{mawod, afhar, mnsc}@dtu.dk

Abstract

Accurate molecular property prediction is a key chal-
lenge in fields such as drug discovery and materials
science, where deep learning models offer promising
solutions. However, the widespread use of these
models is hindered by their lack of transparency
and the difficulty in assessing the reliability of their
predictions. In this study, we address these issues by
integrating uncertainty quantification and explain-
able Al techniques to enhance the trustworthiness
of graph neural networks for molecular property
prediction. We focus on predicting two distinct
properties: aqueous solubility and mutagenicity. By
deriving explanations in the form of substructure
attribution scores, we obtain interpretable expla-
nations that signify which chemically meaningful
substructures influence the model’s predictions. We
incorporate uncertainty quantification to evaluate
the confidence of both the predictions and their ex-
planations. Our results demonstrate that predictive
uncertainty scores correlate with the accuracy of the
predictions for both tasks. Uncertainties in the ex-
planations also correlate with prediction correctness,
and there is a weak to moderate correlation between
the uncertainties in the predictions and those in the
explanations. These findings highlight the potential
of combining uncertainty quantification and explain-
ability to improve the trustworthiness of molecular
property prediction models.

1 Introduction

Molecular property prediction is a critical task in
computational chemistry, material science, and drug
discovery, where understanding the relationships be-
tween molecular structures and their properties can
guide the discovery of new materials and therapeu-
tics [1, 2]. Machine learning (ML), and particularly
deep learning (DL) methods have revolutionized
this field, enabling models to learn complex, high-
dimensional representations of molecular data and
provide accurate predictions for various molecular
properties [3].

However, despite the promising performance of
DL models in molecular property prediction, con-
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cerns about their reliability remains a significant
barrier to their widespread adoption, particularly
in high-stakes domains such as drug discovery and
materials design. These models often lack trans-
parency in how they arrive at predictions, which can
be problematic in safety-critical applications. The
absence of interpretability and reliability can make
it difficult for chemists to trust model outputs and
make informed decisions. Thus, ensuring the trust-
worthiness of predictions is a critical step toward
advancing the utility of these models in real-world
applications.

Explainable AI (XAI) techniques have emerged
as a solution to address some of these challenges.
By providing interpretable explanations for model
predictions, XAI allows users to gain insights into
the underlying decision-making process, fostering
confidence in the predictions [4]. In the context
of molecular property prediction, XAI can reveal
how specific molecular substructures contribute to
the model’s output, providing valuable insights for
researchers and guiding further experimental inves-
tigations. Additionally, uncertainty quantification
(UQ) has become an essential tool in assessing the
reliability of model predictions [5]. By quantifying
the uncertainty associated with a prediction, UQ
helps identify regions where the model is less confi-
dent and may be prone to errors, allowing for more
reliable and cautious decision-making.

In this work, we aim to bridge these critical as-
pects of deep learning models in molecular property
prediction: uncertainty quantification, explainabil-
ity, and their interplay. Specifically, we

1. show how uncertainty quantification can be ap-
plied to molecular property predictions to assess
their trustworthiness,

2. show how substructure explanations can be used
to interpret these predictions, and propose and
compare several ways to determine what role
uncertainties play in these explanations,

3. show that there is a correlation between uncer-
tainty scores and correctness of predictions for
both predictive uncertainties and explanation
uncertainties, and

4. analyze the relationship between these different
uncertainties.
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Through these investigations, we aim to contribute
to the development of more trustworthy and inter-
pretable deep learning models for molecular property
prediction.

2 Background

In recent years, ML and DL techniques have emerged
as powerful tools for molecular property predic-
tion [3]. These approaches, particularly neural net-
works, can capture complex patterns in molecular
data and provide accurate predictions across a wide
range of tasks, such as predicting solubility, toxicity,
bioactivity, and mutagenicity. Graph neural net-
works (GNNs) have gained particular prominence as
they operate directly on molecular graphs, represent-
ing atoms as nodes and bonds as edges, to reflect
the molecular connectivity [6]. Despite the signifi-
cant advances in predictive performance, challenges
remain regarding the interpretability and reliability
of deep learning models. These DL models offer
little insight into the decision-making process, mak-
ing it difficult to understand how certain molecular
features contribute to the predicted properties.

In the context of molecular property prediction,
XAI methods can help researchers understand which
molecular characteristics, such as specific substruc-
tures, functional groups, or atom-level interactions,
drive the predictions of a model. This interpretabil-
ity is crucial for validating model predictions, espe-
cially in high-stakes domains such as drug discovery,
where understanding the rationale behind a pre-
diction can help researchers make more informed
decisions and avoid potentially harmful or costly
errors.

Various XAI techniques have been explored in
molecular property prediction. These techniques
include SHAP (SHapley Additive exPlanations)
e.g. in [7], MolSHAP [8], LIME (Local Inter-
pretable Model-agnostic Explanations), e.g. [9], and
substructure-based explanation methods, e.g. [10].
The latter are especially interesting because they
can reveal chemically meaningful substructures
that drive the model’s predictions.  However,
perturbation-based methods that mask parts of
the input graph are not well suited for molecular
property prediction. Metrics such as comprehen-
siveness [11], which measure how much predictions
change when an explanation subgraph is removed,
can in principle be optimized to find important sub-
structures, but this stragegy can fail in molecular
settings where even minor structural modifications
can lead to large shifts in chemical properties. A
better alternative is to apply substructure masking
in a learned node representation that incorporates
information from the full molecular graph [10], as
well as rely on a fixed fragmentation scheme that en-
sures the resulting substructures remain connected

and chemically meaningful. By identifying the key
substructures, researchers can not only gain insight
into the behavior of the model but also identify po-
tential areas for further experimental validation or
molecular optimization.

While XATI helps to understand model behavior,
UQ provides a complementary approach to assess the
reliability of predictions. UQ focuses on measuring
the confidence or uncertainty in a model’s outputs,
offering valuable information on the regions where a
model might be less certain or prone to error [5]. In
molecular property prediction, the incorporation of
uncertainty quantification can help identify predic-
tions that are likely to be incorrect, thus improving
the overall trustworthiness of the model, and can
help determine which molecules should be selected
for further experimental testing [12]. A variety of
UQ methods exists that be can used for this task, in-
cluding ensemble-based methods and distance-based
methods.

Recent research has begun to explore the integra-
tion of XAT and UQ to provide a more comprehensive
understanding of model reliability [13]. By integrat-
ing UQ with XAI, it becomes possible to evaluate not
only how likely the prediction is to be correct and
what the most plausible explanation for the model’s
output is, but also how reliable those explanations
themselves are. This integrated approach has the
potential to enhance the interpretability and trust-
worthiness of molecular property prediction models,
offering a deeper understanding of the factors driving
model decisions and their associated uncertainties.
A gap persists in understanding how uncertainties
in molecular property predictions connect to uncer-
tainties in their corresponding explanations, which
is essential for developing models that are reliable,
interpretable, and actionable.

3 Methods

3.1 Data

Two datasets [10] are used in this study, one for
predicting aqueous solubility (ESOL) and one for
predicting mutagenicity. Each dataset was randomly
split into training, test and validation data with a
80-10-10 split. Details about the data are shown in
Table 1.

3.2 Model construction

The molecular prediction models are implemented as
neural network ensembles [14], where each ensemble
member is an independently trained relational graph
convolution network (RGCN) model, following the
design of Wu et al. [10] (see Fig. 1). Each model pro-
cesses the molecular graph using three RGCN layers,
after which attention pooling (a weighted sum of



Table 1. Datasets and their associated characteristics
used in this study. Size indicates the total number of
molecules in each dataset before splitting into training,
test, and validation sets. Metric denotes the primary
evaluation metric used for assessing the performance.
The datasets do not include ground-truth explanation
labels.

Dataset Task Size Metric
ESOL Regression 1111 MSE
Mutagenicity Classification 7672  AUC
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Figure 1. The model operates on molecular graphs
using an initial atom embedding (and bond embedding,
not illustrated) followed by three relational graph convo-
lution (RGCN) layers that generate contextualized atom
representations by message passing between the atoms.
These representations are aggregated with an attention
pooling layer and passed through three fully connected
layers to produce the final prediction. When a fragment
is masked, the contextualized embeddings of its atoms
are set to zero while the atoms themselves remain in the
graph during RCGN message passing. The full system
uses an ensemble of ten independently trained models.

node features) produces a molecular-level embedding
that is passed through three fully connected layers
to generate the prediction. The ensemble members
are initialized with different random seeds to ensure
model diversity. The final prediction F(x) for an
input molecule z is calculated as the average of the
predictions across the ensemble members,

M
Fla)= 12 3 M), (1)
m=1

where M is the number of ensemble members and
) (z) is the prediction of ensemble member m.

3.3 Predictive uncertainty

Two different methods for quantifying predictive
uncertainties are used in this study: The ensem-

ble variance (regression and classification) and the
negative softmax score (only classification).

Ensemble variance The predictive uncertainty
can be measured by the variance of the individual
predictions across the ensemble. If the ensemble is
certain that a prediction is correct, then all ensemble
members should align in their predictions, while
high variance means that the members disagree, and
hence the overall ensemble is not sure. Formally, the
predictive uncertainty is measured by

1 M

M

=m

Uyar. (z) = (F(z) - f™ (@)% (2)

Negative softmax score For classification tasks,
the predictive uncertainty can also be measured by
using the output from the softmax activation func-
tion (after the last layer of the neural network) for
the predicted class. Since high softmax scores means
low uncertainty, the softmax values are negated to
represent uncertainty instead of confidence. In the
binary classification case, this is simply given as

Usoftmax () = — max (F(x), 1-— F(a:)) (3)

3.4 Substructure explanations

We aim at explaining model predictions by assigning
attribution scores to molecular fragments. We base
our analysis on three different ways of breaking
molecules into chemically meaningful substructures:

BRICS Molecules are split at retrosynthetically
meaningful bonds, generating chemical sub-
structures useful for design or combinatorial
assembly [15].

Murcko scaffold Molecules are split into the cen-
tral scaffold fragment (all rings and linkers)
and the side-chain fragments attached to it,
giving a natural division between core and sub-
stituents [16].

Functional groups Molecules are split into small
fragments corresponding to known chemical
groups linked to reactivity.

To assess how much a specific molecular substruc-
ture contributes to the model’s prediction, we com-
pare the full model prediction with the prediction
obtained when that substructure is masked. Impor-
tantly, because masking molecular fragments in the
input would create chemically unrealistic structures,
we apply the masking to the final contextualized
atom-wise representation of the model, immediately
before the attention pooling. For each atom that is
part of the masked substructure, the weight of its
corresponding nodes are set to zero (see Fig. 1).



Based on these two different predictions, we can
measure the signed attribution of this substructure,
by contrasting the model output with and without
masking. For a single model, we define the attribu-
tion as

a"™ (z,5) = fU (x) = f1" (. 5), (4)
where f(™)(z, s) is the prediction of the m-th ensem-
ble member where the s-th substructure is masked.
Similary we define the attribution for the ensemble
prediction,

M
1
Az, s) =3 Z a\™ (z,5) (5)
m=1
M M
1 1
- (m)(py _ (m)
MmZ:lf () M;f (2,5) (6)
F(=z) F(x,s)

A value of |A(z, s)| close to zero indicates that the
masked substructure has little to no impact on the
molecular property that is predicted. In contrast, a
large absolute value indicates that this substructure
is of high relevance.

3.5 Explanation uncertainty

The uncertainty of a substructure explanation can
be measured by calculating each ensemble member’s
attribution score separately and taking the variance
of this,

1 Y 2
Uw,s) =72 > (a(m)(x,s) —A(x,s)) ()

The overall uncertainty of the explanations across
the entire molecule can be defined in different ways.
Here, we will specifically look at four options.

1. The uncertainty of the molecular substructure
with the strongest attribution,

Uhighest(x) = U($7 S*) (8)

where s* = arg max, |A(z, s)|.

2. The sum of uncertainty across all substructures,

Uan(z) = Z Uz, s). (9)

3. The summed uncertainties weighted by the ab-
solute value of the attribution,

Uweighted(ﬂf) = Z |A(J;a 8)| ' U(xv 5)7 (10)

such that substructures with larger attribution
contribute more to the overall uncertainty.

Table 2. Performance on the test datasets for predicting
solubility and mutagenicty.

Dataset Metric Result
ESOL MSE 0.350
Mutagenictiy  AUC 0.896

4. The weigthed sum of uncertainties, where the
weights are normalized across substructures,

S A, 8)| - Uz, s)
S lAGs)

Uscaled (1’) =

(11)

such that the metric is insensitive to the number
of substructures.

3.6 Evaluation

The main performance metrics are the mean squared
error (MSE) for predicting aqueous solubility on
the ESOL dataset, and the area under the receiver
operating characteristic curve (AUC) for predicting
mutagenicity on the corresponding dataset. In all
experiments we use M = 10 ensemble members.

To evaluate the preditive uncertainies, the relation
between these uncertainties and the performance at
molecular property prediction is studied. This is
done by dividing the data into different subsets based
on uncertainty scores and looking at the molecular
property prediction for each of the subsets. Ad-
ditionally, the performance on the test dataset is
evaluated when excluding predictions with the high-
est uncertainty scores.

To evaluate the uncertainties of the explanations,
the data is again divided into different subsets based
on the explanation uncertainty, and the performance
on each subset is calculated separately. This division
into subsets is done separately for each explanation
uncertainty method and for each of the three meth-
ods to determine substructure mask explanations.

The relation between the predictive uncertain-
ties and the explanation uncertainties is evaluated
by calculating the correlation coeflicients for each
combination of explanation uncertainty, predictive
uncertainty, explanation method and dataset.

4 Results

4.1 Molecular property prediction

The performance of the RGCN ensemble for the task
of predicting aqueous solubility and mutagenicity is
shown in Table 2.
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Figure 2. Mean squared error for predictions with low,
medium and high predictive uncertainties for the ESOL
test dataset. All subsets were chosen to be of equal size.

4.2 Predictive uncertainty

For both datasets a correlation between predictive
uncertainties and correctness of the prediction was
observed.

ESOL Dividing the ESOL test set into three
equally sized subsets ranked by total predictive un-
certainty shows a clear trend (see Fig 2): The lowest-
uncertainty subset has the lowest MSE, the middle
subset has an intermediate MSE, and the highest-
uncertainty subset has the highest MSE on average.
This is also reflected in Fig. 3: Applying an un-
certainty threshold to select the most trustworthy
predictions monotonically improves model perfor-
mance, as reflected by a decreasing mean squared
error (MSE) with more restrictive thresholds. That
is, when considering only the molecules with the low-
est predicted uncertainty, the MSE steadily drops.

Mutagenicity Figure 4 presents a similar anal-
ysis for the mutagenicity prediction task, showing
accuracy and AUC for different uncertainty thresh-
olds. The curves illustrate performance when high-
uncertainty predictions are excluded and highlight
the relationship between predicted uncertainty and
accuracy, indicating that predictions with lower un-
certainty are generally more reliable. The ensemble
variance and the negative softmax score give similar
results.

4.3 Explanations

An example of several substructure mask explana-
tions for a molecule from the Mutagenicity dataset is
shown in Fig. 5, using all three methods for dividing
the molecule into meaningful chemical substructures
(BRICS, Murcko scaffolds and Functional groups).
The performance on test data falling into four
brackets of explanation uncertainty from low to high
is shown in Fig. 6 (ESOL) and Fig. 7 (Mutagenicity).
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Figure 3. Mean squared error on ESOL test data when
only including data points with the lowest predictive
uncertainties. The upper row shows the performance
based on uncertainty threshold values, while lower row
shows the performance based on the fraction of included
data.

For both datasets, there is a general correspondence
between explanation uncertainty and model perfor-
mance, such that high molecular property prediction
performance is achieved on data with low explana-
tion uncertainty for all four explanation uncertainty
metrics across all types of chemical substructures
(BRICS, Murcko scaffolds, Functional groups), with
the exception of Functional groups for ESOL, where
no significant relation between the explanation un-
certainies and the MSE of the prediction could be
observed.

4.4 Relation of predictive uncertainty
and explanation uncertainty

ESOL On the ESOL dataset, weak to moderate
correlations were found between the predictive un-
certainties and the different types of explanation
uncertainties (see Table 3). The strongest correla-
tion was found for BRICS substructures using the
Uhighest explanation uncertainty.

Mutagenicity The correlation between explana-
tion uncertainties and predictive uncertainties for
the mutagenicity dataset were found to be moderate
to strong (see Table 3 for the results when using the
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Figure 4. Performance on Mutagenicity test data when
only including data points with the lowest predictive
uncertainties. The upper figure shows the accuracy for
different uncertainty thresholds, and the lower figure
shows the AUC for different fractions of included data.

ensemble variance or the softmax score as the pre-
dictive UQ method). Similar to ESOL, the BRICS
substructure explanation uncertainties correlate the
most with the predictive uncertainties, however here,
the highest correlations are found when using U,y
explanation uncertainty.

Across all preditive UQ methods, all four explana-
tion UQ methods and both datasets, the functional
groups explanation uncertainties showed the low-
est correlation scores. An example scatter plot of
the relation between predictive uncertainties and
explanation uncertainties is shown in Fig. 8.

5 Discussion

One key observation of this study is that predictive
uncertainty scores correlate with the accuracy of pre-
dictions, supporting the hypothesis that uncertainty
estimation can be a reliable indicator of prediction
correctness. As shown in Fig. 3 for ESOL and in
Fig. 4 for Mutagenicity, samples with high predic-
tive uncertainties can be excluded, which will lead
to an improved overall performance of the remain-
ing data. Although using uncertainty thresholds
like this comes at the expense of not being able to
make predictions for some molecules, it also has
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Figure 5. Substructure mask explanations for an ex-
ample molecule from the Mutagenicity dataset. Purple
color refers to a positive impact (toxifying) of a substruc-
ture to the final prediction, and green color refers to a
negative impact (detoxifying). The color of the substruc-
ture indicates its effect strength, with the attribution
value shown next to it.

the benefit that the remaining predictions are more
trustworthy and reliable, which can be crucial in
high-stake applications such as drug design.

By dividing the data into different subsets based
on their predictive uncertainties, this observation
could be further confirmed. For ESOL, the MSE
for low-uncertainty predictions was close to zero
with a median of 0.05 (Fig. 2). For Mutagenicity,
the likelihood of a low-uncertainty prediction being
correct was close to 1.0, while the likelihood of high-
uncertainty prediction was just above chance level
(Fig. 4). This is a strong indicator for the argument
that predictions with high uncertainties should not
be blindly trusted, as there is a high chance that
they are incorrect.

Furthermore, explanation uncertainties were
shown to have a correlation with prediction cor-
rectness, emphasizing that they are not only of im-
portance for increasing model interpretability, but
that when the explanation is unsure or unclear, it
is often connected to an unreliable prediction. Al-
though this relation is clear, it is less strong than
the relationship between the predictive uncertainty
and the performance, which can be seen in Fig. 6
and 7. For mutagenicity, the accuracy of predictions
for samples with low explanation uncertainties was
around 0.87-0.95, and around 0.70-0.80 for samples
with high explanation uncertainties, which is still a
large performance difference, suggesting that predic-
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tions should not be trusted when the explanation
uncertainty is high.

The findings indicate that predictive uncertainty
and explanation uncertainty are interrelated, but
the strength of this relationship varies depending on
the dataset and uncertainty estimation method used.
In the ESOL dataset, weak to moderate correlations
were observed, with BRICS explanations showing
the strongest alignment with predictive uncertainty
(Table 3). In contrast, the mutagenicity dataset ex-
hibited moderate to strong correlations, particularly
when using ensemble variance as the predictive UQ
method (Table 3).

The strongest correlations were observed when
summing the attribution scores of all possible ex-
planations within a single substructure explanation
method. While BRICS and Murcko scaffold explana-

Mutagenicity
BRICS

c o ©°

© o ©

S v o
. ! ’

Accuracy

0.75 1

0.70

low high

Uncertainty

Murcko scaffolds

0.90

0.85

0.80 -

Accuracy

0.75 A

low high

Uncertainty

functional groups

Uhighest
Uall
Uweighted

0.90 1

Uscaled
_____ ---__All data

Accuracy
o o o
~ © ©
18] o wv

low high

Uncertainty

Figure 7. Likelihood of a prediction being correct given
the uncertainty of the explanation for the Mutagenicity
test dataset.

tions demonstrated the highest correlation with pre-
dictive uncertainty, functional group explanations
consistently showed lower correlation scores.

When comparing the UQ methods in this study,
the variance-based ensemble uncertainty and the
softmax score behave similarly in terms of predic-
tive performance, as measured by AUC and accuracy
(Fig. 4). However, regarding correlation with pre-
dictive uncertainty, the ensemble variance shows a
much stronger relationship. The four different ex-
planation uncertainty methods all exhibited similar
performance at detecting untrustworthy predictions,
but they differ largely in their correlations with the
predictive uncertainties.

Since it was shown that both the predictive un-
certainties and the explanation uncertainties have
a strong relation of their scores to the correctness



Table 3. Correlations between predictive uncertainty
and the different types of explanation uncertainties.

BRICS Murkco Functional
scaffold groups
g Uhighest 0.45 0.37 0.17
S) Uanl 0.14 0.34 0.07
A Useighted  0.06 0.29 -0.05
Uscaled 0.35 0.44 0.15
2T Uighest 0.47 0.59 0.29
o= U 0.76  0.66 0.40
= é)) Useighted 0.5 0.43 0.18
= & Uscaled 0.24 0.52 0.25
£ % Uhighest 0.24 0.36 0.13
o = U.n 0.57 0.46 0.24
=S Ugeighted  0.24 0.2 0.03
= Z Usoled -0.03 0.27 0.10

of a prediction, but the correlations between these
uncertainties are mostly only moderate (with a few
being high or low), these results suggest that predic-
tive uncertainty and explanation uncertainty provide
complementary perspectives on model trustworthi-
ness. The correlations, varying in strength, indicate
that combining both approaches may yield a more
comprehensive measure of reliability.

6 Conclusion

This study shows that UQ can enhance a model’s
trustworthiness by identifying predictions that are
likely unreliable, and that explainability methods
offer complementary insight into how the model ar-
rives at its predictions. For both datasets, a clear
correlation between predictive uncertainties and cor-
rectness of the prediction was observed. A similar
relation was found between the explanation uncer-
tainties and the correctness of the prediction. When
comparing the predictive uncertainties and the ex-
planation uncertainties, positive correlations were
found, with the strongest one when using the sum
of the attribution scores of all possible explanations
for a molecule within one substructure explanation
method as the measure for explanation uncertainty.
While some correlations were only weak, the results
suggest that the different methods find different data
samples untrustworthy, implying that a combination
of all methods should be used to decide whether to
trust a prediction or not.

Limitations and future work In future work,
it should be explored how the different uncertainty
measures could be combined into one meaningful,
potentially more powerful, measure of trustworthi-
ness. This could be done by training a small neural
network that takes all the uncertainty scores and the

Uall

Uhighest

U weighted
Uscaled

Uvar.

Figure 8. Correlation between predictive uncertainty
and explanation uncertainty from the BRICS substruc-
ture explanations for the Mutagenicity test datset. Here,
the predictive uncertainty was measured as the ensemble
variance.

prediction as input, and learns to predict whether
this prediction was correct.

Additionally, more uncertainty quantification
methods for measuring the predictive uncertainties
should be taken into account. Here, it might be
interesting to also study methods that decompose
the total preditive uncertainy into its epistemic and
aleatory parts.

More advanced graph neural networks that take
into account the geometry of the molecules could
also be explored in the future.

The explainability framework used in this work
is based on masking in the contextualized atom
embeddings of a graph neural network after mes-
sage passing. A possible failure mode is that global
molecular properties could be encoded not in the
responsible atoms or fragments, but in structurally
central substructures, leading to incorrect attribu-
tion. While this is less likely when the training
data cover a broad range of chemical diversity, this
should be examined in detail, although that is diffi-
cult without access to fragment-level ground truth
attribution labels.

Furthermore, this study has the limitation of only
investigating two datasets. This should be extended
to more different datasets, with different molecular
property prediction tasks.
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