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Abstract

Time series forecasting remains a critical challenge across various domains, often compli-
cated by high-dimensional data and long-term dependencies. This paper presents a novel
transformer architecture for time series forecasting, incorporating two innovative designs:
parameter sharing module (PS) and Segment Shared Attention (SSA). The proposed model,
PSformer, reduces the number of training parameters through the integrated parameter
sharing mechanism without sacrificing performance. The spatiotemporal segment defined
as a patch spanning across spatial variables and local time. The introduction of SSA could
enhance the capability of capturing local spatio-temporal dependencies and improve global
representation by integrating information across segments. Consequently, The combination of
parameter sharing and SSA reduces the model’s parameter count while enhancing forecasting
performance. Extensive experiments on benchmark datasets demonstrate that PSformer
outperforms many baseline approaches in terms of accuracy and scalability, positioning it as
an effective and scalable tool for time series forecasting.

1 Introduction

Time series forecasting is an important learning task with significant application values in a wide range of
domains, including the weather prediction Ren et al. (2021); Chen et al. (2023a), traffic flow Tedjopurnomo
et al. (2020); Khan et al. (2023), energy consumption Liu et al. (2020); Nti et al. (2020), anomaly detection
Zamanzadeh Darban et al. (2022) and the financial analysis Nazareth & Ramana Reddy (2023), etc. With
the advancement of artificial intelligence techniques, significant efforts have been devoted to developing
innovative models that continue to improve the prediction performance Liang et al. (2024); Wang et al.
(2024b). In particular, the transformer-based model family has recently attracted more attention for its
proved success in nature language processing OpenAI et al. (2024) and computer vision Liu et al. (2021);
Dosovitskiy et al. (2021). Moreover, pre-trained large models based on the transformer architecture have
shown advantages in time series forecastingLiu et al. (2024a); Jin et al. (2024); Chang et al. (2023); Woo
et al. (2024), demonstrating that increasing the amount of parameters in transformer models and the volume
of training data can effectively enhance the model capability.

On the other side, many linear models Zeng et al. (2023); Li et al. (2023) also show competitive performance
compared to the complex designs of transformer-based models. One possible reason for their success in
time series forecasting is that they have low model complexities and are less likely to overfit on noisy or
irrelevant signals. As a result, even with limited data, these models can effectively capture robust information
representations. To overcome the limitations of modeling long-term dependencies and capturing complex
temporal relationships, PatchTST Nie et al. (2023) process temporal information by combining patching
techniques to extract local semantic information, leading to superior performance. However, it applies
channel-independent designs and leaves the significant potential for improvement in effectively modeling
across variables. Moreover, the unique challenges of modeling multivariate time series data, where the temporal
and spatial dimensions differ significantly from other data types, present many unexplored opportunities.
While past research donghao & wang xue (2024); Zhang & Yan (2023); Ilbert et al. (2024) has largely treated
these dimensions separately, the question of whether systematically mixing temporal and spatial information
can further enhance model performance remains an open area for future investigation.
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In this work, we explore innovative designs of the transformer-based model for time series forecasting by
incorporating the spatiotemporal dependencies characteristic of time series tasks and a new parameter sharing
model architecture. Past works proposed methods for capture spatiotemporal dependency information, such
as MOIRAI Woo et al. (2024) flattens multivariate time series by treating all variables as a single sequence,
and SAMformer Ilbert et al. (2024), which applies attention to the channel dimension to capture spatial
dependencies. Unlike previous methods, we construct a transformer-based model called PSformer, which
design as a two-stage SSA structure, each SSA consists of a parameter-sharing design. This parameter-sharing
design (as PS Block) consists of three fully connected layers, which keeps the overall number of parameters in
both the two-stage SSA and final fusion stage of the PSformer efficient, while also facilitating information
sharing between different modules of the model. For SSA, we use patching to divide the variables into
different patches, then identify the patches at the same position across different variables and merge them
into a segment. As a result, each segment represents the spatial extension of a single-variable patch. In this
way, we decompose the multivariate time series into multiple segments. Attention is applied within each
segment to enhance the extraction of local spatial-temporal relationships, while information fusion across
segments is performed to improve the overall predictive performance. Additionally, by incorporating the SAM
optimization method, we further reduce over-fitting while maintaining efficient training. We conduct extensive
experiments on long-term time series forecasting datasets to verify the effectiveness of the SSA structure. Our
model demonstrates competitive performance in comparison to previous state-of-the-art models, achieving
the best performance on 7 out of 8 mainstream long-term time series forecasting tasks. The contributions are
summarized as follows:

• We developed a novel transformer-based model structure for time series forecasting, where the
parameter sharing technique is applied in the transformer block to reduce the model complexity and
improve the generalization ability.

• We proposed a SSA mechanism tailored for multi-variate data, which merges the temporal sequence
of different channels to form a local segment and applies attention within each segment to capture
both temporal dependencies and cross-channel interactions.

• Through extensive experiments in long-term forecasting tasks and ablation studies, we verified the
effectiveness and superior performance of our proposed framework.

2 Related Work

2.1 Temporal Modeling in Time Series Forecasting

In recent years, time series analysis has received widespread attention, with more deep learning methods being
applied to time series forecasting. These deep learning methods focus on establishing temporal dependencies
within time series data to predict future trends. The models can be broadly categorized into RNN-based,
CNN-based, MLP-based, and Transformer-based approaches. RNNs and their LSTM variants were widely
used for time series tasks in the past, with related works such as DeepARSalinas et al. (2020). CNN-based
methods like TCN Bai et al. (2018) and TimesNet Wu et al. (2023) have been designed to adapt convolutional
structures specifically for temporal modeling. MLP-based approaches, such as N-BEATS Oreshkin et al.
(2020), RLinear Li et al. (2023), and TSMixer Chen et al. (2023b), have demonstrated that even simple
network structures can achieve solid predictive performance. Moreover, Transformer-based models have
become increasingly popular in time series forecasting due to the unique attention mechanism of Transformers,
which provides strong global modeling capabilities. Many recent works leverage this to enhance time series
modeling performance, such as Informer Zhou et al. (2021), Autoformer Wu et al. (2021), Pyraformer Liu
et al. (2022), and Fedformer Zhou et al. (2022). Additionally, PatchTST Nie et al. (2023) further divides
time series data into different patches to enhance the ability to capture local information. However, the
aforementioned models primarily focus on temporal modeling, with less emphasis on modeling the relationships
between variables. Although PatchTST attempted to incorporate cross-channel designs, it observed degraded
performance in their model.

On the other hand, some pre-trained large models have been applied to time series forecasting tasks Das
et al. (2023); Liu et al. (2024a); Gao et al. (2024); Liu et al. (2024c); Zhou et al. (2023); Jin et al. (2024).
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For example, MOMENT Goswami et al. (2024) uses the patching method and mask pre-training to build a
pre-trained model for time series, while GPT4TS Zhou et al. (2023) also adopts the patching method and
uses GPT2 as the backbone. The increase in model parameters has provided them with greater expressive
power but also increased the difficulty of training.

2.2 Variate Modeling in Time Series Forecasting

In addition to modeling temporal dependencies, recent works have focused on modeling inter-variable
dependencies donghao & wang xue (2024); Zhang & Yan (2023); Ilbert et al. (2024); Woo et al. (2024); Liu
et al. (2024b). ModernTCN donghao & wang xue (2024) employs different 1-D convolutions to capture
the temporal and variable dimensions separately; Crossformer Zhang & Yan (2023) processes temporal
and spatial information separately via routing, followed by decoder-based fusion for prediction (denoted as
S&M).; SAMformer Ilbert et al. (2024) focuses on channel-wise attention mechanisms but fails to incorporate
temporal information interaction; MORAI Woo et al. (2024) "flattens" multivariate time series into univariate
sequence tokens and utilizes a masking mechanism to train the foundation model; iTransformer Liu et al.
(2024b) represents multivariate time series and captures global dependencies. All of these works emphasize
the simultaneous modeling of both variable and temporal dependencies as critical directions for improving
multivariate time series modeling, which helps establish global spatial-temporal dependencies. However, this
may weaken the ability to capture local spatial-temporal dependencies. Additionally, expanding the global
receptive field of spatio-temporal dependencies could increase model complexity, which in turn may lead to
overfitting due to the larger number of parameters.

2.3 Parameter Sharing Structure

Table 1: Architectural Comparison. S&M applies separate atten-
tion to temporal and spatial dimensions with fusion, while Joint
employs simultaneous attention across both dimensions.

Feature Enc-In X-Enc Att-In X-Att ST
Crossformer ✗ ✗ ✗ ✗ S&M
Reformer ✗ ✗ ✔ ✗ —
ALBERT ✗ ✔ ✗ ✗ —
PSformer ✔ ✗ ✔ ✔ Joint

To reduce the model complexity in deep
learning, parameter sharing is a crucial
technique that can significantly reduce the
amount model parameters and enhance
computational efficiency. In CNNs, convo-
lutional filters share weights across spatial
locations, capturing local features with
fewer parameters. Similarly, LSTM net-
works share weight matrices across time
steps to manage memory and control in-
formation flow. By studying the sharing
of attention weights, Xiao et al. (2019) improves Transformer inference speed via parameter sharing mech-
anisms. Reformer Kitaev et al. (2020) employs query-key weight sharing in attention to cut costs while
preserving accuracy (as Att-In). ALBERT Lan et al. (2020) extends parameter sharing across Encoder layers
(as X-Enc) in natural language processing, reducing parameter redundancy while maintaining performance.
In multi-task learning, the Task Adaptive Parameter Sharing approach Wallingford et al. (2022) selectively
fine-tunes task-specific layers while maximizing parameter sharing across tasks, achieving efficient learning
with minimal task-specific modifications. Those studies demonstrate that parameter sharing has the potential
for model size reduction, generalization ability enhancement and mitigating the over-fitting risks across
various tasks. Unlike previous methods, our method employs PSBlock, which combines intra-attention sharing
and cross-attention sharing (as X-Att), forming the complete parameter architecture of PSEncoder layers
(as Enc-In). The architectural differences among models regarding parameter sharing and spatio-temporal
attention are summarized in Table 1.

3 The PSformer Framework

3.1 Problem Formulation

As shown in Figure 1, the input multivariate time series is denoted as X ∈ RL×M as with look-back window
L : (x1, x2, ..., xL) and M variables, where xt represents the M -dimensional vector at time step t. L will be
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equally divided into N non-overlapping patches of size P . P (i) denote the i-th patch with size P , where
i = 1, 2, 3, ..., N . The P (i) of the M variables forms the i-th segment, which denote cross-channel patch
of length C, where C = M × P . The input time series X transformed from X ∈ RL×M to X ∈ RC×N by
segment and time series transform (STF). The predict target is the future values of next F time steps, e.g.,
(xL+1, ..., xL+F ). Beside, we denote Xin and Xout as the input and output signals for the specified layers.
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Figure 1: PSformer Network Structure. The PSformer model structure consists of the PS Block, which
is composed of three fully connected layers that constitute all network parameters. These parameters are
shared across the SSA and fusion stage in the PS Encoder. Through the STF process, SSA constructs an
attention matrix along the segment dimension. In the two-stage segment shared attention, the PS Block
generates matrices that are simultaneously used as the Q, K, and V matrices for the segment shared attention
mechanism. Additionally, in the fusion stage, it further integrates feature information. The parameters of the
PS Block form the entirety of the PS Encoder’s parameters, which are finally transformed by the output
projection for time-series prediction.

3.2 Model Structure

The constructed PSformer model is depicted in Figure 1, where the PSformer Encoder serves as the backbone
of the model and the key components of the Encoder include the SSA and PS Block. The PS Block provides
the parameters for all layers within the Encoder by utilizing the parameter sharing technique.

Forward Process The univariate time series of length L for the i-th variable, starting at time index 1,
is denoted as x

(i)
1 = (x(i)

1 , ..., x
(i)
L ), where i = 1, ..., M . Then the input (x1, ..., xL) with M dimensions is

presented as x1 ∈ RL×M , and x1 is used as the input to the transformer network structure. Similar to other
time series forecasting methods, we use RevIN Kim et al. (2022), which is added at both the input and output
of the model.

Segment Shared Attention We introduce segment shared attention (SSA), which aggregates patches
from different channels at a local time period into a segment and establishes spatial-temporal relationships
across different segments. While the network used to construct the Query, Key, and Value matrices in SSA is
implemented by a network with shared parameters and nonlinear activation (PS Block). Specifically, the
input time series X ∈ RL×M is first divided into N non-overlapping components along the L dimension,
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where L = P ×N , and transformed into X ∈ R(M×P )×N . By concatenating the M and P dimensions, the
input transform to X ∈ RC×N , where C = M × P , facilitating the subsequent cross-channel information
fusion.

In this transformed space, identical Q ∈ RC×N , K ∈ RC×N , and V ∈ RC×N matrices are generated by
applying a shared block’s non-linear projection (applied by PS Block), with weights W ∈ RN×N used to
project the input Xin ∈ RC×N . The Q and K matrices are then multiplied using a dot-product operation to
form the attention matrix QKT ∈ RC×C , which captures relationships between different spatial-temporal
segments (in the C dimension) and is used to act on the V matrix. While the computation of Q, K and
V involves non-linear transformations of the input Xin across segments in the N dimension, the scaled
dot-product attention primarily applies attention across the C dimension, allowing the model to focus on
dependencies between spatial-temporal segments across channels and time.

This mechanism ensures that information from different segments is integrated through the computation of
Q, K, and V . It also captures local spatial-temporal dependencies within individual segments by applying
attention to the internal structure of each segment. Additionally, it captures long-term dependencies across
segments over larger time steps. The final output is Xout ∈ RC×N , completing the attention process.

Parameter Shared Block In our work, we propose a novel Parameter Shared Block (PS Block), which
consists of three fully connected layers with residual connections, as illustrated in Figure 1. Specifically, we
construct three trainable linear mappings W (j) ∈ RN×N with j ∈ {1, 2, 3}. The output of the first two layers
is computed as:

Xout = GeLU(XinW (1))W (2) + Xin, (1)

which follows a similar structure as the feed-forward network (FFN) with residual connections. This
intermediate output Xout is then used as the input for the third transformation, yielding

Xout = XinW (3). (2)

Therefore, the PS Block as a whole can be expressed as:

Xout = (GeLU(XinW (1))W (2) + Xin)W (3). (3)

And we denote PS Block output as Xout = XinW S , where W S ∈ RN×N and Xout ∈ RC×N . The structure
of the PS Block allows it to perform nonlinear transformations while preserving a linear transformation path.
Although the three layers within the PS Block have different parameters, the entire PS Block is reused across
different positions in the PSformer Encoder, ensuring that the same block parameters W S are shared across
those positions, as illustrated in Figure 1. Specifically, PS Block share parameters across three parts of each
PSformer Encoder, which includes two SSA layers and the final PS Block. In the SSA layer, the PS block
outputs are used as the Q, K, and V matrices to construct the attention mechanism. This parameter-sharing
strategy reduces the overall number of parameters while maintaining the network’s expression capacity.

PSformer Encoder In the PSformer Encoder, as shown in Figure 1, each layer shares the same parameters
W S of PS Block. For the input Xin, the transformation in the PSformer Encoder can be expressed as
follows:

SSA stage one is represented as: Q(1) = XinW S , K(1) = XinW S , V (1) = XinW S , Therefore, we have
Q(1), K(1), V (1) ∈ RC×N . The dot-product attention operation can be formulated by

O(1) = Softmax(Q(1)K(1)T

√
dk

)V (1), (4)

which is followed by the ReLU activation:O(1)
act = ReLU(O(1)).

SSA stage two is represented as: Q(2) = O
(1)
actW

S , K(2) = O
(1)
actW

S , V (2) = O
(1)
actW

S . Similarly, we have
Q(2), K(2), V (2) ∈ RC×N , and the dot-product attention operation

O(2) = Softmax(Q(2)K(2)T

√
dk

)V (2). (5)
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Table 2: Datasets for long-term forecasting. Dataset size is structured as (Train, Validation, Test).

Dataset Variate Predict Length Frequency Dataset Size Information

ETTh1,ETTh2 7 {96,192,336,720} Hourly (8545, 2881, 2881) Electricity
ETTm1,ETTm2 7 {96,192,336,720} 10 mins (34465, 11521, 11521) Electricity

Weather 21 {96,192,336,720} 15 mins (36792, 5271, 10540) Weather
Electricity 321 {96,192,336,720} Hourly (18317, 2633, 5261) Electricity
Exchange 8 {96,192,336,720} Daily (5120, 665, 1422) Exchange rate

Traffic 862 {96,192,336,720} Hourly (12185, 1757, 3509) Transportation

Table 3: Long-term forecasting task. All the results are averaged from 4 different prediction lengths {96, 192,
336, 720}. A lower MSE or MAE indicates a better performance. See Table B.2 in Appendix for the full
results with more baselines.

Metric PSformer SAMformer TSMixer PatchTST MOMENT ModernTCN FEDformer GPT4TS Autoformer RLinear iTransformer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.397 0.418 0.410 0.424 0.420 0.431 0.468 0.455 0.418 0.436 0.421 0.432 0.428 0.454 0.428 0.426 0.473 0.477 0.446 0.434 0.454 0.448

ETTh2 0.338 0.390 0.344 0.391 0.354 0.400 0.387 0.407 0.352 0.394 0.343 0.393 0.388 0.434 0.355 0.395 0.422 0.443 0.374 0.398 0.383 0.407

ETTm1 0.342 0.372 0.373 0.388 0.378 0.392 0.387 0.400 0.344 0.379 0.361 0.384 0.382 0.422 0.351 0.383 0.515 0.493 0.414 0.407 0.407 0.410

ETTm2 0.251 0.313 0.269 0.327 0.283 0.339 0.281 0.326 0.259 0.318 0.262 0.322 0.292 0.343 0.267 0.326 0.310 0.357 0.286 0.327 0.288 0.332

Weather 0.225 0.264 0.261 0.293 0.255 0.289 0.259 0.281 0.228 0.270 0.237 0.274 0.310 0.357 0.237 0.271 0.335 0.379 0.272 0.291 0.258 0.278

Electricity 0.162 0.255 0.181 0.275 0.198 0.296 0.205 0.290 0.165 0.260 0.160 0.255 0.207 0.321 0.167 0.263 0.214 0.327 0.219 0.298 0.178 0.270

Exchange 0.358 0.399 0.445 0.470 0.532 0.523 0.367 0.404 0.437 0.446 0.555 0.536 0.478 0.477 0.371 0.409 0.613 0.539 0.378 0.417 0.360 0.403

Traffic 0.400 0.274 0.425 0.297 0.439 0.315 0.481 0.304 0.415 0.293 0.414 0.283 0.604 0.372 0.414 0.295 0.617 0.384 0.626 0.378 0.428 0.282

Count 7 8 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1

The two-stage SSA mechanism can be viewed as analogous to an FFN layer, where the MLP is replaced with
attention operations. Additionally, residual connections are introduced between the input and output, and
the result is then fed into the final PS Block. Since the transformation in the final PS Block is represented as
Oout = OinW S , the entire encoder can be expressed as

Xout = (Attention(2)(ReLU(Attention(1)(Xin))) + Xin)W S , (6)

with Xout ∈ RC×N . Finally, since C = M × P and L = P ×N , we apply a dimensionality transformation to
obtain Xout ∈ RL×M .

After passing through n layers of the PSformer Encoder, the final output is Xpred = W F Xout, where
Xpred ∈ RF ×M , W F ∈ RF ×L is a linear mapping and F is the prediction length. The Xpred is the final
output of the PSformer model. The SSA mixes local spatio-temporal information without the need for
positional encoding, and we provide a more detailed discussion in Appendix A.6.

4 Experiment

Datasets In this paper, we focus on the long-term time series forecasting. We follow the time series forecasting
work in Ilbert et al. (2024) and use 8 mainstream datasets to evaluate the performance of our proposed
PSformer model. As shown in Table 2, these datasets include 4 ETT datasets (ETTh1, ETTh2, ETTm1,
ETTm2), as well as Weather, Traffic, Electricity, and Exchange. These datasets have been used as benchmark
evaluations in many previous time series forecasting studies.

Baselines We select state-of-the-art (SOTA) models in the field of long-term time series forecasting, including
not only Transformer-based models but also large models and other SOTA models. Specifically, baselines
include (1) Transformer-based model: SAMformer Ilbert et al. (2024), iTransformer Liu et al. (2024b),
PatchTST Nie et al. (2023), FEDformer Zhou et al. (2022), Autoformer Wu et al. (2021), (2) Pretrained Large
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model: MOMENT Goswami et al. (2024), GPT4TS Zhou et al. (2023), (3) TCN-based model: ModernTCN
donghao & wang xue (2024) and (4) MLP-based methods: TSMixer Chen et al. (2023b), RLinear Li et al.
(2023). Additionally, we provide more baselines for a comprehensive comparison, including TimeMixer Wang
et al. (2024a), CrossGNN Huang et al. (2023), MICN Wang et al. (2023), TimesNet Wu et al. (2023), FITS
Xu et al. (2024), Crossformer Zhang & Yan (2023), PDF Dai et al. (2024), and TimeLLM Jin et al. (2024)
Further details about these baselines can be found in Appendix B.8.2.

Experimental Settings The input time series length T is set to 512, and four different prediction lengths
H ∈ {96, 192, 336, 720} are used. Evaluation metrics include Mean Squared Error (MSE) and Mean Absolute
Error (MAE). We train our constructed models using the SAM optimization technique as in Ilbert et al.
(2024). Setting the look-back window of RevIN to 16 for the Exchange dataset, more details about this
setting can be found in Appendix B.7. We collect baseline results of SAMformer, TSMixer, FEDformer and
Autoformer from Ilbert et al. (2024), in which SAMformer and TSMixer are also trained with SAM, and the
results of iTransformer, RLinear and PatchTST from Liu et al. (2024b). We test ModernTCN with the fixed
input length of 512 following donghao & wang xue (2024). For the pre-trained large models MOMENT and
GPT4TS, the results are collected from Goswami et al. (2024). More details about the baseline settings can
be found in Appendix A.2. Besides, We also provide results under uni-variate series and unrelated variate in
the Appendix B.6.

4.1 Results and Analysis

Summary of Experimental Results The main experimental results are reported in Table 3. PSformer
achieved the best performance on 7 out of 8 major datasets in long-term time series forecasting tasks,
demonstrating its strong predictive capabilities across various time series prediction problems. This success is
attributed to its SSA mechanism, which enhances the extraction of spatial-temporal information, and the
parameter-sharing structure, which improves the model’s robustness. The complete experimental results
are in Appendix B.2. We also provide additional visualization results to analyze the attention maps across
spatial and temporal dimensions in the Appendix B.5.

Comparison with Other SOTA models Compared to other Transformer-based models, PSformer
demonstrates higher predictive accuracy, reflecting the effectiveness of dividing multivariate time series data
into spatial-temporal segments for attention calculation. The neural network’s ability to extract information
from all spatial-temporal segments enhances the prediction performance. In contrast to current large pre-
trained models, PSformer not only achieves better accuracy but also reduces the amount of parameters
through parameter sharing. Although linear models are simpler and have fewer parameters with satisfactory
performance in some cases, the ability to extract rich information from complex data is limited. In contrast,
PSformer integrates the residual connections, thus enabling a linear path while retaining the capability to
process complex nonlinear information. Moreover, the ConvFFN component in ModernTCN tailored for
temporal data also confirms that the convolutional mechanism, which actually embodies the idea of parameter
sharing, is also effective in the time series domain. With the same spirit, we have successfully applied the
parameter sharing to the transformer-based models in the time series field and achieved superior performance.

Table 4: The MSE results of different number of segments (N) on the ETTh1 and ETTm1 dataset.

# of Seg.
ETTh1 ETTm1 ETTh2

96 192 336 720 96 192 336 720 96 192 336 720

8 0.362 0.406 0.670 0.451 0.290 0.325 0.357 0.412 0.273 0.333 0.353 0.387

16 0.352 0.417 0.424 0.446 0.285 0.323 0.353 0.412 0.273 0.333 0.357 0.387

32 0.352 0.386 0.410 0.440 0.282 0.321 0.352 0.413 0.272 0.335 0.356 0.389

64 0.354 0.389 0.412 0.446 0.288 0.325 0.355 0.417 0.275 0.337 0.357 0.394
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Comparison with PatchTST and SAMformer PatchTST employs a channel-independent design and
divides time series data into multiple patches, which demonstrates the effectiveness of the patching method in
time series processing. However, its channel-independent approach does not fully consider the relationships
between different channels, focusing only on processing each channel individually. On the other hand,
SAMformer applies attention directly to the channel dimension via dimension transformations and utilizes a
simplified model structure, achieving good predictive performance. However, it may fail to capture valuable
local information without the patching method. PSformer combines the advantages of both models while
addressing their limitations. By using SSA, PSformer effectively captures local temporal information and
handles relationships among different channels. This design enables PSformer to outperform them in various
time series forecasting tasks as validated by extensive experiments.

4.2 Ablation Studies

The Effect of Segments Numbers Since PSformer employs a non-overlapping patching to construct
segments, the model’s performance may affected by the number of segments. Therefore, we tested the model’s
performance with different segment numbers on two datasets, ETTh1, ETTh2 and ETTm1. Given that
the input sequence length is fixed at 512, the number of segments must be a divisor of the sequence length.
Consequently, we set the number of segments to 8, 16, 32, and 64, and test the model on four different
forecasting horizons. The test results are shown in Table 4, which indicate that the number of segments
impacts the model’s prediction accuracy to some extent, while the differences are relatively small. Across
both datasets, a moderate number of segments (such as 32) tends to perform the balance for both short and
long forecasting horizons.

The Effect of PSformer Encoder Numbers

Table 5: The MSE results of different number of encoders on the
ETTh1 and ETTm1 dataset.

# of Enc
ETTh1 ETTm1

96 192 336 720 96 192 336 720

1 0.352 0.385 0.411 0.440 0.288 0.324 0.356 0.414

2 0.355 0.392 0.418 0.443 0.284 0.323 0.356 0.415

3 0.355 0.391 0.416 0.443 0.282 0.321 0.352 0.413

4 0.355 0.389 0.416 0.440 0.282 0.321 0.353 0.416

Since PSformer adopts the SSA mecha-
nism, with non-shared PS Block param-
eters across different Encoders (shared
within Encoder), we tested the impact of
varying the number of encoders on model
performance. We conducted tests on the
ETTh1 and ETTm1 datasets, varying the
number of encoders from 1 to 4 with four
different forecasting horizons. The ex-
perimental results are shown in Table 5.
The results indicate that ETTm1 per-
forms best with 3 encoders, while ETTh1
achieves better performance with just
1 encoder. This may suggest that for
smaller datasets, fewer encoders result in better performance, as reducing the number of encoders decreases
the amount of model parameters, thereby mitigating the risk of over-fitting.

Ablation of Parameter Sharing Methods

Table 6: Parameter Sharing with different methods

Sharing Methods Cross-Enc In-Enc ALL None

ETTm1

96 0.297 0.282 0.288 0.295
196 0.329 0.321 0.326 0.338
336 0.360 0.352 0.358 0.372
720 0.420 0.413 0.414 0.425

Weather

96 0.158 0.149 0.151 0.154
196 0.201 0.193 0.196 0.198
336 0.252 0.245 0.245 0.245
720 0.319 0.314 0.316 0.319

We investigate the impact of parameter-sharing
mechanism on the model performance. In addi-
tion to the default parameter-sharing approach,
which shares parameters only within encoder
(In-Encoder), we also test the following ap-
proaches: a. no parameter sharing, i.e., None; b.
sharing parameters only across encoders (with
different parameters used for the PS blocks
within each encoder), i.e., Cross-Encoders;
and c. sharing parameters both within and
across encoders, i.e., ALL. We conducted exper-
iments on the ETTm1 and Weather datasets,
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and the results are shown in Table 6. As can be seen, the In-Encoder method performs the best, followed
by ALL, while None shows the worst performance. This indicates that the parameter-sharing mechanism
contributes to improving the model performance. Furthermore, we provide a comparison of convergence
rates between parameter sharing and non-parameter sharing in Appendix B.9, as well as a comparison of
parameter savings achieved by parameter sharing in Appendix B.10 and Appendix A.4.

Ablation of Segment Attention methods

Table 7: Ablation analysis of SSA on ETTh1 and ETTh2 (MSE
reported). Red: the best.

Variant
ETTh1 ETTh2

96 192 336 720 96 192 336 720

w SSA 0.352 0.385 0.411 0.440 0.272 0.335 0.356 0.389

w/o SSA 0.369 0.397 0.414 0.448 0.288 0.365 0.373 0.398

w CI 0.376 0.407 0.427 0.455 0.285 0.382 0.369 0.395

only mlp 0.379 0.399 0.426 0.450 0.282 0.352 0.358 0.398

As an important component of PSformer,
we designed SSA to effectively capture
temporal information while fully utilizing
the correlations between channels. In the
ablation study, we compared different at-
tention mechanisms without using SSA
under parameter sharing, as well as the
performance of using only MLP. We con-
ducted experiments on the ETTh1 and
ETTh2 datasets. In this study, w/o SSA
means applying the attention mechanism
to the input x ∈ RB×M×L on the M × L
dimensions. For the setting with CI (chan-
nel independence), it applies the attention mechanism on the N × P dimensions. The results in Table 7
show the performance of PSformer variants with different attention mechanisms on the ETTh1 and ETTh2
datasets across various forecasting horizons:

• The default PSformer configuration (with SSA) consistently achieves the lowest MSE across all horizons,
demonstrating the effectiveness of SSA.

• When SSA is removed, the cross-channel attention is less effective at capturing both local and global
temporal dependencies, resulting in slightly increased MSE .

• The variant with channel-independent attention shows further degradation, suggesting that neglecting
inter-channel correlations impacts the model’s ability to capture temporal features.

• Using only MLP layers also results in higher MSE. Although it performs second best for the three
forecasting horizons on ETTh2, it still falls short compared to the performance with SSA, highlighting the
necessity of applying SSA.

5 Conclusion and Future Work

In this work, we proposed the PSformer model for multivariate time series forecasting, which leverages SSA
to facilitate information transfer among time series variables and capture spatial-temporal dependencies.
By employing parameter sharing, the model effectively improves parameter efficiency and reduces the risk
of overfitting when the data size is relatively limited. Overall, this designed network structure achieves
state-of-the-art performance on long-term multivariate forecasting tasks by enhancing model parameter
efficiency and improving the utilization of channel-wise information. Future work can focus on applying these
techniques to the development of pre-trained large models for time series forecasting, to overcome the issue of
excessively large parameter counts in existing pre-trained models, and improve the capability of extracting
information from multivariate time series.
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A Experimental Configuration

A.1 Hardware

All experiments were conducted on two servers, each equipped with an 80GB NVIDIA A100 GPU and 4 Intel
Xeon Gold 5218 CPUs.

A.2 Details of Baseline Settings

We conducted all of our experiments with look-back window L = 512 and prediction horizons H ∈
{96, 192, 336, 720}. Results of PSformer and ModernTCN reported in Table 13 come from our own ex-
periments. The difference between our experiment with ModernTCN and its official code is that we
standardized the look-back window to 512 and set drop_last=False for the test set in the dataloader to ensure
consistency with our experimental settings for a fair comparison. For MOMENT and GPT4TS, the results
are collected from Goswami et al. (2024), except Exchange rate (which is tested on official code repository).
The results of SAMformer, TSMixer, FEDformer and Autoformer are obtained from Ilbert et al. (2024), while
the results of iTransformer, PatchTST, and RLinear are taken from Liu et al. (2024b).

A.3 Settings for PSformer

We provides an overview of the experimental configurations for the PSFormer model across various tasks and
datasets in Table 8. The experiments cover multiple time-series datasets, including ETTh1, ETTh2, ETTm1,
ETTm2, Weather, Electricity, Traffic, and Exchange. In all experiments, the input sequence length (Input
Length T ) is set to 512, and each input is equally divided into 32 non-overlapping segments (Segments Num.
N). The model architecture uses 3 Encoders for tasks, while for the ETTh1, ETTh2, ETTm2 and Exchange,
1 Encoder are used.

The learning rate adjustment strategy (schedule) is set to “constant" for all experiments, with a fixed learning
rate (LR) of 10−4. The loss function used in all experiments is Mean Squared Error (MSE). The batch size is
set to 16 for most tasks, except for the Traffic dataset, where the batch size is 8. Each experiment runs for
300 epochs, with a patience value of 30 for early stopping. A fixed random seed of 1 is applied across all
experiments to ensure reproducibility.

A.4 Model Size Comparison

Table 9 presents a comparison of the parameter size across different models, including the PSFormer and other
baseline models such as SAMformer, TSMixer, ModernTCN, and RLinear. The comparison is conducted
on ETTh1, Weather, and Traffic datasets, with prediction horizons H ∈ {96, 192, 336, 720}. PSFormer is
evaluated in two configurations: the full model and the encoder part. The parameters of the encoder part
refer to the number of parameters after excluding the linear mapping in the output layer. The table denote
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Table 8: An overview of the experimental configurations for PSformer.

Task-Dataset Encoder Num. Input Length T Segment Num. N schedule LR* Loss Batch Size Epochs patient random seed

ETTh1 1 512 32 constant 10−4 MSE 16 300 30 1
ETTh2 1 512 32 constant 10−4 MSE 16 300 30 1
ETTm1 3 512 32 constant 10−4 MSE 16 300 30 1
ETTm2 1 512 32 constant 10−4 MSE 16 300 30 1
Weather 3 512 32 constant 10−4 MSE 16 300 30 1

Electricity 3 512 32 constant 10−4 MSE 16 300 30 1
Traffic 3 512 32 constant 10−4 MSE 8 300 30 1

Exchange 1 512 32 constant 10−4 MSE 16 300 30 1

Table 9: Comparison of the trainable model parameters

Dataset Horizon PSformer SAMformer TSMixer ModernTCN RLinear
Full Encoder

ETTh1

H=96 52,416 3,168 50,272 124,142 876,064 49248
H=192 101,664 3,168 99,520 173,390 1,662,592 98496
H=336 175,536 3,168 173,392 247,262 2,842,384 172368
H=720 372,528 3,168 369,904 444,254 5,988,496 369360

Relative Size (Avg) 1.0 0.014 0.987 1.408 16.192 0.948

Weather

H=96 58,752 9,504 50,272 121,908 2,709,280 49248
H=192 108,000 9,504 99,520 171,156 3,495,808 98496
H=336 181,872 9,504 173,392 245,028 4,675,600 172368
H=720 378,864 9,504 369,904 442,020 7,821,712 369360

Relative Size (Avg) 1.0 0.039 0.953 1.347 25.708 0.948

Traffic

H=96 58,752 9,504 50,272 793,424 822,018,208 49248
H=192 108,000 9,504 99,520 842,672 822,804,736 98496
H=336 181,872 9,504 173,392 916,544 823,984,528 172368
H=720 378,864 9,504 369,904 1,113,536 827,130,640 369360

Relative Size (Avg) 1.0 0.039 0.953 5.040 4530.574 0.948

that both PSFormer (full) and SAMformer have parameter sizes that are close to RLinear, where RLinear’s
parameters mainly stem from the linear mapping between input and output. Notably, the parameter sizes
of these three models are relatively unaffected by the number of input channels. In contrast, TSMixer and
ModernTCN exhibit significantly larger parameter sizes, with the number of input channels playing a major
role in the overall parameter burden. The relative size comparison shows that TSMixer and ModernTCN
have several times, or even thousands of times, more parameters than PSFormer(full). Finally, the parameter
size of PSFormer(Encoder) is much smaller, indicating that optimizing the linear mapping layer in the output
could further reduce the overall parameter count.

A.5 Running Time Comparison

The average running time per iteration (s/iter) of different models on the ETTh1 and Weather datasets with
varying prediction horizons is shown in Table 10. PSformer demonstrates relatively stable running times
across different horizons. For the ETTh1 dataset, the running time remains between 0.011 and 0.012 seconds,
while for the Weather dataset, it varies slightly between 0.026 and 0.027 seconds. PSformer also shows
comparatively efficient running times across the datasets, with performance that remains competitive even
as the prediction horizon increases. This indicates that PSformer manages computational costs effectively,
especially when compared to more complex models.
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Table 10: Comparison of the running time (s/iter). We test the average running time per iteration of different
models across the first five epochs on the ETTh1 and Weather datasets.

Dataset Horizon PSformer PatchTST ModernTCN TSMixer RLinear iTransformer

ETTh1

H=96 0.012 0.049 0.241 0.013 0.032 0.020
H=192 0.011 0.049 0.244 0.016 0.033 0.023
H=336 0.012 0.054 0.245 0.015 0.034 0.022
H=720 0.012 0.063 0.279 0.019 0.037 0.025

Weather

H=96 0.026 0.165 0.388 0.013 0.030 0.022
H=192 0.026 0.166 0.361 0.016 0.032 0.022
H=336 0.027 0.176 0.730 0.016 0.033 0.027
H=720 0.027 0.185 0.788 0.024 0.034 0.035

Table 11: Performance comparison with different positional encoding methods.

Dataset Horizon Pos emb (time series) Pos emb (segment) No pos emb

ETTh1 96 0.378 0.353 0.352
192 0.412 0.388 0.385

ETTh2 96 0.298 0.276 0.272
192 0.352 0.338 0.335

Exchange Rate

96 0.189 0.095 0.091
192 0.314 0.201 0.197
336 0.525 0.370 0.345
720 1.574 1.041 1.036

A.6 Discuss about Positional Encoding

The Reasons of Eliminating Positional Encoding On the one hand, the SAMformer does not use
positional encoding because it applies attention to the channel dimension, where there is no strict sequential
relationship between channels. Although SSA in PSformer is also a cross-channel structure, it involves local
time series constructed by patches. We consider such local sequences as local representations (or tokens)
rather than short sequences. The experimental results also demonstrate that this structure can similarly
reduce the dependency on positional encoding while achieving good performance.

On the other hand, we conducted a set of comparative experiments using positional encoding to better
illustrate its impact. Specifically, we tested the encoding performance under two different data transformation
modes: pos emb (time series), where positional encoding is applied to the original time series before dimension
transformation; and pos emb (segment), where positional encoding is applied to the transformed segments.
The default case, No pos emb, refers to the absence of positional encoding.

To highlight the differences between seasonal vs. non-seasonal and stationary vs. non-stationary characteristics,
we selected the ETTh1 and ETTh2 datasets (relatively seasonal and stable) as well as the Exchange dataset
(relatively non-seasonal and non-stationary). The experimental results are shown in the Table 11.

The degraded performance of pos emb (time series) might be due to the incompatibility of the positional
encoding with dimension transformation, as the original temporal order is lost in the segment dimension,
making it unsuitable for dot-product attention calculations. On the other hand, pos emb (segment) shows
smaller changes compared to the No pos emb case, but the performance still deteriorates slightly. This
suggests that the significance of positional encoding in the context of multivariate time series forecasting
might need to be re-evaluated, as there are fundamental differences between NLP and time series data when
applying attention mechanisms.
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Figure 2: Ablation analysis on hyper-parameter ρ. When taking ρ values from 0 to 1 in steps of 0.1, the
prediction loss will slightly decrease first and then increase significantly if the ρ exceeds a threshold, which
means the selection of ρ should be careful.

A.7 Sharpness-Aware Minimization

Optimization steps SAM optimizer Foret et al. (2021) modifies the typical gradient descent update to seek
a flatten optimum. Below is the mathematical formulation:

Let θ be the model parameters, L(θ) be the loss function, and ϵ be a small perturbation applied to the
parameters. The SAM optimization process can be described in two steps:

• Find the adversarial perturbation that maximizes the loss in a neighborhood of the current weights θ:

ϵ̂ = arg max
∥ϵ∥≤ρ

L(θ + ϵ)

where ρ is a small constant that controls the size of the neighborhood.

• Update the parameters in the direction that minimizes the loss with respect to the perturbed
parameters:

θ ← θ − η∇θL(θ + ϵ̂)

where η is the learning rate.

As used in SAMformer, we also employ this optimization technique to train our models, which can generate
promising results.
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Table 12: Neighborhood size ρ∗ used by PSformer, SAMformer and TSMixer for SAM optimization to
achieve their best performance on the benchmarks.

H Model ETTh1 ETTh2 ETTm1 ETTm2 Electricity Exchange Traffic Weather
96 PSformer 0.6 0.1 0.4 0.0 0.0 0.2 0.1 0.1

SAMformer 0.5 0.5 0.6 0.2 0.5 0.7 0.8 0.4
TSMixer 1.0 0.9 1.0 1.0 1.0 0.9 0.0 0.5

192 PSformer 0.8 0.0 0.4 0.2 0.1 0.1 0.1 0.1
SAMformer 0.6 0.8 0.9 0.9 0.6 0.8 0.1 0.4

TSMixer 0.7 0.1 0.6 0.9 0.6 0.9 0.9 0.4

336 PSformer 0.9 0.6 0.4 0.3 0.1 0.2 0.2 0.2
SAMformer 0.9 0.6 0.9 0.8 0.5 0.5 0.5 0.6

TSMixer 0.7 0.7 0.9 1.0 0.4 1.0 0.6 0.6

720 PSformer 0.6 0.5 0.4 0.3 0.1 0.2 0.3 0.3
SAMformer 0.9 0.8 0.9 0.9 1.0 0.9 0.7 0.5

TSMixer 0.3 0.4 0.5 1.0 0.9 0.1 0.9 0.3

B More Results and Analysis

B.1 Investigation of Hyper-parameter ρ

The Effect of ρ. Since we employed SAM to ensure training stability, we also conducted sensitivity tests on
the hyper-parameter ρ in SAM. We divided the range of ρ from 0 to 1 into 10 equal parts and tested its
effect on model prediction performance across the ETTh1, ETTm1, ETTm2, and Weather datasets. The
results are shown in Figure 2. It can be observed that as the parameter ρ gradually increases in SAM can
improve the model’s prediction performance to some extent. However, if ρ is set too large, it may degrade
the model’s performance. When selecting ρ, it’s important to consider the dataset’s complexity and noise
levels, as well as the model’s architecture. For more complex datasets or larger models, a slightly larger ρ
can help smooth the loss landscape and improve generalization. Further, ρ should also be balanced with the
learning rate to avoid instability or performance degradation. As a comparison, we also report the ρ∗ used by
PSformer, SAMformer and TSMixer in the Table 12.

B.2 Full Results

Table 13 presents the detailed experimental results of different models and forecasting horizons, providing a
comprehensive evaluation of their performance in long-term time series forecasting tasks. The performance
is measured using Mean Squared Error (MSE) and Mean Absolute Error (MAE). In the table, red values
represent the best performance in the respective task and metric, while blue-lined values indicate the
second-best performance.

The last row of the table summarizes the number of first-place results for each model across all tasks. As can
be seen, PSformer achieved the best MSE performance in 20 out of 32 prediction tasks, and ranked second in
8 tasks. In terms of MAE, PSformer achieved the best results in 22 tasks and came second in 5 tasks. This
clearly demonstrates the superior performance of PSformer compared to other baseline models in long-term
time series forecasting tasks.

The next best-performing model is ModernTCN, which achieved the best MSE results in 6 tasks and the best
MAE results in 3 tasks. While other models such as SAMformer and PatchTST also showed competitive
performance in some tasks, their overall results are not as strong as those of PSformer and ModernTCN. In
summary, PSformer’s strong performance across multiple benchmark tasks suggests its potential effectiveness
in long-term forecasting. The statistical fluctuations across multiple random seeds are shown in Appendix B.2.

B.3 Training Loss

Figure 3 illustrates the training and validation loss curves of the ETTh1 and ETTm1 datasets with prediction
horizons H = {96, 192}. In this experiment, we set the number of epochs to 200 and disabled early stopping

17



Under review as submission to TMLR

Table 13: Full long-term forecasting results. We set the forecasting horizons H ∈ {96, 192, 336, 720}. A lower
value indicates better performance. Avg means the average results from all prediction lengths. Red: the best,
Blue lined: the second best.

Models PSformer SAMformer TSMixer PatchTST MOMENT ModernTCN FEDformer GPT4TS Autoformer RLinear iTransformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.352 0.385 0.381 0.402 0.388 0.408 0.414 0.419 0.387 0.410 0.373 0.399 0.376 0.415 0.376 0.397 0.435 0.446 0.386 0.395 0.386 0.405
192 0.385 0.406 0.409 0.418 0.421 0.426 0.460 0.445 0.410 0.426 0.407 0.419 0.423 0.446 0.416 0.418 0.456 0.457 0.437 0.424 0.441 0.436
336 0.411 0.424 0.423 0.425 0.430 0.434 0.501 0.466 0.422 0.437 0.436 0.437 0.444 0.462 0.442 0.433 0.486 0.487 0.479 0.446 0.487 0.458
720 0.440 0.456 0.427 0.449 0.440 0.459 0.500 0.488 0.454 0.472 0.467 0.474 0.469 0.492 0.477 0.515 0.515 0.517 0.481 0.470 0.503 0.491
Avg 0.397 0.418 0.410 0.424 0.420 0.431 0.468 0.455 0.418 0.436 0.421 0.432 0.428 0.454 0.428 0.426 0.473 0.477 0.446 0.434 0.454 0.448

ETTh2

96 0.272 0.337 0.295 0.358 0.305 0.367 0.302 0.348 0.288 0.345 0.271 0.339 0.332 0.374 0.285 0.342 0.332 0.368 0.288 0.338 0.297 0.349
192 0.335 0.379 0.340 0.386 0.350 0.393 0.388 0.400 0.349 0.386 0.332 0.382 0.407 0.446 0.354 0.389 0.426 0.434 0.374 0.390 0.380 0.400
336 0.356 0.411 0.350 0.395 0.360 0.404 0.426 0.433 0.369 0.408 0.365 0.411 0.400 0.447 0.373 0.407 0.477 0.479 0.415 0.426 0.428 0.432
720 0.389 0.431 0.391 0.428 0.402 0.435 0.431 0.446 0.403 0.439 0.402 0.441 0.412 0.469 0.406 0.441 0.453 0.490 0.420 0.440 0.427 0.445
Avg 0.338 0.390 0.344 0.391 0.354 0.400 0.387 0.407 0.352 0.394 0.343 0.393 0.388 0.434 0.355 0.395 0.422 0.443 0.374 0.398 0.383 0.407

ETTm1

96 0.282 0.336 0.329 0.363 0.327 0.363 0.329 0.367 0.293 0.349 0.310 0.356 0.326 0.390 0.292 0.346 0.510 0.492 0.355 0.376 0.334 0.368
192 0.321 0.360 0.353 0.378 0.356 0.381 0.367 0.385 0.326 0.368 0.340 0.373 0.365 0.415 0.332 0.372 0.514 0.495 0.391 0.392 0.377 0.391
336 0.352 0.380 0.382 0.394 0.387 0.397 0.399 0.410 0.352 0.384 0.373 0.392 0.392 0.425 0.366 0.394 0.510 0.492 0.424 0.415 0.426 0.420
720 0.413 0.412 0.429 0.418 0.441 0.425 0.454 0.439 0.405 0.416 0.420 0.418 0.446 0.458 0.417 0.421 0.527 0.492 0.487 0.450 0.491 0.459
Avg 0.342 0.372 0.373 0.388 0.378 0.392 0.387 0.400 0.344 0.379 0.361 0.384 0.382 0.422 0.351 0.383 0.515 0.493 0.414 0.407 0.407 0.410

ETTm2

96 0.167 0.258 0.181 0.274 0.190 0.284 0.175 0.259 0.170 0.260 0.168 0.261 0.180 0.271 0.173 0.262 0.205 0.293 0.182 0.265 0.180 0.264
192 0.219 0.292 0.233 0.306 0.250 0.320 0.241 0.302 0.227 0.297 0.231 0.305 0.252 0.318 0.229 0.301 0.278 0.336 0.246 0.304 0.250 0.309
336 0.269 0.325 0.285 0.338 0.301 0.350 0.305 0.343 0.275 0.328 0.272 0.328 0.324 0.364 0.286 0.341 0.343 0.379 0.307 0.342 0.311 0.348
720 0.347 0.376 0.375 0.390 0.389 0.402 0.402 0.400 0.363 0.387 0.375 0.394 0.410 0.420 0.378 0.401 0.414 0.419 0.407 0.398 0.412 0.407
Avg 0.251 0.313 0.269 0.327 0.283 0.339 0.281 0.326 0.259 0.318 0.262 0.322 0.292 0.343 0.267 0.326 0.310 0.357 0.286 0.327 0.288 0.332

Weather

96 0.149 0.200 0.197 0.249 0.189 0.242 0.177 0.218 0.154 0.209 0.154 0.209 0.238 0.314 0.162 0.212 0.249 0.329 0.192 0.232 0.174 0.214
192 0.193 0.243 0.235 0.277 0.228 0.272 0.225 0.259 0.197 0.248 0.207 0.257 0.275 0.329 0.204 0.248 0.325 0.370 0.240 0.271 0.221 0.254
336 0.245 0.282 0.276 0.304 0.271 0.299 0.278 0.297 0.246 0.285 0.248 0.289 0.339 0.377 0.254 0.286 0.351 0.391 0.292 0.307 0.278 0.296
720 0.314 0.332 0.334 0.342 0.331 0.341 0.354 0.348 0.315 0.336 0.337 0.342 0.389 0.409 0.326 0.337 0.415 0.426 0.364 0.353 0.358 0.347
Avg 0.225 0.264 0.261 0.293 0.255 0.289 0.259 0.281 0.228 0.270 0.237 0.274 0.310 0.357 0.237 0.271 0.335 0.379 0.272 0.291 0.258 0.278

Electricity

96 0.133 0.229 0.155 0.252 0.171 0.273 0.181 0.270 0.136 0.233 0.133 0.228 0.186 0.302 0.139 0.238 0.196 0.313 0.201 0.281 0.148 0.240
192 0.149 0.242 0.168 0.263 0.191 0.292 0.188 0.274 0.152 0.247 0.147 0.241 0.197 0.311 0.153 0.251 0.211 0.324 0.201 0.283 0.162 0.253
336 0.164 0.258 0.183 0.277 0.198 0.297 0.204 0.293 0.167 0.264 0.163 0.260 0.213 0.328 0.169 0.266 0.214 0.327 0.215 0.298 0.178 0.269
720 0.203 0.291 0.219 0.306 0.230 0.321 0.246 0.324 0.205 0.295 0.194 0.289 0.233 0.344 0.206 0.297 0.236 0.342 0.257 0.331 0.225 0.317
Avg 0.162 0.255 0.181 0.275 0.198 0.296 0.205 0.290 0.165 0.260 0.160 0.255 0.207 0.321 0.167 0.263 0.214 0.327 0.219 0.298 0.178 0.270

Exchange

96 0.081 0.197 0.161 0.306 0.233 0.363 0.088 0.205 0.098 0.224 0.207 0.342 0.139 0.276 0.091 0.212 0.197 0.323 0.093 0.217 0.086 0.206
192 0.179 0.299 0.246 0.371 0.342 0.437 0.176 0.299 0.201 0.323 0.337 0.437 0.256 0.369 0.183 0.304 0.300 0.369 0.184 0.307 0.177 0.299
336 0.328 0.412 0.368 0.453 0.474 0.515 0.301 0.397 0.387 0.454 0.520 0.553 0.426 0.464 0.328 0.417 0.509 0.524 0.351 0.432 0.331 0.417
720 0.842 0.689 1.003 0.750 1.078 0.777 0.901 0.714 1.062 0.783 1.154 0.810 1.090 0.800 0.880 0.704 1.447 0.941 0.886 0.714 0.847 0.691
Avg 0.358 0.399 0.445 0.470 0.532 0.523 0.367 0.404 0.437 0.446 0.555 0.536 0.478 0.477 0.371 0.409 0.613 0.539 0.378 0.417 0.360 0.403

Traffic

96 0.367 0.257 0.407 0.292 0.409 0.300 0.462 0.295 0.391 0.282 0.391 0.271 0.576 0.359 0.388 0.282 0.597 0.371 0.649 0.389 0.395 0.268
192 0.390 0.272 0.415 0.294 0.433 0.317 0.466 0.296 0.404 0.287 0.403 0.275 0.610 0.380 0.407 0.290 0.607 0.382 0.601 0.366 0.417 0.276
336 0.404 0.274 0.421 0.292 0.424 0.299 0.482 0.304 0.414 0.292 0.410 0.280 0.608 0.375 0.412 0.294 0.623 0.387 0.609 0.369 0.433 0.283
720 0.439 0.294 0.456 0.311 0.488 0.344 0.514 0.322 0.450 0.310 0.451 0.305 0.621 0.375 0.450 0.312 0.639 0.395 0.647 0.387 0.467 0.302
Avg 0.400 0.274 0.425 0.297 0.439 0.315 0.481 0.304 0.415 0.293 0.414 0.283 0.604 0.372 0.414 0.295 0.617 0.384 0.626 0.378 0.428 0.282

1st Count 20 22 2 3 0 0 2 3 2 0 6 3 0 0 0 0 0 0 0 0 2 2
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Table 14: Statistical significance tests. Each task with average mean and standard deviation executed under
5 runs with different random seeds.

Metric Length ETTh1 ETTh2 ETTm1 ETTm2 Weather Exchange

MSE

96 0.352±0.001 0.272±0.002 0.283±0.001 0.169±0.001 0.150±0.001 0.081±0.000
192 0.386±0.001 0.338±0.003 0.322±0.001 0.219±0.001 0.195±0.001 0.177±0.004
336 0.412±0.003 0.356±0.001 0.353±0.002 0.269±0.001 0.243±0.001 0.321±0.004
720 0.443±0.002 0.390±0.001 0.414±0.001 0.352±0.004 0.314±0.001 0.840±0.007
Average 0.398±0.002 0.339±0.002 0.343±0.001 0.252±0.002 0.225±0.001 0.355±0.004

MAE

96 0.385±0.001 0.336±0.001 0.342±0.001 0.259±0.001 0.201±0.001 0.197±0.000
192 0.406±0.001 0.380±0.002 0.362±0.001 0.292±0.001 0.244±0.001 0.299±0.003
336 0.424±0.004 0.409±0.003 0.380±0.001 0.325±0.001 0.280±0.001 0.408±0.003
720 0.459±0.001 0.432±0.001 0.412±0.001 0.377±0.002 0.332±0.001 0.687±0.002
Average 0.419±0.002 0.389±0.002 0.374±0.001 0.313±0.001 0.264±0.001 0.398±0.002

to observe the complete training process. As shown in the plots, despite the model reaching convergence
early in the training (as indicated by the flattening of the training loss curve), the validation loss remains
consistently low throughout the training duration. This indicates the model’s stability and its ability to
generalize well to unseen data over extended epochs.

B.4 Visualization

To better understand our method, we present the forecast curves and the corresponding attention maps for
several selected samples. The attention maps visualize the attention weights in different stages of the model,
providing insight into how the model processes the input data at each stage.

For the ETTh1 in Figure 4, the input sequence length is 512, and we display the last 100 time steps of the
input. The prediction length is set to 96. We select five samples from the ETTh1 dataset, and for each sample,
we visualize the attention maps for stage 1 and stage 2 of the SSA. From the attention maps, it is evident
that there are significant variations in the attention distributions across different samples. Additionally, the
attention maps from stage 1 and stage 2 also show noticeable differences, despite both stages sharing the same
PS block parameters. This indicates that while the two-stage share parameters, they are able to handle and
process the information differently, capturing different aspects of the input data at each stage of the model.

For the Weather in Figure 5, the input length is also 512, and the last 100 time steps are displayed, while the
prediction length is 192. Since the model for this dataset employs a three-layer Encoder structure, we display
the attention maps for both stages across each layer. Specifically, the notation“1-2" represents the attention
map for layer 1, stage 2, and similarly for the other layers. The first two rows of attention maps correspond
to the attention distributions from the three Encoder layers. Following that, the prediction curves for nine
selected variates are plotted, providing a detailed view of the model’s forecast performance across different
variates.
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(a) ETTh1-96 (b) ETTh1-192

(c) ETTm1-96 (d) ETTm1-192

Figure 3: Training and validation loss curves of the ETTh1 and ETTm1 datasets.
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Figure 4: SSA map and forecast samples for ETTh1-96
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(a) SSA map 1-1 (b) SSA map 1-2 (c) SSA map 2-1

(d) SSA map 2-2 (e) SSA map 3-1 (f) SSA map 3-2
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Figure 5: SSA matrices and forecast for Weather-192
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B.5 Additional Visualization of Attention Map

We further analyze the SSA attention matrix of PSformer in both the temporal and spatial dimensions. Using
samples from ETTh1, the key parameters include: input length L = 512, segment number N = 32, channel
number M = 7, and patch length P = 16. Therefore, QKT ∈ RC×C , where C = M × P , as described in the
Spatial-Temporal Segment Attention part.

B.5.1 SSA Attention Map

Since stage one of SSA operates on the input data x, we print out the attention matrix to observe how SSA
captures local spatiotemporal information. The attention matrix is shown in the Figure 8 below. To better
display the colors, we choose the plasma color style and apply a clipping operation to the top 1.

Since both the x-axis and y-axis correspond to a specific point within a segment of length C, the brighter
yellow points in this attention matrix indicate higher attention weights between the corresponding x-axis and
y-axis positions. Taking this attention map as an example, we can observe distinct high-attention regions (e.g.,
the top-left corner) and high-attention areas between different time steps and variables (e.g., the non-diagonal
symmetric grid section in the top-left corner). From this, we can observe that the coordinate positions
within the spatial attention sub-matrix (inside the grids) exhibit the same or gradually changing attention
weights across different time steps (between the grids). This suggests that the model may capture temporal
consistency between variables, local stationary features, and long-term dependencies across time steps.

B.5.2 Single-channel SSA Attention Map

For better visualization of SSA’s capture of the local temporal dimension, we extract the single-channel
attention sub-matrix from the attention matrix, as shown in the upper corner of the Figure 7, and visualize
the corresponding single-channel local time sequence in the lower corner of the Figure 7. This allows us to
observe the high-attention weights at specific temporal local positions. We present three samples of attention
along the temporal dimension for a single sequence.

Spatial
Attention 
submap

Variate 1

Variate 3

Cross spatial-temporal 
Attention case

Segment 10

Segment 11

Segment 12

Segment 10 Segment 11 Segment 12

Figure 6: SSA attention map.
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From the upper-left corner of Figure 7, the high attention weight at coordinates (x=7, y=14) corresponds
to time steps 7 and 14 in the lower-left corner of Figure 7. These two time points represent a pattern of
significant change in the sequence, which the model identifies as a high attention weight.

Using the same analysis method, we can observe in the middle column of the Figure 7 that high attention
occurs between time steps 2 and 3, as well as between time steps 9 and 10. This includes both consecutive
time points with related attention (e.g., 2 and 3) and attention with intervals (e.g., 2-3 and 9-10), which
correspond to the upward phase and the stable phase of the time series.

segment number (N) segment number (N)segment number (N)

N N N

N N N

Figure 7: SSA intra-channel attention submap.

B.5.3 Cross-channels SSA Attention Map

To visualize the cross-channel attention relationships in SSA, we extract the attention weights between two
channels, forming the corresponding cross-channel attention sub-matrix map and the time series plots for the
two variables, as shown in Figure 8.

From upper-left of the Figure 8, we can see that high attention is mainly concentrated at coordinates (3, 14)
and (5, 14), which correspond to time step 14 of variate 2 and time steps 3 and 5 of variate 0. These three
positions may reflect local minima for the two time series. In the middle column, the high attention weights
correspond to large changes in opposite directions between variate 0 and variate 6. In the right column of
Figure 8, we can see that the segments corresponding to segment numbers 1 and 2 of variate 5 exhibit higher
attention values compared to the overall variate 0. Additionally, the attention on time steps 4 and 5, as well
as 11 and 12, of variate 0 is higher.

B.5.4 Additional Visualization of the SSA Attention Map without Parameter Sharing

We further analyzed how parameter sharing affects the model’s ability to capture temporal patterns by
comparing attention maps with and without parameter sharing. To achieve this, we also visualized the
attention heatmaps without parameter sharing. To reflect cross-layer variations, we provided attention maps
from both the first and second layers for comparison, as in Figure 9a and Figure 9b. Several differences were
observed when comparing these to the attention maps with parameter sharing.
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segment number (N)segment number (N)segment number (N)

N NN

N N N

Figure 8: SSA cross-channel attention sub-map.

(a) Attention1 map without parameter sharing. (b) Attention2 map without parameter sharing.

Figure 9: Comparison of Variate 2 Attention Maps
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(a) Attention1 map for Variate 2. (b) Attention2 map for Variate 2. (c) Time series for Variate 2.

Figure 10: Single-channel Attention Map without Parameter Sharing.

(a) Attention1 map for Variate 2. (b) Attention2 map for Variate 2. (c) Time series for Variate 2.

Figure 11: Comparison of Cross-channels Attention Maps without Parameter Sharing.

Range of attention weights: For attention maps with parameter sharing, the values generally range between
[-3, 3], while for those without parameter sharing, the range is much broader, approximately [-30, 40]. The
larger variations in attention weights without parameter sharing might contribute to faster model convergence
during training.

Inter-channel relationships: With parameter sharing, the inter-channel relationships represented in Figure 10
are simpler and more distinct. Gradual transitions in attention weights between grid cells are clearly
visible. In contrast, without parameter sharing, although progressive changes are still observed, the temporal
relationships become more complex and harder to interpret (as the attention map in the first layer cannot be
directly aligned with the corresponding temporal positions due to the lack of parameter sharing).

Cross-layer variations: Observing the differences between the two layers in the non-parameter-shared attention
maps in Figure 11, I tend to suggest that the first layer’s attention focuses on capturing basic temporal
patterns, which are then refined and processed in the second layer. However, the interpretability in temporal
models is challenging and remains an open research question worthy of further exploration.

B.6 SSA for Univariate Time Series and Low Dependency Series

We tested the performance of PSformer in single-sequence forecasting. Specifically, we saved the 8 variables
from the Exchange dataset into 8 separate single-sequence files, each supplemented with an additional column
filled with zeros to form single sequences, along with an unrelated variable. We compared PSformer with the
baseline model PatchTST (which is channel-independent and performs well on the Exchange dataset).

The experimental results in the Table 15. As can be observed, PSformer consistently outperforms across
all uni-variate time series, demonstrating that the PSformer architecture is not only effective in capturing
cross-channel information but also performs well in univariate time series or with little dependency between
variables.
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Table 15: Performance comparison between PSformer and PatchTST across various variates.

Variate Model 96 192 336 720

1 PSformer 0.057 0.147 0.360 0.803
PatchTST 0.063 0.152 0.461 -

2 PSformer 0.042 0.094 0.152 0.216
PatchTST 0.052 0.140 0.181 -

3 PSformer 0.034 0.093 0.169 0.476
PatchTST 0.055 0.116 0.176 -

4 PSformer 0.041 0.066 0.090 0.146
PatchTST 0.058 0.085 0.111 -

5 PSformer 0.007 0.009 0.012 0.073
PatchTST 0.016 0.025 0.022 -

6 PSformer 0.077 0.169 0.532 1.125
PatchTST 0.099 0.215 0.505 -

7 PSformer 0.033 0.069 0.120 0.342
PatchTST 0.039 0.079 0.140 -

OT PSformer 0.047 0.101 0.190 0.510
PatchTST 0.097 0.154 0.230 -

Table 16: Performance comparison with different norm window sizes on the Exchange Rate dataset.

Dataset Horizon 16 64 128 256 512

Exchange Rate

96 0.081 0.085 0.090 0.092 0.091
192 0.179 0.187 0.189 0.191 0.197
336 0.328 0.338 0.356 0.362 0.345
720 0.842 0.900 0.976 1.003 1.036
Avg 0.358 0.378 0.403 0.412 0.417

During the experiments, PatchTST encountered a NaN loss on the validation set for a prediction length of
720, so the corresponding loss value was not recorded.

B.7 Exchange Dateset Performance with Different RevIN Look-back Windows

The Exchange dataset is non-stationary in nature and has random walk characteristics, which prevent RevIN
from obtaining stable mean and variance statistics. These statistics are sensitive to the choice of RevIN’s
look-back window. Further testing in the Table 16 revealed that the model performs best when the look-back
window for calculating RevIN’s statistics is very small (length 16), achieving results superior to all selected
baseline models. We believe that for non-stationary data, RevIN’s normalization should be used with caution.
Adjusting the look-back window length can help identify more stable statistical means and variances, thereby
facilitating model training.

B.8 Comparison with Extended Datasets and Baselines
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B.8.1 Comparison with Additional Datasets

We also evaluated the performance of PSformer on the ILI and FRED-MD datasets and compared it with
models such as TimeCMA Liu et al. (2025) and UniTime Liu et al. (2024a). The experimental results are
presented in Table 17, where PSformer achieved the best performance on the ILI dataset, while TimeCMA
performed better on the FRED-MD dataset. This may indicate that for different time series forecasting
datasets, corresponding time series models should be adopted to achieve better performance.

Table 17: Comparison with additional datasets. We evaluate the model’s performance on the ILI and FRED-
MD datasets with forecasting horizons H ∈ {24, 36, 42, 60}, and the MSE and average loss are reported.

PSformer TimeCMA Time-LLM UniTime GPT4TS iTransformer PatchTST TimesNet Dlinear FEDformer

IL
I

24 1.893 1.996 2.383 2.346 2.732 2.347 2.335 2.317 2.398 3.228
36 1.778 1.946 2.390 1.998 2.664 2.468 2.561 1.972 2.646 2.679
48 1.851 1.940 2.394 1.979 2.617 2.489 2.465 2.238 2.614 2.622
60 2.071 2.114 2.562 2.109 2.478 2.471 2.189 2.027 2.804 2.857

Avg 1.898 1.999 2.432 2.108 2.623 2.444 2.388 2.139 2.616 2.847

F
R

E
D

-M
D 24 22.777 22.702 27.285 31.178 28.317 28.017 35.777 43.268 37.898 66.09

36 48.679 41.792 48.730 54.172 59.520 50.837 61.034 69.514 71.047 94.359
48 74.420 64.364 73.494 83.836 74.808 78.018 93.482 89.913 118.579 129.798
60 108.256 77.792 108.221 118.429 83.613 90.212 133.444 116.187 156.844 173.616

Avg 63.533 51.662 64.433 75.771 61.565 61.771 80.934 79.721 96.092 115.966

B.8.2 Comparasion with Additional Baselines (Part-I)

We have collected the extended experimental MSE loss results of the relevant models in Table 18. Although
there are differences in experimental setups across each work, which may affect the results and prevent
a completely fair comparison, we have provided some key settings to help better understand the model
performance.

From the results, compared to models with fixed windows, PSformer performed best on 7/8 of the prediction
tasks. This further highlights PSformer’s competitive performance in forecasting. Even when compared to
non-fixed window models like FITS, PSformer performed best on 4/7 of the prediction tasks.

B.8.3 Comparison with Additional Baselines (Part-II)

We have collected the extended experimental results of the relevant models in Table 19. Comparison with PDF
and PatchTST. We set PDF and PatchTST with the same setting (input length to 512, drop_last = False).
The results provide further insights into PSformer performance.

We conducted tests on the following five datasets. From the experimental results, both PSformer and PDF
significantly outperform PatchTST in predictive performance, with PSformer achieving better predictions
than PDF. However, the average prediction loss reduction relative to PDF is not substantial. Therefore, we
consider PSformer and PDF to exhibit equally excellent predictive performance under the same settings.

Comparison with Time-LLM. For Time-LLM, we listed the predictive performance from the original paper of
the model in the table below. However, we checked its official repository and found Time-LLM also faces a
DL issue in the test set dataloader, which may affect its reported results. Besides, due to the computational
demands of large-scale models, we decided not to execute its code directly in our experiments. When selecting
the baseline large models, we considered both MOMENT and TimeLLM. We ultimately chose MOMENT for
two main reasons: the MOMENT paper includes a direct comparison with TimeLLM, and it is relatively
lightweight (428M parameters). In summary, despite the significant difference in parameter scale and the
DL issue present in TimeLLM, PSformer still achieves equal or better average predictive performance than
TimeLLM on 3 out of 5 datasets.
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Table 18: Comparasion with additional baselines (Part-I).

Models PSformer TimeMixer CrossGNN MICN TimesNet FITS

ETTh1 96 0.352 0.375 0.382 \ 0.384 0.372
192 0.385 0.429 0.427 \ 0.436 0.404
336 0.411 0.484 0.465 \ 0.491 0.427
720 0.44 0.498 0.472 \ 0.521 0.424
Avg 0.397 0.447 0.437 \ 0.458 0.407

ETTh2 96 0.272 0.289 0.309 \ 0.34 0.271
192 0.335 0.372 0.39 \ 0.402 0.331
336 0.356 0.386 0.426 \ 0.452 0.354
720 0.389 0.412 0.445 \ 0.462 0.377
Avg 0.338 0.365 0.393 \ 0.414 0.333

ETTm1 96 0.282 0.32 0.335 \ 0.338 0.303
192 0.321 0.361 0.372 \ 0.372 0.337
336 0.352 0.39 0.403 \ 0.41 0.366
720 0.413 0.454 0.461 \ 0.478 0.415
Avg 0.342 0.381 0.393 \ 0.4 0.355

ETTm2 96 0.167 0.175 0.176 0.179 0.187 0.162
192 0.219 0.237 0.24 0.307 0.249 0.216
336 0.269 0.298 0.304 0.325 0.321 0.268
720 0.347 0.391 0.406 0.502 0.408 0.348
Avg 0.251 0.275 0.282 0.328 0.291 0.249

Weather 96 0.149 0.163 0.159 \ 0.172 0.143
192 0.193 0.208 0.211 \ 0.219 0.186
336 0.245 0.251 0.267 \ 0.28 0.236
720 0.314 0.339 0.352 \ 0.365 0.307
Avg 0.225 0.24 0.247 \ 0.259 0.218

Electricity 96 0.133 0.153 0.173 0.164 0.168 0.134
192 0.149 0.166 0.195 0.177 0.184 0.149
336 0.164 0.185 0.206 0.193 0.198 0.165
720 0.203 0.225 0.231 0.212 0.22 0.203
Avg 0.162 0.182 0.201 0.187 0.192 0.163

Exchange rate 96 0.091 0.09 0.084 0.102 0.107 \
192 0.197 0.187 0.171 0.172 0.226 \
336 0.345 0.353 0.319 0.272 0.367 \
720 1.036 0.934 0.805 0.714 0.964 \
Avg 0.417 0.391 0.345 0.315 0.416 \

Traffic 96 0.367 0.462 0.57 0.519 0.593 0.385
192 0.39 0.473 0.577 0.537 0.617 0.397
336 0.404 0.498 0.588 0.534 0.629 0.41
720 0.439 0.506 0.597 0.577 0.64 0.448
Avg 0.4 0.485 0.583 0.542 0.62 0.41
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Table 19: Comparison with additional baselines (Part-II).

Models PSformer Crossformer PDF PatchTST TimeLLM

ETTh1 96 0.352 0.384 0.361 0.374 0.362
192 0.385 0.438 0.391 0.413 0.398
336 0.411 0.495 0.415 0.434 0.43
720 0.44 0.522 0.468 0.455 0.442
Avg 0.397 0.46 0.409 0.419 0.408

ETTh2 96 0.272 0.347 0.272 0.274 0.268
192 0.335 0.419 0.334 0.341 0.329
336 0.356 0.449 0.357 0.364 0.368
720 0.389 0.479 0.397 0.39 0.372
Avg 0.338 0.424 0.34 0.342 0.334

ETTm1 96 0.282 0.349 0.284 0.29 0.272
192 0.321 0.405 0.327 0.333 0.31
336 0.352 0.432 0.351 0.37 0.352
720 0.413 0.487 0.409 0.416 0.383
Avg 0.342 0.418 0.343 0.352 0.329

ETTm2 96 0.167 0.208 0.162 0.166 0.161
192 0.219 0.263 0.224 0.223 0.219
336 0.269 0.337 0.277 0.273 0.271
720 0.347 0.429 0.354 0.363 0.352
Avg 0.251 0.309 0.254 0.256 0.251

Weather 96 0.149 0.191 0.147 0.152 0.147
192 0.193 0.219 0.191 0.196 0.189
336 0.245 0.287 0.243 0.247 0.262
720 0.314 0.368 0.317 0.315 0.304
Avg 0.225 0.266 0.225 0.228 0.226
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Table 20: Comparisons of convergence rates.

methods 96 192 336 720

ETTh1 w parameter sharing 83/0.352 70/0.385 53/0.411 35/0.440

w/o parameter sharing 46/0.359 108/0.392 39/0.423 36/0.441

Exchange w parameter sharing 71/0.081 51/0.179 82/0.328 32/0.842

w/o parameter sharing 47/0.084 32/0.183 43/0.333 31/0.855

Table 21: Comparisons of Parameter-Saving Capacity.

1 3 12 24 36 48

Parameter Sharing 52,416 58,752 87,264 125,280 163,296 201,312

No Parameter Sharing 71,424 115,776 315,360 581,472 847,584 1,113,696

B.9 Comparisons of Convergence Rates with and without Parameter Sharing

We compare the impact of parameter sharing on the convergence rate using the ETTh1 and Exchange
datasets, recording the total number of epochs and the MSE loss under the same settings.

The experimental results are shown in the Table 20, where the values represent epochs/MSE loss. We observe
that the number of epochs required with or without parameter sharing on the ETTh1 dataset varies depending
on the prediction length. However, for the Exchange dataset, the convergence rate is faster without parameter
sharing.

Additionally, in terms of MSE loss, using parameter sharing leads to greater reductions in loss and also
results in fewer parameters. Therefore, there exists a trade-off between convergence rates, loss reduction, and
parameter efficiency.

B.10 Testing of Parameter-Saving Capacity for Pre-Trained Models

For further validating the framework’s parameter-saving capacity, we compared the parameter count of the
PSformer under Parameter Sharing and No Parameter Sharing scenarios, including the comparison for 1-layer
and 3-layer Encoders, as well as for different layers same as GPT2 models (GPT2-small, GPT2-medium,
GPT2-large, and GPT2-xl) at 12-layer, 24-layer, 36-layer, and 48-layer configurations. The results are
reported in the Table 21. In addition, if the hidden layer dimension is expanded from 32 to 1024 (as in
GPT2), or if multi-head attention is adopted, the total number of parameters will also increase significantly.

B.11 Discuss about Parameter Search Space

The main hyper-parameters of PSformer include: 1. the number of encoders, 2. the number of segments, and
3. the SAM hyperparameter rho. For the number of encoders, we primarily searched within 1 to 3 layers. For
the number of segments, we maintain the same as the number of patches in PatchTST, we also analyzed
values that divide the input length evenly (specifically: 2, 4, 8, 16, 32, 64, 128, 256), and ultimately set all
prediction tasks to 32 to avoid performance improvements caused by complex hyperparameter tuning. For
the SAM hyperparameter rho, we referred to SAMformer and performed a search across 11 parameter points
evenly spaced in the range 0 to 1. The number of encoders and segments can be found in the ablation study
in section 4.2. Additionally, for the learning rate, we mainly tested values of 1e− 3 and 1e− 4, and for the
learning rate scheduler, we tested OneCycle and MultiStepLR.

31



Under review as submission to TMLR

C Limitation

Although we have discussed various aspects of PSformer, several limitations still exist:

1. SSA captures local spatiotemporal information, which makes the length of the attention matrix dependent
on the channel length and local temporal length. Effectively balancing this trade-off between maintaining
spatiotemporal feature extraction and reducing the attention matrix’s computational overhead remains an
important research direction.

2. This work lacks a theoretical explanation for the PSformer architecture’s enhancement of the model’s
generalization ability. In the future, we will further explore possible theoretical explanations for the model’s
generalization capability.

3. The datasets used in this work do not yet cover all time-series datasets, such as the multivariate datasets
in the TFB dataset Qiu et al. (2024) and the univariate datasets in UCR Dau et al. (2019). In the future, we
will explore using a broader range of datasets to further enhance PSformer.

4. With the rapid advancement in time-series forecasting, newly proposed models may demonstrate superior
predictive performance, which implies that our approach might not consistently outperform these emerging
solutions.
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