ

+ 1
)
LB log2 n log

1

δ
+ E

)
.

Remark 16. When conditions in Theorem 9 hold, we obtain that (a) If Assumptions 1 and 2 hold and
FS(x̄T , ȳT ) = O

(
1
n

)
, then for any δ > 0, with probability at least 1 − δ, the plain generalization

error of (x̄T , ȳT ) of OGDA is of the order O
((

1
n +

√
1
T

)
log2 n log(1/δ)

)
. (b) If Assumptions 1

and 2 hold and RS(x̄T ) = O
(

1
n

)
, then for any δ > 0, with probability at least 1 − δ, the primal

generalization error of (x̄T , ȳT ) of OGDA is of the order O
((

1
n +

√
1
T

)
log2 n log(1/δ)

)
. (c)

If Assumptions 1 and 2 hold, then for any δ > 0, with probability at least 1 − δ, the strong PD
population risk and the strong PD generalization error of (x̄T , ȳT ) of OGDA are all of the order

O
((

1
n +

√
1
T

)
log2 n log(1/δ)

)
. (d) If Assumptions 1 and 2 hold and infx∈X R(x) = O

(
1
n

)
,

then for any δ > 0, with probability at least 1− δ, the excess primal population risk of OGDA is of

the orderO
((

1
n +

√
1
T

)
log2 n log(1/δ)

)
. For the above bounds, we can take T = O(n2) gradient

evaluations to get bound of the order O
(

logn
n log(1/δ)

)
.

H AUXILIARY DESCRIPTIONS OF TABLE 1

In Table 1, Lip means Lipschitz continuity and S means smoothness. (R)-ESP means the
(regularized)-empirical risk saddle point (Zhang et al., 2021a). C-SC means convex-µ-strongly-
concave, and NC-SC means nonconvex-µ-strongly-concave. A function f(x,y) is called
nonconvex-strongly-concave if f(x, ·) is strongly-concave for every x. Moreover, a function f(x,y)
is µ-weakly-convex-weakly-concave (WC-WC) if f+ µ

2

(
‖x‖2 + ‖y‖2

)
is convex-concave. V-WC-

WC is a variant of WC-WC, please refer to (Lei et al., 2021). PL means the two-sided PL condition,
which relaxes the convex-concavity requirement of the objective function (Yang et al., 2020) and is
usually used to guarantee the linear convergence rate (Karimi et al., 2016; Yang et al., 2020). AGDA
algorithm is variant of GDA with alternating updates of the primal-dual variables. c is a parameter
in the step size, β is a parameter in Assumption 2 and k := β/µ.

45



Published as a conference paper at ICLR 2022

I NUMERICAL EXPERIMENTS

In this section, we report preliminary experimental results to verify our theoretical results by per-
forming numerical experiments on the simulated data. We study how the generalization error would
behave along the number of samples. To this aim, we consider an isotropic Gaussian data vector
Z ∼ N (0, Id×d) with zero mean and identity covariance. We will draw n independent samples
from the underlying Gaussian distribution to form a training dataset S = {z1, ..., zn}. We set the
dimension d of Z as 50. Similar to the strongly-convex-strong-concave case of (Farnia & Ozdaglar,
2021), we consider the following minimax objective function

f(x,y; z) = xT (z− y) +
µ

2
(‖x‖2 − ‖y‖2).

In the experiments, we set µ = 1 and constrain optimization variables x and y to satisfy ‖x‖, ‖y‖ ≤
100 which we enforced by projection. For this minimax objective function, one can verify that

F (x,y)− FS(x,y) = xT (E[Z]− ES [Z]); R(x)−RS(x) = xT (E[Z]− ES [Z]),

where E[Z] = 0 since the mean of the underlying Gaussian distribution is 0, and where ES [Z] =
1
n

∑n
i=1 zi. For brevity, we call |xT (E[Z]− ES [Z])| the “generalization error”.

We apply the above experimental settings to validate the theoretical results of GDA, SGDA, EG,
and OGDA. We evaluate the generalization error |xT (E[Z] − ES [Z])| and apply these algorithms
to S. For GDA and SGDA, we consider the stepsize parameter as 1/t. We iterate GDA with n2

times and SGDA with n4 times. The generalization error of GDA and SGDA with different sizes of
training data are reported in Figure 1. And for EG and OGDA, we select the stepsize parameter as
0.003. We run EG and OGDA n2 times. Similarly, the generalization error of EG and OGDA with
different sizes of training data are given in Figure 2. From the two figures, we can see that the line of
best fit for the generalization error is log3/2 n

n0.98 for GDA, logn
n0.98 for SGDA, log0.99 n

n0.98 for EG, and logn
n1.02

for OGDA. These results match the predictive rates of the plain generalization error and the primal
generalization error in Table 1, i.e., log3/2 n

n for GDA, logn
n for SGDA, logn

n for EG, and logn
n for

OGDA, which verifies our theoretical findings.

Figure 1: |xT (E[Z]− ES [Z])| versus the number of samples on GDA (left) and SGDA (right).

Figure 2: |xT (E[Z]− ES [Z])| versus the number of samples on EG (left) and OGDA (right).

46


	Introduction
	Related Work
	Preliminaries
	Main Results
	Applications
	Descriptions of Table 1

	Conclusion
	Proof of Theorem 1
	Proof of Part (a)
	Proof of Part (b)
	Proof of Part (C)
	Proof of Part (d)
	Proof of Part (e)

	Empirical Saddle Point
	Gradient Descent Ascent
	Stochastic Gradient Descent Ascent
	Proximal Point Method
	Extragradient Method
	Optimistic Gradient Descent Ascent
	Auxiliary Descriptions of Table 1
	Numerical Experiments

