NLDL

#39

001

002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

031

032
033
034
035
036
037
038
039
040
041
042
043
044

NLDL 2026 Full Paper Submission #39.

Anonymous Full Paper
Submission 39

Abstract

Accurate molecular property prediction is a key chal-
lenge in fields such as drug discovery and materials
science, where deep learning models offer promising
solutions. However, the widespread use of these
models is hindered by their lack of transparency
and the difficulty in assessing the reliability of their
predictions. In this study, we address these issues by
integrating uncertainty quantification and explain-
able Al techniques to enhance the trustworthiness of
graph neural networks for molecular property predic-
tion. We focus on predicting two distinct properties:
aqueous solubility and mutagenicity.

By deriving explanations in the form of substruc-
ture masks, we obtain interpretable explanations
in the form of chemically meaningful substructures
that influence the model’s predictions. Addition-
ally, we incorporate uncertainty quantification to
evaluate the confidence of both the predictions and
their explanations. Our results demonstrate that
(1) predictive uncertainty scores correlate with the
accuracy of the predictions for both tasks, (2) un-
certainties in the explanations also correlate with
prediction correctness, and (3) there is a weak to
moderate correlation between the uncertainties in
the predictions and those in the explanations. These
findings highlight the potential of combining uncer-
tainty quantification and explainability to improve
the trustworthiness of molecular property prediction
models.

1 Introduction

Molecular property prediction is a critical task in
computational chemistry, material science, and drug
discovery, where understanding the relationships be-
tween molecular structures and their properties can
guide the discovery of new materials and therapeu-
tics [2, 3]. Machine learning (ML), and particularly
deep learning (DL) methods have revolutionized
this field, enabling models to learn complex, high-
dimensional representations of molecular data and
provide accurate predictions for various molecular
properties [4].

However, despite the promising performance of
DL models in molecular property prediction, con-

IThe code is available on https://github.com/
anonymous-user3/NLDL2025-project, and is based on [1].
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Predictive and Explanatory Uncertainties in Graph Neural Net-
works: A Case Study in Molecular Property Prediction

cerns about their reliability remain significant bar-
riers to their widespread adoption, particularly in
high-stakes domains like drug discovery or material
design. These models often lack transparency in how
they arrive at predictions, which can be problematic
in safety-critical applications. The absence of inter-
pretability and reliability can make it difficult for
chemists to trust model outputs and make informed
decisions. Thus, ensuring the trustworthiness of
predictions is a critical step toward advancing the
utility of these models in real-world applications.

Explainable AI (XAI) techniques have emerged
as a solution to address some of these challenges.
By providing interpretable explanations for model
predictions, XAl allows users to gain insights into
the underlying decision-making process, fostering
confidence in the predictions [5]. In the context
of molecular property prediction, XAI can reveal
how specific molecular substructures contribute to
the model’s output, providing valuable insights for
researchers and guiding further experimental inves-
tigations. Additionally, uncertainty quantification
(UQ) has become an essential tool in assessing the
reliability of model predictions [6]. By quantifying
the uncertainty associated with a prediction, UQ
helps identify regions where the model is less confi-
dent and may be prone to errors, allowing for more
reliable and cautious decision-making.

In this work, we aim to bridge these criti-
cal aspects of deep learning models in molecular
property prediction: uncertainty quantification, ex-
plainability, and their interplay. Specifically, we
(1) show how uncertainty quantification can be ap-
plied to molecular property predictions to assess
their trustworthiness, (2) show how substructure-
mask-explanations can be used to interpret these
predictions, and propose and compare several ways
to determine what role uncertainties play in these
explanations, (3) show that there is a correlation of
uncertainty scores and correctness of predictions for
both predictive uncertainties and explanation uncer-
tainties, and (4) analyze the relationship between
these different uncertainties.

Through these investigations, we aim to con-
tribute to the development of more trustworthy and
interpretable deep learning models for molecular
property prediction.
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2 Background

In recent years, ML and DL techniques have emerged
as powerful tools for molecular property predic-
tion [4]. These approaches, particularly neural net-
works, can capture complex patterns in molecular
data and provide accurate predictions across a wide
range of tasks, including predicting solubility, tox-
icity, bioactivity, and mutagenicity. Graph neural
networks (GNNs), in particular, have gained promi-
nence due to their ability to directly operate on
molecular graphs, which naturally represent atoms
and bonds, thus preserving the inherent structure
of molecules [7]. Despite the significant advances in
predictive performance, challenges remain regarding
the interpretability and reliability of deep learning
models. These DL models offer little insight into the
decision-making process, making it difficult to un-
derstand how certain molecular features contribute
to the predicted properties.

In the context of molecular property prediction,
XAI methods can help researchers understand which
molecular characteristics, such as specific substruc-
tures, functional groups, or atom-level interactions,
drive the predictions of a model. This interpretabil-
ity is crucial for validating model predictions, espe-
cially in high-stakes domains such as drug discovery,
where understanding the rationale behind a pre-
diction can help researchers make more informed
decisions and avoid potentially harmful or costly
errors.

Various XAI techniques have been explored in
molecular property prediction. These techniques
include SHAP (SHapley Additive exPlanations)
e.g. in [8], MolSHAP [9], LIME (Local Inter-
pretable Model-agnostic Explanations), e.g. [10], and
substructure-based explanation methods, e.g. [1].
In particular, substructure-mask-explanations have
gained attention as they allow for the identification
of chemically meaningful substructures that influ-
ence predictions. By highlighting these key substruc-
tures, researchers can not only gain insight into the
behavior of the model but also identify potential ar-
eas for further experimental validation or molecular
optimization.

While XAT helps to understand model behavior,
UQ provides a complementary approach to assess the
reliability of predictions. UQ focuses on measuring
the confidence or uncertainty in a model’s outputs,
offering valuable information on the regions where a
model might be less certain or prone to error [6]. In
molecular property prediction, the incorporation of
uncertainty quantification can help identify predic-
tions that are likely to be incorrect, thus improving
the overall trustworthiness of the model, and can
help determine which molecules should be selected
for further experimental testing [11]. A variety of
UQ methods exists that be can used for this task, in-
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Table 1. Datasets and corresponding details used in this
study. Size refers to the total number of molecules in a
dataset before splitting into training, test and validation
set. Metric refers to the evaluation metric used for
assessing the performance.

Dataset Task Size Metric
ESOL regression 1111 MSE
Mutagenicity —classification 7672  AUC

cluding ensemble-based methods and distance-based
methods.

Recent research has begun to explore the integra-
tion of XAI and UQ to provide a more comprehensive
understanding of model reliability [12]. By combin-
ing UQ with XAI not only can the certainty of the
prediction being correct and the most likely explana-
tion for the model’s prediction be assessed, but also
the confidence in the explanations themselves. This
integrated approach has the potential to enhance
the interpretability and trustworthiness of molec-
ular property prediction models, offering a deeper
understanding of the factors driving model decisions
and their associated uncertainties. There remains
a gap in understanding how the uncertainties in
molecular property predictions relate to those in
their corresponding explanations, which is essential
for advancing reliable, interpretable, and actionable
models.

3 Methods

3.1 Data

Two datasets are used in this study, one for predict-
ing aqueous solubility (ESOL) and one for predicting
mutagenicity. Each dataset was randomly split into
training, test and validation data with a 80-10-10
split. Details about the data are shown in Table 1.

3.2 Model Construction

The molecular prediction model is constructed as a
neural network ensemble [13] consisting of 10 rela-
tional graph convolution network (RGCN) models,
as suggested in [1]. After three RCGN layers, at-
tention pooling (weighted sum along the feature
dimension over all nodes) is used to create a molec-
ular embedding followed by three fully connected
layers. Each model is initialized with a different ran-
dom seed, leading to network diversification. The
final prediction F'(z) for an input x is calculated as
the average of the predictions of the 10 ensemble
members:

2 iz fil®)

Fla) = &=L

(1)
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where m is the number of ensemble members and
fi(x) is the prediction of ensemble member 4.

3.3 Predictive Uncertainty Quantifi-
cation

Two different methods for quantifying predictive
uncertainties are used in this study: variance-based
total predictive uncertainty (regression and classifi-
cation) and softmax score (only classification).

3.3.1 Variance-based total predictive uncer-
tainty

The predictive uncertainty can be measured by the
variance of the individual predictions of the ensem-
ble members for an input. If the ensemble is certain
that a prediction is correct, then all ensemble mem-
bers should align in their predictions, while a lot
of variation means that the members disagree, and
hence the overall ensemble is not sure. Formally, the
predictive uncertainty is measured by

2 (F(z) — fi(x))?

Uprea(a) = -

(2)

where m is the number of ensemble members, F(x)
is the ensemble prediction for input x and f;(x) is
the prediction of ensemble member ¢ for input x.

3.3.2 Softmax Score

For a classification task, the predictive uncertainty
can be measured by using the values output from
the softmax activation function after the last layer
of a neural network for the predicted class, where a
high softmax score means low uncertainty and a low
softmax score means high uncertainty. The softmax
values are negated to represent uncertainties instead
of certainties to be comparable to other methods.

3.4 Substructure-Mask-
Explanations

We base our analysis on three different ways of break-
ing molecules into chemically meaningful substruc-
tures: BRICS [14] uses a library of retrosyntheti-
cally feasible fragments, Murcko [15] splits molecules
into a central core with side chains, and functional
groups identify small local features linked to reactiv-
ity. In order to measure how good of an explanation
a specific chemical substructure is, a prediction is
calculated once for the whole molecule, and then
a second time for the molecule when masking out
all atoms that are part of this substructure. This
masking is only applied after the message passing
layers, i.e. during the attention pooling. For each
atom that is part of the mask, the weight of its
corresponding node will be set to 0 when creating
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the molecular embedding. Based on these two dif-
ferent predictions, we can measure the impact or
attribution of this substructure on the prediction.
The attribution score A is defined as the difference
of all predictions for input = before applying the
mask, i.e. the full molecule, and after applying the
mask (Zsup), 1.6. the molecule without the respective
substructure.

m

Z fi(xsub)

i=1

m
A@) = fila) - (3)
i=1
A value close to 0 should indicate that the masked
substructure has little to no impact on the molecular
property that is predicted. In contrast, a large
absolute value should indicate that this substructure
is of high relevance.

3.5 Explanation Uncertainty Quan-
tification

The uncertainty of an explanation can be measured
by calculating each ensemble member’s attribution
score separately and taking the variance of this.

S () — filwaw) — As(a))

m
(4)
The overall uncertainty of the explanations can be
defined in different ways. Here, we are specifically
looking at four different option: Only taking into
account the uncertainty of the most likely explana-
tion, taking all uncertainties into account, the latter
with additional weighing of importance of each un-
certainty, and the same with a scaling method to
ensure comparability between molecules.

Usub(x) -

sub® = argmax |Agyp ()|
sub

UXhighest (LE) = Ugup+ (LE)

lj;x:all(af) = :E:: (]sub(in)

sub

UXweighted(x) - Z Usub(x) . |Asub($)‘

sub

(8)

For the last method, the sum of the uncertainties
of all possible explanations is weighted by the abso-
lute attribution score for each explanation, meaning
that large uncertainties get penalized more when
the explanation is more likely. In order for this sum
to be more comparable between different molecules
and to be invariant to the number of substructure
masks, we can scale this value first.

|Asub($)|

asub(m) = Zsu(, |A9ub(x)| (9)
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Table 2. Performance on the test datasets for predicting
solubility and mutagenicty.

Dataset Metric Result
ESOL MSE 0.350
Mutagenictiy =~ AUC 0.896

UXscaled(x) = Z Usub(x) ' asub(x)

sub

(10)

3.6 Evaluation

The network performance for the task of molecular
property prediction is measured the mean squared
error (MSE) for the predicting aqueous solubility on
the ESOL dataset and by the area under the receiver
operating characteristic curve (AUC) for predicting
mutagenicity on the respective dataset.

To evaluate the preditive uncertainies, the relation
between these uncertainties and the performance at
molecular property prediction is studied. This is
done by dividing the data into different subsets based
on uncertainty scores and looking at the molecular
property prediction for each of the subsets. Ad-
ditionally, the performance on the test dataset is
evaluated when excluding predictions with the high-
est uncertainty scores.

To evaluate the uncertainties of the explanations,
the data is again divided into different subsets based
on the explanation uncertainty, and the performance
on each subset is calculated separately. This division
into subsets is done separately for each explanation
uncertainty method and for each of the three meth-
ods to determine substructure mask explanations.

The relation between the predictive uncertain-
ties and the explanation uncertainties is evaluated
by calculating the correlation coefficients for each
combination of explanation uncertainty, predictive
uncertainty, SME method and dataset.

4 Results

4.1 Molecular Property Prediction

The performance of the RGCN ensemble for the task
of predicting aqueous solubility and mutagenicity is
shown in Table 2.

4.2 Predictive Uncertainty

For both datasets a correlation between predictive
uncertainties and correctness of the prediction could
be observed.

When dividing the ESOL test data into three
equally sized subsets based on uncertainties, the

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.
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Figure 1. Mean squared error for predictions with low,
medium and high predictive uncertainties for the ESOL
test dataset. All subsets were chosen to be of equal size.

subset with the lowest uncertainties also has the
lowest MSE (see Fig 1).

When using uncertainty thresholds to determine
when a prediction can be trusted and when not, the
overall performance improves (i.e., lower MSE) the
lower the uncertainty threshold would be picked (see
Fig. 2).

The results for different uncertainty thresholds
for the mutagenicity prediction task are shown in
Fig. 3 (performance when excluding data with high
uncertainties) and Fig. 4 (likelihood of prediction
being correct given the uncertainty score), showing
that there is a relation between uncertainty scores
and the correctness of the prediction.

4.3 Substructure Mask Explanations

An example of several substructure mask explana-
tions for a molecule from the Mutagenicity dataset is
shown in Fig. 5, using all three methods for dividing
the molecule into meaningful chemical substructures
(BRICS, murcko scaffolds and functional groups).

4.4 Explanation Uncertainty

The performance on data with low, low-medium,
medium-high and high explanation uncertainties for
the ESOL test dataset is shown in Fig. 6 and for
the mutagenicity test dataset is shown in Fig. 7.
For both datasets, the highest molecular property
prediction performance is achieved on data with the
lowest explanation uncertainties for all four explana-
tion uncertainty metrics across all types of chemical
substructures (BRICS, murcko scaffolds, functional
groups), with the exception of functional groups
for ESOL, where no significant relation between
the explanation uncertainies and the MSE of the
prediction could be observed.
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Figure 2. Mean squared error when only including pre-
dictions with the lowest predictive uncertainties on the
ESOL test data. The upper row shows the performance
based on the uncertainty threshold values, while lower
row shows the performance based on how much of the
data samples will still be included.

Table 3. Correlations between the predictive uncer-
tainty and the different types of explanation uncertain-
ties for the ESOL test dataset.

brics murcko fg
UXhighest 0.45 0.37 0.17
UXan 0.14 0.34 0.07
UXuweightea  0.06 0.29 -0.05
UXscaled 0.35 0.44 0.15

Relation of Predictive Uncer-
tainty and Explanation Uncer-
tainty

4.5

On the ESOL dataset, weak to moderate correla-
tions were found between the predictive uncertainties
and the different types of explanation uncertainties
(Table 3). The murcko substructures explanation
uncertainties showed the strongest correlation over-
all with the predictive uncertainties. The highest
correlations were found when using Egs. 6 and 10
for calculating the explanation uncertainty.

The correlation between explanation uncertain-
ties and predictive uncertainties for the mutagenicity
dataset were found to be moderate to strong (see Ta~
ble 4 and 5 for the results when using the ensemble
variance and the softmax score respectively as the
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Figure 3. AUC when only including predictions with
the lowest predictive uncertainty scores for the Muta-
genicity test dataset.
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Figure 4. Likelihood of a prediction being correct
given its predictive uncertainty score. The likelihood is
calculated as the accuracy, i.e. the fraction of correct
predictions over all predictions within a small range of
uncertainty scores.

predictive UQ method). Similar to ESOL, the mur-
cko substructure explanation uncertainties correlate
the a lot with the predictive uncertainties, as well as
the BRICS explanation uncertainties, however here,
the highest correlations are found when using Eq. 7
as the explanation UQ metric.

Across all preditive UQ methods, all four explana-
tion UQ methods and both datasets, the functional
groups explanation uncertainties showed the low-
est correlation scores. An example scatter plot of
the relation between predictive uncertainties and
explanation uncertainties is shown in Fig. 8.

Table 4. Correlations between the predictive uncer-
tainty (ensemble variance) and the different types of ex-
planation uncertainties for the Mutagenicity test dataset.

brics murcko  fg
UXhighest 0.47 0.59 0.29
UXau 0.76 0.66 0.40
UXuweightea 0.5 0.43 0.18
UXscaled 0.24 0.52 0.25
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Figure 5. Substructure mask explanations for an exam-
ple molecule from the Mutagenicity dataset. Red color
refers to a positive impact of a substructure to the final
prediction, and blue color refers to a negative impact.
The intensity of the color describes how high this effect
is. The attribution values of each substructure is written
next to it.

Table 5. Correlations between the predictive uncer-
tainty (softmax score) and the different types of expla-
nation uncertainties for the Mutagenicity test dataset.

brics murcko fg
UXhighest 0.24 0.36 0.13
UXan 0.57 0.46 0.24
UXyeightea  0.24 0.2 0.03
UXscaled -0.03 0.27 0.10

5 Discussion

One key observation of this study is that predictive
uncertainty scores correlate with the accuracy of pre-
dictions, supporting the hypothesis that uncertainty
estimation can be a reliable indicator of prediction
correctness. As shown in Fig. 2 for ESOL and in
Fig. 3 for Mutagenicity, samples with high predic-
tive uncertainties can be excluded, which will lead
to an improved overall performance of the remain-
ing data. Although using uncertainty thresholds
like this comes at the expense of not being able to
make predictions for some molecules, it also has
the benefit that the remaining predictions are more
trustworthy and reliable, which can be crucial in
high-stake applications such as drug design.

By dividing the data into different subsets based
on their predictive uncertainties, this observation
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Figure 6. Mean squared error for predictions with
low to high explanation uncertainties on the ESOL test
dataset.

could be further confirmed. For ESOL, the MSE
for low-uncertainty predictions was close to zero
with a median of 0.05 (Fig. 1). For Mutagenicity,
the likelihood of a low-uncertainty prediction being
correct was close to 1.0, while the likelihood of high-
uncertainty prediction was just above chance level
(Fig. 4). This is a strong indicator for the argument
that predictions with high uncertainties should not
be blindly trusted, as there is a high chance that
they are incorrect.

Furthermore, explanation uncertainties were
shown to have a correlation with prediction cor-
rectness, emphasizing that they are not only of im-
portance for increasing model interpretability, but
that when the explanation is unsure or unclear, it
is often connected to an unreliable prediction. Al-
though this relation is clear, it is less strong than
the relationship between the predictive uncertainty
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Figure 7. Likelihood of a prediction being correct given
the uncertainty of the explanation for the Mutagenicity
test dataset.

and the performance, which can be seen in Fig. 6
and 7. For mutagenicity, the accuracy of predictions
for samples with low explanation uncertainties was
around 0.87-0.95, and around 0.70-0.80 for samples
with high explanation uncertainties, which is still a
large performance difference, suggesting that predic-
tions should not be trusted when the explanation
uncertainty is high.

The findings indicate that predictive uncertainty
and explanation uncertainty are interrelated, but
the strength of this relationship varies depending on
the dataset and uncertainty estimation method used.
In the ESOL dataset, weak to moderate correlations
were observed, with Murcko scaffold explanations
showing the strongest alignment with predictive un-
certainty (Table 3). In contrast, the mutagenicity
dataset exhibited moderate to strong correlations,
particularly when using ensemble variance as the
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Figure 8. Correlation between predictive uncertainty
and explanation uncertainty from the BRICS substruc-
ture explanations for the Mutagenicity test datset. Here,
the predictive uncertainty was measured as the ensemble
variance.

predictive UQ method (Tables 5 and 4).

The strongest correlations were observed when
summing the attribution scores of all possible expla-
nations within a single SME method. While BRICS
and Murcko scaffold explanations demonstrated the
highest correlation with predictive uncertainty, func-
tional group explanations consistently showed lower
correlation scores.

When comparing the different UQ methods used
in this study, a similar performance is achieved be-
tween the variance-based ensemble uncertainty and
the softmax score for measuring predictive uncer-
tainty scores (Fig. 3 and Fig. 4). The four differ-
ent explanation uncertainty methods all exhibited
similar performance at detecting untrustworthy pre-
dictions, but they differ largely in their correlations
with the predictive uncertainties. All UQ methods
seem to offer valuable insights and no clear winning
method could be determined.

Since it was shown that both the predictive un-
certainties and the explanation uncertainties have
a strong relation of their scores to the correctness
of a prediction, but the correlations between these
uncertainties are mostly only moderate (with a few
being high or low), these results suggest that predic-
tive uncertainty and explanation uncertainty provide
complementary perspectives on model trustworthi-
ness. The correlations, varying in strength, indicate
that combining both approaches may yield a more
comprehensive measure of reliability.

6 Conclusion

Using UQ methods can increase the trustworthi-
ness of a model by excluding predictions that are
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likely not correct with large predictive uncertainties.
The interpretability of a model can be improved by
including explainability methods.

For both datasets, a clear correlation between
predictive uncertainties and correctness of the pre-
diction could be observed. A similar behavior was
found between the explanation uncertainties and the
correctness of the prediction. When comparing the
predictive uncertainties and the explanation uncer-
tainties, positive correlations were found, with the
strongest one when using the sum of the attribution
scores of all possible explanations for a molecule
within one SME method as the measure for explana-
tion uncertainty. While some correlations are only
weak, the results suggest that the different methods
find different data samples untrustworthy, implying
that a combination of all methods should be used
to decide whether to trust a prediction or not.

Limitations and future work In the future, it
should be explored how the different uncertainty
measures could be combined into one meaningful,
potentially more powerful, measure of trustworthi-
ness. This could be done by training a small neural
network that takes all the uncertainty scores and the
prediction as input, and learns to predict whether
this prediction was correct.

Furthermore, this study has the limitation of only
investigating two datasets. This should be extended
to more different datasets, with different molecular
property prediction tasks.

Additionally, more uncertainty quantification
methods for measuring the predictive uncertainties
should be taken into account. Here, it might be
interesting to also study methods which make it
possible to decompose the total preditive uncertainy
into its epistemic and aleatoric parts.

More advanced graph neural networks that take
into account the geometry of the molecules could
also be explored in the future.
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