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ABSTRACT

Contrastive learning has recently taken off as a paradigm for learning from un-
labeled data. In this paper, we discuss the close relationship between con-
trastive learning and meta-learning under a certain task distribution. We com-
plement this observation by showing that established meta-learning methods,
such as Prototypical Networks, achieve comparable performance to SimCLR
when paired with this task distribution. This relationship can be leveraged by
taking established techniques from meta-learning, such as task-based data aug-
mentation, and showing that they benefit contrastive learning as well. These
tricks also benefit state-of-the-art self-supervised learners without using nega-
tive pairs such as BYOL, which achieves 94.6% accuracy on CIFAR-10 using a
self-supervised ResNet-18 feature extractor trained with our meta-learning tricks.
We conclude that existing advances designed for contrastive learning or meta-
learning can be exploited to benefit the other, and it is better for contrastive
learning researchers to take lessons from the meta-learning literature (and vice-
versa) than to reinvent the wheel. Our Pytorch implementation can be found on:
https://github.com/RenkunNi/MetaContrastive

1 INTRODUCTION

Self-supervised visual representation learning (SSL) has recently gathered attention due to its ability
to learn image features without manual supervision, thus allowing for efficient learning on down-
stream tasks such as detection and segmentation (Noroozi & Favaro, 2016; Zhang et al., 2016; Oord
et al., 2018; Hjelm et al., 2018; Wu et al., 2018; Gidaris et al., 2018; He et al., 2020; Misra & Maaten,
2020; Tian et al., 2020a; Chen et al., 2020a; Kim et al., 2020; Grill et al., 2020; Caron et al., 2020;
Kalantidis et al., 2020; Shen et al., 2020; Li et al., 2020; Zbontar et al., 2021; Chen & He, 2021;
Caron et al., 2021). Among SSL approaches, contrastive learning based methods (Chen et al., 2020a;
He et al., 2020; Chen et al., 2020b) show particularly strong potential and achieve promising results
which are close to those of fully supervised methods on numerous computer vision benchmarks.

These methods rely on applying various data augmentations such as random crops, flips, color distor-
tion, and Gaussian blur on the same training sample to create different views of an image. Two such
example methods, SimCLR (Chen et al., 2020a) and MoCo (He et al., 2020), involve reducing the
distance between features corresponding to positive pairs (different augmented views of the same
image), and increasing the distance between features corresponding to negative pairs (augmented
views of different images).

Meanwhile, meta-learning is an established popular framework for learning models that quickly
adapt to on-the-fly tasks given a small number of examples (Hochreiter et al., 2001; Finn et al.,
2017; Nichol et al., 2018; Bertinetto et al., 2018; Lee et al., 2019). The training loop for meta-
learners typically involves (i) sampling a random batch of classes and (ii) updating a feature ex-
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tractor to distinguish between these classes. This procedure mirrors that of contrastive learning,
which proceeds by (i) sampling a batch of images and augmenting them to generate classes (each
“class” is an image plus all of its views), and (ii) updating a feature extractor to distinguish between
these classes. Conceptually, this contrastive learning procedure resembles meta-learning where the
training tasks are generated by computing multiple views of individual images.

In this paper, we discuss the close relationship between contrastive learning and meta-learning.
Concretely, we show that established meta-learning algorithms, originally designed for few-shot
learning, can achieve the same performance as recent contrastive learning algorithms on standard
SSL problems when paired with the same data sampling strategy. In addition, we explore tech-
niques, originally designed for meta-learning, that can improve contrastive learning. Specifically,
we explore ways by which we can adapt data augmentation strategies inspired by recent work in
meta-learning (Su et al., 2020; Ni et al., 2021) to SSL and find that this approach can yield signifi-
cant performance boosts.

Our contributions can be summarized as follows:

• We formulate a meta-learning based framework for understanding self-supervised learning,
and we show that meta-learners can achieve comparable self-supervised performance to
contrastive learning methods.

• We propose a meta-specific task augmentation strategy which boosts the performance of
self-supervised learning. This data augmentation method generalizes to methods with no
negative pairs, such as BYOL (Grill et al., 2020), as well.

2 RELATED WORK AND BACKGROUND

2.1 META-LEARNING FOR FEW-SHOT LEARNING

Meta-learning algorithms for few-shot learning aim to learn a model that can quickly adapt to new
tasks with limited data and generalize to unseen examples. To achieve this, the adaptation and eval-
uation procedures are both simulated during meta-training. During each episode of meta-learning,
we sample a task, Ti, from a distribution of tasks, often corresponding to combinations of training
classes formed into classification problems. Each task consists of support data T s

i and query data
T q
i , so that Ti = {T s

i , T
q
i }. When applied to few-shot classification, this task is called a k-shot,

N -way classification problem, where k denotes the number of training samples per category in the
support data. Then, support data will be used to simulate few-shot training data, while query data
will be used to simulate novel testing samples.

A meta-learning model F , in this setting, contains a feature extractor and a classification strategy,
A. This classification strategy can take various forms, such as adding a linear classifier on top of
the feature extractor and fine-tuning either the linear layer or the whole network end-to-end, or this
strategy may simply classify samples by selecting the nearest class prototype. Meta-learning training
algorithms have an inner loop and an outer loop in each parameter update. In the inner loop, the
model is first fine-tuned on support data T s

i . Then, in the outer loop, the updated model is used to
predict on query data T q

i , and a loss is minimized with respect to the model’s parameters before
fine-tuning.1 Intuitively, we update parameters so that the feature extractor extracts better features
for the classification strategy, often resulting in tightly clustered features corresponding to each
class (Goldblum et al., 2020). Existing works apply various methods for fine-tuning on support data
during the inner loop. In a line of algorithms, such as MAML and Reptile (Finn et al., 2017; Nichol
et al., 2018), all the parameters in the model are updated using gradient descent during fine-tuning
on support data. Other algorithms, such as MetaOptNet and R2-D2 (Lee et al., 2019; Bertinetto
et al., 2018), keep the feature extractor frozen during fine-tuning; MetaOptNet uses SVM, and R2-
D2 uses ridge regression on top of the feature extractor. Similarly, metric learning approaches, such
as ProtoNet (Snell et al., 2017; Kye et al., 2020), freeze the feature extractor as well, and create
class centroids from the support data in the inner loop. In this paper, we primarily focus on the latter
algorithms due to their efficiency and performance as well as the similarity of contrastive learning
to metric learning.

1Note that algorithms in the vein of Reptile (Nichol et al., 2018) do not split the tasks into support and query.
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2.2 SELF-SUPERVISED LEARNING

Contrastive SSL. Contrastive methods (Oord et al., 2018; Wu et al., 2018; Tian et al., 2020a; Chen
et al., 2020a; He et al., 2020; Chen et al., 2020b) achieve promising performance in self-supervised
learning. As mentioned previously, contrastive learning maximizes agreement on different aug-
mented views of the same image (called positive pairs) while ensuring disagreement on samples
generated by different base images (called negative pairs). Given a batch of input images x, m ran-
dom data augmentations are applied on the same batch, generating a set of training samples {x̃i}mi=1.
These samples are fed into a backbone network f(·) to obtain the feature representations {hi}mi=1.
Then, a small neural network g(·), usually a non-linear MLP, is applied to project {hi}mi=1 to the
latent representations {zi}mi=1 in the space where a contrastive loss l(·) is applied, ensuring that
latent representations of positive pairs are similar while latent representations of negative pairs are
different. In this paper, we mainly focus on this type of self-supervised learning and show its close
relation with meta-learning. The batch sampling procedure of contrastive learning can be viewed
as sampling a new classification problem with a number of classes equal to the number of base im-
ages used to generate augmented views. We will see that this on-the-fly sampling of classification
problems closely mirrors a common meta-learning setup.

Non-Contrastive SSL. Some non-contrastive methods are generative approaches, such as auto-
encoders (Vincent et al., 2008; 2010; Kingma & Welling, 2013), and adversarial learning (Goodfel-
low et al., 2014), where a distribution is learned over data and a latent embedding. These methods
are typically computationally expensive as they require training a learned model which maps latent
representations to pixel space. Other non-contrastive methods rely on using heuristic designed pre-
text tasks (Doersch et al., 2015; Zhang et al., 2016; Noroozi & Favaro, 2016; Gidaris et al., 2018)
to learn the representation. More recently, BYOL (Grill et al., 2020) showed that by bootstrapping a
target representation prediction, feature representations can be learned without negative pairs. How-
ever, BYOL still adopts the data augmentation procedure from contrastive learning, where different
augmented views are used as training samples. In section 5, we show that BYOL still benefits from
our proposed task augmentation strategy.

Data Augmentation in Meta-Learning and SSL. Data augmentations play an essential role in both
meta-learning and self-supervised learning. In meta-learning, Su et al. (2020); Liu et al. (2020); Ni
et al. (2021) show that proper data augmentation and meta-specific task augmentations dramatically
improve few-shot learning performance by expanding the number of classes available for sampling.
In self-supervised learning, Tian et al. (2020b) show contrastive learners can find better feature rep-
resentations when views contain less mutual information. In addition, Kim et al. (2020); Shen et al.
(2020); Li et al. (2020) show that adding harder examples such as cut-mixed samples into the training
pipeline can improve self-supervised performance. In this paper, we show that similarly to meta-
learning, self-supervised learners can benefit from carefully applied data augmentation techniques
which mirror task augmentations from the meta-learning literature.

2.3 SELF-SUPERVISED LEARNING FOR META-LEARNING AND FEW-SHOT LEARNING

Another line of research (Hsu et al., 2018; Khodadadeh et al., 2018; Ye et al., 2020; Medina et al.,
2020) focuses on self-supervised learning for meta-learning and few-shot learning. Hsu et al. (2018)
focuses on partitioning samples from a dataset to construct meta-learning tasks and using MAML or
ProtoNet on 4-layer architectures to solve few-shot problems. Similarly, Khodadadeh et al. (2018)
and Medina et al. (2020) add more data augmentations, such as Auto Aug (Cubuk et al., 2018)
and use MAML and ProtoNet, respectively, to learn a few-shot representation. To further improve
few-shot performance, Ye et al. (2020) sample harder mixed support examples and apply a task-
specific projection head to help generalize to unseen classes. These methods focus on few-shot
learning performance, which entails up to 50 training examples per class. In contrast, we focus on
the unsupervised learning paradigm where large models are pre-trained on samples generated via
data augmentation and are applied to downstream tasks such as ImageNet classification.

3 EXPERIMENTAL SETUP

Datasets and Evaluation We conduct self-supervised training on both the CIFAR-10 and ImageNet
datasets (Krizhevsky et al., 2009; Deng et al., 2009). Following Chen et al. (2020a), we evaluate
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Figure 1: (a) Training procedure of contrastive learning. Two augmented views are generated by
applying random transformations to the same input batch. A backbone f(·) and a projector g(·)
is learned through contrastive prediction tasks. (b) Meta-Learning framework for SSL. We adopt
the same data augmentation operations as contrastive learning. We generate a b-way classification
problem, b is the batch size, by treating each image itself as a class. Two views are separated
as support data, on which the network is fine-tuned and the classification strategy is learned by A;
query data, on which we apply the updated model and calculate the meta-loss. At the end of training,
everything but f(·) is discarded, and h is used as the image representation.

pre-trained representations in a linear evaluation setting, where feature extractors are frozen, and a
classification head is stacked on top and tuned. In addition, we test the performance of the pre-trained
feature extractors on downstream tasks such as transfer learning and semi-supervised learning with
1% and 10% of labeled data. Evaluation and dataset details can be found in Appendix A.2.

Pre-Training Details We use a ResNet-18 backbone for all experiments on CIFAR-10 and ResNet-
50 for those on ImageNet. We train the model on CIFAR-10 with the LARS optimizer (You et al.,
2019) and batch size 1024 for 1000 epochs (with 4 GPUs). On ImageNet, we use the same optimizer
and batch size of 256, and we train for 100 epochs (with 8 GPUs). For ImageNet pre-training, we
follow the hyperparameter setting in Chen et al. (2020a), including baseline data augmentation meth-
ods, dimension of the latent space, and learning rate decay schedule. For CIFAR-10 pre-training, we
use the same CIFAR-10 specific hyperparameters as SimCLR again. For BYOL, we use the same
learning rate schedule as meta-learners and start with learning rate 4. In addition, both the projector
and predictor in BYOL are two-layer MLPs with hidden dimension 2048 and output dimension 256.
More details can be found in Appendix A.1.

4 A META-LEARNING FRAMEWORK FOR SSL

Meta-learners, designed for few-shot learning, and contrastive learners for SSL are built on similar
intuitions. Both approaches learn to solve new tasks on-the-fly with each batch – new classification
problems in the case of meta-learning and differentiating a new batch of images in the case of con-
trastive learning. Furthermore, both approaches hold a goal of learning invariances which generalize
to novel problems at inference; meta-learners should extract similar features for each instance of a
novel test class, and contrastive learners should extract similar features for each view of an image
sample. In this section, we show how one can construct a meta-learning framework for SSL which
closely mirrors the strategy adopted by recent contrastive learning methods.

We now describe how to generate meta-learning task distributions p(T ) for self-supervised learning.
We adopt the data augmentation operations from contrastive learning, where different random aug-
mentations are applied to the input batch to generate alternative views. In general, given m random
augmented views of a batch of b input images x, we can create a b-way classification problem by
treating all images generated by the same base image as a class. Then, we can divide the data from
each class into m1 support and m2 query samples so that m1 + m2 = m. This framework for
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Algorithm 1: Meta-Learning Framework for Self-Supervised Learning
Require: Base model Fθ, classification strategy A, learning rate γ, and distribution of data
augmentations D.
Initialize θ, the weights of F ;
while not done do

for j = 1, ..., n do
Sample a batch of base images x;
Sample m random data augmentations from D to obtain augmented views {x̃i}mi=1;
Separate {x̃i}mi=1 into support set T s

j = {x̃i}m1
i=1 and query set T q

j = {x̃i}mi=m1+1;
Fine-tune model on Tj : θj = A(θ, T s

j );
Compute gradient gj = ∇θL(Fθj , T

q
j );

end
Update base model parameters: θ ← θ − γ

n

∑
j gj .

end

sampling a batch containing augmented views of base images and dividing them into support and
query samples yields a task distribution p(T ). In few-shot learning terminology, each training task
Ti is a m1-shot-b-way classification problem, since we have b base images which generate classes,
and for each such image, we have m1 support samples. Viewed in this way, SimCLR sets m = 2
and m1 = m2 = 1, but SimCLR has important differences from common meta-learners.

Unlike typical meta-learning methods, SimCLR compares every sample with every other sample,
while methods like ProtoNet only compare each query sample with each support prototype and not
with each other. Moreover, SimCLR samples a single large batch of samples for each episode of
training which corresponds to sampling a single task, while meta-learners typically sample a batch
of many tasks, i.e., classification problems, during each episode.

Now that we have established a framework for sampling tasks, we can directly apply various meta-
learning algorithms, such as R2-D2 and ProtoNet described in Section 2.1, in order to learn the
parameters θ of the base model F . Recall that the base model contains a classification strategy and
a feature extractor, which is the learning target of SSL. We use the same feature extractor here used
for contrastive learning in Section 2.2, which consists of a backbone f(·) followed by a projection
head g(·). Formally, we solve the meta-learning optimization problem,

min
θ

ET

[
LSSL

]
, LSSL = l(Fθ′ , T q),

where θ′ = A(θ, T s) are parameters updated by training on support tasks, and l is the loss function,
e.g., cross-entropy loss in our work, used in the outer loop of training. After pre-training, only
the backbone f(·) will be kept for self-supervised evaluation. This meta-learning framework for
self-supervised learning is summarized in Algorithm 1 and Figure 1.

We compare the performance of representations learned by meta-learners with SimCLR under the
default setting described in Section 3. Table 1 and Table 2 show the linear evaluation top-1 accuracy
for the feature representations trained and tested on the CIFAR-10 and ImageNet datasets, respec-
tively. We observe that representations learned via meta-learning (R2-D2 and ProtoNet) can achieve
performance on par with SimCLR on CIFAR-10 but worse on ImageNet. Note that during training,
we use the same exact hyperparameter as SimCLR due to computational constraints, which may

Table 1: Linear evaluation on CIFAR-10 for
representations learned via contrastive learn-
ing and our meta-learning framework.

Method Backbone Top-1 Acc(%)

SimCLR ResNet-18 91.4
ProtoNet ResNet-18 91.8
R2-D2 ResNet-18 91.6

Table 2: Linear evaluation on ImageNet for
representations learned via contrastive learn-
ing and our meta-learning framework.

Method Backbone Top-1 Acc(%)

SimCLR ResNet-50 58.8
ProtoNet ResNet-50 57.6
R2-D2 ResNet-50 55.5
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Table 3: ImageNet Top-1 accuracy (%) of models fine-tuned with few labels.

Method Backbone Label fraction
1% 10%

Supervised baseline ResNet-50 25.4 56.4

SimCLR ResNet-50 32.4 53.6
ProtoNet ResNet-50 31.0 52.9
R2-D2 ResNet-50 37.9 58.8

not be optimal specifically for our proposed method. We will see in the following experiments that
although R2-D2 achieves worse linear evaluation on ImageNet with this hyperparameter setting, it
actually performs better than SimCLR on downstream tasks, such as semi-supervised learning and
transfer learning, other popular (and plausibly more realistic) evaluation scenarios for SSL methods.

Following Chen et al. (2020a), we first evaluate the pre-trained model by semi-supervised learning,
where we fine-tune the pre-trained model with only a fraction of labeled ImageNet data (1% and
10%). As we see from Table 3, with the same fine-tune setting (See Appendix A.2), models pre-
trained by R2-D2 can achieve ∼ 5% higher top-1 accuracy than those pre-trained by SimCLR after
fine-tuning on labeled data. Notably, the supervised baseline from Zhai et al. (2019) is strong due to
exhaustive hyperparameter searching and stronger data augmentations used during the training.

To further compare the feature representations learned by different methods, we apply the pre-trained
weights to transfer learning. We consider 8 datasets with natural images of various categories (Nils-
back & Zisserman, 2008; Cimpoi et al., 2014; Everingham et al.; Maji et al., 2013; Bossard et al.,
2014; Xiao et al., 2010; Krizhevsky et al., 2009). For each dataset, we use the backbone (ResNet-50)
pre-trained on ImageNet as an initialization for the feature extractor of the downstream classifica-
tion model. In contrast to linear evaluation, we fine-tune the entire model on the given dataset for
20,000 iterations with the best hyperparameter setting selected on its validation split. Details of our
hyperparameter selection are included in Appendix A.2. All models are pre-trained on ImageNet for
100 epochs. We also include a baseline model provided in Chen et al. (2020a) which does not use
pre-trained weight as an initialization. Note that the baseline model is tuned to achieve comparable
performance with a larger search space for hyperparameters, and it is trained for a longer duration.
From the results in Table 4, we find that R2-D2 initialized model consistently outperforms its con-
trastive counterpart on all 8 datasets. These results suggest that for the same number of epochs, a
model trained with R2-D2 works better as an initialization for downstream tasks than one trained
with SimCLR. We speculate that this property is connected to R2-D2’s few-shot learning driven
design and simulation of adapting to new tasks during its inner loop.

Table 4: Transfer learning using ImageNet pre-trained weights. We report mean per-class accuracy
(%) on the Flowers and Aircraft datasets, mean average precision (mAP) on the VOC2007 classifi-
cation dataset, and Top-1 accuracy on the remaining datasets.

Flowers102 DTD VOC2007 Aircraft Food101 SUN397 CIFAR-10 CIFAR-100

Baseline 92.0 64.8 67.3 85.9 86.9 53.6 95.9 80.2
SimCLR 92.4 72.7 66.0 83.7 86.3 57.4 94.8 79.1
ProtoNet 92.7 71.5 64.7 83.9 86.2 56.4 96.0 79.1
R2-D2 94.5 73.8 69.9 86.2 86.9 59.7 96.7 82.8

5 BOOSTING SSL WITH META-SPECIFIC AUGMENTATION

Now that we have established a relationship between contrastive learning and meta-learning, we
will apply tools developed in the latter discipline to enhance contrastive learners. Previous work
has shown that data augmentations such as crops and colorizing play an important role in both
contrastive learning and meta-learning. We focus on a particular augmentation strategy from the
meta-learning literature, termed task augmentation, which aims to expand the number of classes
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available for sampling rather than expanding the number of samples per class. Liu et al. (2020); Ni
et al. (2021) show empirically that data augmentations work best when applied to carefully chosen
parts of the meta-learning batch, and large rotations can only work as a task augmentation, in which
rotation by a chosen degree is applied to all images in an entire class, and we then treat them as a
new class. Large rotations, and other dramatic transformations used for task augmentation, actually
decreases performance when instead applied independently on support and query samples (as a
way to increase data within a class) rather than uniformly on an entire class (therefore defining a
new class). Augmentations that exhibit this task augmentation behavior are typically those which
transform an image so much that its semantic content looks different to a human. By keeping
images with very large augmentations in the same class, we may accidentally encourage models to
learn overly strong invariances which do not naturally exist in the data.

Table 5: Linear evaluation (Top-1 accuracy (%)) on CIFAR-10 with feature representations learned
by SimCLR and BYOL in default setting (see Section 3). Simply adding large rotations to data
augmentation hurts the performance of self-supervised learning.

Rotation SimCLR BYOL

No 91.4 92.1
Yes 89.7 90.6

Although data augmentations such as large rotations have been shown effective for visual pre-
training (Feng et al., 2019; Gidaris et al., 2018), how to encode that into the data augmentation
framework of contrastive learning remains unclear. In addition, we observe that when applied along
with contrastive learning, the phenomenon mentioned above occurs as well. Namely, the same large
rotation data augmentation, which can improve the performance of meta-learners via task augmen-
tation, also degrades the performance of contrastive learners when applied to samples independently
(instead of uniformly to an entire class). Table 5 shows linear evaluation accuracy on CIFAR-10
when we add this augmentation to the training pipeline of SimCLR. In this experiment, we ran-
domly rotate every augmented view by {90◦, 180◦, 270◦} with probability 0.25 each. In Table 5,
we see that the accuracy of SimCLR drops by ∼ 2%, and this degradation also occurs in self-
supervised learning methods without negative pairs such as BYOL, which adopts the same augmen-
tation pipeline as SimCLR. Driven by the observation and insights from the meta-learning literature,
we are motivated to apply strong augmentations, such as large rotations, to contrastive learning at
the task level so that models can benefit from the additional augmentation without learning overly
strong and harmful invariances.

In the literature on meta-learning literature for few-shot classification, large rotations can be used
either as a task augmentation or an auxiliary loss (Su et al., 2020; Liu et al., 2020; Gidaris et al.,
2019). We adopt both methods into our meta-learning inspired pipeline for self-supervised learning
and describe the details below. This procedure is illustrated in Figure 2 and Figure 3.

Large Rotation as Task Augmentation. Instead of randomly rotating each training sample inde-
pendently, we rotate all images from the same class (different augmented views of the same original
base image) by the same degree (chosen randomly from {0◦, 90◦, 180◦, 270◦}) in both the support
and the query data. In such a way, the number of potential classes is enlarged by 3 times. We com-
bine large rotation augmentation with the basic augmentations used in contrastive learning during
the sampling stage and keep other components of the training procedure unchanged.

Large Rotation as Auxiliary Loss. In addition to task augmentation, large rotations can be used
as an auxiliary prediction task for the original self-supervised problem, where the angle of a rotated
image is used as the target label. To this end, we spin the input batch x by an angle to generate the
rotated training samples, {xd,y}, where d ∈ {0◦, 90◦, 180◦, 270◦},y = {d/90}. Then, we stack
a 4-way classification head r on top of the shared backbone f and projection head g, to predict the
angle of the rotations evaluated with cross-entropy loss lLR:

LLR =
∑

(x,y)∈{xd,y}

lLR(r(g(f(x))), y). (1)

During training, we sum this loss with the original self-supervised loss to achieve the final objective,
L = LSSL + λLLR, where λ is a coefficient that controls the influence of our prediction task. In
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Figure 2: (a) Examples of novel classes created by rotation by {90◦, 180◦, 270◦}. (b) Adding task
augmentation into the data augmentation pipeline. We first apply random transformations on the
input batch, then for each augmented view from the same base image, we rotate them by the same
degree.
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SSL 
Algorithm

Rotation

Feature 
Extractor

Share

Figure 3: Training procedure with Large Rotation augmentation as an auxiliary loss. We randomly
rotate each augmented view by a degree in {0◦, 90◦, 180◦, 270◦}. We share the feature extractor
used in the SSL algorithm and apply it along with a 4-way linear head r(·) to predict the rotation
angle. We sum up the SSL loss, LSSL, with the angle prediction loss, LLR, as our ultimate objective,
L.

contrast to few-shot classification problems, the batch size on self-supervised tasks is often very
large. If we rotate all images individually by four different degrees, we will triple the batch size
which will consume valuable memory. Instead, we propose to only sample a single rotation for each
image. We conduct an ablation study on the number of rotations used to augment each batch on
CIFAR-10 pre-raining, and we show that when the batch size is large, rotating each augmented view
in the batch once is enough (see Appendix A.3).

Table 6: Linear evaluation (Top-1 accuracy (%) with one standard error) on CIFAR-10 with repre-
sentations learned via different augmentations.“Baseline” denotes augmentations used in SimCLR,
“+ TA” denotes adding large rotation as task augmentations, “+ LLR” denotes adding large rotation
as an auxiliary loss, and “+ Mix” denotes adding image mixing augmentation (Shen et al., 2020).

Augmentations SimCLR R2-D2 ProtoNet BYOL

Baseline 91.52 ± 0.19 91.46 ± 0.11 91.84 ± 0.19 92.08 ± 0.13
+ TA (ours) 91.46 ± 0.13 91.24 ± 0.06 91.98 ± 0.13 92.03 ± 0.15
+ LLR (ours) 93.04 ± 0.17 92.74 ± 0.11 93.16 ± 0.13 93.18 ± 0.16
+ Mix 92.98 ± 0.13 93.02 ± 0.11 93.36 ± 0.11 93.83 ± 0.06
+ Mix + LLR (ours) 93.88 ± 0.13 93.70 ± 0.20 94.12 ± 0.13 94.57 ± 0.15

Table 6 highlights the effectiveness of treating large rotations as a task augmentation or as an auxil-
iary loss on pre-trained CIFAR-10 representation in the default setting. Notably, our method enables
BYOL to achieve 94.6% accuracy with a backbone trained entirely on unlabeled data, just as high
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as models of the same architecture trained in a fully supervised setting (but without our augmenta-
tions) (Kuang et al., 2017). For task augmentation, we apply large rotations with the probability of
0.25 each on top of the baseline augmentations. For the rotation angle predictor loss, we weight the
additional loss term with coefficient λ = 1 for all experiments except for pre-training with R2-D2,
where we set λ = 0.01. In Table 6, we see that by using large rotations as a task augmentation, we
can avoid the massive accuracy drop observed in Table 5. In addition, when we add the angle predic-
tion loss for large rotation as an auxiliary loss, we boost the linear evaluation of all the pre-trained
representations by at least 1%.

Table 7: Linear evaluation on ImageNet with representations learned by SimCLR and with proposed
augmentations.

Model Top-1 (%)

SimCLR 58.8
SimCLR + LLR (ours) 59.6

We further show that our proposed method can be combined with existing data augmentation meth-
ods by adding harder examples with mix-up or cut-mix in Table 6. Following Shen et al. (2020),
we mix one augmented view from each base image with an augmented view from a second image
where the indices used for the second augmented view are reverse ordered. In order to mix images,
we randomly apply mix-up or cut-mix with equal probability. Our proposed large rotation predic-
tion loss consistently improves performance on top of the mixing augmentation by ∼ 1% on all
pre-training methods, thus leading to more than 2% improvement from the baseline augmentations.
On ImageNet, Table 7 displays the top-1 linear evaluation accuracy for methods with and without
our proposed rotation angle prediction loss. With the proposed auxiliary loss, we achieve 0.8% im-
provement on the representation trained for 100 epochs. Additional evaluations for transfer learning
and semi-supervised learning can be found in Appendix A.4.

6 CONCLUSION

In this work, we discuss the close relationship between contrastive learning and meta-learning. In
doing so, we propose a new meta-learning framework for self-supervised learning by converting
the contrastive setup into on-the-fly image classification tasks. We show that feature extractors pre-
trained via meta-learning achieve comparable results to contrastive learning methods and, in fact,
they transfer better to downstream tasks in some cases. In addition, we leverage data augmentation
ideas from meta-learning and incorporate them into contrastive learning. We demonstrate that the
proposed meta-specific data augmentation consistently improves the performance of popular self-
supervised learning algorithms on various datasets.
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A APPENDIX

A.1 PRE-TRAINING DETAILS

For ImageNet, we follow similar procedure as Chen et al. (2020a) for both SimCLR and our pro-
posed meta-learning algorithms, where we use a batch size 256, a starting learning rate of 0.3 (fol-
lowing LR = 0.3 × BatchSize/256), weight decay 10−6 and temperature 0.1. We accumulate the
gradients and update our model every 8 iterations during the pre-training. For Cifar10, we use a
batch size 1024, a starting learning rate of 4. (following LR = 1. × BatchSize/256), weight decay
10−6 and temperature 0.5.

A.2 EVALUATION DETAILS

Linear Evaluation. For ImageNet, we follow similar procedure as Chen et al. (2020a), where we
use a batch size 4096, a larger learning rate of 1.6 (following LR = 0.1 × BatchSize/256) and longer
training of 90 epochs. For CIFAR-10, we train the linear classifier for 200 epochs with batch size
1024, and a linear decay learning rate schedule starts with rate 0.1. We use SGD as the optimizer
for linear evaluation on both datasets.

Semi-supervised Learning. Following Chen et al. (2020a), we fine-tune the pre-trained model
with 1% and 10% labeled ImageNet data. Due to the computational limit, instead of using batch
size 4096, we use the SGD optimizer with a batch size of 256 and momentum of 0.9. We use a
linear decay learning rate schedule starts with rate 0.05. We only use the regular data augmentation
for ImageNet training (random crop and resize). We do not use any regularization such as weight
decay. For both 1% and 10% of the labeled data, we fine-tune for 60 epochs. The supervised
baseline results are imported from Zhai et al. (2019), where they trained several thousand models
for hyperparameter tuning and using strong data augmentations.

Transfer Learning. We evaluate the performance of models in transfer learning through fine-
tuning. We use SSL pre-trained feature extractors with a linear classification head as our model in
transfer learning, and we update the entire network during fine-tuning. In this experiment, we use
an SGD optimizer with Nesterov momentum (momentum=0.9). We set the batch size to be 256 and
train our models for 20,000 iterations. For each dataset, we follow the training/validation/testing
split in Chen et al. (2020a) and perform the hyperparameter search on the validation set. We search
through different learning rates (ranging from 10−2 to 10−1) and weight decays (ranging from 10−6

to 10−3, and 0), and choose the best setting by comparing the performance on the validation set.
Results in Table 4 are evaluated on the test split, and our models are trained on the union of training
and validation set, using the best hyperparameter settings we have found.

A.3 THE SAMPLE SIZE FOR LARGE ROTATION AUXILIARY LOSS

Table 8 shows the linear evaluation accuracy for representations learned by different self-supervised
learning algorithms with different rotation methods. A full rotation method rotates all the aug-
mented views by 3 times, a half rotation method rotates half of the augmented views by 3 times,
and the random rotation only rotates all the augmented views by an angle randomly chosen from
{0◦, 90◦, 180◦, 270◦}. With different rotation methods, the number of training examples for rota-
tion angle prediction is different. Among all the experiments, we use the same batch size 1024,
and the full rotation will generate 1024 × 2 × 4 training examples, the half rotation will generate
512× 2× 4 examples and random rotation will only generate 1024× 2 samples, where 2 represents
for the number of the random augmentations and 4 is the length of the degree set. From Table 8,
we can see that even if we have much fewer training samples when applying random rotation, we
can still achieve comparable results. As a result, we use random rotation in all the experiments as it
makes the training more memory efficient.
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Table 8: Linear evaluation (top-1 accuracy (%)) on CIFAR-10 with representations learned by vari-
ous SSL methods with different rotation methods.

Method SimCLR R2-D2 PN

Random Rotation 93.0 92.9 93.0
Full Rotation 92.6 92.8 92.9
Half Rotation 92.9 92.6 92.7

A.4 MORE EVALUATIONS FOR LARGE ROTATION

In this section, we provide additional evaluations for the model pre-trained with our proposed large
rotation in Table 9 and Table 10. We conduct the same transfer learning and semi-supervised learning
experiments as in Section 4.

Table 9: ImageNet Top-1 accuracy (%) of models fine-tuned with few labels. “+ LLR” denotes
adding large rotation as an auxiliary loss during pre-training

Method Backbone Label fraction
1% 10%

Supervised baseline ResNet-50 25.4 56.4
SimCLR ResNet-50 32.4 53.6
SimCLR + LLR ResNet-50 32.0 53.5

Table 10: Transfer learning using ImageNet pre-trained weights. We report mean per-class accuracy
(%) on the Flowers and Aircraft datasets, mean average precision (mAP) on the VOC2007 classifi-
cation dataset, and Top-1 accuracy on the remaining datasets. “+ LLR” denotes adding large rotation
as an auxiliary loss during pre-training

Flowers102 DTD VOC2007 Aircraft Food101 SUN397 CIFAR-10 CIFAR-100

Baseline 92.0 64.8 67.3 85.9 86.9 53.6 95.9 80.2
SimCLR 92.4 72.7 66.0 83.7 86.3 57.4 94.8 79.1
SimCLR + LLR 93.1 73.0 64.4 85.8 86.3 57.0 96.2 82.0

A.5 PRE-TRAINING FOR TABULAR DATASET

Outside of computer vision, contrastive learning pre-training has been shown effective in the tabular
data domain as well, especially for fine-tuning with limited data (Somepalli et al., 2021). To further
show the effectiveness of meta-learning in this setting, we pre-train on tabular data with the R2D2
head and evaluate on semi-supervised tasks given only 50 training samples. We apply our methods
to 5 datasets from OpenML (Vanschoren et al., 2014), and we average over 5 runs with random train-
test split on each dataset. Details of the selected datasets can be found in Somepalli et al. (2021).
For datasets with binary classification tasks, we evaluate the algorithm with mean AUROC scores,
and for datasets with multi-class classification tasks, we evaluate the methods with mean accuracy.
Table 11 shows that our meta-learning based pre-training method can indeed achieve comparable
accuracy to state-of-the-art contrastive learning methods on tabular data.
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Table 11: Semi-supervised evaluation with 50 labeled training samples on 5 tabular datasets.

Dataset Pre-train Nethods Mean Score Std

adult - 84.46 1.82
Contrastive 86.66 1.62

R2-D2 84.26 4.34

arrhythmia - 72.36 6.20
Contrastive 75.94 4.32

R2-D2 75.64 3.26

telco-customer-churn - 79.76 2.22
Contrastive 80.34 1.30

R2-D2 81.38 1.69

eucalyptus - 45.06 3.68
Contrastive 46.8 8.76

R2-D2 49.17 9.03

volkert - 40.80 2.57
Contrastive 39.22 2.07

R2-D2 40.44 1.76
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