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LTTrack: Rethinking the Tracking Framework for
Long-Term Multi-Object Tracking

Jiaping Lin, Gang Liang, Rongchuan Zhang

Abstract—Long-term tracking is a commonly overlooked yet
practical scenario in multi-object tracking. Handling occlusion
and re-identifying long-lost targets are the main challenges
for effective long-term tracking. In occlusion scenarios, both
appearance and motion features can be unreliable, leading to
association failure. For long-lost targets, predicting their long-
term motion suffers from severe error accumulation, making the
target re-identification challenging. In this paper, we propose a
multi-object tracker called LTTrack for long-term tracking. For
occlusion handling, we develop the Position-Based Association
(PBA) module, which encodes relative and absolute positions as
interaction and motion features for association. With interaction
features, PBA can handle occlusion scenes where appearance
and motion features are unreliable. For long-lost target re-
identification, the Long-Term Motion (LTM) model is devised. By
encoding long-term motion trends of targets for long-term motion
prediction, LTM alleviates the error accumulation problem.
Moreover, to prevent the erroneous deletion of long-lost tracks,
we propose the Zombie Track Re-Match (ZTRM) strategy to re-
identify long-lost targets so that they will neither be prematurely
deleted nor disrupt the association of other tracks. Extensive
experiments conducted on MOT17, MOT20, and DanceTrack
demonstrate that LTTrack achieves performance comparable to
state-of-the-art methods. The code and models are available at
https://github.com/Lin-Jiaping/LTTrack.

Index Terms—Multi-object tracking, long-term tracking,
tracking-by-detection, motion model, data association.

I. INTRODUCTION

MULTI-object tracking (MOT) aims to track all the
objects of interest in the input video, determining the

position of each object in every frame of the video. As a fun-
damental task in computer vision, MOT finds widespread ap-
plications in fields such as autonomous driving [1], intelligent
surveillance [2], human-computer interaction [3], and more.
Existing MOT methods can be categorized into two groups:
tracking-by-query (TBQ) [4]–[9] and tracking-by-detection
(TBD) [10]–[14]. TBQ methods incorporate the Transformer
[15] and utilize the track query to decode the positions of
tracked targets in each frame for tracking purposes. TBD
methods consist of two main components: object detection and
data association. Object detection is responsible for locating
all objects in each frame. Data association links detected
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Fig. 1. Performance comparison between state-of-the-art trackers [11], [13],
[18] and LTTrack on the MOT17 validation set. The horizontal axis repre-
sents loss durations, while the vertical axis denotes the identity assignment
performance, i.e., IDF1 [19]. LTTrack excels in tracking long-lost targets.

objects with the same identity across different frames based on
appearance, motion, and other cues to form tracks. Comparing
TBQ and TBD, the former demonstrates greater potential in
scenarios involving complex target motion because of the ro-
bust modeling capabilities of Transformer for time-series data.
However, TBQ models usually involve numerous attention
operations, introducing high computational costs. Conversely,
TBD models have a lower computational overhead. Besides,
TBQ models necessitate large-scale datasets to train high-
performance models, resulting in inferior performance com-
pared to TBD models on small datasets like [16], [17].

State-of-the-art (SOTA) MOT algorithms can maintain high
tracking performance in simple scenarios, such as short-term
occlusion. However, long-term tracking remains a significant
challenge. Note that we define long-lost targets as targets
lost for over 1 second and long-term tracking as the task of
tracking targets for over 1 second, which is similar to [20].
Handling occlusion and re-identifying long-lost targets are the
primary difficulties in long-term tracking. Occlusion can lead
to a track failing to associate with any detections, i.e. target
loss, or matching with an incorrect detection and breaking into
two or more tracklets, i.e. track fragmentation. As depicted
in Fig. 1, with the increase in loss duration, existing methods
exhibit a notable decrease in IDF1 score on the MOT17 dataset
[16]. Specifically, when the loss duration exceeds 3 seconds,
existing methods show a decrease of more than 15% in IDF1
score. There are two reasons for this phenomenon. First, after
long-term loss, the appearance of targets may undergo signif-
icant changes and motion models cannot accurately predict
target motion due to the lack of detections for correction.
This complicates the target re-identification process based on
appearance and motion features. Secondly, track management
strategies in existing methods are not applicable to long-term
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tracking scenarios. Specifically, existing track management
strategies [10], [13], [21], [22] assume that tracks which have
been lost for more than n frames are terminated and delete
these tracks. To prevent terminated tracks from interfering with
the association of other tracks, the value of n is set relatively
small, which leads to the mistaken deletion of long-lost targets.

To address the above problem, existing methods concentrate
on extracting more robust and distinctive features to improve
association accuracy. [7], [14], [23] create a memory bank to
store the historical appearance features of tracks, thereby creat-
ing robust appearance features. However, as the occlusion time
increases, the potential associations will accumulate, leading
to a rise in ambiguous matches. Consequently, relying solely
on appearance features for re-identifying long-lost targets is
insufficient. Additionally, existing simple motion models [13],
[24] cannot aid in re-identification due to the error accumu-
lation issue in long-term motion prediction. Therefore, [20]
devises a sophisticated motion model for long-term motion
prediction, enabling successful re-identification. Nevertheless,
[20] requires complex motion modeling for different scenes,
which makes the model less robust. Unfortunately, using the
motion model to accomplish the re-identification of long-lost
targets remains a challenging research direction and is often
overlooked. Furthermore, all the aforementioned methods fo-
cus on addressing the long-term tracking issue by extracting
more robust features, but they overlook the impact of track
management on long-term tracking scenarios.

In this paper, we propose a novel algorithm for long-term
multi-object tracking based on the TBD paradigm, namely
Long-Term Track (LTTrack). In particular, our LTTrack fo-
cuses on three perspectives to tackle the unique challenges
posed by long-term tracking scenarios: fragmentation preven-
tion, long-term motion prediction, and lost track management.

In terms of track fragmentation, we propose the Position-
Based Association (PBA) module to ensure robust association
and reduce fragmentation in crowded scenes with heavy oc-
clusion. Interaction among targets is an important contextual
cue. However, previous methods only use it for motion pre-
diction [24]–[27] or missed detection recovery [28], without
explicitly leveraging it as an association cue. Therefore, we
innovatively utilize the interaction feature for data association.
Specifically, our PBA module uses the relative positions of
targets to encode interaction features and the absolute positions
to encode motion features. Afterward, the two features are
combined to compute the affinity between detections and
tracks for association.

In terms of long-term motion prediction, as mentioned
above, how to approach error accumulation and design a
simple yet effective long-term motion model is a key problem
in long-term tracking. We argue that the reason for error
accumulation lies in the tendency of existing motion mod-
els to rely solely on short-term motion features for motion
prediction. For example, existing models tend to predict the
velocity of a target in the next frame based on its velocity
in adjacent frames. For long-term motion prediction across
multiple frames, subsequent motion predictions are built upon
prior predictions that may contain errors, resulting in error
accumulation. Hence, relying solely on short-term motion

features is inadequate. It is crucial to consider the overall
motion trends of tracks. Consequently, we propose the Long-
Term Motion (LTM) model, which extracts short-term motion
features, interaction features, and long-term motion features
from tracks for long-term prediction. For long-term motion
feature extraction, we observe that variations in the dimensions
of the bounding box can reflect the target motion magnitude.
Furthermore, the historical velocities of the target can also re-
veal its motion speed trend. Therefore, the historical variations
in the tracking box and the velocity of tracks are encoded as
long-term motion features to represent the motion trends.

In terms of lost track management, it is essential to ensure
that long-lost targets have the opportunity for re-identification,
hence they should not be promptly deleted. However, retaining
long-lost tracks can lead to an excessive number of tracks in
the track pool, expanding the search space for data association
and disrupting the association of normal tracks. Therefore, it
is necessary to separate long-lost tracks from others for more
effective management. In light of this analysis, we designate
tracks lost for more than mlost frames as “zombie tracks”
and propose the Zombie Track Re-Match (ZTRM) association
strategy to deal with zombie tracks individually based on long-
term motion prediction and appearance features.

As shown in Fig. 1, LTTrack outperforms existing methods
as the loss time increases. Furthermore, we conduct extensive
experiments on MOT17 [16], MOT20 [17], and DanceTrack
[29] datasets. The experimental results illustrate our LTTrack
can achieve competitive performance with SOTA methods.

The main contributions are summarized as follows:
• The LTM module is proposed to address the error accu-

mulation problem and attain accurate long-term motion
prediction by introducing long-term motion features.

• The PBA module is proposed to solve association failure
due to the ineffectiveness of appearance and motion
features in crowded scenes using the interaction feature.

• The ZTRM module is designed to manage long-lost
tracks using a separate association strategy.

• A tracker LTTrack is proposed by combining the above
innovative modules to realize stable long-term tracking.

II. RELATED WORK

In this section, we delve into the aspects of existing MOT
research relevant to our work, including motion models, asso-
ciation algorithms, and track management strategies.

A. Motion Model in MOT

The motion model in MOT is used to predict the positions
of tracks in the next frame. Existing motion models can be
classified into filter-based models and data-driven models [24].

Filter-based methods model motion prediction as a state
estimation problem, employing Bayesian estimation to predict
the motion state of the track. As one of the Bayesian filters, the
Kalman Filter (KF) [30] finds wide applications in MOT. [11],
[12], [31]–[33] assume that the target undergoes linear motion
between consecutive frames and utilize KF as a linear motion
model for motion prediction. However, in complex scenes,
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targets often engage in non-linear motion, resulting in a signifi-
cant decrease in the effectiveness of KF. To address this issue,
[13], [18], [34]–[36] improve the implementation of KF in
MOT. For instance, OC-SORT [13] introduces an observation-
centric tracking method to reduce error accumulation and
enhance the robustness of KF. BoT-SORT [35] enhances KF by
directly regressing the center coordinates, width, and height of
the tracking box, leading to more precise motion prediction.
However, the aforementioned methods primarily concentrate
on reducing estimation errors of KF but may still struggle
to model non-linear motion accurately. Consequently, these
methods continue to underperform in complex scenarios [9].

To overcome the limitations of filter-based methods, data-
driven methods incorporate deep neural networks to enable
non-linear motion prediction. [37]–[41] predict the motion of
the target in the subsequent frames through iterative regression.
[42], [43] leverage RNNs to extract temporal features of tracks,
which are subsequently used to predict the motion state of the
target in the next frame. [27] utilizes Transformer to model
motion information across multiple frames for intricate mo-
tion prediction. Considering the mutual influence of adjacent
targets, [24]–[26], [44] model the interactions between targets
for motion prediction. However, these methods are unsuitable
for long-term motion prediction. When dealing with scenarios
involving long-term occlusion of targets and requiring motion
prediction for multiple frames, these methods may suffer
from significant bias due to error accumulation. To track
long-term occluded targets, QuoVadis [20] applies trajectory
forecasting techniques to MOT. It initially constructs tracks in
the Bird’s Eye View (BEV) space using homography trans-
formation. Then, it employs a trajectory forecasting model to
predict the motion of the target across multiple frames. This
approach effectively alleviates error accumulation in long-
term motion prediction. However, it introduces a homography
transformation module, which requires precise homography
transformations for every tracking scenario. This limits the
robustness and practicality of the model.

Comparing our LTM with existing motion models, in terms
of model structure, LTM shares similarities with [25]: both
models extract temporal and interaction features to support
motion prediction. However, the key difference is that LTM
focuses on long-term tracking. Specifically, LTM encodes the
long-term motion trend of the track to reduce error accumula-
tion in long-term motion prediction. In terms of application
scenarios, both LTM and [20] are designed for long-term
tracking. However, unlike [20] which incorporates an extra
homography estimation model and a trajectory forecasting
model, LTM consists of a simple network structure while
achieving superior performance.

B. Data Association in MOT
The data association in MOT aims at linking detections

and tracks with the same identity in a frame. A kind of
simple association method [13], [31], [45], [46] calculates the
Intersection over Union (IoU) between the detection boxes
and the tracking boxes to assess the motion affinity between
the two sets. Then the motion affinity is input to the Hun-
garian algorithm [47] to complete association. Although such

methods are efficient and fast due to their sole reliance on
motion information, they may not be suitable for complex
scenarios with dense objects, irregular motion, etc. In these
cases, densely distributed targets often exhibit similar positions
and the motion cues are ambiguous. For complex scenarios,
[18], [22], [48]–[51] combine appearance and motion affinities
for association. These approaches extract appearance features
using a ReID network. Then, the appearance affinity between
tracks and detections is calculated based on appearance fea-
tures. Afterward, the association is performed based on appear-
ance and motion affinities. For example, [18], [22], [50], [51]
compute a weighted sum of appearance affinity and motion
affinity for more robust association. [49] designs a multi-level
association strategy, which relies on the appearance affinity
for association when the motion cue is unreliable. While the
fusion of appearance and motion features is effective in many
scenarios, it faces challenges in cases of heavy occlusion and
complex motion modes. In such situations, appearance and
motion features can become unreliable, inducing decreased
accuracy in existing association methods.

Existing methods primarily focus on extracting robust ap-
pearance or motion features for association without consid-
ering other information in the scene, leading to performance
degradation in challenging scenes. We note that in crowded
scenes where appearance and motion features are unreliable,
interaction features can effectively distinguish between differ-
ent targets. Therefore, the PBA module is proposed to leverage
interaction features to assist the association in crowded scenes.

C. Track Management in MOT
The track management strategy in MOT is employed to

handle data association results, including track initialization,
update, and deletion [52]. For the newly appeared targets
during the tracking process, the track management strategy
initializes them as new tracks and adds these tracks to the track
pool. For successfully associated tracks and detections, the
states of tracks are updated according to the matched detection.
For tracks that fail to be associated, the track management
strategy needs to determine whether the track is temporarily
lost or has terminated, thereby deciding whether to remove the
track from the track pool. Existing methods [10], [13], [49],
[50], [53] introduce a threshold n for loss duration to decide
whether a track is lost or terminated. If a track has been lost for
more than n frames, it is considered terminated. The value of n
is determined through experimental studies. However, relying
solely on n to filter out terminated tracks poses limitations
in long-term tracking scenarios. For re-identifying long-lost
targets, a relatively large value of n is necessary to alleviate
the erroneous deletion of these targets. Nevertheless, setting a
large value for n results in a surplus of terminated tracks within
the track pool, which hinders the association of regular tracks.
To address this issue, ByteTrack [11] dynamically adjusts the
value of n based on the characteristics of the tracking scene.
However, this manual adjustment strategy leads to a lack of
robustness and practicality of [11].

Different from existing methods, we preserve long-lost
tracks in the track pool, preventing their premature dele-
tion. Moreover, to mitigate ambiguous association caused
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Fig. 2. Overview of our LTTrack. Given the frame Ft and tracks T t−1 up to frame t− 1, LTTrack outputs the tracking results, i.e., tracks T t up to frame
t. There are five components in LTTrack: (a) a detector to obtain detections Dt in Ft, (b) a ReID module to extract appearance features for the calculation of
appearance affinity between Dt and T t−1, (c) the proposed PBA to compute interaction and motion affinities based on position information, (d) the proposed
LTM to predict positions of tracks in Ft, (e) and an association algorithm with the proposed ZTRM to associate T t−1 and Dt based on appearance, motion
and interaction affinity, outputting tracks T t up to frame t.

by retaining long-lost tracks, we design the ZTRM strategy,
which performs the association between long-lost tracks and
detections separately.

III. METHODOLOGY

In this section, we first introduce the overview of LTTrack
and then present the details of each proposed module.

A. Overview of LTTrack

Initially, we establish several symbolic expressions. We
denote the t-th frame in the video as Ft and represent the set
of N detections in Ft as Dt = {dt

i}Ni=1, where each detection
is defined by the center point coordinates, width, height, and
detection confidence, i.e. dt

i = (x, y, w, h, c). We denote the
set of M tracks up to frame t− 1 as T t−1 = {τ j}Mj=1, where
τ j = {bkj }t−1

k=t−L represents a track with ID j and length L,
consisting of tracking boxes bkj = (x, y, w, h) for target j in
L different frames. Besides, the set of positions of tracks at
frame t−1 is denoted as Zt−1 = {bt−1

j }Mj=1, and the predicted

positions of tracks at frame t is represented as Ẑt = {b̂
t

j}Mj=1.
At the beginning of tracking, we directly initialize the

detections D1 of the first frame as tracks of length 1. For
the subsequent frames, as shown in Fig. 2, the workflow
of LTTrack contains five stages: (a) Given Ft as input, a
detector is introduced to detect objects in Ft and output
detections Dt. (b) A ReID model is employed to extract the
appearance features for the computation of the appearance cost
matrix Ccos, which represents the appearance affinity between
detections and tracks. (c) The proposed PBA module utilizes
Dt and positions Zt−1 of tracks at frame t − 1 to compute
the position cost matrix CPBA, which reflects motion and

interaction affinities. (d) The proposed LTM module is applied
to predict the positions Ẑt of tracks at frame t. And the
predictions Ẑt

zombie for zombie tracks is used to calculate the
IoU cost matrix CIoU with Dt. (e) Three rounds of association
are conducted with different cost matrices as input to associate
tracks with detections and update T t−1 to T t.

Throughout the tracking process, we categorize tracks into
four states: alive, lost, zombie, and terminated. The trajectory
set is partitioned into three subsets: Talive, Tlost, Tzombie to
store tracks with the corresponding state, while terminated
tracks will be removed from T . The newly appearing targets
in each frame will be initialized as alive tracks and added to
Talive. If a track is successfully associated with a detection
at frame t, its state remains alive and the matched detection
is taken as the tracking box of the track at frame t. When a
track fails to associate with any detections at frame t, its state
becomes lost. When a track remains in the lost state for more
than mlost frames, the lost track turns into a zombie track.
For tracks in the lost or zombie state from frame tlost to tL,
we utilize the prediction boxes generated by LTM to represent
tracking boxes of the track during the lost period, denoted as
τ j = {bt1j , bt2j , . . . , btlost−1

j , b̂
tlost
j , . . . , b̂

tL
j }. Once a lost or

zombie track is successfully associated with a detection (i.e.
re-identified), its state is restored to alive. When a track fails
to associate with any detection for more than mzombie frames,
we consider the track terminated and remove it from Tzombie.

B. Long-Term Motion

Existing motion models suffer from severe error accumula-
tion in long-term motion prediction. We analyze the reason
for this as follows. Existing models may introduce errors
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Fig. 3. Illustration of LTM. LTM takes tracks T t−1 up to frame t − 1
as input, and outputs position predictions Ẑt of tracks at frame t. There are
four submodules in LTM: the Short-Term Encoder (STE) to extract short-term
motion features, the Social Attention to extract interaction features among
tracks, the Long-Term Encoder (LTE) to extract long-term motion features,
and the Decoder to fuse the three features and output predictions Ẑt.

in their predictions. This is often manageable in short-term
motion prediction because the matched detections can correct
these errors. However, for long-term motion prediction, with-
out detections to provide corrective information, errors tend
to accumulate because the subsequent frame predictions are
based on previous predictions with errors. After several frames
of prediction, the predicted positions may deviate significantly
from the actual locations. Consequently, the tracks may fail to
associate with detections accurately.

To mitigate the challenge of error accumulation in long-term
motion prediction, we propose that the motion model should
not rely solely on the motion states from adjacent frames
for motion prediction. Instead, it should consider the overall
motion trend of the track. Based on the above analysis, we
propose the Long-Term Motion (LTM) model. Building on the
common motion model structure that includes trajectory en-
coding and interaction feature extraction, our LTM integrates
an extra branch for long-term motion feature extraction. This
helps to minimize error accumulation in motion prediction
for consecutive frames. We argue that changes in the height
and width of the tracking box can indicate the target motion
magnitude. For example, the tracking box of a dancing person
experiences more significant changes compared to the tracking
box of a static person. Furthermore, the historical velocity of
a track can reveal the tendency of the target to move at a
particular speed, which can facilitate characterizing the long-
term motion trend of the target. For instance, older individuals
typically move more slowly than younger ones. Thus, the long-
term motion trend of a target is depicted by encoding the
historical widths, heights, and velocities of the track.

The input of LTM is the set of tracks T t−1 up to frame t−1,
and the output is a set of prediction boxes Ẑt representing the
possible positions of tracks at frame t. As shown in Fig. 3 (i),
there are four submodules in LTM: the short-term motion
encoder, the long-term motion encoder, the Social Attention
[54] module, and the prediction decoder. The workflow of
LTM is as follows: (a) Preprocessing T t−1. We preserve the

tracking boxes in the last s frames for tracks in T t−1. For
tracks shorter than s frames, pad the track sequences with
zero vectors at the beginning to make the length of these
tracks equal to s. (b) Input T t−2 (T t−1 without tracking
boxes at frame t − 1) to the short-term encoder to extract
the short-term motion features S ∈ RM×dLTM , where M is
the number of tracks in T t−1 and dLTM is the embedding
dimension. (Fig. 3 (ii)). (c) Extract long-term motion features
H ∈ RM×dLTM using the long-term encoder (Fig. 3 (iii)). (d)
Input S and T t−1 to the Social Attention module to extract
interaction features I ∈ RM×dLTM . (e) Integrate H, I and S
to form a new hidden state h(t−2)′ , take tracking boxes Zt−1

of tracks at frame t − 1 as observations and apply a single
layer of GRU following a Multi-Layer Perceptron (MLP) to
decode the prediction boxes Ẑt ∈ RM×4 of tracks at frame t
(Fig. 3 (iv)). The above procedure is formulated as follows:

S = STE
(
T t−2

)
H = LTE

(
T t−1

)
I = SA

(
T t−1,S

)
Ẑt = Decoder

(
Zt−1,H, I,S

) (1)

where STE, LTE, and SA represent the short-term encoder,
long-term encoder, and Social Attention, respectively. Notably,
since Zt−1 is taken as observations to input to GRU in the
Decoder, we input T t−2 instead of T t−1 to STE to prevent
redundant encoding of Zt−1.

Similar to existing data-driven motion models, we encode
track sequences and introduce interaction features for motion
prediction. Specifically, we apply a single layer of GRU to
encode track sequences, and the output hidden states ht−1

at frame t − 1 are taken as the short-term motion features.
What sets LTM apart from existing methods is the additional
design of a long-term motion feature encoder, aimed at dealing
with error accumulation in long-term motion prediction. The
structure of the long-term motion feature encoder is shown
in Fig. 3 (iii). For track preprocessing, we denote the target
historical velocities as the positional offsets of the top-left
and bottom-right corner points of the tracking boxes between
adjacent frames. Additionally, we assume the speed of a target
is 0 at the starting frame. To encode the historical widths
and heights of a track, we divide the width and height of the
tracking box by the y-coordinate of its center point, which is
taken as the relative width and height of the tracking box. The
reason for calculating the relative width and height is that the
variation of the width and height of the tracking box not only
reflects the target motion magnitude but is also affected by the
distance between the target and the camera. Specifically, when
a target moves toward the camera, its tracking box usually
becomes larger, and the y-coordinate of the center point also
increases. We mitigate this effect by calculating the relative
width and height. The computation of velocity and relative
width and height of a target at frame t is as follows:

vt =
(
xt
1 − xt−1

1 , yt1 − yt−1
1 , xt

2 − xt−1
2 , yt2 − yt−1

2

)
(2)

at =

(
wt

ytc
,
ht

ytc

)
(3)
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where (x1, y1) and (x2, y2) represent the coordinates of the
top-left and bottom-right corner points of the tracking box. ytc,
wt, ht denote the y-coordinate of the center point, width, and
height of the tracking box. The historical relative widths and
heights of tracks in T t−1 is denoted as A ∈ RM×30×2, while
the historical velocities is denoted as V ∈ RM×30×4.

We take a 1 × 1 convolutional layer to merge the two
channels representing relative heights and relative widths in A.
Subsequently, the result is passed through a ReLU activation
layer, an average pooling layer, a linear layer, and another
ReLU activation layer to encode the historical relative widths
and heights of tracks. To encode historical velocities V of
tracks, we employ two ConvBlocks, an average pooling layer,
a linear layer, and a ReLU activation layer to construct the
encoder. Each ConvBlock comprises a 1 × 5 convolutional
layer, a BatchNorm layer, and a ReLU activation layer. Finally,
we concatenate the encoded historical widths and heights with
the encoded historical velocities and use an MLP for feature
fusion to obtain the long-term motion features H. These
features are then input to the decoder for motion prediction.

C. Position-Based Association

In dense scenes, closely positioned targets tend to occlude
each other, and the appearance features of occluded targets
are susceptible to contamination. Consequently, distinguishing
these targets based on their position and appearance charac-
teristics becomes a challenging task. However, we observe
that in dense scenes, within a group of adjacent targets,
each target maintains a unique interaction relationship with its
neighbors, which is reflected by the relative positions between
the target and its neighbors. As illustrated in Fig. 4, four
densely distributed and visually similar targets exhibit distinc-
tive relative position properties that differentiate each target
from its counterparts. Moreover, in consecutive frames, the
positions of a target will undergo gradual transitions instead
of abrupt changes, leading to a high similarity in the relative
position properties of the same target between adjacent frames.
Hence, we contend that the relative positions of targets can
serve as interaction cues for distinguishing between different
targets, thus assisting in the association in dense scenes.

In light of the above analysis, we propose the PBA module,
which extracts absolute and relative position features to assist
data association in crowded scenes. As depicted in Fig. 4, the
structure of PBA comprises two branches: the relative position
encoder (RelEncoder) and the absolute position encoder (Ab-
sEncoder). PBA takes as input the detections Dt at frame t and
the tracking boxes Zt−1 of tracks at frame t− 1. The output
of PBA is the cost matrix CPBA, representing the motion and
interaction affinities between Dt and Zt−1.

For relative position encoding, we first compute the coordi-
nate differences between bounding boxes in the same set for
the input Dt and Zt−1, as follows:

(rx, ry, rw, rh) = (xc1−xc2, yc1−yc2, w1−w2, h1−h2) (4)

where (xc1, yc1, w1, h1) and (xc2, yc2, w2, h2) represent the
center point coordinates, widths, and heights of two bounding
boxes in the same set. (rx, ry, rw, rh) is taken as the relative

Fig. 4. Illustration of PBA. PBA accepts detections Dt at frame t and
positions Zt−1 of tracks at frame t − 1 as input, encodes the absolute and
relative position similarity between them, and produces a position cost matrix
CPBA. The absolute position is denoted by bounding box coordinates, while
the relative position is indicated by the difference of bounding box coordinates.

coordinates. We retain the k nearest relative coordinates for
each bounding box and require that the two bounding boxes
used to calculate the relative coordinates have overlapping
areas. These selected relative coordinates are then stacked to
form relative coordinate matrices for detections and tracks at
frame t, denoted as PD ∈ RN×k×4 and PT ∈ RM×k×4,
where N and M represents the number of detections and
tracks. In cases where the number of bounding boxes that
have an overlap with a particular bounding box is less than k,
we pad the relative coordinate matrix with zeros to reach the
desired size of k. Then, we concatenate PD and Dt, PT and
Zt−1, respectively, and map them to high-dimension features
FD ∈ RN×8dPBA and FT ∈ RM×8dPBA , where 8dPBA is the
embedding dimension. The formulas are as follows:

FD = ϕ
(
concat

(
PD,Dt

)
,Wrel

)
FT = ϕ

(
concat

(
PT ,Zt−1

)
,Wrel

) (5)

where Wrel is the weight of the linear transformation, and
ϕ represents ReLU activation function. Subsequently, we
construct FD and FT as relative coordinate matrix F ∈
RM×N×16dPBA . Afterward, an MLP is utilized to compute
the interaction affinity features Frel ∈ RM×N×2dPBA .

For absolute position encoding, as shown in Eq. (6), we
calculate the pairwise differences between the center-point co-
ordinates and the aspect ratios of the bounding boxes in Dt and
Zt−1, which serves to represent the motion affinity between
detections and tracks. Subsequently, an MLP is employed to
obtain the motion affinity features Fabs ∈ RM×N×dPBA .

(ax, ay, aw, ah) =

(
xc1 − xc2, yc1 − yc2, log

(
w1

w2

)
, log

(
h1

h2

))
(6)

Finally, we concatenate Frel and Fabs, and feed them into
an MLP to compute the final position cost matrix CPBA ∈
RM×N , which is further used to perform association.

CPBA = MLP (concat (Frel,Fabs)) (7)

D. Zombie Track Re-Match

To re-identify long-lost targets and achieve stable long-term
tracking, we propose an improved association algorithm based
on the two-stage association algorithm BYTE [11]. Contrary to
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BYTE, we incorporate both LTM and PBA into our association
algorithm and design a specific association strategy ZTRM
for long-term lost targets. In particular, we define tracks with
the lost time exceeding mlost frames as “zombie tracks” and
utilize ZTRM as an additional round of association to re-
identify zombie tracks. The pseudo-code of the association
algorithm is shown in Algorithm 1. Taking the association
process at frame t as an example, following BYTE, we divide
the detections into two sets: high-score detections Dt

high and
low-score detections Dt

low, based on the detection confidence
scores. Subsequently, we perform association as follows:

(R1) The first round of association matches the alive and
lost tracks {T t−1

alive, T
t−1
lost } with high-score detections Dt

high.
We evaluate the overall similarity by calculating the appear-
ance, motion, and interaction affinities between tracks and
detections. To calculate the appearance affinity, we employ a
ReID network to obtain the detection appearance feature and
calculate a track appearance feature by combining the appear-
ance features of historical detections contained in the track.
Afterward, we compute the cosine distance matrix between
the two sets of appearance features to represent the appearance
affinities, following [55]. To compute motion and interaction
affinities, Dt

high and Zt−1 are fed into the PBA, outputting
the cost matrix CPBA. Then, the final cost matrix C1 between
T t−1 and Dt

high is computed by adding the cosine distance
matrix and CPBA. Finally, C1 is input to the Hungarian algo-
rithm [47] to obtain the optimal matching result. The outputs
of the first association are successfully matched detection-track
pairs M1 = {(τ j ,d

t
i) | τ j ∈ T t−1,dt

i ∈ Dt
high}, unmatched

high-score detections Dt
u1

, and unmatched tracks T t−1
u1

.
(R2) The low-score detections Dt

low are combined with
the unmatched high-score detections Dt

u1
as the detections

for the second association. And the unmatched tracks T t−1
u1

from the first association are taken as the tracks for the
second association. Because the low-score detections usually
have a heavy occlusion or image blur, resulting in unreliable
appearance features, we disregard the appearance affinity and
solely focus on the motion and interaction affinities for the
second association. The PBA is employed to compute the cost
matrix C2 reflecting motion and interaction affinities between
tracks and detections. The outputs of the second association
are matched detection-track pairs M2 = {(τ j ,d

t
i) | τ j ∈

T t−1
u1

,dt
i ∈ Dt

low ∪ Dt
u1
}, unmatched detections Dt

u2
and

unmatched tracks T t−1
u2

.
(R3-ZTRM) In the third association, we associate zombie

tracks T t−1
zombie with high-score detections in Dt

u2
. We merge

the appearance and motion affinities to associate zombie tracks
with detections. The appearance affinity is calculated in the
same way as used in the first association. For the computation
of motion affinity, LTM is utilized to predict the motion
of the zombie tracks during the loss period. Then, the IoU
between the predicted boxes Ẑt

zombie and detection boxes is
computed to represent the motion affinity. The outputs of the
third association are matched detection-track pairs M3 =
{(τ j ,d

t
i) | τ j ∈ T t−1

zombie,d
t
i ∈ Dt

u2
∩Dt

high}, unmatched high-
score detections Dt

u3
and unmatched zombie tracks T t−1

u3
.

After three rounds of association, for all successfully
matched detection-track pairs, the matched detection box is

Algorithm 1 Pseudo-code of Association Algorithm.
Input: T t−1 = {T t−1

alive, T
t−1
lost , T

t−1
zombie}, D

t = {Dt
high,Dt

low}
Output: T t = {T t

alive, T t
lost, T t

zombie}
1: Ẑt ← LTM(T t−1) // motion prediction by LTM

// First association (R1)
2: Zt−1 ← positions of tracks in T t−1 at frame t− 1

3: C1 ← ReID(T t−1,Dt
high) + PBA(Zt−1,Dt

high)

4: Associate T t−1, Dt
high by Hungarians with C1

5: Generate M1, T t−1
u1

, and Dt
u1

// Second association (R2)
6: Dt

u1
← Dt

u1
∪ Dt

low

7: Zt−1 ← positions of tracks in T t−1
u1

at frame t− 1

8: C2 ← PBA(Zt−1,Dt
u1
)

9: Associate T t−1
u1

, Dt
u1

by Hungarians with C2

10: Generate M2, T t−1
u2

, and Dt
u2

// Third association (R3-ZTRM)
11: Dt

u2
← Dt

u2
∩ Dt

high

12: C3 ← ReID(T t−1
zombie,D

t
u2
) + IoU(Ẑt

zombie,Dt
u2
)

13: Associate T t−1
zombie, Dt

u2
by Hungarians with C3

14: Generate M3, T t−1
u3

, and Dt
u3

// Track management
15: update T t

alive by M1, M2 and M3

16: update T t
alive by generating new tracks from Dt

u3

17: update T t
lost, T t

zombie by unmatched tracks T t−1
u2

and Ẑt

18: update T t
zombie by unmatched zombie tracks T t−1

u3
and Ẑt

19: return T t

used to indicate the position of the track at frame t and set the
track state to alive. For unmatched tracks T t−1

u2
in the second

association, the track is considered lost. If the track has been
lost for more than mlost frames, it turns into a zombie track.
For the unmatched zombie tracks T t−1

u3
in the third association,

if the track has been lost for more than mzombie frames, the
corresponding target is considered terminated, and the track
will be deleted. For the lost and zombie tracks, the prediction
boxes generated by LTM are used to indicate the positions of
these tracks at frame t. Finally, we initialize the unmatched
high-score detections Dt

u3
after the third association as new

tracks and add them into T t
alive.

In the outlined association algorithm, we include a third
association, ZTRM, for zombie tracks to tackle the challenge
of re-identifying tracks lost for long periods. Notably, the
association of zombie tracks is separate from the association
of other tracks with alive or lost states, which will not interfere
with the association between other tracks and detections.

E. Training

LTM Training: We create a training sample for LTM
by combining ground truth bounding boxes DGT in a frame
from the training set with tracks up to the preceding frame.
Taking frame t as an example, the object bounding boxes Dt

GT

at frame t are used to supervise training. Meanwhile tracks
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T t−1 up to frame t− 1 are input to the LTM, outputting the
predicted positions Ẑt of tracks at frame t. The IoU loss [56]
is employed to supervise the LTM as follows:

LLTM = 1− IoU (Ẑt,Dt
GT )

2
(8)

PBA Training: We sample two adjacent frames from
videos in the training set as a training sample for PBA.
The inputs of PBA are ground truth object bounding boxes
from the two adjacent frames, while the output is the cost
matrix CPBA ∈ RN1×N2 , where N1 and N2 are numbers
of bounding boxes in the two frames. CPBA indicates the
distances between targets from the two frames. The greater
the distance between two targets, the lower the probability
that they have the same identity. We construct the ground truth
matrix A ∈ {0, 1}N1×N2 based on the target ID. Specifically,
if the target i at frame t has the same ID as the target j at
frame t+1, the elements in column j and row i of A will be
assigned a value of 0, and 1 otherwise. We train PBA using
the binary cross-entropy loss as follows:

LPBA = −A log (CPBA)− (1−A) log (1−CPBA) (9)

IV. EXPERIMENTS

In this section, we first discuss our evaluation settings
(Section IV-A, IV-B). Then, we conduct ablation studies on
LTTrack and analyze the effectiveness of the three proposed
modules for MOT (Section IV-C). Afterward, we compare our
proposed model with the SOTA methods on three benchmark
datasets (Section IV-D). Finally, we present the visualization
results (Section IV-E) and analyze the limitations of our
tracking method (Section IV-F).

A. Datasets and Metrics
Datasets: We evaluate our LTTrack on three public

datasets: MOT17 [16], MOT20 [17], and DanceTrack [29].
MOT17 and MOT20 are pedestrian tracking datasets where
most object motion is linear, while MOT20 presents a much
greater challenge with crowded scenes. DanceTrack is a chal-
lenging dataset, containing dancing scenarios where targets
have similar appearances and complex motions. For ablation
studies, we split the MOT17 training set following the popular
convention [11] that the first half of each video is used for
training and the second half for validation. For comparison
with SOTA methods, we train LTM and PBA on the MOT17,
MOT20, and DanceTrack training sets, respectively, and eval-
uate our tracker on the corresponding test sets.

Metrics: The identification F1 score (IDF1), higher order
tracking accuracy (HOTA), association accuracy (AssA), as-
sociation recall (AssR), detection accuracy (DetA), multiple
object tracking accuracy (MOTA), the number of ID switches
(ID Sw), the ratio of mostly tracked targets (MT), and the ratio
of mostly lost targets (ML) are employed to evaluate tracking
performance [19], [57]–[59]. Specifically, IDF1, AssA, MT,
ML, and IDSW are used to evaluate association performance.
MOTA is highly related to detection performance. HOTA
unifies the performance of detection and association in a bal-
anced manner. Since we focus on the association performance,
HOTA and IDF1 are taken as the primary evaluation metrics.

TABLE I
EVALUATION OF EACH COMPONENT IN LTTRACK ON MOT17 VALIDATION

SET. “W/O” MEANS ABANDONING THE CORRESPONDING MODULE.

Methods NUM HOTA↑ IDF1↑ AssA↑ MOTA↑
w/o PBA ① 66.27 77.41 67.70 75.31
w/o LTM ② 67.02 78.82 69.42 75.25
w/o ZTRM ③ 67.16 78.63 69.36 75.41
LTTrack ④ 67.69 79.64 70.39 75.78

B. Implementation Details

Our LTTrack is evaluated under the “private detection” pro-
tocol. For a fair comparison, we adopt the publicly available
YOLOX-X detector [60] trained by ByteTrack [11] for MOT17
and MOT20, trained by OC-SORT [13] for DanceTrack. All
experiments are conducted with a single RTX 2080 Ti GPU.

Training: For both LTM and PBA training, the AdamW
optimizer [61] is utilized with parameters β1 = 0.5, β2 =
0.999. Besides, we use the cosine annealing scheduler [62]
with initial learning rates of 10−4 for LTM and 10−5 for PBA.
The training epochs are set to 10 for MOT17, 20 for MOT20,
and 30 for DanceTrack.

Hyperparameter settings: Following BYTE [11], we re-
tain high-score and low-score detections by setting the thresh-
olds at 0.6 and 0.1, respectively. SBS50 from FastReID [63] is
used to extract ReID features. We set s = 30, dLTM = 32 for
LTM and k = 4, dPBA = 8 for PBA. The hyperparameters
for track state alternation are: mlost = 20, mzombie = 130
for MOT17, and mlost = 30, mzombie = 100 for MOT20 and
DanceTrack. The effect of the hyperparameters s, k, mlost,
and mzombie was investigated in the ablative studies.

C. Ablation Studies

Analysis of each component: We verify the contribution
of the proposed modules in our LTTrack by removing them
from LTTrack. Specifically, for the model without PBA (①),
we use IoU instead of PBA to compute the cost matrix for the
first two rounds of association. For the model without LTM
(②), the Kalman Filter (KF) improved by OC-SORT [13] is
utilized to replace LTM as the baseline motion model. For the
model without ZTRM (③), we directly eliminate ZTRM from
LTTrack. Besides, for reliable verification, all other settings of
these models are the same.

As shown in Table I, our proposed modules can improve
all metrics, indicating the effectiveness of the three modules.
Specifically, without PBA, the performance in IDF1, HOTA,
and AssA is dropped severely (① vs. ④), indicating the ef-
fectiveness of PBA in distinguishing identities. Without LTM,
the decrease in all metrics also demonstrates the capability of
LTM for more accurate motion prediction (② vs. ④). Without
ZTRM, we also get inferior performance (③ vs. ④), illustrating
that ZTRM can effectively manage long-lost tracks.

Analysis of LTM: To reflect the superiority of our proposed
LTM in long-term motion prediction, we compare the perfor-
mance of LTM with the baseline motion model KF from [13].
In particular, we also evaluate the performance of LTM without
the long-term feature extraction branch, namely STM, to
further prove the effectiveness of long-term features in motion
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TABLE II
EVALUATION OF LTM IN LONG-TERM LOSE SCENES ON THE MOT17

VALIDATION SET.

Settings NUM Methods IDF1↑ HOTA↑ MOTA↑

30 ≤ ℓ < 60

① KF 61.86 47.77 58.08
② STM 61.67 47.77 57.96
③ LTM 62.15 48.17 57.72

60 ≤ ℓ < 90

① KF 65.69 47.35 52.65
② STM 67.18 47.23 52.71
③ LTM 67.92 47.54 53.05

90 ≤ ℓ

① KF 56.48 46.31 54.22
② STM 54.92 44.49 55.32
③ LTM 58.64 47.34 55.29

prediction. Given the scarcity of scenes involving long-term
target loss in existing MOT datasets, evaluating the long-term
motion prediction performance of models directly on the entire
dataset would be inadequate. Therefore, we conduct a separate
evaluation focusing on tracking long-lost targets. Specifically,
we select the targets with a duration of loss exceeding 30
frames from every frame of the MOT17 validation set. These
targets are then categorized into three groups based on the loss
frame count ℓ for evaluation, as shown in the first column
of Table II. Furthermore, we modified the computation of
HOTA, IDF1, and MOTA metrics to evaluate the performance
of models in tracking targets with different loss durations.

The experimental results are shown in Table II and the best
results are marked in bold. Comparing ① and ③, the LTM
exhibits noticeable performance improvements over the KF
in addressing long-term loss. This evidence demonstrates that
our model is capable of precise motion prediction, especially
in scenarios involving long-term loss, ensuring accurate long-
term tracking. Comparing ② and ③, it is evident that the
LTM outperforms the STM, with the performance gap of
IDF1 and HOTA increasing as the loss duration lengthens.
This demonstrates that our proposed long-term motion feature
plays an important role in accurate motion prediction. In
addition, it can be observed that LTM does not significantly
outperform STM on MOTA. This is because MOTA primarily
measures the short-term tracking capability and is biased
towards measuring detection [58], while LTM improves on
STM by incorporating a long-term feature extraction branch
to improve motion prediction and long-term association. As a
result, both methods exhibit similar MOTA scores.

Analysis of PBA: In practice, existing methods take motion
information (used to compute IoU) along with appearance
information to handle the occlusion issue. In contrast, our
PBA introduces interaction information in addition to motion
information to tackle the challenge of extreme occlusion.
To verify the influence of interaction information on data
association in occlusion scenes, we split targets in the MOT17
validation set into four classes according to occlusion ratio a,
which is defined as the ratio of the maximum occluded area
to the bounding box area. Then, we compare the performance
of IoU and our proposed PBA under various occlusion ratio
conditions. In particular, we gather various classes of targets in
the validation set and compute the HOTA, IDF1, and MOTA
scores to evaluate the performance of models in tracking

TABLE III
EVALUATION OF PBA IN OCCLUSION SCENES ON THE MOT17

VALIDATION SET.

Settings Methods IDF1↑ HOTA↑ MOTA↑

a < 0.25

IoU 84.81 71.20 82.35
PBA 85.59 71.68 82.51
∆ +0.78 +0.48 +0.16

0.25 ≤ a < 0.5

IoU 79.02 67.36 80.10
PBA 80.32 67.86 79.71
∆ +1.30 +0.50 -0.39

0.5 ≤ a < 0.75

IoU 71.24 64.79 76.52
PBA 73.59 67.83 76.66
∆ +2.35 +3.04 +0.14

0.75 ≤ a

IoU 62.48 67.64 78.44
PBA 66.03 71.74 79.31
∆ +3.55 +4.10 +0.87

TABLE IV
COMPARISONS ON ZTRM AND BASELINES WITH DIFFERENT N.

Settings HOTA↑ IDF1↑ MOTA↑ AssA↑
Baseline(n=10) 66.72 77.95 75.67 68.40
Baseline(n=30) 67.16 78.63 75.41 69.36
Baseline(n=60) 66.74 78.30 75.08 68.77
Baseline(n=90) 66.49 78.27 75.22 68.27

ZTRM 67.69 79.64 75.78 70.39

targets with varying degrees of occlusion.
As illustrated in Table III, our PBA is superior to IoU in

handling various levels of occlusion. Furthermore, in scenarios
with severe occlusions (0.75 ≤ a), PBA-based methods
notably outperform IoU-based methods. This observation pro-
vides strong evidence that PBA is effective in addressing
occlusion problems, and interaction information can assist in
challenging data association. Additionally, it can be observed
that the introduction of PBA does not improve the MOTA
score compared to other metrics. The computation of MOTA is
biased to detection evaluation, while our PBA aims to improve
association accuracy in crowded scenes, thus changes in the
MOTA score are insignificant.

Analysis of ZTRM: To verify the effectiveness of ZTRM
in re-identifying long-lost tracks, we remove ZTRM from
LTTrack and adjust the max-alive age n of the lost track
to create different baselines for comparison. The results in
Table IV support our previous analysis that setting n too small
or too large can lead to performance degradation. The reason
is that setting n too small can increase the likelihood of target
re-identification failure while setting n too large can result in
an increased number of terminated tracks in the track pool,
hindering the association of other tracks. Compared to base-
lines, our ZTRM exhibits superior performance, highlighting
the effectiveness of ZTRM in managing lost tracks.

Analysis of track length s: In the preprocessing stage of
LTM, the tracking boxes of input tracks in the last s frames are
retained for subsequent feature extraction. To ensure sufficient
track information for feature extraction, it is recommended to
set s to a relatively high value. However, setting s too high
can introduce noisy data and interfere with the extraction of
interaction features. To determine the appropriate value for s,
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TABLE V
EVALUATION OF DIFFERENT TRACK LENGTH s IN LTM.

s HOTA↑ IDF1↑ MOTA↑ AssA↑
20 67.19 78.95 75.10 69.52
30 67.69 79.64 75.78 70.39
40 67.21 78.84 75.25 69.55
50 67.58 79.41 75.39 70.20
60 67.51 79.32 75.35 70.09

TABLE VI
EVALUATION OF DIFFERENT NUMBER k OF RELATIVE POSITIONS IN PBA.

k HOTA↑ IDF1↑ MOTA↑ AssA↑
2 66.43 77.72 75.07 68.18
3 66.93 78.06 74.88 69.28
4 67.69 79.64 75.78 70.39
5 66.61 77.90 74.63 68.95
6 66.03 77.05 74.95 67.40

we sequentially set s values from 20 to 60 to train multiple
LTM models, assessing their performance on the MOT17
validation set. The experimental results in Table V demonstrate
that the model works best when s = 30.

Analysis of relative position number k: To characterize
the interaction information of target b with the surrounding
targets, PBA selects the top k target boxes that have the highest
degree of overlap with b to calculate the relative positions.
When the number of bounding boxes overlapping with the
bounding box of b is less than k, zero padding is used to round
up the relative coordinate count to k. Setting a small value
for k makes the extracted interaction information incomplete,
while setting a large value for k introduces redundant and
meaningless zero vectors into the PBA encoding, affecting
the accuracy of the extracted features. To select the optimal
value for k, we sequentially test k from 2 to 6 on the MOT17
validation set. Table VI shows the experimental outcomes and
the best model performance is achieved with k = 4.

Analysis of thresholds mlost, mzombie for track state
alteration: As stated in Section III-D, a lost track will turn
into a zombie track after failing to be re-identified for mlost

frames, while a zombie track will be deleted after failing to
be re-identified for mzombie frames. We apply grid research
[64] to find the best combination of mlost and mzombie.
As illustrated in Fig. 5, the HOTA metric reaches the best
performance when mlost = 20 and mzombie = 130.

D. Comparison with State-of-the-Art Methods

For comparison with SOTA methods, we evaluate LTTrack
on the test sets of DanceTrack, MOT17, and MOT20. The
results are used to compare LTTrack with the SOTA methods
under the “private detection” protocol. The hyperparameter
settings correspond to the results of ablation studies in Section
IV-C. For a fair comparison, we also apply linear interpolation
after LTTrack, as [11] [13]. “(w/ LI)” in the following tables
indicates that interpolation is employed in the model.

DanceTrack: As depicted in Table VII, our LTTrack out-
performs the SOTA TBD trackers on the DanceTrack bench-
mark for most metrics. In comparison to ByteTrack [11] and

Fig. 5. The grid research results of various combination of mlost and
mzombie. The values in the grid indicate the HOTA scores for different
combinations of mlost (horizontal axis) and mzombie (vertical axis). The
HOTA achieves optimal performance when mlost = 20, mzombie = 130.

TABLE VII
COMPARISON RESULTS UNDER THE “PRIVATE DETECTOR” PROTOCOL ON

THE DANCETRACK TEST SET. THE TOP THREE BEST RESULTS OF TBD
METHODS ARE MARKED IN THE ORDER OF RED BLUE AND GREEN.

Methods Ref. HOTA↑ IDF1↑ AssA↑ DetA↑
TBQ:
TransTrack [40] arxiv 2020 45.5 45.2 27.5 75.9
MeMOTR [9] ICCV 2023 68.5 71.2 58.4 80.5
MOTRv2 [8] CVPR 2023 69.9 71.7 59.0 83.0
TBD:
FairMOT [22] IJCV 2021 39.7 40.8 23.8 66.7
ByteTrack [11] ECCV 2022 47.7 53.9 32.1 71.0
STDFormer [27] TCSVT 2023 57.8 60.5 41.7 80.5
QuasiDense [65] TPAMI 2023 54.2 50.4 36.8 80.1
StrongSORT++ [18] TMM 2023 55.6 55.2 38.6 80.7
GHOST [50] CVPR 2023 56.7 57.7 39.8 81.1
OC-SORT [13] CVPR 2023 55.1 54.9 40.4 80.4
LTTrack ours 58.8 60.5 43.0 81.1

OC-SORT [13], which partly constitute our baseline, LTTrack
outperforms them across all metrics (i.e., +3.7% HOTA and
+5.6% IDF1 compared to OC-SORT). The results affirm
the effectiveness of our method in dealing with challenging
scenarios, including complex motion and severe occlusion.

MOT17: As displayed in Table VIII, our LTTrack ranks
within the top three compared to SOTA methods on the
MOT17 test set, achieving 64.3 HOTA, 79.2 IDF1, and 64.8
AssA. Specifically, LTTrack outperforms OC-SORT [13] on
HOTA by 1.1%, IDF1 by 1.7%. This superiority can be at-
tributed to our utilization of LTM and ZTRM to improve long-
term tracking capabilities and PBA to handle crowded scenes.
However, since our method specifically focuses on long-term
tracking, which represents a relatively limited scene within
the MOT17 dataset, our model did not exhibit significant
superiority across the entire MOT17 dataset. Observably, our
model displays suboptimal performance in MT, ML, ID Sw,
and MOTA. This deficiency stems from the inclusion of low-
score detections during association, which aims to reduce false
negative detections (FNs) and associate as many occluded
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TABLE VIII
COMPARISON RESULTS UNDER THE “PRIVATE DETECTOR” PROTOCOL ON THE MOT17 TEST SET. “(W/ LI)” MEANS LINEAR INTERPOLATION IS USED.

THE TOP THREE BEST RESULTS OF TBD METHODS ARE MARKED IN THE ORDER OF RED BLUE AND GREEN.

Methods Ref. HOTA↑ IDF1↑ MOTA↑ AssA↑ AssR↑ MT↑ ML↓ ID Sw↓
TBQ:
TransCenter [4] TPAMI 2022 - 65.4 76.4 - - 51.7% 11.6% 6402
TrackFormer [5] CVPR 2022 57.3 68.0 74.1 54.1 58.0 47.3% 10.4% 2829
MeMOT [7] CVPR 2022 56.9 69.0 72.5 55.2 - 43.8% 18.0% 2724
MeMOTR [9] ICCV 2023 58.8 71.5 72.8 58.4 63.0 41.4% 19.2% 1902
MOTRv2 [8] CVPR 2023 62.0 75.0 78.6 60.6 - - - -

TBD:
CTracker [46] ECCV 2020 49.0 57.4 66.6 45.2 48.1 32.2% 24.2% 5529
FairMOT [22] IJCV 2021 59.3 72.3 73.7 58.0 63.6 43.2% 17.3% 3303
MOTFR [12] TCSVT 2022 61.8 76.3 74.4 62.6 67.8 46.1% 17.6% 2652
QuoVadis [20] NIPS 2022 63.1 77.7 80.3 62.1 68.8 55.5% 10.8% 2103
MAATrack [36] WACV 2022 62.0 75.9 79.4 60.2 67.3 57.6% 12.0% 1452
ByteTrack [11] ECCV 2022 63.1 77.3 80.3 62.0 68.2 53.2% 14.5% 2196
CSTrack [41] TIP 2022 59.3 72.6 74.9 57.9 63.2 41.5% 17.5% 3567
STDFormer [27] TCSVT 2023 59.9 71.5 78.8 56.6 - 49.7% 13.1% 4998
DcMOT [48] TCSVT 2023 61.3 75.2 74.5 - - 42.0% 16.9% 2682
FDTrack [49] TCSVT 2023 61.3 75.6 76.8 - - 43.1% 16.9% 3705
QuasiDense [65] TPAMI 2023 63.5 77.5 78.7 62.6 69.3 54.0% 12.6% 1935
StrongSORT [18] TMM 2023 63.5 78.5 78.3 63.7 63.6 - - 1446
StrongSORT++ [18] TMM 2023 64.4 79.5 79.6 64.4 71.0 53.6% 13.9% 1194
MotionTrack [24] CVPR 2023 65.1 80.1 81.1 65.1 70.8 55.5% 16.7% 1140
GHOST [50] CVPR 2023 62.8 77.1 78.7 - - - - 2325
OC-SORT [13] CVPR 2023 63.2 77.5 78.0 63.2 67.5 41.0% 20.9% 1950
LTTrack ours 63.8 79.1 78.0 64.6 69.6 45.50% 13.10% 2220
LTTrack (w/ LI) ours 64.3 79.2 79.0 64.8 70.2 51.5% 12.9% 1902

TABLE IX
COMPARISON RESULTS UNDER THE “PRIVATE DETECTOR” PROTOCOL ON THE MOT20 TEST SET. “(W/ LI)” MEANS LINEAR INTERPOLATION IS USED.

THE TOP THREE BEST RESULTS OF TBD METHODS ARE MARKED IN THE ORDER OF RED BLUE AND GREEN.

Methods Ref. HOTA↑ IDF1↑ MOTA↑ AssA↑ AssR↑ MT↑ ML↓ ID Sw↓
TBQ:
TransTrack [40] arxiv 2020 48.9 59.4 65 45.2 - 50.1% 13.4% 3608
TransCenter [4] TPAMI 2022 - 58.1 72.5 - - 64.7% 12.0% 2332
TrackFormer [5] CVPR 2022 54.7 65.7 68.6 53.0 57.4 53.6% 15.0% 2474

TBD:
FairMOT [22] IJCV 2021 54.6 67.3 61.8 54.7 60.7 68.8% 7.6% 5243
MOTFR [12] TCSVT 2022 57.2 71.7 69.0 57.1 62.6 65.7% 10.3% 3648
QuoVadis [20] NIPS 2022 61.5 75.7 77.8 59.9 67.0 69.2% 9.5% 1187
MAATrack [36] WACV 2022 57.3 71.2 73.9 55.1 61.1 59.7% 12.3% 1331
ByteTrack [11] ECCV 2022 61.3 75.2 77.8 59.6 66.2 69.2% 9.5% 1223
CSTrack [41] TIP 2022 54.0 68.6 66.6 54.0 57.6 50.4% 15.5% 3196
STDFormer [27] TCSVT 2023 60.0 72.3 75.8 58.0 - 67.4% 12.0% 2329
DcMOT [48] TCSVT 2023 53.8 67.4 59.7 - - 66.7% 7.6% 5636
FDTrack [49] TCSVT 2023 59.9 75.7 75.0 - - 62.8% 9.7% 2226
QuasiDense [65] TPAMI 2023 60.0 73.8 74.7 58.9 65.7 64.2% 13.0% 1042
StrongSORT [18] TMM 2023 61.5 75.9 72.2 63.2 59.9 - - 1066
StrongSORT++ [18] TMM 2023 62.6 77.0 73.8 64.0 69.6 62.1% 14.9% 770
MotionTrack [24] CVPR 2023 62.8 76.5 78.0 61.8 68.0 71.3% 9.5%
GHOST [50] CVPR 2023 61.2 75.2 73.7 - - - - 1264
OC-SORT [13] CVPR 2023 62.1 75.9 75.5 62.0 - - - 913
LTTrack ours 62.7 77.3 75.2 63.3 69.6 66.7% 11.2% 1609
LTTrack (w/ LI) ours 63.2 77.3 76.0 63.5 70.3 70.9% 10.5% 1183
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Fig. 6. Visualization results of LTTrack and OC-SORT [13]. Different colors indicate different identities. Targets of interest are highlighted with bolder
bounding boxes. The dotted lines below represent the tracks of targets of interest.

targets as possible. Nevertheless, this strategy inevitably intro-
duces false positive detections (FPs), consequently generating
spurious tracks and leading to degradation in performance
across MT, ML, and ID Sw. Furthermore, while retaining
low-score detections diminishes FNs, it disturbs the deli-
cate balance between FPs and FNs, resulting in more FPs.
Consequently, the MOTA score of LTTrack is suboptimal.
Nevertheless, the competitive scores of LTTrack in metrics
measuring association performance (IDF1, AssA) demonstrate
the effectiveness of our method.

MOT20: On the MOT20 test set (Table IX), LTTrack sur-
passes the previous SOTA methods in most metrics. Compared
with OC-SORT [13], part of which is included in our baseline,
LTTrack improved by 1.1%, 1.4%, 0.5%, and 1.5% on HOTA,
IDF1, MOTA, and AssA, respectively. The results demonstrate

the robustness and effectiveness of our LTTrack in handling
crowded scenarios with occlusion challenges. Similar to the
test results on MOT17, LTTrack does not achieve optimal
performance on the four metrics: MOTA, MT, ML, and ID Sw.
The reason is that no superior detectors were used, and low-
score detections were kept during association.

Further Analysis: Comparing the test results of TBQ
and TBD methods on the three benchmark datasets, it is
evident that TBQ algorithms outperform TBD algorithms on
the DanceTrack dataset while on the MOT17 and MOT20
datasets, the results are reversed. We attribute this phenomenon
to the fact that the DanceTrack dataset is large and the
scenes are mostly camera stationary, so the TBQ algorithm
converges well during training. On the contrary, the MOT17
and MOT20 datasets are prone to overfitting due to their
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small size, resulting in query duplication in crowded scenes
[8]. In addition, the MOT17 and MOT20 datasets contain
camera motion scenes. However, current TBQ algorithms
lack effective solutions for camera motion scenes. Further-
more, it can be observed that simple TBD algorithms [11],
[13], [18] exhibit noteworthy performance degradation on the
DanceTrack dataset. The reason is that the complexity of
the target motion and similar appearances on DanceTrack
pose a significant challenge to simple TBD algorithms. In
contrast, the TBQ method utilizes deep learning models to
effectively model complex target motion, resulting in superior
performance on DanceTrack. Our proposed method, which
belongs to the TBD algorithm, achieves comparable results
on all three datasets to SOTA methods. To analyze the reasons
for this, on the one hand, LTTrack introduces LTM to accu-
rately model complex motions and PBA to distinguish targets
with similar appearances, leading to better performance than
other TBD trackers in the DanceTrack dataset. On the other
hand, LTTrack is designed for long-term tracking with LTM,
PBA, and ZTRM, resulting in more robust tracking results in
MOT17 and MOT20 datasets.

E. Qualitative Results

To more intuitively reflect the ability of LTTrack to address
occlusion and achieve stable long-term tracking, we compare
the visualization results of LTTrack and OC-SORT [13] in the
test sets of MOT17 and DanceTrack in Fig. 6. In MOT17-
07, the highlighted target is frequently occluded in dense
crowds, leading to track fragmentation in the tracking result
of OC-SORT. However, with the integration of PBA, LTTrack
mitigates track fragmentation effectively. In MOT17-08, pro-
longed occlusions result in significant track interruptions of
the highlighted targets. OC-SORT incorrectly deletes the long-
lost target and initializes the reappeared targets as new tracks.
Conversely, LTTrack leverages LTM and ZTRM to model
long-term motion and successfully restores zombie tracks after
long-term loss. In dancetrack0038, complex target motions
and prolonged occlusions occur from frame 121 to frame
169. OC-SORT initializes the reappearing target after a long-
term loss as a new track erroneously, whereas LTM effectively
recovers zombie tracks with the help of ZTRM.

F. Limitations

Although our method excels in long-term tracking scenes,
we also recognize certain limitations within this paradigm.
As shown in Fig. 7 (a), false positive detections lead to the
generation of spurious tracks. This kind of failure can be
attributed to the retention of low-score detections in LTTrack,
which was originally meant to reduce false negatives and
ensure the re-identification of lost targets. Therefore, balancing
false negative and false positive detections remains a problem
requiring a solution. As shown in Fig. 7 (b), ZTRM incorrectly
associates a newly appeared target with a zombie track that has
left the scene. In cases where a target re-enters the scene after
leaving, LTTrack preserves tracks that have exited the scene
for mzombie frames to recover zombie tracks. This practice
results in interference with the initialization of tracks for newly

Fig. 7. Illustration of failure cases. (a) A failure case caused by false positive
detections. (b) A failure case caused by ZTRM. The dashed boxes indicate
the failure tracking results.

entered targets. Hence, future works can focus on designing a
more adaptable track management strategy that accommodates
scenarios involving tracks entering and exiting the scene.

V. CONCLUSION

Our work presents an effective and simple solution called
LTTrack to address the commonly overlooked but practical
problem of long-term tracking. To handle occlusion and ensure
consistent long-term tracking, we devise the PBA module,
which innovatively utilizes interaction cues for association.
In addition, we propose a motion model LTM to achieve
precise multi-frame motion prediction in cases of trajectory
loss. This is accomplished by extracting the long-term motion
features of the track, which in turn aid in re-identifying the
long-lost target. For the long-lost track management, which is
overlooked by existing methods, we define long-lost tracks as
zombie tracks, and develop a unique track management policy,
ZTRM, for zombie tracks, so that long-lost tracks will not be
deleted by mistake. Combining the above three modules, a
MOT framework LTTrack for long-term tracking is proposed.
Extensive experiments are conducted on the MOT17, MOT20,
and DanceTrack benchmarks to verify the effectiveness of
LTTrack. The results show that our LTTrack achieves com-
parable performance to SOTA methods and presents superior
performance in long-term tracking scenarios.

APPENDIX A
RESULTS ON VISDRONEMOT

In this section, we provide more experimental results on
the VisDrone2019 MOT benchmark [67] to further evaluate
the effectiveness of our LTTrack.

Dataset and Metrics: The VisDrone2019 [67] is a large-
scale drone video dataset that includes five tracking categories:
pedestrian, car, bus, truck, and van. Captured from the perspec-
tive of drones, the targets in VisDrone2019 typically exhibit
small scales, blurred appearances, long motion tracks, and
intense camera motion, posing great challenges to existing
MOT methods. For comparison with SOTA methods, we
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TABLE X
COMPARISON RESULTS ON THE VISDRONE2019 TEST-DEV SET. THE TOP THREE BEST RESULTS ARE MARKED IN THE ORDER OF RED BLUE AND GREEN.

Methods Ref. IDF1↑ MOTA↑MOTP↑ MT↑ ML↓ FP↓ FN↓ ID Sw↓
MOTDT [21] ICME 2018 21.6 -0.8 68.5 87 1196 44548 185453 1437
FairMOT [22] IJCV 2021 48.3 36.4 75.7 574 525 31346 110498 4052
MOTR [6] ECCV 2022 41.4 22.8 72.8 272 825 28407 147937 959
TrackFormer [11] CVPR 2022 30.5 25.0 73.9 385 770 25856 141526 4840
UAVMOT [66] CVPR 2022 51.0 36.1 74.2 520 574 27983 115925 2775
PID-MOT [51] TCSVT 2023 50.2 33 74.1 686 424 53691 96541 3529
STDFormer [27] TCSVT 2023 57.1 45.9 77.9 684 538 21288 101506 1440
LTTrack ours 57.5 43.0 75.1 746 729 35294 138824 1429

train LTM and PBA on the training set together with the
validation set of VisDrone2019 and evaluate our LTTrack on
the VisDrone2019 test-dev set.

Following [67], the IDF1, MOTA, multiple object tracking
precision (MOTP), MT, ML, FP, FN, and ID Sw are employed
to evaluate tracking performance. In particular, IDF1 and
MOTA are taken as the primary evaluation metrics.

Implementation Details: We retrain YOLOX-X as a multi-
class detector for VisDrone2019. For the training of LTM and
PBA, the number of training epochs is set to 30. Other settings
are the same as Section IV-B. For the hyperparameter settings,
we set mlost = 30 and mzombie = 130.

Comparison with State-of-the-Art Methods: As illus-
trated in Table X, our LTTrack achieves 57.5 on IDF1 and
43.0 on MOTA, which is competitive with the SOTA methods
on the VisDrone2019 test-dev set. The results confirm the
effectiveness of our method in tackling challenging scenes, in-
cluding complex motion and blurred appearance. Nevertheless,
compared to the performance of LTTrack on the pedestrian
tracking benchmarks [16], [17], [29], its performance on
VisDrone2019 is notably inferior. We contend that there are
two principal factors contributing to this outcome. First, our re-
trained detector YOLOX is not suitable for detecting small tar-
gets from the perspective of a drone, as indicated by the lower
MOTA and MOTP scores. Secondly, the scenarios included in
VisDrone2019 are all multi-class multi-object tracking from a
drone’s perspective with intense camera motion. However, our
method is initially designed for pedestrian tracking in natural
scenes. Specifically, our LTM solely extracts motion features
based on trajectory information, without fully considering
camera motion, which can be unreliable in scenes captured
by drones with intense camera motion.

APPENDIX B
ANALYSIS OF INFERENCE SPEED

In this section, we analyze the impact of the three proposed
modules, namely LTM, PBA, and ZTRM, on the inference
speed of LTTrack. Moreover, a comparison between LTTrack
and two efficient trackers [11], [13] is also performed to
reveal the speed issues of different MOT trackers. Notably,
it is difficult to fairly compare the speed of different trackers
because the runtime of each tracker depends on the hardware
on which they are executed. To ensure fairness, we record
the runtime and frames per second (FPS) of trackers on a
single 2080Ti GPU with a batch size of 1 and YOLOX as the

TABLE XI
EVALUATION OF INFERENCE SPEED ON THE MOT17 VALIDATION SET.

Methods
Association Total

FPS↑ Time(s)↓ FPS↑ Time(s)↓
Baseline 40.92 64.83 16.70 158.80
Baseline+LTM 29.64 89.49 15.01 176.71
Baseline+LTM+PBA 27.77 95.53 14.46 183.45
Baseline+LTM+PBA+ZTRM 27.34 97.00 14.36 184.69
ByteTrack [11] 66.09 40.13 17.34 152.97
OC-SORT [13] 51.63 51.40 17.24 153.79

detector. Additionally, both the association time and the total
time for each tracker are reported. The total time encompasses
both the detection time and the association time.

As shown in Table XI, in terms of association speed,
adding LTM significantly slows down the association process
(-11.28 FPS), while the PBA and ZTRM cause negligible
computational costs (-1.87 FPS and -0.43 FPS). Compared
to the two efficient trackers [11], [13], our LTTrack is con-
siderably slower. However, in terms of the total speed, all
three modules have caused a slight reduction in the tracking
speed. Moreover, LTTrack exhibits a minor speed difference
compared to ByteTrack and OC-SORT. The reason is that
the detection step consumes significantly more time than the
association step in the tracking process, and variations in the
association time have minimal impact on the tracking speed.
Hence, the detection module is the key factor affecting the
speed of the TBD tracker, rather than association.
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