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Abstract001

Accurate molecular property prediction is a key chal-002

lenge in fields such as drug discovery and materials003

science, where deep learning models offer promising004

solutions. However, the widespread use of these005

models is hindered by their lack of transparency006

and the difficulty in assessing the reliability of their007

predictions. In this study, we address these issues by008

integrating uncertainty quantification and explain-009

able AI techniques to enhance the trustworthiness of010

graph neural networks for molecular property predic-011

tion. We focus on predicting two distinct properties:012

aqueous solubility and mutagenicity.013

By deriving explanations in the form of substruc-014

ture masks, we obtain interpretable explanations015

in the form of chemically meaningful substructures016

that influence the model’s predictions. Addition-017

ally, we incorporate uncertainty quantification to018

evaluate the confidence of both the predictions and019

their explanations. Our results demonstrate that020

(1) predictive uncertainty scores correlate with the021

accuracy of the predictions for both tasks, (2) un-022

certainties in the explanations also correlate with023

prediction correctness, and (3) there is a weak to024

moderate correlation between the uncertainties in025

the predictions and those in the explanations. These026

findings highlight the potential of combining uncer-027

tainty quantification and explainability to improve028

the trustworthiness of molecular property prediction029

models. 1
030

1 Introduction031

Molecular property prediction is a critical task in032

computational chemistry, material science, and drug033

discovery, where understanding the relationships be-034

tween molecular structures and their properties can035

guide the discovery of new materials and therapeu-036

tics [2, 3]. Machine learning (ML), and particularly037

deep learning (DL) methods have revolutionized038

this field, enabling models to learn complex, high-039

dimensional representations of molecular data and040

provide accurate predictions for various molecular041

properties [4].042

However, despite the promising performance of043

DL models in molecular property prediction, con-044

1The code is available on https://github.com/

anonymous-user3/NLDL2025-project, and is based on [1].

cerns about their reliability remain significant bar- 045

riers to their widespread adoption, particularly in 046

high-stakes domains like drug discovery or material 047

design. These models often lack transparency in how 048

they arrive at predictions, which can be problematic 049

in safety-critical applications. The absence of inter- 050

pretability and reliability can make it difficult for 051

chemists to trust model outputs and make informed 052

decisions. Thus, ensuring the trustworthiness of 053

predictions is a critical step toward advancing the 054

utility of these models in real-world applications. 055

Explainable AI (XAI) techniques have emerged 056

as a solution to address some of these challenges. 057

By providing interpretable explanations for model 058

predictions, XAI allows users to gain insights into 059

the underlying decision-making process, fostering 060

confidence in the predictions [5]. In the context 061

of molecular property prediction, XAI can reveal 062

how specific molecular substructures contribute to 063

the model’s output, providing valuable insights for 064

researchers and guiding further experimental inves- 065

tigations. Additionally, uncertainty quantification 066

(UQ) has become an essential tool in assessing the 067

reliability of model predictions [6]. By quantifying 068

the uncertainty associated with a prediction, UQ 069

helps identify regions where the model is less confi- 070

dent and may be prone to errors, allowing for more 071

reliable and cautious decision-making. 072

In this work, we aim to bridge these criti- 073

cal aspects of deep learning models in molecular 074

property prediction: uncertainty quantification, ex- 075

plainability, and their interplay. Specifically, we 076

(1) show how uncertainty quantification can be ap- 077

plied to molecular property predictions to assess 078

their trustworthiness, (2) show how substructure- 079

mask-explanations can be used to interpret these 080

predictions, and propose and compare several ways 081

to determine what role uncertainties play in these 082

explanations, (3) show that there is a correlation of 083

uncertainty scores and correctness of predictions for 084

both predictive uncertainties and explanation uncer- 085

tainties, and (4) analyze the relationship between 086

these different uncertainties. 087

Through these investigations, we aim to con- 088

tribute to the development of more trustworthy and 089

interpretable deep learning models for molecular 090

property prediction. 091
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2 Background092

In recent years, ML and DL techniques have emerged093

as powerful tools for molecular property predic-094

tion [4]. These approaches, particularly neural net-095

works, can capture complex patterns in molecular096

data and provide accurate predictions across a wide097

range of tasks, including predicting solubility, tox-098

icity, bioactivity, and mutagenicity. Graph neural099

networks (GNNs), in particular, have gained promi-100

nence due to their ability to directly operate on101

molecular graphs, which naturally represent atoms102

and bonds, thus preserving the inherent structure103

of molecules [7]. Despite the significant advances in104

predictive performance, challenges remain regarding105

the interpretability and reliability of deep learning106

models. These DL models offer little insight into the107

decision-making process, making it difficult to un-108

derstand how certain molecular features contribute109

to the predicted properties.110

In the context of molecular property prediction,111

XAI methods can help researchers understand which112

molecular characteristics, such as specific substruc-113

tures, functional groups, or atom-level interactions,114

drive the predictions of a model. This interpretabil-115

ity is crucial for validating model predictions, espe-116

cially in high-stakes domains such as drug discovery,117

where understanding the rationale behind a pre-118

diction can help researchers make more informed119

decisions and avoid potentially harmful or costly120

errors.121

Various XAI techniques have been explored in122

molecular property prediction. These techniques123

include SHAP (SHapley Additive exPlanations)124

e.g. in [8], MolSHAP [9], LIME (Local Inter-125

pretable Model-agnostic Explanations), e.g. [10], and126

substructure-based explanation methods, e.g. [1].127

In particular, substructure-mask-explanations have128

gained attention as they allow for the identification129

of chemically meaningful substructures that influ-130

ence predictions. By highlighting these key substruc-131

tures, researchers can not only gain insight into the132

behavior of the model but also identify potential ar-133

eas for further experimental validation or molecular134

optimization.135

While XAI helps to understand model behavior,136

UQ provides a complementary approach to assess the137

reliability of predictions. UQ focuses on measuring138

the confidence or uncertainty in a model’s outputs,139

offering valuable information on the regions where a140

model might be less certain or prone to error [6]. In141

molecular property prediction, the incorporation of142

uncertainty quantification can help identify predic-143

tions that are likely to be incorrect, thus improving144

the overall trustworthiness of the model, and can145

help determine which molecules should be selected146

for further experimental testing [11]. A variety of147

UQ methods exists that be can used for this task, in-148

Table 1. Datasets and corresponding details used in this
study. Size refers to the total number of molecules in a
dataset before splitting into training, test and validation
set. Metric refers to the evaluation metric used for
assessing the performance.

Dataset Task Size Metric

ESOL regression 1111 MSE
Mutagenicity classification 7672 AUC

cluding ensemble-based methods and distance-based 149

methods. 150

Recent research has begun to explore the integra- 151

tion of XAI and UQ to provide a more comprehensive 152

understanding of model reliability [12]. By combin- 153

ing UQ with XAI, not only can the certainty of the 154

prediction being correct and the most likely explana- 155

tion for the model’s prediction be assessed, but also 156

the confidence in the explanations themselves. This 157

integrated approach has the potential to enhance 158

the interpretability and trustworthiness of molec- 159

ular property prediction models, offering a deeper 160

understanding of the factors driving model decisions 161

and their associated uncertainties. There remains 162

a gap in understanding how the uncertainties in 163

molecular property predictions relate to those in 164

their corresponding explanations, which is essential 165

for advancing reliable, interpretable, and actionable 166

models. 167

3 Methods 168

3.1 Data 169

Two datasets are used in this study, one for predict- 170

ing aqueous solubility (ESOL) and one for predicting 171

mutagenicity. Each dataset was randomly split into 172

training, test and validation data with a 80-10-10 173

split. Details about the data are shown in Table 1. 174

3.2 Model Construction 175

The molecular prediction model is constructed as a 176

neural network ensemble [13] consisting of 10 rela- 177

tional graph convolution network (RGCN) models, 178

as suggested in [1]. After three RCGN layers, at- 179

tention pooling (weighted sum along the feature 180

dimension over all nodes) is used to create a molec- 181

ular embedding followed by three fully connected 182

layers. Each model is initialized with a different ran- 183

dom seed, leading to network diversification. The 184

final prediction F (x) for an input x is calculated as 185

the average of the predictions of the 10 ensemble 186

members: 187

F (x) =

∑m
i=1 fi(x)

m
(1) 188
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where m is the number of ensemble members and189

fi(x) is the prediction of ensemble member i.190

3.3 Predictive Uncertainty Quantifi-191

cation192

Two different methods for quantifying predictive193

uncertainties are used in this study: variance-based194

total predictive uncertainty (regression and classifi-195

cation) and softmax score (only classification).196

3.3.1 Variance-based total predictive uncer-197

tainty198

The predictive uncertainty can be measured by the199

variance of the individual predictions of the ensem-200

ble members for an input. If the ensemble is certain201

that a prediction is correct, then all ensemble mem-202

bers should align in their predictions, while a lot203

of variation means that the members disagree, and204

hence the overall ensemble is not sure. Formally, the205

predictive uncertainty is measured by206

Upred(x) =

∑m
i=1(F (x)− fi(x))

2

m
(2)207

where m is the number of ensemble members, F (x)208

is the ensemble prediction for input x and fi(x) is209

the prediction of ensemble member i for input x.210

3.3.2 Softmax Score211

For a classification task, the predictive uncertainty212

can be measured by using the values output from213

the softmax activation function after the last layer214

of a neural network for the predicted class, where a215

high softmax score means low uncertainty and a low216

softmax score means high uncertainty. The softmax217

values are negated to represent uncertainties instead218

of certainties to be comparable to other methods.219

3.4 Substructure-Mask-220

Explanations221

We base our analysis on three different ways of break-222

ing molecules into chemically meaningful substruc-223

tures: BRICS [14] uses a library of retrosyntheti-224

cally feasible fragments, Murcko [15] splits molecules225

into a central core with side chains, and functional226

groups identify small local features linked to reactiv-227

ity. In order to measure how good of an explanation228

a specific chemical substructure is, a prediction is229

calculated once for the whole molecule, and then230

a second time for the molecule when masking out231

all atoms that are part of this substructure. This232

masking is only applied after the message passing233

layers, i.e. during the attention pooling. For each234

atom that is part of the mask, the weight of its235

corresponding node will be set to 0 when creating236

the molecular embedding. Based on these two dif- 237

ferent predictions, we can measure the impact or 238

attribution of this substructure on the prediction. 239

The attribution score A is defined as the difference 240

of all predictions for input x before applying the 241

mask, i.e. the full molecule, and after applying the 242

mask (xsub), i.e. the molecule without the respective 243

substructure. 244

Asub(x) =

m∑
i=1

fi(x)−
m∑
i=1

fi(xsub) (3) 245

A value close to 0 should indicate that the masked 246

substructure has little to no impact on the molecular 247

property that is predicted. In contrast, a large 248

absolute value should indicate that this substructure 249

is of high relevance. 250

3.5 Explanation Uncertainty Quan- 251

tification 252

The uncertainty of an explanation can be measured 253

by calculating each ensemble member’s attribution 254

score separately and taking the variance of this. 255

Usub(x) =

∑m
i=1

((
fi(x)− fi(xsub)

)
−Asub(x)

)2

m
(4) 256

The overall uncertainty of the explanations can be 257

defined in different ways. Here, we are specifically 258

looking at four different option: Only taking into 259

account the uncertainty of the most likely explana- 260

tion, taking all uncertainties into account, the latter 261

with additional weighing of importance of each un- 262

certainty, and the same with a scaling method to 263

ensure comparability between molecules. 264

sub∗ = argmax
sub

|Asub(x)| (5) 265

UXhighest(x) = Usub∗(x) (6) 266

UXall(x) =
∑
sub

Usub(x) (7) 267

UXweighted(x) =
∑
sub

Usub(x) · |Asub(x)| (8) 268

For the last method, the sum of the uncertainties 269

of all possible explanations is weighted by the abso- 270

lute attribution score for each explanation, meaning 271

that large uncertainties get penalized more when 272

the explanation is more likely. In order for this sum 273

to be more comparable between different molecules 274

and to be invariant to the number of substructure 275

masks, we can scale this value first. 276

αsub(x) =
|Asub(x)|∑
sub |Asub(x)|

(9) 277

3



NLDL
#39

NLDL
#39

NLDL 2026 Full Paper Submission #39. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Performance on the test datasets for predicting
solubility and mutagenicty.

Dataset Metric Result

ESOL MSE 0.350
Mutagenictiy AUC 0.896

UXscaled(x) =
∑
sub

Usub(x) · αsub(x) (10)278

3.6 Evaluation279

The network performance for the task of molecular280

property prediction is measured the mean squared281

error (MSE) for the predicting aqueous solubility on282

the ESOL dataset and by the area under the receiver283

operating characteristic curve (AUC) for predicting284

mutagenicity on the respective dataset.285

To evaluate the preditive uncertainies, the relation286

between these uncertainties and the performance at287

molecular property prediction is studied. This is288

done by dividing the data into different subsets based289

on uncertainty scores and looking at the molecular290

property prediction for each of the subsets. Ad-291

ditionally, the performance on the test dataset is292

evaluated when excluding predictions with the high-293

est uncertainty scores.294

To evaluate the uncertainties of the explanations,295

the data is again divided into different subsets based296

on the explanation uncertainty, and the performance297

on each subset is calculated separately. This division298

into subsets is done separately for each explanation299

uncertainty method and for each of the three meth-300

ods to determine substructure mask explanations.301

The relation between the predictive uncertain-302

ties and the explanation uncertainties is evaluated303

by calculating the correlation coefficients for each304

combination of explanation uncertainty, predictive305

uncertainty, SME method and dataset.306

4 Results307

4.1 Molecular Property Prediction308

The performance of the RGCN ensemble for the task309

of predicting aqueous solubility and mutagenicity is310

shown in Table 2.311

4.2 Predictive Uncertainty312

For both datasets a correlation between predictive313

uncertainties and correctness of the prediction could314

be observed.315

When dividing the ESOL test data into three316

equally sized subsets based on uncertainties, the317
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Uncertainty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Figure 1. Mean squared error for predictions with low,
medium and high predictive uncertainties for the ESOL
test dataset. All subsets were chosen to be of equal size.

subset with the lowest uncertainties also has the 318

lowest MSE (see Fig 1). 319

When using uncertainty thresholds to determine 320

when a prediction can be trusted and when not, the 321

overall performance improves (i.e., lower MSE) the 322

lower the uncertainty threshold would be picked (see 323

Fig. 2). 324

The results for different uncertainty thresholds 325

for the mutagenicity prediction task are shown in 326

Fig. 3 (performance when excluding data with high 327

uncertainties) and Fig. 4 (likelihood of prediction 328

being correct given the uncertainty score), showing 329

that there is a relation between uncertainty scores 330

and the correctness of the prediction. 331

4.3 Substructure Mask Explanations 332

An example of several substructure mask explana- 333

tions for a molecule from the Mutagenicity dataset is 334

shown in Fig. 5, using all three methods for dividing 335

the molecule into meaningful chemical substructures 336

(BRICS, murcko scaffolds and functional groups). 337

4.4 Explanation Uncertainty 338

The performance on data with low, low-medium, 339

medium-high and high explanation uncertainties for 340

the ESOL test dataset is shown in Fig. 6 and for 341

the mutagenicity test dataset is shown in Fig. 7. 342

For both datasets, the highest molecular property 343

prediction performance is achieved on data with the 344

lowest explanation uncertainties for all four explana- 345

tion uncertainty metrics across all types of chemical 346

substructures (BRICS, murcko scaffolds, functional 347

groups), with the exception of functional groups 348

for ESOL, where no significant relation between 349

the explanation uncertainies and the MSE of the 350

prediction could be observed. 351

4
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Figure 2. Mean squared error when only including pre-
dictions with the lowest predictive uncertainties on the
ESOL test data. The upper row shows the performance
based on the uncertainty threshold values, while lower
row shows the performance based on how much of the
data samples will still be included.

Table 3. Correlations between the predictive uncer-
tainty and the different types of explanation uncertain-
ties for the ESOL test dataset.

brics murcko fg

UXhighest 0.45 0.37 0.17
UXall 0.14 0.34 0.07
UXweighted 0.06 0.29 -0.05
UXscaled 0.35 0.44 0.15

4.5 Relation of Predictive Uncer-352

tainty and Explanation Uncer-353

tainty354

On the ESOL dataset, weak to moderate correla-355

tions were found between the predictive uncertainties356

and the different types of explanation uncertainties357

(Table 3). The murcko substructures explanation358

uncertainties showed the strongest correlation over-359

all with the predictive uncertainties. The highest360

correlations were found when using Eqs. 6 and 10361

for calculating the explanation uncertainty.362

The correlation between explanation uncertain-363

ties and predictive uncertainties for the mutagenicity364

dataset were found to be moderate to strong (see Ta-365

ble 4 and 5 for the results when using the ensemble366

variance and the softmax score respectively as the367

0.0 0.2 0.4 0.6 0.8 1.0
Data included

0.90
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Softmax score
Ensemble variance

Figure 3. AUC when only including predictions with
the lowest predictive uncertainty scores for the Muta-
genicity test dataset.

low high
Uncertainty

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Softmax score
Ensemble variance
All data: 0.8203

Figure 4. Likelihood of a prediction being correct
given its predictive uncertainty score. The likelihood is
calculated as the accuracy, i.e. the fraction of correct
predictions over all predictions within a small range of
uncertainty scores.

predictive UQ method). Similar to ESOL, the mur- 368

cko substructure explanation uncertainties correlate 369

the a lot with the predictive uncertainties, as well as 370

the BRICS explanation uncertainties, however here, 371

the highest correlations are found when using Eq. 7 372

as the explanation UQ metric. 373

Across all preditive UQ methods, all four explana- 374

tion UQ methods and both datasets, the functional 375

groups explanation uncertainties showed the low- 376

est correlation scores. An example scatter plot of 377

the relation between predictive uncertainties and 378

explanation uncertainties is shown in Fig. 8. 379

Table 4. Correlations between the predictive uncer-
tainty (ensemble variance) and the different types of ex-
planation uncertainties for the Mutagenicity test dataset.

brics murcko fg

UXhighest 0.47 0.59 0.29
UXall 0.76 0.66 0.40
UXweighted 0.5 0.43 0.18
UXscaled 0.24 0.52 0.25
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Figure 5. Substructure mask explanations for an exam-
ple molecule from the Mutagenicity dataset. Red color
refers to a positive impact of a substructure to the final
prediction, and blue color refers to a negative impact.
The intensity of the color describes how high this effect
is. The attribution values of each substructure is written
next to it.

Table 5. Correlations between the predictive uncer-
tainty (softmax score) and the different types of expla-
nation uncertainties for the Mutagenicity test dataset.

brics murcko fg

UXhighest 0.24 0.36 0.13
UXall 0.57 0.46 0.24
UXweighted 0.24 0.2 0.03
UXscaled -0.03 0.27 0.10

5 Discussion380

One key observation of this study is that predictive381

uncertainty scores correlate with the accuracy of pre-382

dictions, supporting the hypothesis that uncertainty383

estimation can be a reliable indicator of prediction384

correctness. As shown in Fig. 2 for ESOL and in385

Fig. 3 for Mutagenicity, samples with high predic-386

tive uncertainties can be excluded, which will lead387

to an improved overall performance of the remain-388

ing data. Although using uncertainty thresholds389

like this comes at the expense of not being able to390

make predictions for some molecules, it also has391

the benefit that the remaining predictions are more392

trustworthy and reliable, which can be crucial in393

high-stake applications such as drug design.394

By dividing the data into different subsets based395

on their predictive uncertainties, this observation396
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Figure 6. Mean squared error for predictions with
low to high explanation uncertainties on the ESOL test
dataset.

could be further confirmed. For ESOL, the MSE 397

for low-uncertainty predictions was close to zero 398

with a median of 0.05 (Fig. 1). For Mutagenicity, 399

the likelihood of a low-uncertainty prediction being 400

correct was close to 1.0, while the likelihood of high- 401

uncertainty prediction was just above chance level 402

(Fig. 4). This is a strong indicator for the argument 403

that predictions with high uncertainties should not 404

be blindly trusted, as there is a high chance that 405

they are incorrect. 406

Furthermore, explanation uncertainties were 407

shown to have a correlation with prediction cor- 408

rectness, emphasizing that they are not only of im- 409

portance for increasing model interpretability, but 410

that when the explanation is unsure or unclear, it 411

is often connected to an unreliable prediction. Al- 412

though this relation is clear, it is less strong than 413

the relationship between the predictive uncertainty 414

6
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Figure 7. Likelihood of a prediction being correct given
the uncertainty of the explanation for the Mutagenicity
test dataset.

and the performance, which can be seen in Fig. 6415

and 7. For mutagenicity, the accuracy of predictions416

for samples with low explanation uncertainties was417

around 0.87-0.95, and around 0.70-0.80 for samples418

with high explanation uncertainties, which is still a419

large performance difference, suggesting that predic-420

tions should not be trusted when the explanation421

uncertainty is high.422

The findings indicate that predictive uncertainty423

and explanation uncertainty are interrelated, but424

the strength of this relationship varies depending on425

the dataset and uncertainty estimation method used.426

In the ESOL dataset, weak to moderate correlations427

were observed, with Murcko scaffold explanations428

showing the strongest alignment with predictive un-429

certainty (Table 3). In contrast, the mutagenicity430

dataset exhibited moderate to strong correlations,431

particularly when using ensemble variance as the432
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Figure 8. Correlation between predictive uncertainty
and explanation uncertainty from the BRICS substruc-
ture explanations for the Mutagenicity test datset. Here,
the predictive uncertainty was measured as the ensemble
variance.

predictive UQ method (Tables 5 and 4). 433

The strongest correlations were observed when 434

summing the attribution scores of all possible expla- 435

nations within a single SME method. While BRICS 436

and Murcko scaffold explanations demonstrated the 437

highest correlation with predictive uncertainty, func- 438

tional group explanations consistently showed lower 439

correlation scores. 440

When comparing the different UQ methods used 441

in this study, a similar performance is achieved be- 442

tween the variance-based ensemble uncertainty and 443

the softmax score for measuring predictive uncer- 444

tainty scores (Fig. 3 and Fig. 4). The four differ- 445

ent explanation uncertainty methods all exhibited 446

similar performance at detecting untrustworthy pre- 447

dictions, but they differ largely in their correlations 448

with the predictive uncertainties. All UQ methods 449

seem to offer valuable insights and no clear winning 450

method could be determined. 451

Since it was shown that both the predictive un- 452

certainties and the explanation uncertainties have 453

a strong relation of their scores to the correctness 454

of a prediction, but the correlations between these 455

uncertainties are mostly only moderate (with a few 456

being high or low), these results suggest that predic- 457

tive uncertainty and explanation uncertainty provide 458

complementary perspectives on model trustworthi- 459

ness. The correlations, varying in strength, indicate 460

that combining both approaches may yield a more 461

comprehensive measure of reliability. 462

6 Conclusion 463

Using UQ methods can increase the trustworthi- 464

ness of a model by excluding predictions that are 465

7
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likely not correct with large predictive uncertainties.466

The interpretability of a model can be improved by467

including explainability methods.468

For both datasets, a clear correlation between469

predictive uncertainties and correctness of the pre-470

diction could be observed. A similar behavior was471

found between the explanation uncertainties and the472

correctness of the prediction. When comparing the473

predictive uncertainties and the explanation uncer-474

tainties, positive correlations were found, with the475

strongest one when using the sum of the attribution476

scores of all possible explanations for a molecule477

within one SME method as the measure for explana-478

tion uncertainty. While some correlations are only479

weak, the results suggest that the different methods480

find different data samples untrustworthy, implying481

that a combination of all methods should be used482

to decide whether to trust a prediction or not.483

Limitations and future work In the future, it484

should be explored how the different uncertainty485

measures could be combined into one meaningful,486

potentially more powerful, measure of trustworthi-487

ness. This could be done by training a small neural488

network that takes all the uncertainty scores and the489

prediction as input, and learns to predict whether490

this prediction was correct.491

Furthermore, this study has the limitation of only492

investigating two datasets. This should be extended493

to more different datasets, with different molecular494

property prediction tasks.495

Additionally, more uncertainty quantification496

methods for measuring the predictive uncertainties497

should be taken into account. Here, it might be498

interesting to also study methods which make it499

possible to decompose the total preditive uncertainy500

into its epistemic and aleatoric parts.501

More advanced graph neural networks that take502

into account the geometry of the molecules could503

also be explored in the future.504
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