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Abstract

Adaptive optimization methods are well known to achieve superior convergence
relative to vanilla gradient methods. The traditional viewpoint in optimization,
particularly in convex optimization, explains this improved performance by arguing
that, unlike vanilla gradient schemes, adaptive algorithms mimic the behavior of a
second-order method by adapting to the global geometry of the loss function. We
argue that in the context of neural network optimization, this traditional viewpoint
is insufficient. Instead, we advocate for a local trajectory analysis. For iterate
trajectories produced by running a generic optimization algorithm OPT, we intro-
duce Rgsg, a statistic that is analogous to the condition number of the loss Hessian
evaluated at the iterates. Through extensive experiments on language models where
adaptive algorithms converge faster than vanilla gradient methods like SGD, we
show that adaptive methods such as Adam bias the trajectories towards regions
where RA%M js small, where one might expect faster optimization. By contrast,
SGD (with momentum) biases the trajectories towards regions where RSP is com-
paratively large. We complement these empirical observations with a theoretical
result that provably demonstrates this phenomenon in the simplified setting of
a two-layer linear network. We view our findings as evidence for the need of a
new explanation of the success of adaptive methods, one that is different than the
conventional wisdom.

1 Introduction

The efficient minimization of a parameterized loss function is a core primitive in statistics, optimiza-
tion and machine learning. Gradient descent (GD), which iteratively updates a parameter vector
with a step along the gradient of the loss function evaluated at that vector, is a simple yet canonical
algorithm which has been applied to efficiently solve such minimization problems with enormous
success. However, in modern machine learning, and especially deep learning, one frequently en-
counters problems where the loss functions are high dimensional, non-convex and non-smooth. The
optimization landscape of such problems is thus extremely challenging, and in these settings gradient
descent often suffers from prohibitively high iteration complexity.
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To deal with these difficulties and improve optimization efficiency, practitioners in recent years
have developed many variants of GD. One prominent class of these GD variants is the family of
adaptive algorithms [DHSTT, TH™ 12, [KBT3]. At a high level, adaptive methods scale the gradient
with an adpatively selected preconditioning matrix, which is constructed via a moving average of
past gradients. These methods are reminiscent of second order gradient descent, since they construct
approximations to the Hessian of the loss functions, while remaining computationally feasible since
they eschew full computation of the Hessian. A vast line of empirical work has demonstrated the
superiority of adaptive methods over GD to optimize deep neural networks, especially on Natural
Language Processing (NLP) tasks with transformers [VSP™ 17, [DCLT19].

From a theoretical perspective, adaptive methods are well understood in the traditional context of
convex optimization. For instance, Duchi et al. [DHS11]] show that when the loss function is convex,
then the Adagrad algorithm yields regret guarantees that are provably as good as those obtained
by using the best (diagonal) preconditioner in hindsight. The key mechanism that underlies this
improved performance, is that the loss function has some global geometric property (such as sparsity
or a coordinate wise bounded Lipschitz constant), and the algorithm adapts to this global geometry
by adaptively selecting learning rates for features that are more informative.

However, in non-convex optimization, and deep learning in particular, it is highly unclear whether
this simple characterization is sufficient to explain the superiority of adaptive methods over GD.
Indeed, for large scale neural networks, global guarantees on the geometric properties of the loss
are typically vacuous. For instance, for a 20-layer feedforward neural network, if we scale up the
weights in each layer by a factor of 1.5, then the global Lipschitz constant of the network is scaled up
by a factor of at least ¢'°. Hence it only makes sense to study convergence by looking at the local
geometry of the loss along the trajectory of the optimization algorithm [ACH18]].
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of loss Hessian (which can be viewed as a variant of ROFT(¢#) Figure 2: Training losses of
defined in eq. (I)) for Adam and SGD+M. Since the full Hessian Adam and SGD+M on the sen-
is too big, here we selected several layers and randomly sampled tence classification task described

200 coordinates per layer to compute. in Section @

Moreover, the interaction between an optimization algorithm and neural network geometry is highly
complex — recent work has shown that geometric characteristics of iterates encountered during
optimization is highly dependent on the choice of optimization algorithm and associated hyperpa-
rameters [LBD™ 20, I(CKL."21]]. For instance, Cohen et al. [CKL"21]] demonstrate that while training
neural networks with GD, the maximum eigenvalue of the Hessian evaluated at the GD iterates first
increases and then plateaus at a level that is inversely proportional to the step size. The viewpoint
from convex optimization, where a loss function has some (potentially) non-uniform but fixed under-
lying geometry that we must adapt to, is thus insufficient for neural networks, since the choice of
optimization algorithm can actually interact with and influence the observed geometry significantly.

To provide another example of this interactive phenomenon, we consider the following experiment.
On the same network training loss function f, we run stochastic gradient descent with momentum
(SGD+M) and Adam to obtain two different trajectories. We select an iterate xag,m from the Adam
trajectory and an iterate zsgp from the SGD trajectory, such that f(zagam) = f(«sep). We then run
SGD+M with the same configuration twice, once from zag,m and once from xsgp. If the underlying
geometry of the loss function f was truly fixed, then we would not expect a significant difference in
the performance of running SGD+M from either of the two iterates. However, as shown in Figure[T}
there is a noticeable difference in performance, and running SGD+M from x4, achieves lower



loss than running SGD+M from xsgp. This suggests that Adam may bias the optimization trajectory
towards a region which is more favorable for rapid training. This motivates the following question.

How does adaptive optimization impact the observed geometry of a neural network loss function,
relative to SGD (with momentum)?

The remainder of this paper is dedicated to answering the above question. To this end, for each iterate
in a trajectory produced by running an optimization algorithm OPT, where the Hessian of the ¢th
iterate is given by H(*) € R?*?, we define the second order statistic RO%1 (¢) in the following fashion.
For the tth iterate in the trajectory, let ROPT(#) be the ratio of maximum of the absolute entries of the
diagonal of H®), to the median of the absolute entries of the diagonal of H*). Concretely, we define

ovrpy _ _max{[H [},
Rmed( ) - . e (])
median {|H;;’|}¢,

This statistic thus measures the uniformity of the diagonal of Hessian, where a smaller value of
ROPY(t) implies that the Hessian has a more uniform diagonal. It can also be viewed as a stableﬂ
variant of the condition number. Instead of singular values, we choose diagonal entries because
adaptive methods used in practice are coordinate-wise, which can be viewed as the diagonal scaling
approaches In Appendix we discuss this intuition in detail and compare ROPT(¢) with singular
value-based metrics. As a supplementary result, in Appendix [, we demonstrate that the loss Hessian
approaches diagonal during training for Adam and SGD+M. There has been prior theoretical work
on overparameterized neural networks showing that a smaller condition number of Hessian, Neural
Tangent Kernel [JGHIS] etc. could yield to faster convergence rate for (S)GD [LZB22]. As for
(diagonal) adaptive methods (e.g. Adagrad), they were original designed to adapt to the nonuniform
diagonal geometry. Intuitively, a smaller ROYT (¢), which implies more uniform diagonal geometry,
could lead to faster convergence.

Armed with this statistic, we make the following contributions:

1. We focus on language models as on NLP tasks, adaptive algorithms show significantly faster con-
vergence than SGD (with momentum). On a wide variety of neural network transformer architectures
and language modeling datasets, we conduct experiments to compare how RA%™M(¢) and RSSPM (¢)
evolve over time, when Adam and SGD+M are run from the same initialization and with their optimal
(initial) learning rates respectively. In each case, we demonstrate that the Adam trajectory attains
RAdam (1) values that are significantly smaller than the RSSPM(t) values found by SGD+M. We show
a simple example of this phenomenon in Figure[I[right). This suggests that relative to SGD+M, Adam
biases the optimization trajectory to a region where the Hessian diagonal is more uniform. We call this
phenomenon the uniformity of diagonal geometry for adaptive methods. Moreover, we demonstrate
that a more uniform Hessian diagonal, characterized by smaller ROFT(¢), is a contributing factor to
faster optimization (see Section[4.3|for discussion). This suggests that a region where the Hessian

diagonal is more uniform is also a region that is more amenable to rapid optimization.

2. We complement our empirical results with a theoretical analysis of this phenomenon in the
simplified setting of large batch Adam and SGD+M, on a two-layer linear network with d-dimensional
input and hidden layer, and one dimensional output. We show that for a wide range of ¢, RA%™(¢) =

14 0o(1) but RSSPM(¢) = Q(log d). Our proof reveals that Adam induces the weight matrices to have
low rank whose leading singular vectors have certain type of uniformity (see Section|[6|for discussion),
a fact that we also observe empirically in large scale neural networks, suggesting that this may be a

mechanism by which adaptive methods bias trajectories to have uniformity of diagonal geometry.

2 Related work

Existing analyses of adaptive methods. The vast majority of prior theoretical work on adaptive
methods has focused on the blackbox setting [DHSTT,[KB13!ICZT 20, RKK18,[WWB20, DBBU20,

!Consider the case where one parameter has little impact on the loss, then the second derivative w.r.t. this
max{|H yd_
{\H(” e,
?Recall that the main theoretlcal bound in the original Adagrad paper [DHS11] is in terms of the diagonal
scaling.

parameter is almost zero, making L infinity. So we consider median which is more stable.



ENV21]]. These works make minimal assumptions about the structure of the loss function, beyond
(possibly) some global properties such as convexity or smoothness. These global properties (governed
by parameters such as the smoothness parameter) are assumed to hold over the entire domain. Hence
this style of analysis is worst case, since the resulting convergence bounds depend on polynomially
on these global parameters. However, as we show in Section [3.1] in neural networks these parameters
are prohibitively large. This worst case analysis is hence unlikely to explain the success of adaptive
methods on neural networks. By contrast, our focus is on analyzing the local trajectory that is induced
by running the optimization method.

Existing analyses of (S)GD on neural networks. There is an extensive literature on the analysis
of GD/SGD in the non-blackbox setting, e.g. overparameterized neural networks, [DZPS18, IT20,
AZIL19, [AZLS19, ADH™19, [LZB22]]. However, it is unclear how to translate these analyses of
GD/SGD, to an analysis that explains the gap between GD/SGD and adaptive methods.

Influence of algorithms on the loss geometry. In many simple convex settings, e.g. linear or
logistic regression and the Neural Tangent Kernel [JGH18], the loss geometry is usually fixed and not
influenced by learning algorithms. However, in neural networks the interaction between algorithms
and loss landscapes is more complicated. Lewkowycz et al. [LBD™20] find a so-called catapult
effect of initial learning rate on the training trajectory of SGD and related loss curvature. Cohen et
al. [CKL™21]] demonstrate that while training neural networks with GD, the maximum eigenvalue of
the Hessian evaluated at the GD iterates first increases and then plateaus at a level that is inversely
proportional to the step size. However, Cohen et al. [CKL ™21 leave open the problem of whether
similar interactive phenomena occur in algorithms that are not GD, including adaptive methods.

3 Overview of main results

3.1 Issues of prior analyses on adaptive methods

As is mentioned in Section 2] existing work on adaptive algorithms has mainly focused on black-
box analysis assuming some global worst-case parameters. However, these global bounds can be
extremely bad in complicated deep learning models, as is discussed in Section[I] To see this, we
initialized a transformer modeﬂ with default initialization in Pytorch but chose a large gairﬂ and
computed the smoothness parameter (denoted as ) and the condition number (denoted as ) of
loss Hessian on one layer. We observed that setting the gain as a large constant (e.g. 800) results
in extremely large [ and x (I > 107 and xk > 10'9), which makes the convergence rates in prior
black-box analysis vacuous.

The failure of global worst-case analysis implies that we need to focus on the local trajectory of
algorithms. However, it is unclear whether when two optimization algorithms are used, they will have
the same geometry in local trajectory or not. In particular, although in theory, adaptive algorithms
can yield to a convergence rate with better dependency on certain local geometry of the function
comparing to SGD (with momentum), it could still be the case that the local geometry along the
trajectory of adaptive algorithm can be much worse than that of SGD (with momentum).

That motivates us to study the local geometry, especially that obtained by adaptive methods comparing
to SGD (with momentum) in the paper. Motivated by the diagonal scaling of Adagrad and Adam for
neural network training, we ask the follow main question in our paper:

How does the local diagonal geometry (diagonal of the loss Hessian) along the local trajectory of
adaptive algorithms compare to that of SGD (with momentum)?

3.2 Overview of the experiments

As is discussed in Section (1} we consider ROPT(¢) defined in eq. as a measurement of the

uniformity of the loss Hessian diagonal and conduct experiments on different NLP tasks where
adaptive methods converge faster. The detailed experimental setup will be stated in Section[d] To
explore potential different patterns of different layers, we do the computation layer by layer. On a

*https://pytorch.org/tutorials/beginner/transformer_tutorial.html
“This refers to the gain parameter in some commonly used initialization functions of Pytorch, e.g.
torch.nn.init.xavier_uniform_().
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wide variety of transformer architectures and language modeling datasets from the same initialization,
we observe that for the vast majority of layers:

When we train the neural network using Adam, the uniformity of diagonal geometry, mea-
sured by ROPT(t) is smaller than that when we train using SGD+M from the same initializa-
tion.

Table (1] shows a typical example of RA%™ (¢) compared to RSSPM(t) on a sentence classification task

using BERT-small [TCLT19,IBDR21]] (See SectionF for details). We repeated the experiments for

12 times starting from the same initialization. Table [1|shows the averaged RAdm () and RSSDM(¢) in

'med 'med

some randomly selected layers. We also report the averaged Bpe" (1) and their standard deviations in

RAdam (t)

‘med

the bracketsE] Figure I 2| shows the corresponding training losses of one in these 12 experiments.

Table 1: RA%M(t) and RSSPM(¢) in some layers, on the sentence classification task (see Section 4. ).

'med 'med
Layer# Iteration 0 Iteration 750 o Iteration 1250 o
RSPM()  Ralm(n) RSPM()  Raim()  Tmsl RSM()  RMMH) R
9 15.7 15.7 12.76 9.65 1.45 (0.65) 11.43 14.24 0.94 (0.40)
12 22.63 22.63 13.17 7.41 1.92 (0.67) 10.62 9.67 1.33 (0.75)
15 9.35 9.35 80.57 53.52 1.65 (0.65) 100.65 61.80 2.01 (1.00)
17 82.37 82.37 405.02 22356  1.91(0.53)  423.28 337.32  1.43(0.63)
18 31.32 31.32 17.07 13.24 1.43 (0.58) 18.15 15.63 1.21 (0.36)
22 47.13 47.13 233.72 72.67 3.54 (1.21) 158.38 93.13 2.28 (1.18)
24 31.17 31.17 17.52 17.34 1.13 (0.40) 13.51 14.23 1.05 (0.36)

To understand this phenomenon in a more principled point of view, in Section 5] we provide a formal
proof of the statement in a simplified setting: large batch Adam and SGD+M on a 2-layer linear
network with 1-dimensional output.

4 The uniformity of diagonal geometry

As is mentioned in Section [3.2} we computed ROFT (¢) defined in eq. (I) on different language models.
In this section, we present the results of SGD+M and Adam on different architectures and datasets.
In Appendix [A] we present the results of other adaptive algorithms.

During training we started from the same initial weights and used the same learning rate schedule
(constant or decreasing) for SGD+M and Adam. We tuned and chose the best (initial) learning rate
of SGD+M. The (initial) learning rate of Adam was set as a value under which Adam converged
faster than SGD+M with its best learning rate. The concrete values will be stated in later parts of this
section. We used large batch sizes to make the training procedure stable. When computing Hessian,
we also used large batch sizes. Due to the extremely large dimension, we did the computation on
some uniformly selected coordinates, more precisely, 200 coordinates per layer.

4.1 Experiments on real datasets

Sentence classification task on BERT-small. We fine-tuned BERT-small [TCLT19,[BDR21]| on the
IMDB dataset [MDP™11]]: the task is to classify whether movie reviews are positive or negativeE]
The momentum parameter 3 in SGD was set as 0.9. The two momentum parameters (81, 82) of
Adam were set as (0.9, 0.999). We trained the model using linearly decreasing learning rates for
10 epochs (2500 iterations). The initial learning rates of SGD+M and Adam were 0.001 and 5e-5,
respectlvely As mentioned in SectlonEj;ZL Figure [2] and Table [I] show the training losses and the

comparison between RA%™M (¢) and RSC ), respectively.

'med 'med

Translation task. We trained a Seq2Seq network that uses Transformer to solve a machine translation
task on Multi30k [EFSS16]: this task is to train a German to English translation model[] The

3 R3GPM(4) values in Tablelfor most layers are roughly 1.4 to 2 times RA%™ (¢) in corresponding layers. In

practice, it can be considered significant because it might imply 1.4 to 2 times faster convergence.
https://huggingface.co/docs/transformers/v4.16.2/en/training
"https://pytorch.org/tutorials/beginner/translation_transformer.html
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momentum parameter 3 in SGD was set as 0.9. The two momentum parameters (31, 2) of Adam
were set as (0.9, 0.98). We trained the model using constant learning rates (0.03 for SGD+M and
le-4 for Adam) for 60 epochs (1800 iterations). The experiments were repeated for 8 times starting
from the same initialization. Figure [3left) shows the training losses for one among them. Table 23]

SGDM
shows the averaged RA4m (1) RSCDM(1) and %m((:)) (with standard deviation in the brackets) in
‘med

some randomly selected layers.
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Figure 3: Training losses of Adam and SGD+M for the

translation task on (left) Multi30k (see Section . 1) and Figure 4: Singular values and R,, of the
(right) Multi30k but with randomly generated targets (see weight matrix in the 27-th layer on the
Section[4.2). translation task described in Section .1}

Table 2: RA%m(3) and RSSPM(#) in some layers for the translation task. (a) on Multi30k (see

'med 'med

Section[#.T) and (b) on Multi30k but with randomly generated targets (see Section[4.2).
(a) (b)

Epoch 0 Epoch 30 Epoch 55 Layer#
BN /) BSM) RM() )

Epoch 0 Epoch 30 Epoch 55
B REPO) B R0 B RA )

Layer#

g]
41

3 127 514 241 158 ( 3 482 482 398 18 223 (0.36) 379 161 236 (0.32)
5 7.09 709 36.11 18.33 2.00 (0.42) 5212 16.59 3.16 (0.64) 5 8.04 8.04 46.06 45.84 1.01(0.17) 47.83 34.18 1.41(0.30)
7 579 5.79 591 387 155(032) 752 308 245(0.56) 7 5.69 5.69 4477 392 1179237 465 274 17.4(2.99)
9 1811 1811 2893 2074 143(028)  36.67 18 205(0.18) 9 11.89 1189 31734 5561 581(0.70) 35185 4654 7.61 (0.87)
12 111 111 6.64 725 095021) 927 506 1.88(0.54) 12 19.73 19.73 133.39 391 3417(451) 14509 297 49.49 (13.40)
15 83.15 83.15 5241 75 715(1.63) 4627 569 8.6(3.06) 15 32.12 312 46274 5153 9.03(091) 49273 5057 9.84 (1.03)
18 14.99 14.99 4.19 422 117(045 309 272 12(046) 18 19.79 19.79 74.6 659 118(3.33)  79.02 3.58 2275 (6.01)
21 93.5 935 3029 536 572(105)  19.27 48 4.09(0:86) 21 26.94 2694 76731 4889 164(338) 79749 3688 2198 (3.40)
24 36.63 36.63 6.14 4.66 1.35 (0.31) 5.02 32 1.6 (0.36) 24 3472 34.72 467.75 9.15 5257 (11.16)  602.03 3.51 172.65 (18.85)
28 18.47 18.47 3.07 1.95 1.58 (0.16) 29 1.59 1.83 (0.14) 28 13.13 13.13 19.8 222 8.99 (1.74) 19 1.63 11.7 (1.48)

4.2 Experiments on random datasets

We used the same model and momentum parameters as in the translation task described in Section [4.1]
but generated random integers as targets. Similar to the setting on real targets, the model was trained
using constant learning rates (0.015 for SGD+M and Se-5 for Adam) for 60 epochs (1800 iterations),
and we repeated the experiments for 8 times starting from the same initialization. FigureNEKright)

Adam(t)’ RSGD t) and

shows the training losses for one among them. Table [2b|shows the averaged I2; ] o (

SGDM
%m((tt)) (with standard deviation in the brackets) of the same 10 layers as in Table [2a

‘med

4.3 Summarization of the empirical results and discussion

Overall, through extensive experiments on language models, we demonstrate that starting from
the same initialization, for the vast majority of layers, the Rl?ll;r (t) values found by Adam are
smaller than those found by SGD+M. This suggests that Adam biases the trajectory towards a
region with more uniform Hessian diagonal than SGD+M. In Appendix [A.T0] we also validate this

observation on the in-distribution test data.

Contribution of uniform Hessian diagonal to fast convergence. We observe that on dataset with
random targets, SGD+M plateaus after about 400 steps and thus converges much slower when
compared to Adam than on real dataset (see Figure . On the other hand, the gaps of R3SPM(¢) and

8To prevent ROFI(t) from getting too large due to tiny median, we added an additional term

0.001 max{|H, Z(f ) [}&_, to the denominator of eq. () when computing.



RAdm (1) are more significant on random data than on real data (see Table and Table as well. In

med
Appendix[A.4] we conduct another experiment where we switch from SGD to Adam in the middle and
compare it with the model trained by Adam from the beginning. The observation is that both the loss

gap and the gap of ROFT(¢) are gradually closed after switching (see Figure and Table . Hence we

'med
find a positive correlation between fast convergence and uniform Hessian diagonal (small ROPT(¢)).

In Appendix [A] we study other adaptive algorithms (Adagrad, RMSprop and AMSGrad) and
get similar observation: all these adaptive methods converge faster than SGD or SGD+M and also

bias the trajectory to regions with smaller Rgfe’g (t), suggesting the universality of our observation.

Despite the above positive correlation, it is reasonable to ask whether small ROFT(¢) indeed con-

tributes to fast convergence or is just a byproduct of adaptive methods. To address this concern, in
Appendix [B.1] we add a supplementary experiment similar to that in Figure[I] We select two iterates
z1 and z9 from two trajectories that both come from SGD+M (instead of one from Adam and one
from SGD+M in Figure|l), such that the loss f(z1) = f(z2) but x5 has a smaller RO"I (¢) than ;.
We then run SGD+M with the same configuration twice, once from x; and once from z5. Under
this setting, we get similar observation as before: running SGD+M from x5 (with smaller ROFT ()
achieves faster convergence than from x;. This suggests that the uniformity of the diagonal of loss
Hessian (measured by ROPT(1)) reveals some intrinsic trajectory property beyond the algorithm
choice and is indeed a contributing factor to fast optimization. In Appendix [B.2] we theoretically

prove the contribution of small ROYT () to fast optimization in a simplified setting.

More discussions on the trajectory difference. Considering the fact that our comparison between
RAdam (1) and RSGPM(¢) is conditioned on the same iteration when SGD+M has larger training loss
than Adam, there is a potential alternative explanation of the Hessian diagonal uniformity. That is,
the global minimum has uniform Hessian, and Adam simply converges faster to it than SGD+M.

To rule out this possibility, in Appendix we add a comparison of our measurements RA4m (1)

and R3SDM(¢/) where ¢, are picked such that tth Adam iterate and ¢'th SGD+M iterate have the
same training loss. The results (in Table show that RAYM (¢) < RSSDM(¢/) for most layers, thus

demonstrating that the trajectories of Adam and SGD+M are truly different and that the difference is
because Adam biases the local geometry (as opposed to faster convergence).

Adding regularization. People in practice usually add weight decay (equivalent to [, regularization)
to encourage better generalization ability. In Appendix we compare SGD+M and Adam when
both using small weight decay values (0.001). The results in Figure[I3a) and Table 0] suggest that in
this case, our observation still holds: Adam converges faster than SGD+M and in the vast majority of
layers, RA42m (¢) values are smaller than RSSPM(¢). This reveals the robustness of our observation
under weak regularization. However, under large weight decay parameters, we observed cases where
Adam still converged faster but R2%M(¢) values were larger rather than smaller. In the case of
strong regularization, the adaptivity of Adam requires further exploration and we hope to find new

mechanisms in the future.

5 Theoretical analysis

In Section ] we empirically demonstrate the uniformity of diagonal geometry. In this section, we
theoretically analyze this property for large batch Adam and SGD+M on a two-layer linear network
with 1-dimensional output. Although simple, the choice of 2-layer linear networks to understand
learning dynamics is common in prior works (e.g. [ICG21]]). Moreover, in language transformer
models when the weights are small, the softmax in the key-value-query structure is near the linear
regime. Then this structure might be approximated by the product of 3 linear operators, similar to a
three-layer linear network. Hence the theoretical analysis of this phenomenon on linear networks
would be a good starting point for further understanding of more complicated language models.

5.1 Problem setup

Notation Let [d] = {1,2,...,d}. We use || - ||2 to denote the /5 norm of a vector, and || - || 7 to
denote the Frobenius norm of a matrix. Let (-, -) be the Euclidean inner product between vectors or
matrices. Let NV (11, %) be the one-dimensional Gaussian distribution with mean 1 and variance 0.

For a scalar (vector, matrix) A which evolves over time, we use AW o denote its value at time .



Let there be m data points. The data matrix is X € R% *™ and the label matrix is Y € R%*™, We
assume that the input dataset is whitened, i.e. A, := T}LX XT ¢ R¥=*d= ig an identity matrix.

The parameters of a 2-layer linear network are given by W := (Wy, Wy ). Assume W; € R%*di-1 for
i =1,2. We have dy = d;, dy = d,,. We consider the square loss L(W) := 7 ||[W, W1 X — Y||%.

Denote A := LY XT € R% >4 [AGCHI9] show that with whitened dataset,

1 - - 1
L) i= o [WaWi X = Y3 = L(V) 4, L(W) = 5[ WaWi — A} @)

where ¢ does not depend on W. We consider the following model with small Gaussian initialization.

Assumption 1 (Setup). The input covariance Ay, = - —XX T ¢ Ré=xd= s gn identity matrix. The
input and hidden layers are both of dimension d, i.e. d1 = do = d. Without loss of generality, we can
assume that A is a row vector (i.e. dy = 1) whose coordinates are positiv%ﬂ and ©(1) in terms of d.

Assumption 2 (Gaussian Initialization). Vi,j : w{” ~ A/(0 75w )s W, 5] ~ N(O, —i=) are
independently initialized with sufficiently large o« > 0.

Denote A and A, as the batch versions of A and A,,. We make the following large-batch assumption.
We emphasize that large batches are commonly used in NLP tasks (e.g. [BMR™20]).

Assumption 3 (Large Batch). For the randomly selected batches, assume IE[/I] = A ]E[]\m} = Agq.
Vi€ [d] B [(Ai — 4] <02 B [(Realin ] — Aualin )] < 0% and 0* = O (k)

Denote §*) as the batch gradient at time ¢. The update rules of SGD+M and Adam are given by

SGD+M: oD = Bu(t) _‘_g(t)7 WD — ) — nu(t)7
Adam: 7y =n- /185 /(1= B, mUY = gim 4 (1 - By)gt 3)

m()

— T(t) +£7

where 7 is the learning rate, (3, 51, B2 are momentum parameters, and ¢ is for numerical stability.
All operations on vectors are element-wise. Here and throughout, the notation f(z) = O(g(x))
(resp. f(x) = Q(g(x)), f(x) = O(g(x))) means that 3Cy, Cy > 0 such that f(z) < Cag(z) (resp.
f(@) > Cig(x), Cig(x) < f(x) < Cog(x)). Here Cy, Cy may depend on 3, 1, B2. We will also
use the notation with ~, i.e. O(-), (-), ©(-) to hide factors of order log d. In our theoretical analysis,
“with high probability”, or “w.h.p.” for short, means that with probability at least 1 — m.

Since the weights and Hessians in different layers may have different magnitudes, we compute the

RDu (t) layer by layer. Denote RySPY (t) (resp. Rpdd™ (1)) as the RO (t) found by SGD+M (resp.

'med
Adam) w.r.t. Wy, at time ¢ where k = 1, 2.

VD — 8™ 4 (1 - By)® @ §®, WD — )

5.2 Main results

Theorem 1. Under Assumption|l @and a consider the weights {WS%)D} - (resp. {WA(Z)M} )
t>

>0
obtained by SGD+M (resp. Adam) defined in (3).
1. Foranyp > 0, pick0 < e < dp, n<O (d7a/4+4> and o > 4( 2). Suppose o < da/;+1’ then
there exists Tsgp 1, Tscp.2 such that w.h.p., L (Ws(gz)w ! ) = ( SGTgD 2)) ( 1])) and

VYt € [TSGD,lvTSGD,Q] : Rﬁgg%( ) Q(lOg d) k=

°In Assumptionwe assume Gaussian initialization. Due to the rotational invariance of Gaussian distribution,
we can assume that all coordinates of A are positive without loss of generality.
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2. Forany p > 0, pickn < O (dg,a) §<{/pam a > p+4 and B = ﬁlSupposeJ < dm/i ,
Then ITagam.1, Thdam.2 such that w.h.p., L (Wﬁ;j;m 1>) - @(d), L (Wéﬁ;jj’” 2)) <O (L), and

- 1
Vt € [Tadam,1> Tadam,2] : R?nifzﬂfg( t)=1+0 (77‘11 + da_l) , k=12
2 4

Remark Theorem|[I]holds for all values of hyperparameters (such as «, o) in certain ranges instead
of just particular values. The ranges of SGD+M and Adam overlap with each other. That means we

can choose the same hyperparameters for SGD+M and Adam in the overlapped region to make a fair
%/2 3/2 2
comparison, for example, same o, o such that & > 4(p + 2) and 0 < min{ 70, d13/4 }.

An immediate corollary of this theorem below gives the difference between iterates of Adam and
SGD+M that have the same loss.

Corollary 1. Under the setup in Theorem |I| w.h.p., for any t € [Tsop1,Tsep2] and t €
[Tadam,1s Tadam,2] such that L (Ws(é)D) =1L (W/Efla)m> c {Q (dip) ,@(d)}, we have

1 1
RYSN(t) = Q(logd), Ry (t >‘1+O(”4+d°‘—1)’ k=1,2.
2 4

Theoremland Corollaryltell us that during a long training period when the loss decreases from ©(d)
to O (), the diagonal of loss Hessian for Adam keeps nice uniformity: Rydn (t) =14 0(1), k =

1, 2. On the other hand, the diagonal of loss Hessian for SGD+M is less uniform. Appendix |C| gives a
proof sketch of Theorem|[I] The detailed proof can be found in Appendix [D]and[E]

6 Low-rank weight matrices and uniformity of leading singular vectors

The proof sketch in Appendix [C|highlights one crucial intuition of Theorem T} After Tsgp,1 (resp.
T'agam,1) steps, W1 of SGD+M (resp. Adam) becomes an approximately rank-1 matrix. Consider
the left singular vector w := [uy,us, ..., u4]” which corresponds to the leading singular value ;.
We can show that the distribution of u?, u3, ..., u2 for Adam is more uniform than that of SGD+M.
This property, we call the uniformity of the leading singular vector, is related to the uniformity of the
diagonal of loss Hessian, see Appendix [G|for more details.

Similar low rank bias after training has been studied in prior works (e.g. [GWB™17, [LMZT8|
CGMR20]). For more complicated models, we want to check whether the weight matrices also have
low rank structures and if so, whether we can still observe the uniformity of leading singular vectors.
More formally, consider the weight matrix in some layer W € R™*™, we want to check

(A) Whether W € R™*™ is approximately a rank k matrix with & < min{m, n}, and if true,

(B) Consider the top k singular values o1, ..., o and left singular vectors uq, .. . Define u :=
k 20,. Ce— [ ~ 1T .__ max; U; max u? .
D oie1 Oiug © U = [l ..., Ug]" and compute R, := —= G a generalized version of median a2 1D

the rank-1 case. We want to see whether R,, obtained by Adam is smaller than that of SGD+M.

After reviewing the weight matrices we got in different settings, we observed that (A) and (B) hold
for many layers in those models. For example, on the translation task mentioned in Section .1 we
found 12 layers which had approximately low rank structures and for 10 of them, R,, values (defined
in (B)) obtained by Adam were smaller than those found by SGD+M. Figure fi] shows the result on
one typical layer. Results of more layers can be found in Appendix[A.5]

Remark The definition of R, is based on the connection between diagonal of loss Hes-
sian and weight matrices. Appendix |G| shows that for a 2-layer linear network, RgE(IQ(t) =
max; | Wi [i,:]13 )
median||W " [i,:])12 " de
note u; = [Ui1, Uiz, ..., Uim| "~ and v; = [vi1, V2, ..., Vin] T, we have that for the j-th row,

When W, € R™*™ is approximately rank k, i.e. W7 =~ Zle oiuvl

70

10The assumption B2 = 37 is only for convenience to make the proof easier but is not essential. Our result
can also generalize to cases with other 31 and 2. See Appendixfor more discussions.



_ k 2,2 : ~ [~ o~ ~ T .
= Y i_i0;uj;. By defining @ = [l g, ..., U] =

2
N2 A k T
Wil I3~ ||Sh ool
Zle o?u; ® u;, we have that |W;[j,:]||3 ~ @;. Although in multi-layer nonlinear neural net-
works, the connection between diagonal of loss Hessian and the weight matrices is more complicated
and ROPT,(t) may depend on the product of many weight matrices rather than one single matrix, we

still believe that this definition of R,, is a reasonable ratio to consider.

7 Conclusion and future work

We demonstrate that adaptive optimization methods bias the training trajectory towards a region
where the diagonal of loss Hessian is more uniform, through extensive experiments on language
models and theoretical analysis in a simplified setting of two-layer linear networks. Although our
findings may not directly lead to an improved algorithm for practical use, they provide a new way of
thinking when designing new algorithms: in contrast with the traditional view which tries to design
a method that performs better in the bad loss geometry, our findings suggest that we can design
algorithms which implicitly avoid regions with bad geometry. There are a lot of future directions
along this line. For example, our theoretical results on the two-layer linear networks may be able to
generalize to multi-layer networks. As is discussed in Section [5] the key-value-query structure in
the transformer models might be approximated by a three-layer linear network and the analysis of
multi-layer networks might provide more connection to real deep models and could be an interesting
and challenging future direction. Moreover, it is also possible to relax our large-batch assumption
(Assumption [3) and prove similar results in the general stochastic setting.
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A More experiments of the uniformity of diagonal geometry

A.1 Vanilla SGD vs. Adagrad

In this section, we present the ROPT(¢) values defined in eq. (T)) obtained by vanilla SGD and Adagrad
on a language modeling taskEl The task is to assign a probability for the likelihood of a given word
(or a sequence of words) to follow a sequence of words. We trained a transformer model to solve this
problem on Wikitext-2 [MXBS17](CC BY-SA 3.0) with real targets and randomly generated targets.

This model has roughly 8 layers (not counting normalization and dropout layers)

The setup is the same as in Section [3.2] We used the same learning rate schedule (constant or
decreasing) for SGD and Adagrad. We tuned and chose the best (initial) learning rate of SGD. The
(initial) learning rate of Adagrad was set as a value under which Adagrad converged faster than
SGD with its best (initial) learning rate. We used large batch sizes to make the training procedure
more stable. When computing Hessian, we also used large batch sizes. Due to the extremely large
dimension, we did the computation on some uniformly selected coordinates, more precisely, 200
coordinates per layer.

We tried different initialization (normal and uniform) by using different gains of the Pytorch initial-
ization schedule.

A.1.1 Experiments on real datasets

Figure [5al shows the training losses on Wikitext-2. Table [3|(resp. Table |4) shows the ROFT(¢) for
Adagrad and SGD under uniform (resp. normal) initialization with different gains.
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10 —Adagrad — Adagrad
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9
123 1]
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Figure 5: Training losses of Adagrad and SGD. (a) on Wikitext-2 and (b) on Wikitext-2 but with
randomly generated targets.

Table 3: RSSD(¢) and RA%™ (#) under uniform initialization with different gains

(a) Gain=2 (b) Gain = 0.5
Layert o P g o e i Layer PO g - oo g
RAR(t) Ry ™(t)  RER()  Rped'(t) Ry Rped™(t) RAR(t)  Rpeg (1) RRR()  Rper(t)  RyR(1)  Rped™(t)
1 6.07 6.77 591 9.77 5.16 10.37 1 69.36 78.60 15.26 774 18.22 7.23
2 4.60 6.26 343 1.66 3.44 1.88 2 24.12 24.36 4.05 2.30 3.70 2.04
3 5.15 6.84 4.35 4.34 4.84 3.60 3 2.83 2.85 3.78 4.98 3.56 4.40
4 9.47 10.78 9.76 3.54 8.67 3.14 4 5.25 4.74 3.83 5.68 3.11 4.81
5 12.54 13.96 10.31 6.59 9.79 6.98 5 66.49 67.83 88.75 19.31 63.01 15.64
6 4.92 525 721 233 7.94 2.28 6 6.54 6.91 3.57 2.08 3.50 1.97
7 573 545 40.56 4.57 21.24 4.76 7 322 3.73 13.03 3.97 9.55 4.07
8 9.39 8.87 37.95 4.50 46.03 3.19 8 6.12 5.99 6.73 7.82 543 6.98

"https://pytorch.org/tutorials/beginner/transformer_tutorial.html
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Table 4: RSSD(¢) and RA%€™ (¢) under normal initialization with different gains

(a) Gain=1 (b) Gain = 0.5
Layer# SGD EPOCh/\ldmwud Epoch lz\fllﬂmd Epoch f’t&?uunn( Layer# EPOChAld.nmd Epoch ;%L?u'md Epoch it(gmnn(
RICD() RMER()  RSCP()  RMS™) RSER()  RASE() RSCD() RMSS()  RSCD()  RMS™) RSER()  RASE(r)
1 6.76 6.06 8.27 12.28 9.69 11.17 1 9.12 14.46 10.90 8.00 10.19 8.55
2 9.51 6.61 3.19 1.87 3.21 1.73 2 10.70 15.42 8.52 2.12 8.88 2.04
3 7.38 735 8.61 3.38 9.25 3.94 3 573 5.94 10.16 2.80 6.05 2.99
4 18.02 15.63 6.45 4.86 7.49 4.44 4 16.62 12.94 8.90 391 8.12 4.14
5 12.70 9.35 11.69 11.23 15.07 12.18 5 15.98 16.98 42.57 10.76 18.45 10.16
6 12.76 11.86 3.84 232 3.20 2.09 6 4.84 6.46 7.92 2.66 5.30 2.46
7 11.79 8.58 17.95 4.32 14.99 4.50 7 6.52 6.55 107.51 3.14 136.38 273
8 17.09 12.73 26.70 5.16 26.91 6.73 8 8.39 8.20 337.34 5.18 315.21 4.48

A.1.2 Experiments on random datasets

Figure [5b| shows the training losses on Wikitext-2 but with randomly generated targets and Table[3]

shows the corresponding RSCP(¢) and RA%E(¢) in different layers.

Table 5: RSP (¢) and RA%#™(£) on Wikitext-2 but with randomly generated targets

'med 'med

Layer# SGD EPOChAldaamd SG Epoch /%ga rad SG Epoch f\‘gwmd
RSSP(1) A RSSP()  RAMEM(r)  RSSD(1)  RASER()

1 10.88 10.98 9.99 18.66 9.67 22.37
2 9.47 12.15 14.98 443 13.01 3.99
3 7.45 8.52 459.71 6.09 451.16 5.11

4 9.84 10.42 135.37 7.22 126.91 6.04
5 7.09 7.88 103.60 353.89 184.61 190.17
6 7.68 8.58 18.38 4.08 18.69 2.73
7 7.81 5.40 294.68 62.72 229.25 29.76
8 13.51 9.16 329.12 20.59 203.70 9.57

A.2 RMSprop and AMSGrad

In this section, we present the results of RMSprop and AMSGrad and compare them with SGD+M.
The experiments were conducted on the translation task described in Section#.1} We used learning
rate 2.5e-5 for RMSprop, Se-4 for AMSGrad and 0.03 for SGD+M. Both RMSprop and SGD+M used
momentum parameter 0.9. The two momentum parameters (31, S2) of AMSGrad were (0.9, 0.98).

Figure[6]shows the training losses and Table [ shows the corresponding RO%1 ().

10 T T T

ol ——RMSprop | |

——AMSGrad
SGD+M ||

Training loss
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Figure 6: Training losses of RMSprop, AMSGrad and SGD+M on the translation task described in

Section @
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Table 6: RRMSPP (1) RAMSGrad (1) and RSGDM (¢) in some layers, on the translation task described in

‘med 'med
Section@

Layert oo e 10 miboch 20 mboch 40

RO RS o) RSOMM()  ROSRG)  pasom)  psopM()  RRSMRG) o)
3 3.97 2.69 2.56 233 1.89 1.68 2.83 1.62 1.56
5 26.17 2119 1136 3711 17.83 10.85 51.94 1022 1231
7 410 6.98 6.12 3.94 495 2.92 7.58 2.29 2.58
9 29.41 35.72 25.86 37.81 19.89 16.90 30.68 16.24 9.97
12 493 6.20 12.67 463 661 4.64 6.44 513 406
15 85.06 33.63 1951 140.99 1222 6.72 4407 6.98 537
18 871 2.99 9.48 3.86 2.44 416 351 210 235
21 95.34 11.68 6.62 4720 6.37 474 2220 458 3.58
2% 8.70 567 6.95 8.13 3.59 513 6.46 2.30 2.83
28 4.4 242 2.64 467 185 181 263 1.46 213

A.3 Comparison conditioned on the same loss

In this section, we compare RS9PM(¢) and RA4™(¢) conditioned on the same training loss. More

precisely, we make comparison of RA%™(¢) and RSSDPM(#/), where ¢, ¢’ are picked such that tth Adam
iterate and t'th SGD+M iterate have the same training loss. The details of the tasks are described in
Section[4.1] Table[7]shows the results of RA%™(¢) and RSSPM(¢') in some layers.

'med 'med

Table 7: R24m(¢) and RYSPM(#) in some layers. Dataset and task: (a) sentence classification task

on BERT-small, (b) translation task on Multi30k. See Section@ for detailed setup.

(@)
Layer# _Loss3.72 _Loss2.78 Loss 1.90
Layer# Loss 0.251 Loss 0.170 Loss 0.133 RYGM(')  RaSm(t)  RSSM(f')  Rakm(t)  RSSM(t')  Rpdm(t)
Verf  RSGDM(p)  pAdam(p)  RSGDM(pr) - pAdam(p)  RSGDM(31)  RAdam(p) 3 401 445 5.80 3.02 244 228
9 16.77 13.69 14.14 12.71 15.17 9.86 5 31.19 27.50 44.29 21.46 57.83 19.52
12 16.68 8.29 9.98 8.31 8.90 542 7 5.80 4.38 7.51 371 525 2.87
15 18.64 7.79 51.39 46.43 80.82 40.97 9 21.23 53.65 28.99 20.92 44.26 28.13
17 208.29 381.05 464.37 315.58 498.26 313.99 13 53.18 17.77 51.17 20.64 35.80 35.49
18 14.43 23.56 19.17 19.26 15.76 12.99 15 82.30 186.41 34.17 13.76 33.87 5.31
22 257.32 88.47 188.55 110.87 197.79 139.48 21 100.43 23.66 2345 512 12.96 5.35
24 3422 16.34 16.42 18.08 14.04 15.97 26 745 3.48 4.69 3.10 333 2.83
30 19.14 9.54 10.46 548 9.56 533
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Figure 7: Training losses of SGD, Adam after SGD and Adam for the translation task
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Table 8: ROPT(¢) of SGD, Adam after SGD and Adam in some layers after roughly 2160 iterations

med

Layer# SGD  Adam Adam after SGD Adam

13 294.76  150.02 332.96 150.02
14 14.34 5.84 5.33 5.84
15 36.38  16.66 11.86 16.66
16 6.47 7.05 3.76 7.05
17 17.17 6.05 4.76 6.05
26 5.68 3.53 2.30 3.53
27 14.33 15.93 21.76 15.93
28 9.10 1.71 1.71 1.71
29 8.22 3.04 2.82 3.04
30 11.39 5.12 5.29 5.12

A.4 Experiments of switching from SGD to Adam

In this section we describe another learning schedule: the “Adam after SGD” schedule, where we
switch from SGD to Adam in the middle to see whether the loss and ROFT(¢) can catch up with the
model trained by Adam from the very beginning. Again, we used the same model as in the translation
task in Section[4.1] In this section, we did not add momentum term to SGD in order to get a larger
gap between SGD and Adam than the case using momentum. We want to see whether this larger gap

can be closed after switching to Adam in the middle.
As is shown in Figure and Table both the loss gap and the gap of ROFT(¢) were closed after a

'med
period of training after switching algorithms, which provides evidence of the connection between

convergence speed and uniformity of diagonal of loss Hessian.

A.5 The low rank structure

In this section, we present more results for the experiments in Section [0

We examined the weights of the model trained for the translation task in Sectionf.1} Among roughly
30 layers, we observed that for 12 layers, at least the weight matrices obtained by Adam after training
have approximately low rank structures.

Figure[§] shows the examples of layers with or without the low rank structure.

Layer #14 Layer #27
3
* SGD+M
258 O Adam
1% [%]
5] ]
3 3 2
> >
k< ks
3 3
2 215
(2] (2]
1
0.5
0 100 200 300 400 500 600 0 100 200 300 400 500 600
coodinate coodinate

Figure 8: Examples of singular values on (left) layers without low rank structure and (right) layers
with approximately low rank structure.

We then studied the uniformity of leading singular vectors of these 12 layers, i.e. computed R,,
defined in (B) of Section @ The observation was that for 10 out of these 12 layers, R,, values of
Adam were smaller those of SGD, which implies the uniformity of leading left singular vectors of

Adam. Here we may also want to consider the right singular vectors v, vo, ...vy, and corresponding

v = [01,Da,...,04)7 = Zle o?v; ® v; and compute R, := r;régf;n% for Adam and SGD+M.
However, on this translation task, among the 12 layers which were approximately low rank, for only

6 of them, R, of Adam were smaller, i.e. we did not observe uniformity of the leading right singular

16



vector for Adam. One possible reason is that for a weight matrix, its right singular vectors are closer
to the input data than left singular vectors and more easily influenced by the data, therefore may not
show uniformity. Figure[9|shows how R,, and R, changed over time in some layers.

Layer #5 Layer #11 Layer #19 Layer #25

2. 25 25
@ * SGD+M @ * SGD+M 2 * SGD+M e * SGD+M
2 O Adam 2 O Adam 2 O Adam = O Adam
> > > >
& 15 & K 15 H 15
=] 3 =1 =1
21 2 21 21
2] 2] 2] 2]
0.5 0.5 0.5
500 0 500 0 500 0 500
coodinate coodinate coodinate coodinate
14 12 18 20
16
12 .10 . .
& = < 14 % 15
SGD+M SGD+M 12 SGD+M SGD+M
10 Adam 8 Adam Adam Adam
10 10
0 50 0 50 0 50 0 50
epoch epoch epoch epoch
14 11 14 10
12 10 12
< 10 o & " < 8
8 SGD 9 SGD SGD SGD
Adam Adam 8 Adam Adam
6 8 6
0 50 0 50 0 50 0 50
epoch epoch epoch epoch

Figure 9: R,, and R, for Adam and SGD+M in some layers

A.6 How does the (adaptive) gradient align with diagonal of loss Hessian

In this section we present the uniformity of diagonal geometry of adaptive methods from another
perspective. Denote H; as the (4, ¢)-th element of the loss Hessian H and g; as the i-th element of the
gradient. It is conjectured that when | H,;| is large, the corresponding |g;| is usually large as well. For
adaptive methods, we can regard the update per step as the learning rate times the “adaptive gradient”.
Let’s use gagapt,; to represent the i-th component of the adaptive gradient. Through experiments on
language models, we found that |gaqap ;| for different ¢ are quite uniform and do not align with | H;;|
as the true gradient |g;| does.

In the experiments, we first sorted |H;;| in the ascent order: |H;, i, | < |Hiyin| < oo < |Hiy iyl
(suppose H € R¥*9), and then plotted the corresponding |g;, | and |gadapt,, | for & € [d].

A.6.1 SGD vs. Adagrad

Here we compare SGD and Adagrad on the language modeling task on wikitext-2 described in

Section[A-T] We observed that the figures of all layers are quite similar so we select one layer as an
example, as is shown in Figure [I0}

A.6.2 SGD with momentum vs. Adam

Here we compare Adam and SGD+M on the tasks described in Section[4.1] Again, we select one
layer as an example for each task. Figure [[T|shows the results on the sentence classification task and
Figure[12] shows the results on the translation task.
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Figure 10: How the true gradient ({|g;,|}¢{_,) and “adaptive gradient” ({|gadapt,, | }¢—) align with
diagonal of Hessian ({|H;, ;,|}¢_,). Here coordinates are sorted such that |H;, ;.| < |H;,.,| <

... < |H;,.,| (suppose H € R¥*9). Experiments were conducted on the model described in
Section@ This figure shows the results on the 12-th layer.
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Figure 11: How the true gradient ({|g;,|}{_,) and “adaptive gradient” ({|gadapt.; | }¢—) align with
diagonal of Hessian ({|H;, i |}{_,). Here coordinates are sorted such that |H;, ;,| < |H;, | <

... <|H;, ,| (suppose H € R?*d), Experiments were conducted on the sentence classification task
described in Section@ This figure shows the results on the 12-th layer.

A.7 Adding regularization and other tricks

In this section, we add weight decay to both Adam and SGD+M on the translation task described
in Sectionfd] The momentum parameter /3 in SGD was set as 0.9. The two momentum parameters
(81, B2) of Adam were set as (0.9, 0.98). For both algorithms, we set the weight decay parameter as
0.001. We trained the model using constant learning rates for 60 epochs (1800 iterations). We tuned
and chose the best learning rate 0.03 for SGD+M. The learning rate of Adam was set as 0.0001, under
which Adam converged faster than SGD+M with its best learning rate 0.03. Figure [I3a] shows the

SGDM
training losses and TableEIshows the values of RA4M (1) RSGDM(3) and };"%m((;)) in some randomly
‘med

selected layers.
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Figure 12: How the true gradient ({|g;,|}{_,) and “adaptive gradient” ({|gadapt,s, | }¢_) align with
diagonal of Hessian ({|H;, ;. |}¢_,). Here coordinates are sorted such that |H;, ;,| < |H;,.,| <
... <|H;,i,| (suppose H € Raxdy, Experiments were conducted on the translation task described in

Section[d.T} This figure shows the results on the 5-th layer.

Table 9: RA%M (1) and RSSPM(¢) (both using weight decay) in some layers for the translation task.
Layer# Epoch 0 Epoch 30 o Epoch 55 o
RN R REMO RN FERG ORRMO RO T
3 7300 7309 17.65 1311 135 13.38 6.28 2.13
5 469.88  469.88 29348 31085 094 60168 58812 102
7 80.78 8078 8.22 3965 021 13.65 485 281
9 49427 49427 15014 12379 121 30189 11953 253
15 63210 63210  277.18 17534 158 33448 28288  L.I8
18 5508 5508 6.56 4.45 147 2388 452 529
21 54962 54962 25789 4478 576 51599 5379  9.59
24 10751 10751 854 364 234 5379 332 1620
28 1377 1377 4.74 237 200 1560 2.15 7.24
30 49162 49162 691 266 260 9.60 200 477

A.8 Results on image tasks

Although in this paper we focus on language models where Adam shows significant fast convergence,
we also add results in this section on image tasks where SGD+M performs better. We trained a
ResNelE| on CIFAR-10 dataset and compared the convergence speed and ROFT (¢) of SGD+M and
Adam. The momentum parameter 5 in SGD was set as 0.9. The two momentum parameters (81, 52)
of Adam were set as (0.9, 0.98). The model was trained using constant learning rates for 41 epochs

(2050 iterations). We tuned and chose the best learning rates for both algorithms: 0.5 for SGD+M

and 0.005 for Adam. Figure shows the training losses and Table|10[shows the values of RAd™(¢),
RSGDM (t) and RyIM (1)
med Ry ()

As we can see, on this image task, Adam does not converge faster than SGD+M and in the meantime,
RAdam (1) values were no longer smaller than RSSPM(¢) during training. This reveals the connection
between the local diagonal geometry and the convergence speed from another perspective. That is,
when the diagonal of Hessian of Adam is not more uniform than SGD+M, its convergence speed is

not better, either.

12We borrowed the implementation here https://pytorch-tutorial.readthedocs.io/en/latest/
tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifar10/| and replace the “layers” array
[2,2,2] with [1,1,1].
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Figure 13: (a) Training losses of Adam and SGD+M for the translation task, both with weight decay.
(b) Training losses of Adam and SGD+M for a ResNet trained on CIFAR-10.

Table 10: RA%™(¢) and RSSPM(¢) for ResNet on CIFAR-10.

'med 'med

Epoch 10 Epoch 20 Epoch 40

P e meo SR RgMo maro SR RgM0 R0 S
1 6.88 25.34 0.27 3.74 39.35 0.09 4.39 15.80 0.28
2 110.19 35.93 3.07 32,97 36.27 091 60.69 28.06 2.16
3 40.89 16.92 242 13.98 15.92 0.88 1170 37.01 0.32
4 28.56 23.66 1.21 11.48 13.04 0.88 7.99 14.51 0.55
5 13.47 23.78 0.57 8.64 12.07 0.72 6.52 14.23 0.46
6 18.72 12.49 1.50 12.19 8.80 1.38 8.96 21.69 0.41
7 18.85 39.25 0.48 9.00 12.81 0.70 13.87 11.42 122
8 13.79 19.91 0.69 8.87 11.72 0.76 7.48 9.34 0.80
9 12.50 14.85 0.84 9.62 8.06 1.19 11.35 8.08 1.41
10 14.89 14.53 1.02 8.15 5.80 141 6.21 8.89 0.70

OPT

A.9 Comparison between R? 1 (¢) and singular value-based metrics

'med
In Section 4] through extensive experiments on language models, we demonstrate that when we train
the neural network using Adam, the uniformity of diagonal geometry, measured by ROFT (¢) is smaller
than that when we train using SGD+M from the same initialization, for the vast majority of layers.
We are aware that people also usually consider Hessian singular values instead of diagonal entries to
measure the loss geometry. Hence in this section we make a comparison between our diagonal-based

metric and singular value-based metrics.

First, we believe that our metric has a natural connection to the mechanism that underlies adaptive
methods. Adaptive methods in practice choose coordinate-wise adaptive learning rates. From a
high-level perspective, this procedure can be viewed as adapting to the loss smoothness with respect
to each coordinate. The smoothness of certain coordinate is measured by the second derivative with
respect to this coordinate and therefore corresponds to the diagonal entries of loss Hessian. Our
metric, which measures these diagonal entries, is thus fundamentally intertwined with the mechanism
that underlies adaptive methods.

OPT

Next, we empirically demonstrate that our metric R, 7,

(t) is a reasonable proxy of singular value-

OPT (1) ;= max{oy ()}
med median {c; (t)}d
our diagonal-based metric ROFT (¢), where {o;(¢)}¢_, denotes the singular values of loss Hessian

H(t) € R4 at the tth iterate. We compare SOFT (¢) along the trajectories of Adam and SGD+M in
the translation task described in Section[d-.1] Table[IT|suggests that if measured by singular values,
Adam is also biased to a region with smaller SOFT(¢) than SGD+M, similar to the observation for
ROPT(t). This is expected because in Appendix [F| we demonstrate that the loss Hessian approaches
diagonal during training. The fact that our diagonal-based metric and singular value-based metric give
the same result also reveals the robustness of our observation to the choice of metric, demonstrating
that there does exist some geometry bias of Adam towards more uniform regions even when measured

by different metrics.

based metrics. Define a singular value-based metric .5, as an analogy of
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Finally, there is strong reason why our metric is often easier to compute empirically and analyze

theoretically than singular value-based metrics such as SOPT(¢).

1. From the empirical computation perspective, suppose the loss Hessian is d x d. Then
computing its singular values, in general, requires computing the whole matrix with d?
elements. However, our metric only requires computing the d diagonal entries.

2. From the theoretical analysis perspective, in Appendix |Gl we show that the diagonal of
loss Hessian in linear networks can be connected to weight matrices by simple formulas.
These straightforward formulas simplify the analysis and allow us to connect our metric
to the low-rank structure of weight matrices and the uniformity of their leading singular
vectors (see Section [f] for more discussions). However, all these nice connections fail to
hold for singular value-based metrics. The formulas of singular values are very complicated
even in linear networks, making it almost impossible to theoretically analyze any singular
value-based metrics.

Table 11: SA4m(¢) and S3SPM(¢) in some layers for the translation task.

Laye Epoch 0 Epoch 30 . Epoch 55 o

SsaM(t)  Spm(t)  SIPM()  Sadm(e) TR SSPM() Sakm() sl
3 4.53 4.53 6.08 2.87 2.12 5.92 2.58 2.30
5 14.64 14.64 40.01 15.38 2.60 52.28 15.05 3.47
7 6.91 6.91 9.84 5.06 1.94 12.25 422 2.90
9 24.12 24.12 42.02 30.89 1.36 33.20 21.54 1.54
12 19.07 19.07 32.41 24.84 1.30 28.83 14.23 2.03
15 47.03 47.03 69.97 11.54 6.06 42.71 7.19 5.94
18 15.96 15.96 26.03 29.73 0.88 18.46 17.94 1.03
21 31.03 31.03 25.84 7.92 3.26 19.71 7.06 2.79
24 35.42 35.42 21.31 18.08 1.18 14.62 10.33 1.41
28 55.38 55.38 6.18 2.71 223 4.84 2.01 2.41

A.10 The uniformity of diagonal geometry on in-distribution test data

In this section we compare RA%M(¢) and RSSPM(¢) on the in-distribution test data. The task is the
translation task described in Section 4. 1] Table[I2]validates that on in-distribution test data, Adam is
also biased to a region with smaller Rggg (t) than SGD+M, similar to what happens on the training
data shown in Table[2a] This is expected because of the same distribution. One other thing we want
to emphasize is that, in real language tasks, the dataset is typically very large and the model see each
training example only once. Hence the training behavior usually implies similar in-distribution test
behavior.

Table 12: RAY™(¢) and RSSPM(#) in some layers for the translation task on in-distribution test data.

'med 'med
Layer# Epoch 0 Epoch 30 Epoch 55 oo
RV RMS() RRMG) RMPO) TR RO RMMGO) R
3 4.39 4.39 5.80 3.06 1.89 6.79 2.81 2.42
5 7.90 7.90 38.01 11.71 3.24 41.40 10.21 4.06
7 571 5.77 6.00 4.61 1.30 5.53 3.20 1.73
9 25.09 25.09 28.81 17.17 1.68 16.67 14.85 1.12
12 10.24 10.24 9.13 8.63 1.06 13.78 9.09 1.52
15 79.71 79.71 77.18 13.56 5.69 37.93 9.91 3.83
18 14.78 14.78 3.94 7.15 0.55 5.42 6.04 0.90
21 83.25 83.25 26.04 5.44 4.79 13.11 5.57 2.36
24 29.91 29.91 6.89 542 1.27 6.51 7.16 0.91
28 22.57 22.57 5.39 3.94 1.37 6.13 2.14 2.87
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B Supplementary result on the contribution of small ROPT(¢) to fast
optimization

B.1 Supplementary empirical result

As explained in Section[T] Figure[T]demonstrates that Adam biases the trajectory towards a region
which benefits fast optimization, and in the meantime, it has more uniform diagonal Hessian (charac-
terized by smaller ROPT(¢)). However, since the two trajectories in Figure come from two different
algorithms (SGD+M and Adam), it is reasonable to ask whether the benefit of Adam’s trajectory is
indeed due to smaller ROPT(¢) or it is due to other properties of Adam and small ROPT(#) is just a
byproduct. To address this concern, we add the following experiment where we select two trajectories

that both come from SGD+M and have different ROPT (¢).

'med

We ran SGD+M twice on the translation task described in Section .T| with learning rates 0.01 and
0.03 and got two trajectories. Then we selected an iterate x; on the trajectory with learning rate 0.01
and x2 on the trajectory with learning rate 0.03 such that z; and x5 have the same training loss and
different ROPT(¢). We then ran SGD+M with the same configuration twice, once starting from z1
and once from x2. The observation is that £ has a more uniform diagonal Hessian (characterized by
smaller ROPT(¢), see Table than 21, and in the meantime, SGD+M starting from z» also converges
faster (see Flgure . Hence we demonstrate that a small value of ROPT(¢) is not just a byproduct
of adaptive algorithms (since SGD+M with different learning rates can also yield trajectories with

different ROPT (1)), and it is indeed a contributing factor of fast optimization.
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Figure 14: Training losses of SGD+M starting from x; and x5

Table 13: ROPT(¢) values of z1 and x5 in some layers

OPT1
Layer# ROPT! (on the iterate 1) ROV12 (on the iterate x5) ggg“rz

med med OPT
3 2.89 2.73 1.06
5 69.73 51.44 1.36
7 4.39 4.81 0.91
9 42.93 35.89 1.20
12 7.09 6.18 1.15
15 97.25 68.92 1.41
18 3.50 3.74 0.94
21 71.69 45.07 1.59
24 7.49 5.42 1.38
28 4.85 4.00 1.21
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B.2 Theoretical analysis on a simple setting

OPT

In this section, we add the following lemma on a simplified setting where smaller R, ;

contributes to faster optimization.

Lemma 1. Consider a diagonal quadratic loss f(x) = Z;j’ 1 ém where \y > Ao > ... > A\g > 0.

Run GD with learning rate n = andproduce {z( 0,1 < i < d. Weinitialize the parameters

as IE ) = +1,Vi € [d]. thhout loss of genemltty suppose d is even. Then we have that for any

p >0, afterT =15 - ROPT . ogd = £. log d steps, the loss f(x) will shrink by a half.

med

(t) provably

medlan{ >\ Y,

1) 2 ()3 ()

Lemma I]demonstrates that under this simplified setting, even when we just use the vanilla GD with
no adaptive methods, a more uniform diagonal geometry (characterized by smaller ROFT) can still
lead to faster optimization.

More precisely,

Proof. By the update of GD with learning rate n = )\%, we have that

Vie[d: xgH_l) = (1 - )\i) xgt),
A1

= (@t))? _ (1 - i:>2t (xl(o))Q < exp (_Q;‘f> (CCEO))Q

Then after 7' = £ - log d steps, we have that

A
median{\; }¢_,

e () <o (1) o on () <o () vy (50).

On the other hand,

S (1)) . 0) (0)
2 ) s 3 (e ) Zl (=)

where (4) is by definition of median and the 1n1t1a11zat10n Vi e [d] : Z(-O) = +1. Combining with
the fact Ei:d/2+1 i (xz(.o ) L2 ( )) = f (2(©) yields that Z?:d/QJrl i (xET))Q .
11 (2(9). Hence we have

d/2

HE) =S ) e 3 ) s () s (0)

i=d/2+1

C Proof sketch of Theorem (1]

Now we give a proof sketch of Theorem [T} which contains three major steps. The detailed proof can
be found in Appendix |G| [D]and

First we relate the diagonal of Hessian to weight matrices W7, W,. Under Assumption |l denote
Wi, :] as the i-th row of Wy and Wy := [wa;, waa, ..., waq). Since the input dataset is whitened, we
can show that

(t)

max; (w% ) OPT ( ) max;

W(t)[, }H

Rgl;g,l(t) = . 2 'med,2 . .
median (wéi)> median HW( i H
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Next, due to the one-dimensional output, we can prove that W converges to an approximately rank-1
matrix. More precisely, we have

Wl(t) = u®ep®T 4 R@,
WD = (007 | T
where c(t) is a scalar, u(®) v(®), R(t) € R? and R(t) € R9%%d Denote the i-th coordinate of

u®), R(t as u(t) (t) Rg?, respectively. Denote the (i, j)-th element of R( ) as R(t)[z Jl-
We have that Vi, j € [d] : ‘R(t ’ < c® (t)’ and ‘R( )[z j]’ <

u,;

Using the rank 1 structure, we can further simplify RO | (£) and Rronl;gg(t) by

2
max; (ugt))
median ( (t ))

The final step is the detailed analysis of w(®).
For SGD+M, we can prove that u(") ~ C(t)[X1, X2, ..., X4 where C(t) € R and X;,i € [d] are

OPT

Rmed,k(t) ~ Jk=1,2. €]

i

(D
i.i.d. Gaussian variables. Then we have with high probability, M
median (u( ) )
For Adam, we can try to convert it to signed descent (e.g. in eq. (29) and Lemma[24)). The main
intuition is that as long as the learning rate is small enough, the movement of the gradient will be
slow and Adam will be similar to signed descent. Since the update of signed descent per step is £,

Q(log d).

max; (®)
we can prove that Vi € [d] : uz(.t) € {1}, which gives us d(<l(t)))2 = 1. Substituting into eq. @)
median | v,

completes the proof.

Finally, we want to emphasize that the assumption 35 = 37 is not essential. As discussed above, as
long as the learning rate is sufficiently small, Adam can be approximated to signed descent regardless
of the ratio between (31, f2. Hence our result can generalize to cases with other 31, 82, for example,
B > 32 where Zhang et al. [ZCS™22] proved the convergence of Adam to stationary points.

D Analysis of SGD+M
Note that A = LY X7, A, := = X X7 Denote g\" := Vi, LW ®), k = 1,2. We have that
(t) W(f)T (W(t)W(f) A) , gé _ (Wz(f)Wl(t) - A) Wl(t)T

Let A®, /N\(tm) and g“) k = 1,2 be the corresponding batch versions at time ¢. Let E(*) :=
W(t)Wlt) A, and use E( , A; and (Wg(t)Wl(t)) to represent the i-th coordinates of E*), A and

WQ(t)Wl(t), respectively. By eq. (2), the update rules of W7 and Wy for SGD+M are given by:

t t
Wit —wi® =3 DT (wOw - ) =0y 8Dyl
7=0 7=0

Wit =wi - Z BT ( D - A) Wit - zt: B~ Dgl",
=0
where
D = ) f? =W (WO (39— 0.2) - (A0 - 4)),
DY 9~ — (WO (A — A..) — (40— a)) WO

Based on the magnitude of W3 and W, we can intuitively divide the training procedure into 2 phases.
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1. First phase: the first several iterations when W, and W5 are “small” so that WoWW/; — A ~
—A.

2. Second phase: later iterations when W5 W cannot be ignored.
More formally, the boundary between the first and second phase is defined below.
Definition 1 (End of the first phase). The end of the first phase (denoted as Ti) is defined as
Ty = inf{t >0:3i,5€d: \wg? Wl(t)[i,j]‘ > d%}

> Lor
d2

By Assumption 2|and the assumption that Vj € [d] : A; > 0, A; = @( ), at the beginning, w.h.p.,
Vj € [d] : (WoWh); — Aj < 0. During the training, each (Wng) increases and approaches A;.
We hope that by choosing a small learning rate, when (W2 W) ; overshoots for some coordinate 7, i..
(WaW71),; > Aj, it will be close to convergence. To analyze this overshooting issue more carefully,
let’s first define the following “almost overshooting time”.

Definition 2 (Almost overshooting time). For ¢ > 0, denote ¢y = dll—l
4

Ty = inf {t >0:3j ¢ [d: (W) — 4> —\/a}.
J
Definition 3 (Convergence time). For e > 0, we define the “convergence time”
Ty i=inf {t > 0 [|EO||; < .
We can first show that after the first phase, i.e. when ¢t = T, W; will become an approximately
rank-1 matrix, as described in the following lemma.

Lemma 2. Under Assumption and suppose o < d;’j%. By picking n < O (d%) we have
that when t = Ty, L (W) = ©(d), and that
Wl(Tl) _ Rng) +u(T1),U(T1)T7

W2(T1) _ RéTl)T +C(T1)u(Tl)T7

where ¢TV) ¢ R, ™) v(T) R(Tl) € R? and Rng) € R4 Denote the i-th coordinate

of u(Tl),v(Tl),Rng) as u(Tl), l(Tl) R(Tl), respectively, and the (i, j)-th element of R(lTl) as
Rng) [i, j]. Then w.h.p.,
. . T
e BV =Y
,j<d: +——7< , < .
=) ung)U(Tl) dio—1 C(Tl)ung) dio—1

The following lemma tells us that this approximate rank-1 structure is preserved when 77 < ¢ <
min{Tg, T3 } .
3/2

Lemma 3. Under Assumption and suppose 0 < L. By picking n < O (d%ﬁ) we
have that w.h.p. for T1 <t < min{Ts, T3},

Wl(t) _ u(Tl)U(t)T + Rgt),

Wi = Oy 4 gIT.

where

na]

<
Visijsd: o <t>‘

and € is defined in Deﬁnition Moreover, when t = min{Ty, T3}, L (W(t)) = O(epd).

The following lemma gives us a more detailed description of u(™).
Lemma 4. The u(™) in Lemmalandl can be written as u(™) = X —|— Y where X;,i € [d] are
i.i.d Gaussian random variables and that w.h.p. Vi € [d] : IY‘ <0 ( | )

di“— 2

Now we are ready to prove the SGD+M part of Theorem I}
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D.1 Proof of the SGD+M part of Theorem I|

N i d
andto conclude that L (W (%@.1)) = ©(d) and L (WT:2)) = O(eod). For any p > 0, by

picking 0 < e < L and a > 4(p + 2), we have L (W (B302)) = O(eod) < O ().

Define Tsgp,1 = 11, Tsop,2 = min{75,T3}. By picking n < O ( L§+4>, we can apply Lemma
4

Moreover, when ¢ € [Tsep 1, Tscp,2], the conditions in Lemma are satisfied with § = @(eo).
Then we can apply Lemma[3T]and get that

2
1= 0@\ maxi (u™)
RSGDM(t) RSGDM(t) > 0 .

med,1 med:2 1+0(0) ) median (UETI))?

By Lemma u™) = X +Y where w.h.p. Vi € [d] : ||§i_|| <O (dlo‘%) This fact yields
z 4 2

2 - 2
max; (u§T1)> N 1-0 (ﬁ%%) max; X2
2 = ~ ; 5 -
median (u(Tl)) 140 (ﬁ) median X
v 19772

Here X;,i € [d] are i.i.d Gaussian random variables by Lemma To prove the concentration of
median Xf, we borrow the Proposition 12 in Chapter 2.3 of [Ler19]. By setting K = N = d in this

proposition, we have
P (\median X? —E[X7]| > 2\/Var(X12)> <e s,

Denote o2 as the variance of X;,i € [d]. Then E[X?] = 02 and Var(X?) = 20*. Hence

Vi e [d] :

ool

P (‘median X? — 02‘ > 2\/502) <e s,

That means with high probability, median X? < Co? for some C' > 0. By Lemmain Appendix
we know that w.h.p.

max X? = 0?Q(logd),

1<i<d

which gives us w.h.p.
max; <;<d X;
———=—=—" =Q(logd).
median X? (log d)
Hence we have proved that Rﬁgilf (1), Rﬁg}?gl (t) > Q(logd).

D.2 Proof of Lemmal[2]

In the first phase, W5 W is “small”, and we write the update equations in the following way

t t
—T )T T T —r T
WD =W g 3w (WOW - 4) 3 7 Dgl”
=0 7=0

t t t
_ Wl(f) +1n Z 5t77W27')TA - Z 6t77W2(T)TW2(T)W1(T) - Z ﬁtf‘nggT)

7=0 =0 =0
t t
_ Wl(t) + nWét)TAZBtiT + T’Z ﬁtf‘r (WQ(T)T o Wz(t)T) A @)
7=0 7=0

t t
= > BTWTWI W -0y B Dgy”
7=0 =0

—w® L 0Ty n_
1 +1_5W2 +1_5T1a
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where

) = Wi a4 1 Z,@t (Wi - W) A

t
B WO — (1- )Y 6Dl
7=0 7=0
Similarly, we have

AW T (6)

t
WA = w32 (WA - a) Wi = -

=0 1-5

where

t
AT (1= p) 3o A (Wi - wiT)

7=0
t t
_ (1 _ 5) ZBtiTWZ(T)Wl(T)Wl(T)T _ (1 . 5) Zﬁtf‘ngéT).
7=0 =

The following lemma gives us an explicit formula of WQ(t).

Lemma 5. Let A1 < Ag be the two roots of the quadratic equation x> — 2z + 1 — e ||A||2 =0.
Pickn < m, then we have that

= C+ (Ca 1) A,

w2 wi” WiV wi” @) . o
where Cy = — =22, Oy = =252~ ré ) will be specified in the proof.

We can prove that in the first phase, rét)

rétl), and the i-th coordinate of C5 as Cy;. Then the following lemmas tell us that Vi € [d],

is “small”. More specifically, denote its i-th coordinate as

T's5;

9] (dp(a ), where w.h.p. O (7)< minepq) |Cal.

|rs?

ré?’ fori € [d].

Lemma 6. Under Assumption and suppose o < d;’fgil and pick n<O (d%) We have w.h.p.
forallt <Ty,Vie|[d ‘ i, 7] <@(§7) <(’)< 2)
d2” aze-

Lemma 7. Under conditions of Lemmaﬁ we have that w.h.p. for allt < T, Vi € | ‘7”51
A 1
0 (d%“’l )

Next we prove upper and lower bounds of |C;| and |Cy;| for i € [d].

T2z

Lemma 8. Under Assumption E|and EI suppose o < dgf%. Pickn < ﬁ, we have that
i) W.]’l.p., Vi € [d] : |011‘ S @ (d%) 3 |021| S (5 (d%)’
ii) Cy can be written as CQ =1 (Cg + C4) where Cs;,i € [d] are i.i.d Gaussian random variables
and that w.h.p. Vi € [d] : | (d " >;
iii) w.h.p., Vi € [d], |Cri| > ( 7 )  |Cail > Q2 ( : )
ds” ds”

Now we are ready to prove Lemma[2] Lemma 5] tells us that

Wi = O\ + (02+7~ ))\

where Ay =1 — t15[|All2 and Ay = 1+ 75| Alf2.
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Under the conditions of Theoreml and pick n < O (), by Lemma and we know that w.h.p.
Vt<T1,V1<z<d

(t)

1 (1 (1 ‘T5i ~ 1
<Ol —— Col > Q R Cyul <O — R <O T .
<0(gm) wealz0 () e <0 () g (dw—l)()
7

reaches —7 for some coordinate i before ‘Wl(t [k ]]’ for Vk, j € [d]. To

‘T52

We first prove that ’ng

see this, first note that

t—1 Ui (t—-1)T t—1
W — w4 ﬁWQ )A+1_ﬁ§ )

t—1 t—1
0 U )T n T
:Wl()+—1_ﬂZW2() A+—1_Bzr§>
=0 7=0

t—1 t—1 t—1 T
:WfO)Jrljﬂ<C1¥AI+CQE_:A§+§_:AQT§T)> A+—Zr{
T
=w Zr{ +<012AT+ZA27«5 ) A+—Z/\TCQTA
:Wﬁ®413132;ryd (ClizAT*E:AT(ﬂ> T 4 (ova’

where 7T = #A and

t—1
u® ="t (8)
Moreover, we have that
)\t
= O\ + (02 +r(”) = C AL+ PN 4 (DO ) = ﬁ
7=0 "2

For t < T, by eq. (7), we get that w.h.p.,

D MR e PR |
Vi<ij<d: (t) (t)l E déllkl t_T1 < o ( a—l) ’
‘“i Yj Q dga)zr—o/\g di
sl ]y
S O 1
‘c(t)ugt) |021| die—1
Fort < T}, by Lemma@ V1<i4,5<d: ’ ‘ <O ( ) Then we have that w.h.p.
() ) t—1
‘ﬁ T= Orl ‘ ‘ZT Orl ‘ ‘ZT Orl Z -7]‘ ZT Oo(d% 1)
ugt)vth)’ \Zi B)\TC’%A ‘ ]2’; L OyiA, ] 00 ()

~ 1
-0 ().

Here we used Vi € [d] : A; = ©(1) by Assumption I}
2, we have that |C; M| < |C| < O (d%) and that

77A |C1s4] A;lCyl ( 1 )
CZ AT < <0 -
' Z )1 —=x1) = Al

Since Ay =1 — 115[|A

t—1
Oh' Z )\‘{’Uj(t)
7=0

dotz
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Using the Gaussian tail bound and union bound, we have wh.p. V1 < 4,5 < d: ‘W(O) ]‘ =
0 ( = ) Combining the above bounds together yields that for ¢ < T3 and Vi, j € [d],
Wi'li. ) = B[ )+ ol (14 € ),

(©))
wg? = Rél),i + C(t)“z(‘t)(l + egi))‘
where for Vi,j € [d]. ’Rg?[i,j}‘ <0 (dail)’ O | < @(d%) and |e; [z, ]]’ eétl) <
I ;
A 1
© (di&—l)'
Further we notice that for t < T3, we have Vj € [d],
(® _
Ul mA YN mA M1 AN A (1)
@] 1=8 X 1=8X0 =1 XlAllz -~ (14l Vd

which yields that ‘u(t)v(t)

< 0O (ﬁ) ’c(t)ul(-t) .

Together with eq. (@) gives us that

wg)‘ reaches —1 for some i € [d] before ’Wl(t)[k,j]‘ for Vk,j € [d], ie. Th =

do/2
1
_d%-

Further, we know that at time 77, ’ (T1)y

inf{t20:3i€ ‘w

(Tl) = |Caip|A2" = © (5277) for some i € [d], which

means w.h.p.

o(dr) _yn . OaH)

Ty .
o)~ Talh) 6(a) <3 = (14 Ak <0 (d).

logd )
! (nllAlz

(T1) (T1

(10)
This is the length of the first phase. As for c(Tl)u(T1 and u; ) for other coordinates, we have

that w.h.p. V1 < 4,5 <d,

T -1 £\ o | AT
(Tl) (Tl) _ )\T Coi A 2 C Y A2 T - C A
u’ ,U] 6 Z | 24 | ,8 A | 2% ]‘ HAH | 2% ‘
ol‘*/2 (1 - 1
e () ( T 1)
® (ﬁ) d4 diots
~ ~ 1 ~ 1
-9 (3) -0 ()
4 4
R(Tl) J]’

Here in (i) we used Ao = 1 + 5 ||A||2 Then we have at time 717, Vi,j5 € [d], T, <
~ Rg{l) - “
0 (d ;a) and that )ATUZTU’ <O (d;). Together with eq. (9), we have the following weight
structure:

Wl(Tl) _ Rng) _i_u(T]),U(Tl)T’

W2(T1) — RéTl)T + C(Tl),ul(Tl)T7
where w.h.p.,

T ). - T1)
Vi<ij<d ‘Rg )[W]‘<@< 1 ) ‘R( <@( 1 )
ST ] T ke ) g ] T et

Finally, we consider the loss. Since Vj € [d] : (WQ(TI)Wl(Tl)> — A; = —0O(1), we know that
_ J
L (W) = o(d).
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D.3 Proof of Lemmal4]

Eq. @) tells us that u(™) = 231:61 ArCt. Lemmatells us that C'5 can be written as Cy :=

% (C3 + Cy) where C;, i € [d] are i.i.d Gaussian random variables and that w.h.p. Vi € [d] : }g‘:I

IN

o (d T i_ T ) . Combining these two facts together finishes the proof.
4 2

D.4 Proof of Lemmal[3
Replacing ¢ by ¢ — 1 in eq. (6), we get

w07 ), (11)

t t—1
Wi =W ¢ T

Eq. (6)-(T1) and substituting eq. (3) yield

W2(t+1) . Wg(t) _ Wg(t) Wg(t 1) +

1—5

SllABw Y + —Ar?*”

(1 ) (1-p)?

]

2
1 n -1
= Wit =—aw" - (1 aliere |A||§> Wi ),

where r3(t) == 72 B)2Ar§t nT 4 o ( ® _ (t—1)>'

For the equation 22 — 27 + 1 — Oﬁiﬁ)"‘”AH% = 0, the roots are \; = 1 — yZ5[|All2 and A2 =
1+ 725[|All2. We have that
WD = oW = ay (WS = a0 ) )

t—1
= W =W = A (WY e ) 4 3 A

T=1
=27 (W = e Y,

‘We further have

t
W(t) )\t W(O) + Z)\t 1— T)\T <W2(1) o )\QWQ(O)) + ZA;_TTELT)
T=1

Xy — N :
=W+ (W = xe W) + 372 ?

t
= CIAL+ Cos+ > AT

T=1
= O+ (Ca 1) X

b0 oy = Wi wi”

. Wil —x Wi
=172 "4 > Ao—A1

and Cy = W

where rét) =3

D.5 Proof of Lemma 6]

wiite = WA ) 4+ gl + gl where 4} = (1 -
BB (W W) A gl = - = B B WO W and
¢\ = —(1 =B, B Dg. And write r{ = —gtHLAWDT 4 o8 1 g0 4 )| where
a) = (1= B X B (Wi —wT) o) = —(1 - B) ZTZO W W
and g = —(1 = 8) 321 8" " Dgs”.
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Let’s first try to bound "hz i,J ‘ and ’%2 ;|- For any 7 < T, we have that

d
viel: |[(wow)|- LA = i
=1

d
S| <3 |uf
j=1

and thus Vi € [d] : ‘Ei(T) = O(1). Then we have for all i, j € [d],

. D s ~ ~ 1
‘W( VIR )[Z,J]‘SnZB ’“’wéf)Eg(-k)‘SnZB kO(daﬂ)
k=0 k=0

1
=10 (73

<o S B <03 00 ()

1
= T]O (d@/2_1) .

‘ (T+1)

sz

That gives us Vi, j € [d],

t t t—T(+
90| < -9 35| (wf - wf) 4| <na -9 Y 0 (L 557)

=0 =0
=0 ().
2. < a-5) Sy |45 (W70, - wiVTi,1)|
=0 j=1

<n(1 fﬂ)io (W) =0 (da/nz‘—l)'
=0

[d],

Then we bound ‘q%) [i,j]‘ and ’qétS),i

| < -9 o ol (W) | < - e 2

7=0

1
(i)

d
’qé?, <(1 B)Zﬁt > (Wé”Wf”)ij”[i,j]‘
7=0 j=1
t d 1 1
<OU=B)D BT Sy O<dga2)~
7=0 =1

Finally we use Lemmato bound ‘q14 1,] ’ and ‘qéi)ﬂ» . Fort < T, the Ml(t), Mz(t) in Lemma
are upper bounded by . In the theorem we consider the training period before Tsgp 2 so the
time 7" in Lemma @ 1s set as Tsgp,2. In the following sections, we will prove that Tsgpo <

O (dulogn VM) Then by Lemma we have with probability at least 1 — =, for V¢ < 77 and
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Vi, j € [d],

1 do+1 d 1 do+2 d
‘Dg zj’f’g(t) g()[l ]]’<(9<,0 ” log€>+0<daa 1og>

4% -3 2 n €
(1 dot2
<0 — ,

1 do+1 d 1 do+2 d
<O<d3a40 7 — log — >+O<d,§_10 . —— log )

€

0 - o

‘Dg(t)

IS
wle[—

By picking o < d"j%, we have w.h.p. for vVt < Tj and Vi, j € | ’Dg1 { j]‘ (7) (
‘Dg(t) <O ( ) which yields

o] < -8 S5 Do | < (- )3 50 () =00 ().

7=0 7=0

N 0 (1) =10 (35 )

7=0

) and

Dg("')

‘%4 i

Jl—ﬁ)Zﬁf v

Combining all the above bounds and substituting 7 < O () gives us for V¢ < Ty and Vi, j € [d],

‘ ‘ ,BtJrl‘lU A, ‘+0(d2a 1> < gt+1 ZA Wl(t)[z 7 +O<dgi_2).

TQZ
(12)
For t < Ty, we have Vi,j € [d], ’w2Z)A ’ < O (37) and ’Z] 1A Wl(t [2, j]‘ < O (ga751)-
which gives us ’rgt)[ ] ]‘ <O (da/2) and ré? <O (da/2 1) Substituting into eq. (3) and eq. (6)

yields that for ¢ < T} and V4, j € [d],

) ‘w(t“) — wiV)

’Wf“) i, j] — W, J]‘ < o( <0 (#)

(5)

(t)

de/2

Hence for ¢ < min { 10g(1/ﬁ) ’

} we have Vi, j € [d],

alogd
e/ (@) <

W20 < [w{0.] +

alogd
et/ (@71)

S

s

[t <

_alogd
fort < rgt1/3

Then we know that 77 > log(l 7 [3) and also get tighter bounds of ‘Wl i, 7],

Now we use these new bounds to analyze ‘rg )[z, j]‘ and ‘réi)‘ again.

When t < %, we have for all 4,5 € [d], A1 ‘w(t) Ml < (’)( S 1) and
Bt ‘ijlAlw(t)[i j ’ ’Zj LA W(t [4, j” < (9( When l(fgl(olg/g) <t < T, we

/\ N‘Q

=)
have g+ < -~ (d ) < (’)( ) and
Cian ‘ijl AW [Lj]’ ) ( 1 ) <0 ( ) Substituting into (I2) completes the

=
dz 71!

< L, suggesting that Vi, j € [d], 8" ‘w(t A; ‘

proof.
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D.6 Proof of Lemmal(7l

Based on the bound in Lemmal[6] we have

2 d
(t) n (t=1)p. - n (t) (t—1)
Ty | = Air 1, 7| + Ty, — To;
‘3 (175)2; 7'1 []] 1*6(2 2 )

2 d
U o .
WZ‘AJT? 1)[27]]‘4‘ 3 )ré? ‘ (t-1)
=1

~ 1 ~ 1 ~ 1
< ,,]20 <dga_2) + 2’1’]0 (dga—2> = 7’]@ (CW) .

Since A1 = 1 — t25[|A[[2, A2 = 1+ 5| A]|2, and note that || Al|z = © (\/E) we have that
1

t—1—7 n n N A 1
<o () 7200 () -0 ()

‘T42 Z)\t 1— T
_ —7,.(7) —T 7 1 n 2 1 — O 1
‘7“52 = Ag Ty | S ’7;1)‘2 © (d%m—l)) = Ao — T (dz(a—1)> =0 (dza_l '

D.7 Proof of Lemmal§|

For the equation 2 — 22 + 1 — %HAH% = 0, the roots are \; = 1 — Z5[|All2 and Ay =
1+ 25| All2, which gives us

o W
2 AQ W
0)T ~(0 0 0
_ Wi + AW +77 O — w4 mHAHzWQ( ) (13)
2 L1 All2
1-p 1-8 (o0
_ W<o> AWOT 4 r(
2 2[|Al], 7! 2[| Al 2

where r(o) WQ(O)Wl( )Wl(O)T - Dgéo). Note that this is slightly different from the definition of
r{” in eq. (6). Now let’s bound the i-th coordinate of 73"
0 (7#) =
dz !
O (ﬁ) which also applies to ¢ = 0. Using the Gaussian tail bound and union bound, w.p. at
least 1 — ¢, for ever 1 < 4, j < d, we have that

) O 2 242
<\ e lon o W06 <y g om %5

Then we have that w.p. atleast 1 — §,V1 <4,j <d:,

d
’(W(O)W(O) ‘Zw(O)W(O) il Z’wg))

(

In Section we have shown that w.h.p. for V¢ < T} and Vi, j € [d],

©
Wa;

’W(O) j) Z}‘

J

2 2 2d2
SZ\/dmlg 5\/d4a & S patlos s

(wowi®) [[wO.a]+ \Dg

~(0)

= DY

d
j=1

; (14)

2 242 2d2 ~ 1 ~ 1
< 1 - < 71 = T a . .
— ;::1 d3a—1 og 5 d4a 0g —— 5 O <da1> O (dw1>
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T
Next, we bound the i-th coordinate of W(O) + ﬁAWl(O)T, ie. ( ) 4 ”A”ﬁ A (Wl(o)[ ,])

By independence under Assumption 2} we have that

© , 1-8 o, N\ _ o), (1- (0)
Var (wm + ||AH2A(W1 [4, }) ) = Var (wzi ) + ||A||2 ZA2Var (Wl (4, ]])
9 d

1 (1-5) , 1 1
= Y AT = :
d2a + ||A||% J d4a O d2o¢

i=1

Using the Gaussian tail bound and union bound, w.p. at least 1 — 6, for ever 1 < ¢ < d, we have that

0) B o 1\ < d ey
‘ + HAHQA (Wl [Z,.]) ‘ = O( Pa log — 3 =0 7 )

Since for X ~ N(0,0?), we have that P(| X| < t) < \/;’;U, then for a fixed 1,

o 1-8 o 3\"
P ([t A (4171)

S@“(ﬁ%)”@)'

Then by union bound, we have that w.p. at least 1 — a —, forevery 1 < <d,

o, 1-5 OITEA 1
‘w% + ||AH2A<W1 [z,.]) ‘@ Jia )

Now define C5 := WQ(O) + ﬁAWl(O)T and Cy := 2||A|| ré?) We get that C's;, ¢ € [d] are i.i.d
Gaussian random variables and that Cy = 3(C3 + Cy), where w.h.p. for all i € [d],

- /1 1 (1) . 1
|C3i|§0<da>’ |C3i|Z@(d5a)7 |Cui §O<d3a ), (15)

where (i) follows from eq. (T4) and the fact that || A||z = v/d. Then we get that w.h.p.

e < S -o(k),

5

N

Substituting eq. (T3) into eq. (13)), we get that w.h.p.,

ent =0 ([us? g (7)) < [2.(Ge) 0 ()|

Similarly, note that

Wyl = W

Ci=-
! A2 — A1
W AW O ) — i — Al
2511 All2

1@ 1-8 or 1-=8 (o0

=-Wy"~ — AW, — T
277 2l Al 2| All2 "

we can use the same techniques to get that i) w.p. at least 1 — 8, Vi € [d] : |Cy;] < O (=), ii) w.p.

atleast1 — ¢ — #,Vi e [d],|Cu| > Q (d

1
Fo )
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D.8 Proof of Lemma[3

The proof in Section[D.2]tells us that at the end of the first phase (when ¢ = T7),
Wl(Tl) — u(T) ()T + Rng),

W2(T1) _ C(Tl)u(Tl)T + RéT])T’ 16

T
where v(T)7 = 77714 AT = A2’

; ey s
1- B ZTI:O AQ

(®

Denote the i-th coordinate of u(, v(*), Rét) as u; , Z(t), Rél), respectively. Denote the (i, j)-th

element of Rgt) as Rgt) [i, 7]. For t > Ty, we prove by induction that,
Wl(t) = uTp®MT 4 Rgt),

(t) t), (T1)T T a7

W2 — C( )u( 1) + R2 ,

where

ptHDT _ o (OT _ (0 (1),

— e
R = RY —n,RYE® 4+,
D) o) (0 (D)

Rét+1)T _ Rét)T _ ntE(t)Rgt)T n rét),
with ,,,(t) = nzi_o Btfv' (W(t)TE(t) W(T)T ) T]ZT o ﬂt TDg(T) E(t) W(t)W(t)_
A = 772-,— o BT and T(t) _ 7727:0 Bt—7 (E' t)Wl(t)T _E T)Wl(T)T) 7727— o Bt— 'ng(T).

Note that the rg ) and rg ) here are different from those defined in Section |D.2} but we abuse the

(®)

notation and still use r;” and rgt) to represent the error terms.

The base case is already given by eq. (I6).

Suppose our lemma holds for ¢, then for ¢ + 1, using the same techniques as in eq. (3 and eq. (6)), we
have that

t
W1(t+1 Wl(t nzﬁt TW )T p(r) _ nzﬁt—TDggf)

WO B 1

7

t t
W2(t+1) _ Wz(t) 0 Z ﬁt_TE(T)Wl(T)T 0 Z 6t_TDg£T)
T=0 =0

_ W2(t) B mE(t)Wl(t)T I rét),
Plugging in the inductive hypothesis yields
Wl(t""l) _ Wl(t) o ntWQ(t)TE(t) + Tgt)
= uTp®T 4 RY) — M (c(t)u(Tl) + RS)) E® 4 rgt)

— (™) (,v(t)T _ ,r]tc(t)E(t)) I Rgt) _ ,r]tRét)E(t) 4 Tgt),

W2(t+1) _ W2(t) _ ntE(t)Wl(t)T n rét)
= g (TT 1. Rét)T — B (v(t)u(Tl)T + R§t)T) + Tét)
_ (C<t> - E(t),,(t)) w™T 4 ROT _  EORDOT 4 0.

It implies that our lemma holds for ¢ 4+ 1, which completes the proof.
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], vy

Now we analyze the error terms ‘RY’) ¢, ]]' and ‘Ré’;) .

(t)

are all positive. We first prove by induction that for all T} < ¢ < Ty, ¢(¥) > 0,Vi € [d],v;”’ > 0.

The above discussion already proves the base case. Suppose at time ¢, we have ¢ > 0,Vi €
[d],v ( ) > 0. Note that when Ty < t < T, Vi € d:E Z-(t) < 0, then for ¢ + 1,

v§t+1) = vft) — ntc(t)Ei(t) > 0,
d
D) — () ” ZEi(t)Uz(t) > 0.
i=1
Therefore by induction, we have proved that for all T} < t < Ty, ¢(¥) > 0,Vi € [d], v (t) > 0.
Now we prove that for all 77 <t < Tp,

V1<ij<d ‘R(t)[l j]’ <6 M o< ‘ 18
1, _'(Tl) o = +2;€ ) C(t)‘(Tl_Z+2;6 , (18)
T 1 T 1
where
‘R(Tl) [i j]‘ ‘R(Tl) 0 ‘ [z,J] ‘T2z
§; := max max , € i=max max

(t)

The left hand sides of the inequalities are trivial since we have proved that ¢*) > 0, Vi € [d], v;"” > 0

for all T} <t < T5. Now we prove the right hand sides by induction.

The base case is already verified by the definition of ¢;. Suppose eq.(T8) holds for 7} < ¢ < T5. Then
for t + 1, using Vi € [d] : Ei(t) < 0and v > ) (1) > () we can get that V1 < 7,5 < d

®r; - (1) (t)

R0 R oy B ey (CB°) g

< +
ung) v§t+1) U(-t) + nec® (—EJ@> ) v§t)

. (6 +ZT T lT)> §)+nt (5 +ZT Ty ZT)) C(t) (_E.;t)) + (t)

< €

o e (~E)
t
~hr 3
T:Tl
Similarly, we have that V1 < ¢ < d
d

‘R(tﬂ ’ ‘Ré? | <%1>| 025 ( (t)) ‘R(t) i, J] u(T1)| ‘r;)

C(t+1 ‘U,ng

et 4, 3 =1 (—E(-t)> e
(S ) e (s T ) T (B
: O m i (-5 Z

t

T:Tl

Therefore by induction, eq. (I8) holds for all ¢ in the second phase.

So far we have proved the rank 1 structure stated in Lemma 3] The remaining part of the proof is
given by the following lemma, whose proof is deferred to Section [D.9]
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Lemma 9. Under Assumption HandE suppose o < da"j%. By picking n < O (ﬁ) we
4
have that w.h.p. for Ty <t < min{T5,T3

RO I
Vi<ij<d: 0< < Ofep), < Ofep), 19
== a uETl) v](-t) <Ol c(t)‘ (T1) (<o) (19)
and that when t = min{T5, T3}, we have ||E(t |5 = O(eod)

D.9 Proof of Lemmal9]

We first have the following lemma which describes the structure of v® fort >Ti.

Lemma 10. Under AssumptiOn E|andE| fort > Ty, we can write vOT g5 pOT = () A 4 R,(f)T,
with o(T) = #, R{MT — [0,0,...,0], and

QD) — (1 _ w(t)d(t)) a® 4 1@,
Rf}tﬂ) = (1 — ntc R\ ) — 1 c(t)R(t)

2
where d := ) + Rét)Tu(Tl), Rét)T = c(t)u(Tl)TRgt) + Rét)TRgt).

’um)

Moreover, we have that

WIOWH = a0e®T 4 ROT = ¢®¢® A 4 g gOT 4 RIVT (20)

We prove Lemma |§| by induction. Denote the i-th coordinate of Rét) and R\ as Rg? and Rffl),
respectively. The following lemmas constitute the inductive part.

Lemma 11. Under Assumption E|and suppose o < %ﬁl and pickn < O (d%) Con-
sider any t such that Ty < t < min{Ts,T5}. Suppose for all Ty < 7 < t, we have Yi,j €

[d] : ‘wg) < O (d*4), [i,j]’ < O (5277), then we have that Vi, j € [d] : ‘r§ )[2 7
o (772(111/4) ré? = (5( 2d13/4). Moreover, we can get that Vi € [d] : egt) =0 (772(1%“"’%),

where e ) is defined in eq. (I8).

Lemma 12. Under the conditions of Lemma and pickn < O (#ﬁ), we have that at time
4
t+1,

‘R§t+1)[i,j]’ ’Réti-‘rl)

UETI) v = Oteo):

Vi<ij<d: 0<

c(t41) ’u@)

where € is defined in Definition 2]
Lemma 13. Under the conditions of Lemma and pickn < O (dLﬁ) we have that at time
4

t+1,

‘RétJrl)Tu(Tl) 5 ; ] ‘R(tJrl ’ 5

—— < O(ep), | € : < < O(eg).

> c(t+1) H'u,(Tl)H2 — ( 0) J [ ] C(t-‘rl) Hu(Tl)H U;t) ( 0)
Moreover,
’R(t+1) )
vj€ld): —— < Oleo). 1)
J

Lemma 14. Under the conditions of Lemma and pickn <O (dTEH> if we further suppose that
4

RO R R® )
Yy € [d] : dy = ( ) ’ ‘(”Ai are of order O(ep), then we have that at time t + 1,

and
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. oD )
(B) ¥j e [d: #r = 0 (L),

(©) Virj e ld]: |ultV| < 0 (@), WiVl < 0 (G

’ RGAD ‘ (t+1>)

(D) Vj €| and LA, are of order (’)(60)

By combining Lemma 12]and[14] we can prove by induction that for all Ty < ¢ < min{T5, T3},
eq. (T9) holds (which follows from Lemma|[T2), and

EW
Vi,j € [d] : =75 = O(1), (22)

which follows from the part (A) of Lemma[T4] Now the only thing to verify is the base case, i.e. when
t = T1. More specifically, we want to prove that 1) Vi, j € [d] : ‘w(Tl)‘ <0 (), ‘WI(TI)[ }‘ <

(T1)

O(d1/4)andthat2)Vj € [ ] : C(T1> _@< ) and that 3)
All of them can be verified by the proof in Section and the definition of Rg,t), R(t)

So far we have proved eq. (T9) in Lemma(9} Now let’s prove when ¢ = min{7%, T3}, we have that
IED |2 = O(eod).

} <T1>‘ | <T1>)
and —r; A, are of order O(ep).

If min{T}, T3} = T, by Definition[3] we have || E)||2 < c. If min{Z5, T3} = T, by Definition|2]
there exists j € [d] such that Ej(.t) = —0 (,/€9). Combining with eq. 22) gives us Vi € [d] :

Ei(t) = -0 (\/5) Combining these two cases, we get that when ¢ = min{T5, T3}, E® ||; <
max{e, O (e9d)} = O (€pd).

D.10 Proof of Lemma (10l

We prove this lemma by induction. The base case (t = T) of v(*) is verified by eq. (T6).
Suppose at time ¢, v)T = () A 4 R(t)T then by eq. we have that

wOw = (c(t)u(Tl)T +R(t)T) (u(T1),U(t JrR(t))

( (t) Hum)

= dWp®T O

— 4 (t)A+d(t Rt)T R(t)T

+RY) u(T1>> o® 4 DT RO 4 gIOT R

where d(*) := ¢(®) ||u(TV) ||2 + R ) ROT .= (@ (MTRM 1 RIOTRY That gives us

DT — T ) (1)

— mc
= a® A+ ROT _ p,c® (d<t>a(t) A+dPROT 4 gOT _ A)
((1 _ mc<t>d<t>) a® + e t)) At (1 _ nt(;(f)d(f)) ROT _ 5, cd® gOT

— a0 A 4 RUHDT,

Therefore we have proved by induction that for ¢ in the second phase, v(Y) = a(¥ A + Rg)T. The
above steps also proved eq. (20).
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D.11 Proof of Lemma[1l

write 1" = ¢\V + ¢{!) where we have ¢!} =3 _ gt=" (W(t) E® — WQ(T)TE(T))

a7 = —n Yo B TDQ(T) Write 7y = g5y + 455 where g = — 377 87Dy a5y =
7’]27—:0 /Bt T (E(t)Wl(t)T _ E(T)Wl(T) >‘

Let’s first bound ‘qﬁ) [i, ]]’ and ’qétl)’i‘. By definition of T5, we know that for T} < 7 <¢,Vi € [d] :
e

= O(1). Then we have for all 4, j € [d],

WG, ) - w [m’]\ < Z 5k |l BN < Z TR0 (@) = 5o (a1)

’wgm wl? ®15 4| < UZBT kO (d3/4) _ 0 (d3/4) .
k=0 o3
Note that
B+ - B Z (i =l ) Wi, g+l (W V5] - wiTT,41))

+ Z (s = wf?) (W03 - w7l 41))
We can further get that for ;j € [d],
BT — B| <ndo (a¥4) 0 (471/1) +9do (aV/1) 0 (/) + 520 (d/4) 0 (/1)

0 (nd3/2 + 772d2) -0 (77d3/2) .

Combining the above inequalities gives us Vi, j € [d],

t

’qu i J ‘
=0
<n25t qu(t) wlD ’E“)M’ (7) ‘E]‘.tLEJ(T’)
< Zﬂt T(t — ( (d3/4) o) + 0 (d1/4) o (d3/2)) -0 (U2d7/4) ’
a0 = Sy (B W) - B WL 1)
=0 j=1

t d
<> 87 Y (|EY| Wil gl - Wit + B - B (W)
7=0 j=1

<fay 8- ) (0mO (¢4) +.0 (#2) 0 (4)) = 0 ()

Next let’s bound ‘qm 1 ]]’ and ‘qgtz)l

By the assumption of this lemma and the analysis before

T, we know that for all 7 < ¢, the M; (7) , My (") in Lemma [32]are upper bounded by O ( o /4) and
@ (dl/ 4) , respectively. In the theorem we consider the training period before Tsgp,2 so the time 7' in
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Lemma|32|is set as Tsgp,2. In the following sections, we will prove that Tsgp.2 < O (dalog; Vd/e)) .

Then by Lemma we have with probability at least 1 — -, for V7 < ¢ and Vi, j € [d],

> (d% ) which yields
’q(t) i, j ‘ < nZBt i

< n Z ﬁtf‘r
7=0
Combining the above bounds, we get that Vi, j € [d],

O] <o rat). || <o(aat).

Dg{"li, )| < O (wa't),

< @) (ngd%) .

(t)

“bz,i Dgg‘)

By the analysis in Section we know that at time 7}, for some i € [d], c(T*) ‘u(OTl)

~o()

and for Vi, j € [d], we have (") ul(-Tl) =Q (d ) and ’ ) Tl) =0 (d‘%‘% , which gives
us Vi, j € [d],
(t) ‘ (t) (t)
‘T ] ~ 13 ‘TQ’L' ‘TQZ' ~ 3 13
=0 (772(1%0“*‘7 , =0 (n?diot7 ).
uz(T1) ]( ) ng) ’U§T1) ) c(®) UET1) (1) UETl) ( )

Hence we get the bound Vi € [d] : €. < O (n2d%“+%‘3),

D.12 Proof of Lemma[12|

Let’s first try to bound the length of min{7%, T5}. More formally, we prove that under the conditions
of Lemma and pick n < O ( ), we have that min{73, T3} < O (dalog; vd/f)> .

_e
P

Under the conditions of Lemma[I1] we know that

d

el |(w) | < S wi| = o ().
i=1

‘(Wé%@)‘ Z‘wm i j)| = 0 (12a%).
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Combining with eq. 23)), we get
1)
=BO + (Wi — i) wi e i (Wi =)+ (Wi —w?) (Wit —wi)
—_E® _ntE(t)Wlt)TW(t) + (t)W(t) _ W(t)W(t)T (t) JrW(t) (®) +O( 2 )
—E® (1 W T — HW“)H I) + 0 (Pd") + O (12d") + O (2d) .
Then we have

2
N N e e

2
< (1-n ) =],

When T <t < T3, we have proved that ¢(*) is increasing over time in Sectlon. which implies

+ O (n?d*)
2

+0 (n*d*).

that HWQ(t)H >C ‘W( i s1nce c®u(TT i the leading term of W." . Combining with 7, > n
gives us
HE(tJrl)H < < nCHWTl) ) HE t) Jro( 2d4)
, S
24 o\ t—T1 244
HE(t)H < O (n?d*) 4+ <1 _nCHWQ(Tl) ) HE(Tl) B O (n*d*)
el S
(1) d*
| tex p( nCHWz(Tl (t—T1)> 0(\@),
HW(TI)
2
2
2
where (i) uses ||E(T1)|| O(V/d). By picking n < O( o~ +4) and noticing that HW2(T1) >
log(y/d/e€
Q (45). we have W < \f . Hence whent — T} > © (W),we have that HE(t)H2 <
n 2 5

Veie |[EO|: <.

That means after at most O (M) steps from 77, either ¢t > T, or we have HE(t) H; <eln
n\|\Wa
other words, min{T5, 73} < Ty + O <10‘g(\(/T1T|€|) ) o <da10g(n\/d75)>.

Now we are ready to bound eq. [T8]

Combining min{Ts, T3} < O <C“°g§7 Vd”) and Lemmayields that for t + 1 < min{Ty, T3},
Vi € [d],

Lemmatells us that §; = O (dlifl ) . Substituting these bounds into eq. (I8) completes the proof.
4
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D.13 Proof of Lemma[13|

The proof in Sectiontells us that for Ty < 7 < T, () > 0,Vj € [d] : vj(-T) > 0, which gives us

‘R;t+1)Tu(T1)’ ‘ REHD
<Ll =——— S and0 < . By Lemma|12{ we have that

= D [T | c(t+1) ||u<T1) H%Et*l)

‘R(H—l) i ]]’ ’R t+1)
Vi<ij<d: 0<i——"12@ 0<% 1 -5
A 20 A > ‘ (T1) (t+1) (60)7 > JO ‘u(_Tl) > (60)7
Uy j 7
which gives us
’RgtJrl)Tu(Tl) < Zf . (Tl) ‘R(t+1)‘ ) (0)c t+1)2_1 (Tl) S
Rl e e N T o
i=1 | %
Lemma [l tells us that
R(tJFl)T (1) (Tl)TR(t+1)+R(t+1)TR(t+1)
And we have that
(t+1)
(C(t+1)u(T1)TR1 )j‘ 1) Zf ) ) R(t—&-l)[z j]‘
c(t+1) Hu(T1 HQ (t+1) t“)Z ‘ (Tv) vj(;+1)
@(eo)C(tJrl) Zf . ) U§t+1) i
= - 0(60)7
c(t+1) 2?21 T UJ(-tH)
t+1)T (t+1) - 2
(R | (R R ]0 (@eeen  ug
2 (t+1) — 2 — 2
c(t+1) ||u(T1)|| UJ( ) (D) 2?21 ul ) Uj(_t+1) (1) 2?21 u’ETl) U§t+1)
~0(Q).
Therefore
wo [ [
J j i -
<O
clt+1) Hu<T1)HQv§t“) T o) |’u(T1)H2U§t+1) c(t+1) Hu(Tl)H t+1) = (co).

By Lemmal(I0]

W2(t+1)W1(t+1) — (t+1) Hu(Tl) DT Rét+1)Tu(T1)v(t+1)T 4 R:(;H—I)T'

Then we have that Vj € [d],

2 -
(Wz(t+1)W1(t+1)) , D Hu(Tl) UJ(»H_U (1 + (Hl)) ,  where ‘e§t+1)‘ < O(e). 29
j
(W2(t+l)W1(t+1))
Since t < T, we have Vj € [d] : T 1 = O(1), which yields

il

0< A < 0(1), (25)

(t+1)
RG]

which proves eq. 1)), since Vj € [d] : 0 < < O(eo).

= c<t+1)||u(T1>H%§_‘+1)
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D.14 Proof of Lemma[14l

(A) Under the conditions of Lemma|l 1{and pick n < O ( 7(, i ), we can apply the technique when

proving eq. (24) to show that eq. (24) also holds at time ¢. Since < O(eg), we get that

(t)A

eq() ])

uj(-t) =aMA;+ Rq()tj) =aM 4 (1 +el )) where

vj

< 0(60)

Substituting into the time ¢ version of eq.(24) yields

2 .
Vi eld): (WQ(t)Wl(t)>j =a®c® Hu(Tl) A; (1 Jre(t)) , where ‘é;t)‘ < O(ep),

2
ég.t)) .

Since t < Ty, we have Ej(-t) < —y/€o. Combining with A; = ©(1), gives us ac®) [|u(T?) H2 —-1=
— (\/€0). Then we can rewrite Ej(.t) asVj € [d],

: a0 Ju
—1) 1+ é

a®el® [u]* 17
1) (),

= O(\/éo). Hence Vi, j € [d] : = = O(1).

That gives us

(T)|? (T1)

14 a®e®

vjeld: B =4, <a<f>c<t>

B = 4, (amc(t) [t

’u(m

s ( (1) o0

where ‘e(b%

0"
(B) Note that we assume Vj € [d] : 7 =© (i) then we have for j € [d],

g S (B g 0
) b =g ()=o)

¥ (_Ei(t)) o2
7 oo o\
Then for ¢ + 1, we have that for j € [d],
oD o e (<EP) B
D 0 ¢ g, (“E®) 000 Ji)
(C) Combining eq. (23) and Vj € [d] : A; = ©(1), we know that

£ [ 4 < o),

which yields Vj € [d],
+1)

(t
2 2 1 2 (D)
(T1) (t+1) j Y (t+1) H (T1) _ —
[um | (o) < Smom =0 () () [u [ < Som = 0 (Va).
J
(26)
Hence Vi, j € [d],
(1) ’uZ(Tl) :O(d1/4) ’w(t—i-l)‘ < (D) ’ (T1) i)(9<d1/4),
(T)] (t+1) _ 1 (t+1 (T) (t+1) (t+1) (i) 1
u! 1 v _0((11/4) ‘W ]‘ 1 +‘R ] O(dlﬂl)’
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where (i) and (i7) use Lemma|[12}

‘ R{HD)
(D) The fact that Vj € |
ROFD

vi

A, » we first prove that 1 — ntc( )d® > 0.

< O (e0) was already proved in Lemmaln eq.(Z1). To analyze

It is not hard to prove that eq.(26) also holds for time ¢. Recall that d*) = ¢(*) Hu(Tl) H2 + Rgt)Tu(Tl)

‘ T, (T1) ~
> u
and Lemmatells us that 0 < W < O(ep), then we have

cDd® = (c(t)>2 Hu(Tl) 2 + C(t)Rgt)Tu(Tﬂ <0 (\/Zl) i

Under the conditions of Lemma and pick n < O (d@ﬁ) we have that 1 — n,c®d® >
4
1 —nc®d® > 0.

‘R(”

The assumption Vj € [d] : < O(ep) together with ¢ > 0 gives us

e ‘Rg;) 5
mclA; (<o)

Combining with the assumption -

< (’)(60) yields

o] ] e ]
<0(60).

Vi € [d] : a(t—i—l)Ai < (1 — ntc(t)d(t)> a(t)Ai + Wtc(t)Ai >

E Analysis of Adam

Note that A = LY X7, A, := LXXT. Denote g := Vi, L(W®), k = 1,2. We have that
(t) W2(t)T (W(t)W( ) A) , (t) (W2(t)W1(t) A) Wl(t)T.

Let A®, Agg and g,(:), k = 1,2 be the corresponding batch versions at time ¢. Let E(*) :=

W(t)W(t) A, and denote E( ) as the j-th component of E(), We also denote Awét) : wgﬂ) —

w22) AW(t)[ jl = Wl(tﬂ)[ i Wl( )[z,]]. By eq. @), the update equations of Adam are given

by
/1 _ t+1
m=n- St ol = e B, ) = (B0 w1,
1
QI t— 'r~(‘F)
.. .. m 2W) 1 _ﬂl B
Wl(tJrl)[’L,j] _ Wl(t) li, 5] = —m 1[4 7] _ ( )Z =0 [i, J]

Nt 2
o{9i, 4] \/<1—52>ZT 0 B2 ( ¢ J]) +¢

SN CEy 1)) v =gl g) + i i)
\/<1ﬂ2>27 B (o700, 31) i gl + €
WD _ ) = _p my (1= B1) Yoo Bt 7G5
\/E \/1_52 > =0 . (95?)2‘*‘5
(1 B1) X o BTgs) + 15,

= -
\/(1_52)27 055 T(gg)) ++7"2 +§

b

27)
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where Dg§ )= g}%t) ?) and Dgét) = ~(t) gét)’ nd

t
rDi, ] == (1= B1) Zﬂi-TDgﬁ [, 41,

2
r{li. ] = (1 - B2) ZB <2g1 i, 109" li, 51+ (D971, 1) )
(28)
r2nz: 1_61 Zﬁt "D g{’

réd i Z 5 (2922 Dgéz) (Dggz—))2> :

Denote the i-th coordinate of WQ W1 and A as (WyW7); and A;, respectively. By Assumption
and the assumption that Vi € [d] : A; > 0,4; = Q(1), at the beginning, w.h.p., Vi € [d] :
(WayWh); — A; < 0. Based on this, we divide the training procedure into two phases (note that these
two phases are different from those of SGD+M).

1. First phase: when the error (W2W7); — A; is negative and its absolute value is big for all
i € [d].

2. Second phase: when (W3W7); — A; is close to zero for some coordinate ¢ € [d].
More formally, we define the boundary between the two phases below.

Definition 4 (End of the first phase). The end of the first phase (denoted as Ti) is defined as
ngzinf{t:>():3ie[d];5§“ > Aw/nd}.

In the second phase, we define some time points.
Deﬁnnhnls.lkﬁnei’::inf{t>>Ti:3i€[ﬂ:‘g§) n}

For t < Ty, we have Vi € [d] : Ei(t) < 0 by Deﬁnition@ Fort > T}, some Ei(t) may flip the sign
and become positive. For certain coordinate ¢, we define the following “flip time”.

Definition 6. Define Tt ; := inf {t >1T5 Ei(t) > f\/nd}. Define Ty := max; T ; as the largest

“flip time” over all i € [d), i.e. the “flip time” of the last E; which flips the sign. Moreover, denote
T :=min{T,,Tr}.

We can first show that after a few steps in the first phase, W; will become an approximately rank-1
matrix, as described in the following lemma.

Lemma 15. Under Assumption and suppose o < %. By pickingn < O (=) ,& <
\/d&f:,l, and By = (32, there exists ti,. > 0 such that w.h.p. for ti,. <t < Ty,
Vi, j € [d] : wétz‘) = sign (wé(z))) 1 (t = tinc) + RQz )

WiOli, 3] = sign (w$)) 0 (¢t = ) + R, ),

LI . |REY
where n(t—tme) o (\/ﬁJr n(t—t,-,,p)da) v (=t @ (fJF ,,,r)da )

Specially, when t = T}, we have that
Vijeld)s wii =sign (wl)) (T — te) + RS,

W@hﬂ—mwQ@Q(ﬂ—%g+M>[]

where 1 (Th — tip.) = © (ﬁ) and

R (
77(T1 *tinc) B

T
1 ‘Réz‘l)
a3 )’

s =
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The following lemma tells us that this approximate rank-1 structure is preserved when 77 < ¢ < T.
<

Lemma 16. Under Assumption E|and suppose o < %. By picking n < O (d"%) €
V=, and 2 = 81, we have w.h.p. for Ty <t < T,

Vi, j € [d]: wél) = szgn( (0 )) () +Réz)7

Wl(t) [i, 4] = sign (wé?)) Vj(t) + RY) i, 7],

RO
h o ! L DYy
= 4
where |C(t)| \/7]+da_1/2 ) ; < n er%,% ;

v
and that L (W(T)) < 1) (nd4).
Now we are ready to prove the Adam part of Theorem I]
E.1 Proof of the Adam part of TheoremT]
Define Tadam,1 = tinc + . Note that this choice of Tadam.1 gives 17 (Tadam,1 — tinc) = . By

pickingn < O (dga) &< < m and 32 = /3%, we can apply Lemmato get that Vi,;QE [d] :
‘wg’“"‘“"l) =0 (d ) ‘ = ( ) and therefore Vi € [d] : Ei(TA““'“'l) =-0(1)
and L (W(TAdﬂmfl)) =0(d). Deﬁne TAdam,z =T. By Lemma we have L (W(TAdﬂmfZ)) =0 (nd4).
For any p > 0, by picking oo > 1%-4’ we have L (W(TAdﬂm=2)) =0 (nd4) <O (d%,)

Moreover, combining Lemma [15]and[16] we get that when ¢ € [Tadam,1, Tadam,2] the conditions in

Lemma are satisfied with 6 = O . The i-th component of the u vector (denoted as

u;) is sign (w(o)) That means Vi € [d] : u? = 1 and % = 1. Then we can apply Lemma
and get that

1—-6\> max;(u;)2 [(1+6\> max;(u;)?
144/ median(u;)?" \1—¢6/ median(u;)?

1-6\> [1+6)°
146/ "\1-9¢

Note that by definition, Rp%" (¢) and R4 (t) are always larger than or equal to 1, then we have

Ricdh (1), Rned (1) €

) ) ~ 1
RO, RS0 = 1+ 06) = 1+0 (g} + L1 ).
2 4

E.2 Proof of Lemma (13

For some time ¢, we introduce two conditions.
Condition 1.

> Q(¢).

H
PO )

7=0

vr e [H] :sign (o7l d1) = V0.3, (1= B)

Condition 2.

(T) (t )

vr e [H) s sign (g 7)) = 540, 0(6).
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Next prove that, under Assumptionand by pickingn < O (5=) ,€ < /752, and B2 = B3,
there exists ti, > 0 such that for ¢, < ¢ <717, the update of Adam can be approximated as that of
signed descent.

Wi, 5] = Wi, 5] = n (sien (9705,1) + €1"fi. 1)
t+1 t . t
wéz ) = - wéz) —-1n (Slgn (géz)> + egz)) ’

=0 (M)

Before we dive into the proof, let’s introduce some useful lemmas.

(29)

where ‘egt) [z’,j]‘ = ‘621

The following lemma reflects our key idea: converting the exponential average in Adam to a finite-step
average, and trying to bound the stochastic error terms in eq. (28).

Lemma 17. Under Assumption |1 l I and I and pick By = (2 Let Ml(t) =
Wi, 5],

N th) = maxme[d]ﬁgt gg‘r) ['L,]]‘ a}’ld
We have that w.h.p., for all t < O (#) and Vi, j € [d],

AW O] = -y (L= BT BT i) + il

n \/(l—ﬁg)Zf—oﬁé( 051) 4 el + €
(L-B) S0 0 Bigh "~ + b
\/(1—52>2f_062 (677) 4 el + ¢
max{ 61”67 (61) " (67) "}

ng2

MY = max; je(a)r < [wS)

max; je[d],r<t

957 |

G(t) = IMaX; jc(d),r<t

Y

Awéti) =—

where H > 1fﬁ1 log and

il < ome?) + 0 (D),

2
0] < 0ty + 0 (D6 + (b))

2
<OME) +0 (DS)GQ) + (Dgt)) ) ,

= 7752)+O( ) ) iegii)z

‘GQn 7

- 2 di/2 . d3/2
D <0 [ d@m” (M) oy /S ) + O [ My [ S
n n

- 2 di/2 . d3/2
DY <O [ dt (M) M| S ) + O [ dmoy |-
0 0

/262

with

Corollary 2. Under the conditions of Lemma |17 and suppose o < L FIETEe

Consider any t <

@) (\f ) IfMl(t),M(t) < O(f) G(t) <O ﬁ) ,th) <O (\f) thenHinLemmacan
be picked as ﬁbg@ and we can get that Vi, j € [d), 652[1 ]” 652[2 ]}‘ 5521 , 6(227’ <

O(né?).

The following lemma analyzes the magnitude of weights during a short period at the beginning.

Lemma 18. Under Assumptionl E|and E suppose o < L d13 / >
some time point ti,. € (H,T), such that w.h.p., for t < ti, for everyi,j € [d]

AW, Ji’ <O(n ‘Aw <O,
W] <0 (i) 2 (g5 < ol <
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Specifically, when t = ty. we have sign (w( '”‘)) = sign (W ‘”‘)[ ]) = sign (wé?)),
W55 = © (<) and [of™ 10| > 9(©). o] > &), Moreover. Condition ]

and 2| are satisfied for t = tj,.. The sg )[z, jl and sgti) in the conditions are both —sign (wé?)

The following lemma gives us lower bounds of ’git) [i, 7 ]‘ and ‘ gg?

Lemma 19. UnderAssumption @andl suppose o < 1 d13/4 . Pick § < \/ =, n < O( e )
Consider ti,. in Lemma We have w.h.p. for any t € [ti,T1), and for Vi,j € [d
i)

sign (AWl(t) [i, j]) = sign (Awé’?) = sign (wéz)) and that Yi,j € ‘g(t)
Q (), ‘gg)’ > Q(/nd). Moreover, we have V7 < t, Vi,j € [d] : )er) i, 7 ‘ <
o ) e 20 G o5 = 0 ). < 0(3)

The following lemma shows that when t;,c <t < T3, we have Vi, j € [d] : ‘g;)

v &

60 - gt

and that ‘g?) [z',j]‘ > ‘ggt) i3] — o\ VL, J]’

Lemma 20. Under Assumption E|and suppose o < d132/4 . Pick§ < \/ =, < O (d%ﬂ)
For ty,. in Lemma we have that w.h.p. for tie <t < Ty and T < t, Vi, j € [d],

N7 o
= T), —————— = T),
‘91 [i,j]‘ ! 9;? !
‘ (t)[.7 1 2 (t—T)[.’ 1 2
(91 zJ)(t) .(9.1 2 ZJ) _ 6(yiir) + O (),
(g [m])
®) (- b
)"~ (i)

e =0 (ynr) + O (n7?).
(g2i )

Equipped with these lemmas, now let’s prove eq. (29).

For any t € [tine, 7)), by Lemma , we know that Ml(t), Mg(t) <O (ﬁ), and that th) <

0 (%) G(t) <0 (\/;l) At the end of the proof for this lemma, we will show that T} = © (%ﬂ)

Then we can pick H := —+ log ez and apply Lemrna and Corollary I to get that, w.h.p., for all
t € [tine, T1) and Vi, j 6 eq @]) can be written as

: (180" 879 i 4] + )i, ]
\/(1—52)Zf—055( 0, 41) + eling] + €
(1— 1) S BTk + el

t
\/(1 — f2) Zf:o B3 (9%77)) + 62d i T 5

AW, 5] =

Y

(32)

Awéti) =—

(t)

o 62d %

6271 i

(t)

el 1| el

where Vi, j € [d], €148 7] 5 < O(né?).

)
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Let’s first look at the update of Wl(t) [i, j]. For t in the first phase, we write the RHS of eq. (32)) as
(1= 581) S Aigr " lis ) + il ]

1n

J(l B I 5 (o 701) el ]+ €

B (1= 809" [5,) 20 BT + (1= 8) 210 BT (917l g] = 917l 5]) + €121, 3]

¢ (1 o) (o00) S0 85 + (= s S0 7 (ol 0dl) = (070031 ) + il +
91" [i- g1 (L= B + i ] + €1 J]

J (68916.41) " (0 = BE*) el 4) + 0.1 + €

where

efoli,g] = (1 - B1) Zﬁl (o8 71031~ oV 1)

(t)

eigli, il == (1= pa) 252 ((ggt r) D (g@[i,j]f) .

7=0

We have already shown that (652 [i, 7] ‘

i, ]]‘ O(n€?). By Lemma we have that Vi, j € [d],

et < - 50351 o

(t)[

— 01 Za]}‘

<‘g(t) 7]’ ) (L= 51) 2517—’9 ’L]’@ V).
Similarly, we have Vi, j € [d],

0,41 < (gi”[z',j])z@(mu—@)imw(g?)w,.ﬂ) O (i) (1 - Bs) ZB
=0

= (4"1i.)) O (v

By Lemmal we know that ‘ g(t) ‘ =0 (ﬁ) Then we have that
Vi, j e [d ‘61n1]‘<(’)n£2)<(9
Therefore by Lemma@ in Appendix [H] we have

Vi |alidl], |l )] < O (v €

g0, 5] (1 — BEY) + e, 4] + €], 5]

2
ﬂgit)[i,j}) (1= 83) +eqlin i) + ey lin )+

:ﬁ(“gn(gm 1) +20%.7)
where ‘égt) [i,j]‘ =0 (v/1)-

Since 8 € (0,1), we know that log8 < f — 1 < 0. Then our choice of H gives us H
2

5 ne?
5 log i = l?ggnél and H > 5 log ;& > lffgng ,which implies that B2, BH < ne2/d.
H+1 t+1
Hence for ¢ > tine > H, n; — \/T -8+

\/1 H+1 - \/1 H+1 1— Bt+1 _n(lio(n))

49



Combining all of the above yields that

W(t-‘rl)[ il = Wl(t)[l 7= (1_ﬁl)z 06191 [Z Jl
\/(1—/32>Zi_0ﬁ5( i) e
_ pHA1
= WEOlg] = me— 2 (sign (o110, 1) + 1”10 )

1_2

= Wi 5] = n (sign (o83, 31) + el li.41) -

where ‘egt) [4, j]‘ = O (/1) The proof for wi? is similar.
So far we have successfully proved eq. (29). By sign (AWl(t) [z, ]]) = sign (Awg?) = sign (wéz))

in Lemma we know that sign <fg§t) [2, j]) = sign ( géf) = sign (wél)) which gives us

Vi, j e [d] : wg) = sign (w;?)) N (t — tinc) + Ré?,

Wl(t) [i,j] = sign (wé?)) N (t — tine) + R(lt) 4, 5],

ROWJ| - W) [, 5] RY)
where ‘n(t—tm) =0 (Vvn+ ‘ N(E—tine) ‘ and 77

)
<O (), Wi <

w(t_inc)
=0 (\/ﬁ + J](:_ztim_) > . Now it suffices to
O

show that Vi, j € [d] : ‘wéti‘“‘)

(di) which is implied by Lemma

Finally to complete the proof, we show that 73 = © < Vin ) When t = T3, we have Vj € [d] :
Zf 1 (Tl)Wl(Tl)[ i,j] = ©(1). Combining with the above results, we know that dn? (T} — tinc)? =

O(1),i.e. n(Ty — tine) = O (i> In Section|E.5| we will prove tij,e = © | —s—— ). Then we have
Vd nd2a+1

-0 ()

E.3 Proof of Lemma([17|

For certain ¢ and H, we write eq. (27) as
_ (t)
AW, ] = —gp L= BV Sro 870y lis gl + €1
OB 87 (o 001) i)+ €
(1*51)27— 0619; T)+ étyzl

ui
=B s (o8 7) €

?

Awd) = —

2%
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where

( [l ]] = 1_61 Z BIg§t T)ZJ]+T§TZ[Z j] 62711: 1_51 Z 61 2 nz’

T=H+1 T=H+1

—ql,f [i,4] =q$))

Widl = (- ) 3 55 (o 71.41) +r0li.d)

T=H+1

t .
=g [i.4]

S 55 (o577) +rl0

T=H+1

(t)
_q2d i

and r&) 4, 4], 7"52) [4, 4], réﬁl) i 7"521 are defined in eq. (28).

max{cgt>,cg”,(Gg”)z,(cg”f}
n&?
1 (¢’ 1 (@)

H > 7 log e ,H> 5 log 7752 ,H > —ﬁlog e . Hence we

(t) O 116, < nez.

Since 33 = 7 < ﬁl, then if we pick H > = /3 log , we can get that

H> % log

&'27

1
can apply Lemma in Appendix [H|to get that ‘qu [i,7]] [, 71|

Pick 7" in Lemma|32|as of order O ( ) By Lemma |32} we have with probability at least 1 — é,
forallt <T,Vr <tandVi,j € [d],

e (). e ~ 2 [qi/2 ~ [d3/2
‘D9§)[273]‘2‘9§)[ZJ]—QP[%J]‘SO &M (Mz(t)) N +0 [ Mo B

= D%t),

’Dgz

’g g2z

Plugging into eq. (28) gives us

[P0 < (- ) Zﬁ

(T) ]’SO(DE”),

] < - Yo

<0 (D?)GY) +(p{") ) ,

t
<(-p) 3| | <0 (08}

< ( ZB

E.4 Proof of Corollary2]

2071, 1Dg i, ’ ‘ng ]’

‘7“2,” i 21

+|pa?[

<0 (D“ G+ (Dg>)2) .

’rédz Dg2

1% is bigger than

Since th) <0 (%) ,Gét) <0 (\/E), then H :=

mas{ot?.60> (617)" (04)"}

ng?

1
1-81

log

51



03/ 2e?

By Ml(t),MQ(t) < @( ! ) G < O( ) G(f) <0 (\f) and the assumption o < L
get that DI and D" are upper bounded by D\ < O (d7/4an_1/2) and DI < O (dM/2on=1/2),
o evalis J]’ o < O(ne?).

€in [Z j] 6271 A

we

which yields Vi, j € [d],

’ 62(11

E.5 Proof of Lemma[I8|

The proof is based on the following two lemmas.
Lemma 21. Under Assumptionand we have that w.p. at least 1 — d%%l,for every 1l <1 <d,

Wi, j]| <

< d% log 25—(1, and that w.p. at least 1 — § for any given § > 0,

Lemma 22. Under Assumption |l Iandl suppose o < 1 d13/4 . Pick B = 32, £ € (0,1),n <
IfV7'<tVZ]€ .‘W;M,ﬂ‘g@(ﬁ),
(\/&) we will have

O(n),

A wim

Consider any time point t < O
@(I)and‘gl zj}‘<(9

’AWl(t i ]]‘ <O(n ‘Aw2

where the O notation depends on H = = 61 log -4 nez

Furthermore, if for certain i, j € [d], Condition! (resp. Conditionl) 2) is satisfied, we will have

sign (AWl(t)[i,j]) = fsg )[z il [i,7 ’ =
(resp. sign (Awg)) —sg?, Awéi) = é(n))
Now we prove Lemma Define t4 := inf {t = ’Wl(t) [i,j]’ 5 or ‘w é} Now we
want to find a time point ¢, before ¢, for the lemma to hold. During the period t < tg, we have
Vj € [d], E; = —©(1) (which means t; < T3) and therefore for all 4, j € [d], ‘git)[' ]]‘ < Zand

IN

’g;)’ < 1. Then we can use Lemmato get that for ¢ < min {td, i } we have ‘AWl( )[z j}‘
O(n), () <O()Hencetd>ﬂ( )

Define tgqn = inf {t < min {td7 %} [d] : ‘w(t) < déﬂ } By Lemma w.hp. Vi €
2
[d] : ’w;?) > d%L’;, combining with ’AwQ ’ (7)( ) gives us that w.h.p., tgen > @;1/@(77) =
Q-4
nd2®

Now let’s analyze the behavior of W, during the period ¢t < tgg,. Consider any ¢,j € [d]. By
definition, sign (wé?) = sign (wéz)) Note that EJ@ = —0O(1), then we have sign (g%t) [i,j]) =
—s1gn( © )> and that ‘91 i, 7] ‘ =Q (d;“
Condition [1|is satisfied with sgt) i, j] = —sign (wél ) (for all H < t < tggn), which by Lemma

yields sign (AWl(t) [Lj]) = sign (wgl ) and ‘AWl(t i j]‘ =0(n).

) = Q(&) by our choice of £. Then we know that

Lemma [21| tells us that w.h.p., Vi,j € [d] : ’Wlo)[i,j]‘ =0 (). For any 4,j, if ini-
tially sign ( ) = sign (wgg)), then for the following steps before Zgg,, we will have
sign (W( ) 1,7 ) = sign ( ) If initially sign (W(O) [i,j]) # sign ( © )) then after at most

to=0 ( ) steps, W[z, j] will flip the sign. Note that to = ) (ﬁ) is smaller than Zgg,.
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Hence we have shown that at some time point ¢y, we have Vi,j € [d] : sign (Wl(t)[i, j]) =

sign (w;)) = sign (wgz)). Now we analyze the period ¢ > %.

When ty < t < tggn, we still have sign (AWl(t)[', ]) = sign (wgg)) and ‘AWl(t) [i,j]‘ = 0(n).

Combining these two with the fact sign (Wl( 0)[ j]) = sign (wé?)) we know that for all ¢ €

[to, tsign], sign (Wl( )[ ]) = sign (wéz)) and that Vi,j € [d] : ‘W(H_l) i,] ’ = ‘Wl(t) i ]]’ +

.
d%a+1

(:)(77). Then at certain step ti. which satisfies tine = to + O € (H, tsgn), we will

have Ve — H < 7 < tine, Vi, j € [d] : ‘WlT)[i,j]‘ = @(d%ii“) and therefore ‘92 ‘

d Vr. . T d T)r. . T
‘ijl Wi, 1B = I, ‘Wl i, 4157
vioj e [ Wil 5)| = 0 ().

d2a+1

to+ O ( a+1) =0 <d‘°’1a+1)’ combining with the upper bound in Lemma[21|yields
2 i 2

<w (0) 1 1
Moreover, Vi, — H < 7 < tjn, Vi € [d] : sign <gg)) = fsign (wéz)) Then Condltlonis

satisfied with s( ) = —sign (w2 ) for t = tjp. In the analysis of g [z jl, we have already shown

that for all ¢ < ¢, (and thus for ¢ = t;,c), Cond1t10n|I|1s satisfied, which completes the proof.

-0 (d%%) = Q(&). Fort < tin, we have

. ti
Since tinc < tsigna we have ‘le'?C

a). For t < tjp, note that ‘Awg—) < (’5(77), tine =

E.6 Proof of Lemma 21

Since for X ~ N (0,0?), we have that P(|X| < t) < \/QL , then for a fixed 1,
\f) < C2/mjdie 1

<’“’ Vo J2jde dE

Then by union bound, we have that w.p. at least 1 — F’ forevery 1 <1 < d, ‘wé?)‘ > d@.

Sa

As for the upper bounds, using the Gaussian tail bound and union bound, we have w.p. at least 1 — 4,

2d .. 2d>2
< alog—, ’Wl(o)[z,j]‘g d4—alog7.

Vi, je[d: \wg; o log =

E.7 Proof of Lemma 22]
Now we analyze the magnitude order of AWl(t) [i, 7]. The analysis of Awg) is similar.

Fort < (’)( ) By assumption, M " ),Mét) < (’)( ) ¢l <o if) G <0 (\f) and
o< ;1/32/4 Hence we can pick H := ——= log nez and apply Lemma|l7{and Corollarylto get that,
w.h.p., forallt<(9( )andeye[],eq.canbewrlttenas

AW O] = - (L= B 5570 BT1 7l 3] + il )
\/(1—62)Zf065( ,40) "+ elig) + €
(1- B1) S0, BTy ™ + b

\/(1 — B2) Zf:o B3 (gg T)) + 62d ;T 5

3

(33)

Awé? =—n
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01|, %

€2n i

where Vi, j € [d], 1td [, 41|, Eégz

b

< O(ne?).

On one hand, using ‘65’2 [i,j]‘ , ’egg [i,j]‘ < O(ne?) and By = B2, and /T +y > v/ — /|y| when
x>0,z +y >0, we get from eq. (33) that

(1= 81) |21 7ol d)| + One?)
V082 S (5508 711) - Oy + ¢
o (-BVETT JZT o (570 7lig1) + O0g?)

' V-8 S (510 711) 4 ¢/2

where () uses Cauchy-Schwarz inequality for the numerator.

On the other hand, when sign (g?*H) [z’,j]) = s1gn( (t= HH)[ j}) ... = sign ( (¢ )[ j]) =
st )[

‘AWl(t)[i7j]‘ <nt

< 0 (VHn) = 0(),

jl, we have

sign (ZﬂIgY i J) = sy Zﬂlglt i 4]

If we further have (1 — ;) ‘ZT o )ggt T)[ ]‘ > Q(¢), then combining with
O(ne?) < € we will get

H
sign (AW11.1) = —sign (Zﬁ{g§”>[z‘,j]+e§2[i J) ien (Zﬁfg? T w)

_ (t)[

Z (ﬁlg“ [, JD :

7=0

0 )|

IA

i, j]-
Using vz +y < +/|z| + +/|y|, we obtain that

(1= 80| SI 8761 - Olne?)
VOBt (367 11) + Olyme) +

— H T t—7
1 251 27— o § ) ( )[ }‘
> = Q(n).

2maX{\/(1—ﬁz)ZT o (1ot 7.31)° f}

Together with the upper bound completes the proof.

AW, 1| >

E.8 Proof of Lemma [19]

The proof is based on the following lemma, which gives a coarse analysis on the magnitude of
weights and their increments per step during the first phase

Lemma 23. Under AssumptiOn E|and suppose o < 1 d13/4 Pick ¢ < min {\/ AT d%% }, for
tine in Lemma we have that w.h.p. for all ti,. <t < T, Vi, j € [d].

sign (AWl(t) [z,]]) = sign (Awé?) = sign (wé?)) , ’AWl(t) [z,]]‘ =0(n), ‘Awg) =0(n),

: @1 ) — ®) _ o (0) O Ao L O _p( 2
sign (W1 [z,y]) szgn( ) = sign (w% ) , ’Wl [z,j}‘ =0 (\/E) Jws | = 0O ( d) .
Specially, at the end of the first phase (t = T1), we have Vi, j € [d), wgl) =0 (id) and

] -8 ()
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Now we go back to the proof of Lemma For t;,. <t < T, since Ej(t) = (WZ(t)Wl(t)> —Aj=
J
Z?Zl wé?Wl(t) [¢, 7] — A;, we have,
AEWD . E(t+1) _ g
o J

_Z( WD, 5] - WOl )+ wl OO ] - wl W)

(34)
- Z (wli P AW, ] + Awl) WiV, 5])
Combining Lemma[23|and eq. (34) gives us Vj € [d],
d
A >0, [ABP| =3 [wlaw{i, 5] + [aw) Wi,
o (35)
. 1 .
<N O0(n=)=0(nvd).
< ; (77 \/g> (77 )
Let’s first analyze g( )[ , 7] Note that
AP, ] = w;ﬂ)Ej(_tH) —wgﬂ) CI (t+1)E() éz;)Ej(t) 6

W ABD AP,
where sign (ng)AE]@)) = sign (wé,)) while sign (sz?E(t)) —sign (wé?))

Now we analyze the sign of ¢\"[i, j] when tinc < ¢ < T7. Using ‘wét‘“ﬂ ’ = O () and eq. 33).

= 6(n).
That means sign (Agl ‘“°)[z,]]> = —sign (wél)) Note that sign ( (¢ ‘"°)[z j]) —sign ( (t‘“)) =

—sign (wéﬁ) we know that ‘ggt) [i, j]‘ will increase when t = ti,c.

we get that ‘ (t'm“)AE(t'"c)‘ <0 ( Vd 17) While on the other hand, ’Awé’;‘“) ptne)

®) [i, ]]‘ will keep increasing as long as ’Aw(t)E(t)

(t)

In the following steps, ‘
(t)

RIS
remain ©(n), by eq. (33),

we know that the trend of ‘AEJ- ) ‘ is to increase. On the other hand, ‘EJ( ’ keeps decreasing since

Since ‘W(t i, 7|,

keep increasing while ‘AWl(t) [P, 4]],

E(t) < 0 while AE(t) > 0. Then after some time point we will have ‘Awét)E(t)‘ < ’w(Hl)AE(t)

and in the following steps ‘gl i j}‘ will have the trend to decrease. Specially, whent =T} — 1, we

have ‘Ej ’ = \/ and ‘Wl(t)‘ = ( ) (Hl)‘ = ( ) by Lemmal Wthh gives us
~ 1 ~
‘AE]@ Z‘ éiﬂ AWl(t [i,7 ‘-i—’Awé Wlt)z J ‘ §Z®< \/Zi) =®<77\/g).
Hence ‘wgﬂ)AEj > ‘Aw% Ej(t) = 0O (nv/nd).

Therefore we have proved that when #;,. < t < 77, the trend of ‘ ggt) [i, 7] ‘ is to first increase and then
decrease. In order to prove ‘ ", j]’ = Q0 (/n), it suffices to show that ‘ g\ [i 5 ’ =Q(y/n) and
910, 1| = @ ().

When t = ¢,

‘g(tmc) }‘ — ‘wg?nc) .




When t = T3, we have

T1)

T1)
i |

. ‘E(fl)

—6 (- Vi) =6 (V.

zy‘—‘w(

As for gé?, since for Vi € [d], Wl(t) [i, 7] for different j have the same sign. Combining with
Vi e [d]: Ej(t) < 0 gives us

d
=BG =

Jj=1 Jj=1

s BOwi,j]].

Then it suffices to show that for t;,. < t < 17,

EJ(-t)Wl(t) [Lj]’ = Q (,/1), which can be proven
using the same technique as above.

Finally, for V7 < ¢, Vi, j € [d], note that the upper bounds of ’WI(T) [¢, 7] ‘ ]| and ‘wg)‘ are already given

=0 (a). Jot?

6701 = [u B -

in Lemma As for ’ggT) [i,j]‘ and ‘ggl
d T T)[: - 2
ijl ‘E]( )Wl )[z,]]‘ =0 (\/ﬁ)

E.9 Proof of Lemma 23|

For any ¢, j € [d], and any ¢ in the interval [tinc, 71], we prove by induction that
O Al AL —_A(L
(A) ‘Wl [17]]‘—(9(@)7 —O<ﬁ>-
(B) V7 € [t — H,t] : sign (Wl(T) [z’,j}) = sign (wé?) = sign (wé?))

(© |oi"li 1| > 2(€)

(t)

Wa,

gé?‘ > Q(8)

The base case ¢ = ti, was already proven by Lemma 8]
For ¢ € [tine, T1), suppose (B) and (C) hold for time ¢ and (A) holds for all 7 € [tinc, t]. From (A),
we get that V7 € [finc, 1] : ‘gi i,j ’ = ’wQT)E(T) =0 (%) , ’gg) < 2?21 ‘E](.T)Wl(ﬂ [z’,j}‘ =

o (\/ﬁ) Since when t < T3, Vj € [d] : Ej(-t) < 0, from (B) we know that V7 € [t — H,{] :

sign (gY) [4, j}) = sign (gg)) = —sign (wé?) Combining with (C) tells us that Conditionand
are satisfied.

In Sectionwe have shown that T} = © ( ﬁ) Then for t € [tine, T} ), we can use Lemmato
get that Vi, < 7 <, Vi, j € [d],

sign (AWl(T) [@j]) = sign (Awg)) = sign (wm ) , ‘AW(T) i, ’ = 0(n).

Since when t = tj, sign (Wl(ti“)[i,j]) = sign ( ( ‘"°)) = sign ( ) e get that for ¢, < 7 <
t3

Vij e ‘Wf”l i, 4] ‘ ‘W{ i g]‘ + O ‘ (r+1) ‘ _)
Now for ¢ + 1, we have Vi, j € [d],
sign (W1( 1) [i, ] ) = sign ( ) ‘W(Hl) ’ ‘W(t‘“ i ‘ + (t+1—tine) O(n),
sign (wéf )) = s1gn( ) ‘ Hl)‘ = ‘w )| 4 (t+1 — tine) O(7).
That means V7 € [t + 1 — H,t + 1] : sign (W1 [2, }) = sign (wé?) = sign (wgz)) This proves

(B) for time ¢ + 1.
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On the other hand, we get that ‘W(H_l)[ ]]‘ > ’Wl(ti“")[i,j]‘ =0 (dgiﬂ) and ‘w;H) >
2
‘wg‘“) =0 (d;%) Since t + 1 < Ty which means Vj € [d] : ‘E](.Hl)‘ > /nd. Then
2

‘g(t+1) i ‘ _ }w(t+1 E(t+1)‘ >0 (d1a> \/777[: Q(8)

[V

‘ t+1)‘_ E(t+1)W(t+1)[ il =

M-

Il
=

1 D). -
‘EJ(H )W1(t+ )[m]’ > do (d T

) Vi =
J
This proves (C) at time ¢ + 1.

Since t + 1 < T} which means Vj € [d] : (Wz(Hl)Wl(tH)) - < O(1), we obtain that
S 1 3o

S (]

Note that ’W( ‘"“)[i j]‘ ‘wél‘“)‘ L (since tipe < t4), we get that (t + 1 — tine)O(n) = O (i),

(t+1 — tine)O( ) ()W tie) [ j]’—i—(t—i—l tinc)O(n )) < 0().

Vd

which gives us ‘w(tﬂ)’ =0 (f) and ‘W(Hl 1,7 ‘ = (ﬁ) and hence (A) holds at time ¢ + 1.

Therefore by induction, we can prove that (A), (B), (C) hold for all ¢, <t < T1 Then applying

Lemma we get that for all tj,, < t < T3, Vi,j € [d] : ‘AWl(t) [i,j]’ = ‘Aw(t) =

o).

Specially, at the end of the first phase, we have Vj € [d] : (WZ(tH)Wl(tH))j = O(1). Repeating
1)

the above proof techniques gives us ’wz =0 (ﬁ) and ‘Wl(Tl)[L j]’ =0 ( for Vi, j € [d].

E.10 Proof of Lemma 20|

Let’s first prove eq. (30).

By Lemma for tine < t < Ty, we have Vi, j € [d], |g (t) i, 7] ‘ =0 (\f) (t) Q (ﬁd)
Then it suffices to show that for ¢, < ¢t < 17, g§ )[ jl— g%t_T) [i,j]‘ = T@(n) and
‘gm — gg T ‘ = 70O(nd). It suffices to show that when ¢ < T, ggﬂ'l)[i,j] - g@ [Lj]’ = O(n)

1) _ (®)

and ‘92 “ Y2 | = O(nd)-

(®)

By LemmaE and , we know that when ¢ < Ty, Vi,j € [d], ‘AWl(t) [i, j]‘ < O(n), <

O(n) and that Wl(t) i, ]]‘ <O (i) <O ( ) Then the bound ‘AE( )‘ <0 (7]\[) in

eq. (33) hold for all t < T (not only tine < ¢ < T7). Substituting these bounds into eq. (36) gives us
Vit < T,

w2z

gl 1 = 91| < [l MBS+ [aw)| [
=0(5) 0 (a) + 6o - o
Similarly, we have that ‘ g8t — g — O(nd), which proves eq. (30).

Note that for a,b € R:
2 _ 32 2 (b )2 B — (g — D)2 _ _ 2
’a b ‘ _ ‘a (a—b—a) ’ _ |2a(a — b) — (a — b)?| < 2|a b| N (|a b|)

|al

a? a? a? 7 a
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Then eq. (31) immediately follows from eq. (30).

E.11 Proof of Lemmalid

We divide Lemma I6]into the following three lemmas. Combining them together immediately gives
us the whole proof.

The first lemma below gives us the structure of W5 in the second phase and that of W under some
conditions.

Lemma 24. Under Assumption and suppose o < %. By pickingn < O (d%&) €<
\/ gEa=t, and (3 = B2, we have w.h.p. for Ty <t < T,

Vie[d] : wgﬂ) = wél) n (sign (gél)) + e(t)) ,  Where ‘eg)‘ =0(Vm),

and moreover

, O R O\ (¢ (t) _ A 1
Vield: wy =sign (w% ) A + Ry, where C(t) =0 <\ﬁ)+ da1/2) .

As for W, if for certain i.j € [d] and certain t € [Ty, T) we have

ggt) [i,j]‘ =0 (\/ﬁ) , then
Wl(tH)[i,j] = Wl(t) [i,7] — 7 (sign (g%t) [i,j]) + eg )[ }) ,  where ‘egt) [i,j]‘ =0 (V) -

The second lemma below also analyzes the structure of W; but removes the conditions in Lemma 24}

Lemma 25. Under Assumptlonl Iandl suppose o < du/f. By picking n < O( 3 ) &<

V5=, and By = (%, we have w.h.p. for Ty <t < T, Vi, j € [d], (t) [i, 7 ’ = (%) and for
any j € [d],

t 0 t t Rit) [i’j]‘ ~ 1 1
Wl( )[i,j] = sign (wéﬁ) Vj( )+ Rg )[i,j], where *————— < O (774 + — > .
’V-(t)’ dz~1

The third lemma proves the convergence of Adam at time 7.
Lemma 26. Under Assumption E|and suppose g < %. ~By pickingn < O (d%&) € <
V5=, and B2 = (3, at time T, we have that wh.p. Vi € [d] : ‘EJ(T)‘ <O (dv/nd), which implies

~ 112 ~
o] <0

E.12 Proof of Lemma 24]

The proof is based on the following lemma, which gives a coarse analysis on the magnitude of
weights and their increments per step during the second phase.

Lemma 27. Under Assumption E|and suppose o < %. By picking n < O (d%) €<
V75, and B2 = B, we have w.h.p. forall Ty <t < T,

‘Aw ‘AW(”z j]‘ < On).

ot -0 ()

Equipped with Lemma we are ready to prove Lemma We will only prove the results of ws, .

Vi, je[d: ‘ (t“)‘ >’

Moreover, we have that Vi, j € [d] : ‘w(t)

The proof for Wl(t) [i, 7] uses the same techniques.
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Wi, 4]
all 4,5 € [d]. Then we know that eq.(33) still holds, which gives us Vj € [d] : ‘Ej(t“) ~EWY| =
= O(nd).

, as well as ‘Awg) and ‘Awl(t) [i,j]’ for

Lemma [27| gives us upper bounds of ’wg)

(\f 77) Then we can use the same strategy in Lemma to prove that ‘ thH gg)

By definition, for Ty < t < T, we know that ’ Go; ‘ = Q(d\/n). Combining with the bound

‘g(tﬂ - géi) = O(nd), we know that the g( ) parts in eq.(30) and eq.(31) still hold. Then we can
use the same strategy in Sectlonto prove that the wg? part of eq. (29) still holds, which gives us
Vie[d : (iH) = wgi) (sign (gé?) + e(t)) , where ‘eg? =0 (V).

By Lemma (T3] we have that at the end of the first phase (¢t = T}),

’RQTI) 1
; . (Th) _ (0)) (T (T) S
Vield: wsy' =sign (w% ) () + RS where O @) (\/ﬁ—i- da—1/2> .

Combining with Vi € [d],Vt < T; : sign ( (¢ )) —sign ( (© )> yields that during the second phase,
fort < T, we have

5 g 1
o = O <ﬁ+ dl/2>

Vie[d] : wg) = sign (w;?)) ® 4 Rg?, where

E.13 Proof of Lemma27]

By definition of T, there exists jo € [d] such that EJ((T) < —/nd for Ty <t < T. We prove by
induction that during this period, Vi € [d] : sign (wét)) = sign (Wl(t) [4, jo]) = sign (wé?)) and
| =6(%) 6| =0 (%)

The base case (t = T}) was already proven by Lemma [23] Now suppose for some ¢ such that
Ty <t < T,forall T suchthat Ty < 7 < t, we have Vi € [d] : sign (wg)) = sign (WI(T) [i,jo]) =

that Vi, j € [d] : ‘wg

sign (w;(,l)) and that Vi, j € [d] : ’ng> =0 (i) ‘Wl(T) (4, 7] ‘ =0 (ﬁ) Using these bounds,
we get that Vj € [d] : ‘E(T)‘ < Z i1 ‘w T) [4, j]’ + |A;| = O(1), which then yields two upper
bounds ‘91 i,j ‘ = ’wQT)EJ(T) =0 (f) and ’g(T) < Z] L ‘E(T)W(T) i,] ‘ = (\/&)

By definition of T, we know that for all T; < 7 < ¢, Vi € | ’g(T) >dn = Q(¢) and that

sign (gé?) = —sign (wél)) which implies that Conditionls satisfied for Vi € [d]. At the end

of the proof of this lemma, we will show that T=6 ( Tan ) Together with the upper bound of

, we can apply Lemmato get that w.h.p. for 77 < 7 <, sign (Awéi)) = sign (wé?) and

= (:)( ). Combining with the inductive hypothesis sign (wéﬂ) = sign (wé )) gives us

t+1)‘ > ‘

‘gZi
‘Awéﬂ

that ‘w(TH

Q (ﬁ) and that sign (wgf )> = sign (wég)>

Since E](Z) < —+/nd, we have that Vi € [d] : ’ggﬂ [z’7j()]‘ = ’wgz)

‘ = ’w;)‘ + @( ). Specially, when 7 = ¢, we get the lower bound ’wQ

E("')

B | = Q(vi) = 2
and that sign (g@ [i, jo]) = —sign (wé?). That means Condition [ is satisfied for Vi € [d]

and jo. Using the same technique as when we deal with wg), we get that for 77 < 7 < ¢,
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Vi € [d] : }Wl(T'H)[i,jo]’ = ’WI(T) [i,jo]’ + O(n), sign (Wl(t+1)[i,j0]) = sign (wé?) and that

vi,j € [d, [aW {7, ]| = Ow)
Now we analyze the magnitude order of ‘thH) (t+1) [i, 7] ‘ Let’s first analyze wgﬂ) ‘
By Lemma([I3] when ¢t = T, Vi, j € [d],

‘w(Tl 4o 1 ‘W(Tl)i jo]‘ i 1

] Vit i) il VIt Gz )

27 2
Combining with the facts that for 73 < 7 < t, (TH)[Z',]'O]‘ = ’Wl(T)[i,jo]’ + ©(n) and
r+1) : WA ol :
‘w ‘ = ‘w (n) yields o (t+1)‘ = ©O(1). Since we just proved Vi € [d] :
Wy,

sign (wéﬁ )) = sign (Wl(t+1)[i,j()]) = sign (wé?), we get that

d d
(W2W1)§(t)+1) _ Z (1t+1)W(t+1)[Z jo] = ‘w(tJrl ’ ‘Wl(t“)[i,jo]‘ - o),

i=1 i=1

which gives us that ‘w;ﬂ)‘ 0, (ﬁ) Recall that we have shown ‘w(tﬂ)‘ > Q (%) then
wii] =6 (35)

Now we prove ‘W( +1)[ gl = O (ﬁ) We have proved that Ty < 7 < ¢, Vi,j € [d],
NS ‘ _ and’w +1>‘ ’w;? = O(n), then Vi, j € [d],
WG| WG] + S, (W) - WG )|
‘ étZJrl) = ‘w(Tl) +ET:T1 (T+1 ‘_ ‘
\W“ j|+ @+ 1-1)00m)
(Tl —— = o),
it (4 1= T8 ()
where the last equality uses WI(T(IT)1[3|7]| =14+ O (\/f+ 3=7). Since we already proved that
(tH)‘ = ( ) we get ‘Wl(tH ’ =0 (%)

Therefore by induction, for all ¢ in the interval [T}, T), we have Vi, j € [d] : ‘w(t)) =0 (ﬁ),
Wl(t) ‘ = (’)( ) From the proof we also get Vi € ’wQZH)‘ > ’wg) , and that
Auf)| = &), [aw i, j]| < O().

Now we verify that T = © (#) Combining Vi,j € [d] : ’wg)

Vdn
[Ty, T) ‘w(tﬂ)’ ‘w(t-) = O(n), we immediately get that T — T} = © (#) In Sectionwe
have shown that 77 = © ( Tan ) then we get T=6 (

= @)(%) and Vt €

Vdn
Vd n)
E.14 Proof of Lemma23

We prove this lemma by induction. The base case (t = T1) can be verified by Lemma [T5] Now

{13 = (%)

suppose for ¢ in the interval [T}, T'), we have Vi, j € [d],
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Fort € | ), by the proof of Lemma 27| (Section [E.13)), we know that for V7 < ¢, Vi, j € [d] :
() ( ) (T) [i, ] ’ = (\f and that ’g(T) ]’ < O( ) ’g(T) @(\[) and

7| =
that T} = © ( Van ) Then we can pick H := [31 log -2 nez and apply Lemma|l7|and Corollarylto

get that, w.h.p., forall t € [T}, T) and Vi, j € [d] the update of W7 can be written as
(L= B0 3o Lot "l ) + el ]

n
= S 55 (o8 71) sl +

WiV, 51 = WiV, 5] -

)

(t)[

where ‘eln i, 7|, eltd [i,j]’ < O(n€?). By Lemma , we have that for 1 < 4,5 < d,
[R5

oili, ) = wl) B = Osign () B + RO (i,

' . 1
gl =0 (Vi )
J

= ZﬂIgY i, j] = sign (wgz )Zﬂ%(t DET +267R(t "l 37

7=0

" N2
Using the fact that for a, b € R, |2 2b | < gla=bl | (‘“ b‘) , we get that

lal lal

(40131 = (et () B0+ )" (OB 10,

Extzfrl[ J]‘

iﬂ% (o 71 ) Z%( jt‘T) +ZﬂTqurQ (38)
=0

where =0 (\/77 + ﬁ) That yields

2
Since (c(t_T)E](t_T)) > 0, in eq. (38) we have that

T t T
’27 Oﬁ2Rg§qr 1)[Z J]’

'Zr=o B3 (c(t*r)E](t—r)) 2‘

s 1
=O<\/’7+da_1/2)~ (39)

However we cannot similarly prove that ’Zf:oﬂ R(t i, j ’ < ‘ZT o Bt T)E(t ™)

eq. (37) because c(t_T)Ej(-th) may not have the same sign for 7 = 0, 1, ..., H. To deal with eq. @)
we need to consider the two cases where ’Ef:oﬁ R(t i, j ’ < ‘ET o BTt T)E(t ™)

H - —7)r. . H T (t—T -7
‘ZT:O ﬂl _E]fl )[Za]]‘ % ‘ZT:O Blc(t )E](t : :

or

where

Casel. |1 f/snziioﬂ R 7]+ i gl| < 8] — ) I Bret BT

6 = (774 + g 1 )
d?2 4
Note that from eq. (39) we have

1 _61 ZB Rg(;qul) @ <\f do— 1/2)
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Combining with ‘eld i ]]‘ Omne?) <0 (774 +

gl
d2 "1

2
) €2, we can apply Lemmato get that
Wil 3]~ Wil ]
in
Ui
H T _r —T T T
\/ (1B X0 85 (0B ) 4 (- 8) S B R i)+ €0ling) + €
1-p sign (wéz)) Zf:o BIC(t_T)EJ(t_T) (t)
Vi . <1+e (2, J])
\/Ef—o B3 C(t—T)EJ(t77)> te
= — sign (wég)) () (1 + e(t)[ j])

where ‘egt) [i,j]‘ =0 (ni + d%I_%). Since ‘Wl(tﬂ)[z}j] - Wl(t) [z’,j]‘ = O(n), we get that
= O(n).

(1= By)sign (wh))) S BT BN 4 (1= B1) 1L BT R lis 5] + €l )
— It

Case 2. ’(1 -8 5{R(t i, §] + D[, j]‘ ‘(1 -8R, B{c(t_T)Ej(-th) where

(t—T)E(t*T)
J

H
§@<ﬁ+dall/2>(l—61)25f c
7=0

INS
|G}

1

<\/77+da1/2>J( )(1—B) ZBT( (=) Bl T))

H
(41) A 1 T (t—7)r. - 2
20 (vi+ 3t ) J D WACMER
where (i) uses Cauchy-Schwarz inequality and 32 = (3%, (ii) uses eq. (38) and (39).

elli, 1| < O(ne?) < O (i + z7a) (5 -

61(3 [4, j]D gives us

\(1%)2%5 R 5]+ el )
0+

H
(1-751) Z ﬂfc(t*T)EJ(t_T) <
7=0

gl
d2 "1

] +g)

(1 1 .,
§0<774+dg_31> Zﬁz((t i J) +elligl +¢€],

which implies

0 = -
(T,\i/ﬁ:il /)(\Zﬁz(( I )

o

~ 1
W) = Wi, ]| < O (ni - ) -
271
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Consider certain i.j € [d] and the period from T to t. Denote 7 as the set of time points when Case

1 is satisfied. By Lemma we know that n(t — T1) = O (%) which gives us

ST AW g < (t - TomO (0t + L )=o ﬁ+i
vl VAT T st) T\ @ e )

TET

By the first phase analysis, we have that
W1(T1)[@~’j] = sign (wé(z)) ij(T1) + Rng)[i,jL

(Tv) _ 1
where V; V=0 (7)
we have that

W(T1 [i, 7] + Z AW( i [i, 7] = sign (wé?)) (Vj(Tl) — Z vj(T)) + Ryli, 5],

TeT TeT

z .7 ‘ O (/T + 4). Combining with the analysis of Case 1,

where |R7[i, j]| < O (774 +

Since for 7 € T, ”U(T)
|Rr[i, j]| by

Rrlidll <0 (vt + ) (0 () + -0 ) <0 (Z v dﬂ) .

Combining the above results together yields

-

Wl(t)[i,j] =W; (T 4 Z AWlT)[z 7l Z AWlT [i, 7] Z AWIT [i, 7]
=T TET TE€T

= sign (wm) ( ZUT)> +(’)< dgl+i>
TeT

:= sign (wég)) V( ) + R(t) [i, 7], where ‘R i j]‘ <O (

S8
[T ST

By the inductive hypothesis ’Wl(t) [i,j}‘ =0 (

: )
a_1 |-
1

Therefore, we have that for any j € [d] and any 41,45 € [d],

%ﬁ))‘ =1+0 (ni + dgl—l

sign (wgl ) Vj(t) <1 +0 (77Z T d%*%))‘

with different ¢ are also roughly equal, i.e. |

) we get that ‘ v®

Vi
|71,

Tt <o

] s (o) 1 (120
R

(t)
2iy

(t)
212

By Lemma , we know that ‘wg—) =14+

O (/1 + 72277 )- Then we have for any j € [d],

W2W1 Zw t)z ) 7] Z‘w

6. ] = (4vi

Wik, 1))
e (ﬁ‘Wft)[k,j]’).

-0 (%)

where k can be any index in {1, 2, ..., d} and the last equality uses Vi € | ‘w
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Now we analyze the lower bound of ‘Wl(tH) [k, 7] ‘ Although it may decrease during some period,
we observe that once ‘Wl(t) [k, ]]‘ decreases to some value of order © (%) such that (W2W1)§t) <

A; — v/nd, ie. Ej(.t) < —+/nd, we can apply the technique in Section when analyzing
Wl(t) [i, jo] to get that ‘Wl(t) [k j}‘ will increase in the next step. This mechanism ensures a Q (%)

d
lower bound of ’WltH) [k, 4]

@] WiVl 2 6 (%)

Since k, j are arbitrary, we have proved that at time ¢ 4 1, Vi, j €

Therefore by induction, we conclude that when 7} <t < T, for Vi, j € [d],

wV%i,d)| = 0 ()-
The remaining part of this lemma has also been proved by the analysis above.
E.15 Proof of Lemma 26

() keeps increasing when ¢ < T. However, the behavior

Lemmatells us that for any ¢ € [d],

of Wl(t) [i, 7] is more complicated. The following lemma tells us that ‘Wl(t) [i, ]]‘ will increase until

Ty ;. After that ‘Wl(t) [i, ]]‘ and Ej(-t) may zigzag, but EJ@ will not fluctuate dramatically and will be
trapped in a small interval around zero.

Lemma 28. Under Assumption and suppose o < % Pickn < O (d%) €< \/d%i"_l,
and By = [3%. Consider certain coordinate j. For T1 < t < min {T, Ty, } we have Vi € [d] :

’Wl(t) [z,]]’ keeps increasing. If Ty ; < T, then for Ty ; < t < T, we will have —O (Vnd) < E](.t) <
O ().

Now we start proving Lemma At time T, denote S := { J:Ty; < T }, i.e. the set of coordinates
D <0 (vid). 1t
= ¢, which means Vj € [d] : ‘E(-T)‘ <0 \ﬁ ) then our lemma will immediately follow. If

whose E; have passed its “flip time”. By Lemma , we know that Vj € S|

S¢ = ¢, we have T = min {T,, Ty} = T, and that Vj € S° : ™) <, By the definition of T, we

know that Jig € [d] : ‘ gg;) (d\/7). Then
d o d .
TG ) Ty (T Ty (g
> BOW i, 51| = [ B W i, 51 = 3 BV W g, 5]
jese j=1 jes

+ | EP WD ig, 4| < 0 (dy/i) + dO (\/71) 9, (;a) = O (dyi).

jeSs

By Lemma we know that when Ty < t < T, for Vi, j € [d],

®) [i,j]‘ =0 (ﬁ) Since the
update per step ‘AWl(t) [i, }‘ < O(n), we know that sign (Wl(t) [i, j]) remains unchanged during
this period and sign <W1( )[ }) = sign (Wl(Tl) [i, j]) = sign (wég)) independent of j. Combining

with Vj € §¢: E]( " <0 gives us that E( )Wl(T) [io, j] for different j have the same sign. Therefore
for any jo € S¢,

230 B = 3 [ [ ]
jese JjeSe
2[00 () = (0] <0 (ava).
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Note that the above inequality holds for any j, € S¢, which means Vj € S¢ : ’EJ(T ) < O (dv/nd).
Combining with the fact that Vj € .S : ‘EJ(T)‘ <O (d\/ nd) completes the proof.

E.16 Proof of Lemma 2§

Consider certain j € [d], when ¢t < min {T, Ty, J} we have that E < —+/nd. Therefore we

can use the same argument as in Section [E.13| to prove that ‘Wl 1, ]]‘ keeps increasing, and

sign (Wl(t) [i,j]) = sign (wél)) for all ¢ € [d].

At time the “flip time” ¢ = T ;, by definition, E;t) > —+/nd. After that Ej(t) may oscillate. Now we
prove that once Ej(-t) > +v/nd (or Ej(-t) < —+/nd), after a short period EJ(-t) will decrease (or increase)

until E( <O (\/nd) (or Ej(t) >-0 («/nd)). Moreover, during this period, Ej(.t) won’t change too
much.

We first recall that when T} < t < T, Lemma.gwes us for all ¢ € [d], wétz) -0 ( ﬁ ) and
‘Wl(t) 1,] ‘ = (ﬁ) Then eq.(33) we obtained in the first phase analysis still holds, which tells

us that the change of EJ(-t) per step satisfies ‘E](-Hl) — EJ(-t) =0 (n\/&) forall Ty <t <T.

We divide the analysis into two cases, based on whether these E](-t) > /nd or EJ(.t) < —v/nd. By
Lemma , we know that when 17 < t < T, Vi € [d],

[i,j]’ =0 (%) Since the update per
step ‘AWl(t) [d, j]' < O(n), we know that sign (Wl(t) [4, j]) remains unchanged during this period
and sign (Wl(t) [i7j]) = sign (W]-Tl)[i’j}) — sign (wé?).

By the analysis of w!’ in Lemma , we have for all i € [d], w{™™ = w{!) + sign (wé‘;’)) AL,
where Ag? =7 (1 +0 (\/ﬁ))

Case 1. Consider some time point ¢ such that EJ(-t) < —+/nd. Note that for all i € [d],
'| = O (/7) and that sign (git) [z’,j}) = —sign (wé?) = —sign (wé?)).
By Lemma , for all i € [d] we have W V(i j] = Wi, j] + sign (ng) AP, §] with

‘gg 7 j‘ = le)E(t

APl j)=n(1£0 (\/ﬁ)) That gives us

d
1 1 D -
E§t+ ) — ngf )I/Vl(tJr )[Z,j] —A;

i=1

(wél) + sign ( (0)) Aéti)) (Wl(t) [i, 7] + sign (le ) A(t) [z, j]) A;

't”ﬁ&

<
I
—

'Dnﬂ&

Il
—

(wm)W(f) [i, 7] + sign ( (0)) (sz)A(i) [i,7] + Agti)Wl(t) [i,j}) + Ag?Agt) [i,j]) —A;

2

W g0 | Z (‘wu)

(t+1) (t)
= E; > LB,

AVG 1 + A0

Wil )| + a0 AV, 11)
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where (i) is because sign (wél)) = sign (Wl(t) [i,j]) = sign (wé?)). Therefore we have proved

that Ej(.t) will increase in the next step. After that for 7 > ¢ 4 1, as long as E](-T) < —+/nd, the above
analysis will hold and E](T) will keep increasing until E](»T) > —y/nd or we reach T.

Case 2. Consider some time point ¢ such that EJ(-t) > /nd. We will prove that E](-t) will decrease
after a short period, and during this period, the change of it is at most O (\/ nd).
.. . 1 .. .
By similar arguments as in Case 1, we can get that VVl(H )[ jl= Wl(t) [i, 4] — sign (wzz ) A(t 2, 7],
where Agt) [i,7]=n (1 +0 (\/ﬁ)), Then
d

BT =3l ] - 4

=1

(w? + sign (") AL)) (Wi li.g] = sien () AV, 5T) - 4,

.FH%

s
Il
—

't“ﬁ&

Il
—

(wd? WiV, 5] = sign (wf))) (wl? AP, ] = ADWOG,77) - AP AP, 5]) - 4

K2

@ () d
i) (¢

1=

1 [5,] = Ay

S ENN )P

where (%) is because sign ( (t )) = sign <W1(t) [i,j}) = sign (ng)) E](-Hl) may not be smaller
than E]( ), but we will show that after at most ¢ steps for some ¢, we will have E](.Ht‘*“) < E](t+t3).

To see this, first note that by the bounds of A{[i, j] and A, we get A [i, j] > AY) — 1O (/7).

Since ‘wg)

increases by ©(n) per step, and ‘Wl(t) [2, ]}‘ keeps decreasing, then we have either i)

after ¢ steps for some ¢, Vi € | 'wQH_t

> ‘Wl(H_t‘“) [i,j]’ + /1 or ii) we reach T.

For 1), if E;Hm < +/nd, then it’s already what we want. Otherwise we will have Agtﬂs) [i,7] =
n (1 +0 (\/ﬁ)> Hence

E(_t+t5) _ E(_t+ts+1)

_ Z (‘ (t+t

A} ] — AT

(t+ts )[ }‘ +A(t+t )A(tth )[ j})

21
>§:(‘W1w 3| (A5 = ALT) 4 Al ] + AL AT )
d

>3 (=00 (v Wl )| + i+ AL AT 5]) > o,
i=1
where the last inequality uses Vi,j € [d] : ’Wl(t“‘*)[i,j]‘ =0 (%) Therefore E§t+ts+1) <
E(.”ts) After that for 7 > ¢ + ts + 1, as long as E(T) > /nd, the above analysis will hold and E](.T)
will keep decreasing until E ) < v/nd or we reach T.

Now we prove that during these ¢, steps, the change of Ej is @) (\/nd). Since at each step the

difference |wa;| — |W1 4, 5]| will be enlarged by (n), then we know that ¢, = \/ﬁ/Q(n) =0 (%)
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Combining with the fact that for all T} < 7 < T,

)_E](T) —

o (77\/&) gives us

E;f+ts> - B <0 (V) = 0 (Vnd) .
For ii), we reach T before Vi € ‘w(“rt )‘ > ‘W(Ht i, j]’ + /1. Then we have T — t <
Vi/9(n) = O (&), which yields E]( '~ B <O (T - 1)Vd) < O (vid).

Combining the above two cases, we find that if for some ¢, E]<t) > J?Td, then after at most ¢ steps
E; will decrease and keeps decreasing until E; < v/nd or we reach T'. During these steps, F; can
increase at most O (\/@) If for some ¢, E](t) < —+/nd, then after one step it will increase and keeps
increasing until E; > /nd or we reach T'. That means once for some coordinate j, F; overshoots, it
will zigzag in a small region around zero, which is {f@ (\/ﬁ) ,O (\/ﬁ)] .

F Hessian tends to become more and more diagonal during training

In this section, we empirically demonstrate that the trend of loss Hessian in practice is to become
more and more diagonal during training. We also give a rigorous theoretical analysis on a two-layer
network under Assumption [I]and 2]

F.1 Empirical Results

Let’s first define the diagonal domination of the ¢-th coordinate at time ¢.
ot (1 _ VS (HOh3)°
dlag7 |H(t i, 1] |

To measure the diagonal domination of the whole Hessian, we need to consider the distribution of
OPT (t) for different i. Figure shows the mean and median of r3oP} (t) and 75527 (t) on the

Tdmg i iag,?
sentence classification task (see Section[d.I)). Here we chose 4 layers (Layer #6, 12, 17 and 22) and
computed the Hessians across these 4 layers. Since the number of parameters is very large, we did

the computation by random sampling. As we can see, for both 7302} (¢) and 452" (t), the trend of

their mean or median is to decrease over time, although there might be some oscillation.

9000 T T T 650 T T T
—©—SGD+M| | —e—SGD+M
—e—Adam 600 - —e—Adam

8000

7000
550
6000 r

(t)

diag
()
diag

a
=}
S}

5000 r

IS
S
S
S

mean of 7.
median of r
IS
&
g

w
S
IS}
S

2000

1000

0 500 1000 1500 2000 0 500 1000 1500 2000
Iteration Iteration

(a) Mean (b) Median

Figure 15: Mean and median of 7350} (¢) and 382" (t) for the full hessian across the four layers
(#6,12,17.22)

F.2 Theoretical Analysis

OPT
diag,?

R3%e (t) :=mean (rghy (1)) - (40)

To simplify the theoretical analysis, we consider the mean of 7 (t) over all coordinate and define
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We consider a 2-layer network under Assumption [T]and 2] and have two goals in our proof:

1. To show that Rg’if:g (t) after training is smaller than that before training (¢ = 0).

2. Note that in our setting (see in Assumption , the Hessian is a (d? +d) x (d? +d) matrix. For
a completely “uniform” matrix with the same size, we have that R9% (£) = © (Vd? + d) =
©(d). Hence our second goal is to show that the Rg7}
than O(d).
Theorem 2. Consider the ratio ROFT(t) defined in eq. {#0). Under Assumptionand we have

diag
that before training (t = 0), with high probability,

(t) after training is on lower order

RT(0) > O (d‘*a*%) . (41)

For SGD+M defined in eq. (3). For any p > 0, by picking the same hyperparameters as in The-
orem |Z| Jfor Tsep,1,Tscp,2 mentioned in Theorem |Z| we have with constant probability, for any
t € [Tsep,1, Tsop,2],

RSG2(t) < O (V) + 4, “2)
where the trend of ¢V is to decrease over time and ¢(T5»2) < O ( 1 ) = o(d).

dar/2—1

For Adam defined in eq. (3). For any p > 0, by picking the same hyperparameters as in Theorem[]] for
Tadam,1 5 Tadam,2 mentioned in Theorem we have with high probability, for any t € [Tagum.1, Tadam,2),

RAdam () < O (\/E) O} (43)

where the trend ofr(t) is to decrease over time and r(Tadan.2) < 1) ( ,,1,1 ) =o0 (\/g)
d =z

F.3 Proof of Theorem 2]

Lemma 4.3 of [Kaw16] gives us the following forms of Hessian.
Forany k € {1,2,..., H + 1}, we know that Vcc(w, ) (Voeew,) L(W)) equals
(Wers1 o W) TWag oo Wis1) @ (Wi—y o . W) (Wi—q ... W)T,
and for k € {2,3,..., H + 1},
Voeewi) (Voeewr) L(W))
=(CT(Wyy1.. Wi1) @ (Wi_p... W)T)
H Wiy oo W) @ 1[Iy, @ (r(Wergn oo Wig)) 1 Lay, @ (r(Wergn - Wai1)) an s
where r = (Wgy1 ... Wp — AT, C =Wy Wy - Wa.
For the 2-layer linear network, write the Hessian as
T
| g ]
then we have that
Hyy = (WIW,) @ I; € REXE
Hay = WiWT € R4,
Hyy = WI@WT + I @ (WaW; — A)T € RT 4,

Intuitively, before training the elements of W7 and W5 are very close to zero, and WolW; — A ~ —A.
Since the elements of A are ©(1), we know that the magnitudes of elements of Hs; are much bigger
than those of Hy1 and Hos.

After training, for both SGD+M and Adam, WoW; — A = 0. Then Ha; ~ (W2)T @ (W1)T and the
magnitudes of its elements are no longer much larger than those of H11 and Hyo. From the formula
of Hy, we know that all the diagonal entries are nonzero, and among the d* — d? off-diagonal entries,
there are only d* — d* nonzero entries, which helps us to bound RGHT (t).
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F.3.1 Proof of eq. (41)

Let’s first analyze the weights and Hessian before training (¢ = 0). For ease of notation, we omit the
superscript ().

For the i-th row where 1 < i < d, i.e. the i-th row of the submatrix [Hyy HZ,], we have

ZHZ[i] Zszlj +Z:Hzljy

J#i j#i
d
> Z H 5.4 = (woWili, §] + (WaWi — 4),)% = ©(d).
7j=1
On the other hand, for the diagonal elements, we have w.h.p.

d
. o . . ~ 1
il = o] = W13 = Y W20 O ().
=1
Then we have that for 1 <17 < d,

]7’51 Z.] :Q(d‘la—%).
| H[i, ]| O (W)

For the (id + k)-th row where 1 <14 < d,1 < k < d, i.e. the ((i — 1)d + k)-th row of the submatrix

[Ho1 Hii], we have

d

o Hligl= Y Hulli—1d+k g1+ Y H3[(i— 1)d+k,j]

jid+k JA(i=1)d+k j=1
> H3 (i = 1)d + ki) = (woWali, k] + (Wa W1 — A)i)” = O(1).
On the other hand, for the diagonal elements, we have w.h.p.

(1
|H[id + k,id + k]| = [Hu[(i = 1)d + k, (i = 1)d + k]| = w3; < O (dza) :

Then we have that for 1 <1:¢ < d,1 <k <d,
\/Z- sarr H2[, ] Ol 3
ok T D VR ey
|H[id + k,id + k]| (9(
Taking the average, we obtain that before training, i.e.

da—3 2 2a
R (0) = il d2):ddQ(d )=Q(d4a—3),

F.3.2 Proof of eq. (42)

The proof is based on the lemma below.
Lemma 29. Suppose the weight matrices have the following structure:

W1:’LL'UT+R1,
Wy = cu” + RY,
whereV1 <ij<d:. il <5 [Bal <5 5¢(0,1).

[uivj] [cui]
Then we have for 1 < i < d,
S e H2[i, ] _1+d <1+ Ie] ) S
[H[i,d|  —1-90 [v]l2
andfor1 <i<d,1 <k <d,

uj 1E]2
(1= 0)%uf[lv]3’

> jotiarn H2[i ] _149 <1 |'Uk|> S u? | By

|Hid+ k,id+ k]| — 1—-0 |c| u? (1—10)2c2u?’
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Now we are ready to prove eq. (@2).

By the analyses in Section we know that for ¢ € [Tsop,1, Tsop,2], the weights obtained by GD
with momentum satisfy

Wl(t) = (M) OT + Rgt),
Wi = cOyuTT 4 BT,

where Tsgp,1 = 71 and

Vi<ij<d iRit)[Z’J]i<(’5 ) iRé? < O(ep)
<i,j<d: u§73>u§t> < O(eo), ‘c&t>u§73) < O(eo

Here ¢ is defined in Deﬁnition Since u("*) doesn’t depend on time ¢ in the period (Tscp. 1, Tsop 2]
we write u(T1) as u for ease of notation.

Hence by Lemma 29} when ¢ € [Tsap,1, Tsop,2), we have for 1 <i < d,

Vi (HOL. )’ < 140l (1+ |c<f>\> ST 0
|H‘” [i.4]] — O(c0) [o® ], uf (1- @(eo))2 u? o] 2

(t) d 2 E®
— O 1 + ic(t) i 23—21 ’U,] + O ! |i22 ,
[0 uj uf [0

(44)
andfor1 <i:<d,1 <k <d,
V (HO[, ) 2 EY
X jiarr (HO[, j]) 1 + O(e Z =1Y%; k
A 2 N 2
o b il = ot (e )V (1= 0e)) (e0)*u?
W\ [ (B
=011
* |c®] u? (c®)? u2
(45)
By Lemma we have u = X +Y where X, ¢ € [d] are i.i.d Gaussian random variables and w.h.p.,
: Yil _5(_1
Y d] : <O =) := 04y, 46
which yields that
d 2 /~d X2 2
(3 : — 5 -
|u2| —\1- 5a;y ‘Xl| ’ u? —\1- 6wy X12

By the proof in Section m we know that for ¢ € [Tsap.1, Tsop.2), Vi € [d] : vgt), ¢®) are positive.
RO
m further gives us that for ¢ € [Tsgp,1, Tsop,2), w.h.p. Vk € [d] : 5 =

c(t)
E ((:;” = O(1). Combining with eq. (7)), we obtain

(t) d 2 d x2
<1+|\‘c<t>|’| ) Eim 4 o (V2N
v

The induction in Section
G} ( f) which yields

u? | X ’
(t) d (48)
2
i :1 uj <0 2j=1%;
|c(t)‘ 2 - ‘X1|



By the proof in Section we know that for ¢ € [Tsgp.1, Tsop,2). Vi € [d] vi(t), ¢®) are positive
and monotonically increasing. On the other hand, the proof in Section [D.2]and [D.9|tells us that w.h.p.
| E® |, (resp. Vk € [d], E,(:) ‘) decreases from ©(1/d) (resp. ©(1)) when t = Tsgp.1 to O(v/eod)
E
(c("))zu?

i

1=,

oo

(resp. O(\/% )) when ¢ = Tsgp 2. Therefore, the trend of is to decrease over

> and
2

time, and when ¢t = Tsgp,2, we have w.h.p.

vkeld: |BY| =o@), |BY

=0 (\/E(Td) . (49)

Moreover, when ¢ = Tsgp 2, the inequality in eq. (26) becomes equality, i.e. ¢?||ul3 = © (\/E) and

vj e [d]: ul3? = 6 ().

Using u = X + Y and eq. (@6)), we have
. 1
IXIE=0(va). vicl:IxBe (7). = IXIIvE=o(va).
Vd
which together with the second inequality in eq. @7) yields

LI < : )2 L —e L?:lX?
ufvll3 = \1 =02y ) X7[0]3 X3d )’
Lo (1 V(B

2u? = \1=06, ) X2 X2Vd )

Combining with eq. @9), we get that
d 2 (t) d 2
u? o5 X (c®) u? = X3 d

Substituting eq. (@8) and (50) into eq. @) and {@3) gives us

VE HOB ) S

|H(t)[i,i]| | X

(®)

Vi<i<d: + @y

d 2

. . ¢ Xz
where the trend of qﬁ) is to decrease over time and ngGD’Z) <0 <’)_(121 -/ 60) .

‘We also have

Vi<i<d,1<k<d: \/|I§<J;[Z+i(k]{z(;)[j£|)2 o ZEJXJZ + 9,
where the trend of qé? is to decrease over time and ngGD’Z) <0 <jl)‘(12x;2 . 63) .
Hence
Tigug™(t) = O clzzil; le; g 2 1+ d éqg? * d2id :1 a5/
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where the trend of ¢(*) is to decrease over time and

d d 2 d d 2
. X d Z._ X €
(TgGD 2) < ijl J 3 j=1 J . £
I —d2+di:10< X2 \/%>+d2+dzo< X? d)
1 Z 1X2 Z 1X2 €0
< I= = ] = 1.
o (X P vad) -0 (33 :

Denote o2 as the variance of X; for i € [d]. By concentration of chl-squared distribution, we know
that with probability at least 1 — ¢ for § > 0,

d
E:Xi2 < o?d+ a0 (\/dlog}S) .

i=1

By Lemmain Appendix we know that with constant probability & S ﬁ =0 (Llogd).

2
Then with constant probability, 5 >2¢_| X2 <1i (Zle ITll) = O (% log®d). Hence
d d 2 2
1 Zj:l X; ~ 1X; .
L — = 1 _OWd =0 (d?
d= 1] b Z (T

Therefore with constant probability,
RSGM () = O (V) + 4,

where the trend of ¢(*) is to decrease over time and ¢(T5v2) < O (d\/ ) For any p > 0, by
d<

picking the same hyperparameters as in Theoreml we have € O (di) and hence ¢(Ts0:2) <

@ (dp/Qfl) - O(d)
F.3.3 Proof of eq. (43)

By the analyses in Section we know that for ¢ € [TAdam’l, TAdam,z], the weights obtained by
Adam satisfy

Wl(t) = uo®T 4 Rgt),
WQ(t) =Wyt ¢ Rgt)T,
where Vi € [d] : u; = s1gn(w§?)) € {£1} and
iy

<.

] =

N R, W

Vi<ij<d: A <6:=0(nt+—7),

u»v(-t) d2"1
L]

o
2

Hence by Lemman 29| when ¢ € [Tadam,1: TAdam,2], We have for 1 < i < d,

Vi fﬂ“ﬂ><1w<uu%> ST il P

> 2 2
|H®, ]| 1-4 [v®]2 u; (1—38)%u2 v®]]; 1)
(t) E®
o (1 ot ) i+ (o)
2 v\ 2
andfor1 <i<d,1 <k <d,
|HO[id+ k,id+ k)| — 1-6 |c®| u? (1—6)% (c®)?u2
) ) (52)
=01+ Vd+0 5
| ()‘ (C(t))

Recall the following facts of Adam.
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(A) By Lemmal 15| we know that for t € [Tagum,1,T1] (Where T} is defined in Definition ),

whp. Vk € [d ] : (t) = ¢® = 5t — tin). Specially, when t = Tadam,1, Vk € [d] :
v(t) =) = d%. Lemmaandtell us that for ¢ € [Tl,TAdamQ w.h.p. Vi,7 € [d] :

|[W1i, 4] (ﬁ) s Jwag| = (ﬁ)’ which gives us Vk € | ’ ’ = ( ) and
|C | = (ﬁ . That means when t € [Tadgam,1, TAdam,2], Yk € [d] ,f)’ and |c(t)|

(t)
; L0 6() and %) — 61y, 0L _ 6 (2
increase from — to @(ﬁ) and Eg] o(1), ol = e) (ﬁ)

o
d2

(B) Lemmaandtell us that w.h.p. ||E® ||, (resp. V& € [d],
(resp. ©(1)) when ¢ = Tagam,1 to O (dz\/ﬁ) (resp. O (d\/nd)) when ¢ = Txdam,2-

E,(:) ‘) decreases from O(d)

E® B®
Combining (A) and (B), we get that the trend of ||“ m )Hz and (| (f))L is to decrease over time, and
when ¢ = Trgam,2, we have w.h.p.
t
P o
<O (i), 5 <0 (a/nd). (53)
[0, (c®)

Substituting (A) and eq. (33) into eq. (31) and (32) gives us w.h.p.,

. \/Zj;éi (HO[, 5])° )
vISi<d: = <o (V) +rf),

where the trend of ") is to decrease over time and i) < O (d?y/m).

We also have

\/Z]7ézd+k H( 7] )2
|H®[id + k. id + k]|

Vi<i<d1<k<d: g@(\/g)Jrrg)’

where the trend of 73! is to decrease over time and r{ ™) < O (d*v/nd).

Hence R4%™(t) = O (ﬂ) + e Y, r 4 e D ri) =0 (ﬂ) +7® where the trend

of 7® is to decrease over time and

d
Z@ (d*yn

7 (Tadam,2) <

30 (i) <0 (i)

For any p > 0, by picking the same hyperparameters as in Theorem 1| we have nd* < o (d%,) and

hence r(Taam2) < O ( 1 ) =0 (\/&)
a5

F.4 Proof of Lemma 29
By the assumed weight structure, we get that

Vi € [d] (1= 6)*(cui)? < (w2i)® < (14 6)%(cus)?,
(1= 8)*(ua)?[[vll3 < 1WAl JII5 < (1 +6)*(wi)?|l0]l3.
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For the i-th row where 1 < i < d, i.e. the i-th row of the submatrix [Hao HJ,], by triangle
inequality, we have

d2
ZH2ZJ ZHQQZJ]‘F ZHgl[jai]
j=1

J#i J#i
> (Wi, ], Walj, ) szj > Wi,k + || Ell2
VE j=1 k=1

szj +El2-

< AIWalillz | /D WL, 03 +
J#i

Then we have that for 1 < i < d,

> i H2 i, j] Wi, ] 2 (WL A13 + ZJ 1 w2j 1E]2

[H ] WAL 1 WAL ITB
d

Va#wa M, [Xaud Bl

Wil AG AT
¢@+ay.zﬁh]w;2+¢a+wy,@234u?+ £
SV a=e el =02 “wlol} T T 0)Pu?lol
L (1 ) Yiaw , |E],
BERCANMTP RO S T

For the (id + k)-th row where 1 <4 <d,1 < k < d, i.e. the ((i — 1)d + k)-th row of the submatrix
[Hy1 Hji], by triangle inequality again, we have

d
> H2ij) < > H{(i-Vd+k ]+ | > HZ[(i - 1)d+k, j]

jAid+k jA(i—1)d+k j=1
d
< ngzng + ngin[j, k] + |Ex|
J#i i=1

WP, k] | + | Bkl

= lwal | [ wh; +
i

Then we have that for 1 <i <d,1 <k <d,

\/Ej;éidJrk H2[i, J] |wa | 7751 wzg + \ Z_] 1 W,k |Ek|
U) w

|H[id + k, zd—l—k| -

w2, o W2j7k' E
2]7522 27 + 2]71 21[ ]+| ;:‘

d
¢u+w,2w§@+¢u+w R v B

—\V (1-6)2 c2u? (1-0)2  u? (1—6)%cu?
d

< 140 1+M Zj:ﬂ? | Bk

~1-4 |c| u? (1—10)2c2u?’
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G Connection between diagonal of loss Hessian and weights

The partial derivative at W; of the cost function for each i is given by:

Vw, LW) =W, .. . Wh Wy Wy ... Wy — AW W, (54)

In our experiments, we were interested in the diagonal elements of the hessian. These are given by:
Vvoas VW LOV))ap = Vs, , Wiy - Wiy Wi Wa . Wi — AW L Wy

for each possible ¢, a, b. For ease in notation, define for each ¢, the quantities M; := WZH . Wg 11
and N; := W{ ... WT . Then we have the following lemma.

Lemma 30. The diagonal elements of the hessian of the cost function are given by:
VW) as (Vw, LOV))ap = (MM )a o (N Ni)op

for each possible i, a, b.

Proof. We have:
Vw,L(W) =W, .. . Wk (WygpaWgy ... Wy — AW W,

K2 K2

= Mi(WH+1WH AN W1 — A)Nz
= MiWHJ’_lWH AN WlNl — MIYNl

This implies that:
Vw)as (Vw,LOW))ap = Vwyy,, MiWae Wy ... WiN; — MY N;),
= V(Wi)u,b (MlWH+1WH e WlNi)aJ) 5

where the last step follows since M; and NV; are not functions of W;.

Since ]\4z = Wirl—;-l ce Wngl’ Ni = WlT ce Wijll’ by deﬁning Ci = MiWH—i-lWH PN Wi+1 =
M;MT and D; := W;_y ... WoWN; = NI'N; we have that:

Vaw VW, LW))ap = Vwy),, (CiWiDi)ap,

where C; and D; are not functions of ;. Now, Equation 74 in the Matrix Cookboo shows us that
for any matrices A and X we have:

VX (XA)” = 5imAnj.

mn

Note that W; € R%*%i-1then we can apply this to obtain that:
Vwaw (VWi LWV))ap = Vwy),, (CiWiDi)a b

= V(W’L)ab

d;
Z(Ci)a,k<WiDi)k,b]

k=1

&

= Eod
HMS” HMH
= —

(Ci)akVwyyo, WiDi)rp

(Ci)ak0ak(Di)pp

Q

i)a,a(Di)b,b
iMZ‘T)a,a(NiTNi)b,b

X

This completes the proof. O

Bhttps://www.math.uwaterloo.ca/ hwolkowi/matrixcookbook.pdf

75


https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

For ease of notation, let’s now drop the superscript OPT and (¢) and write Rgl;{l (t) as Rpeq,1 and
RI?S 5(t) as Rued,2. For a 2-layer linear network, H = 1. Consider the Hessian w.r.t W7, we have

M, MT i = WQT Wy and V. 1T N is an identity matrix. Under Assumption we know that W, is a row
vector, which can be denoted as Wa = [wa1, was, ..., waq, ]. Then we have

max; (w% ) 2

MM, . = w2  (NTN =1, = Rpgi=-—n2Y_,
( 1 1)a,a UJQW( 1 1)b,b ) ed,1 median(wgi)Q

Similarly, consider the Hessian w.r.t. W5, we have that M7 M. 1T is an identity matrix and NlT Ny =
Wy WlT . Therefore,

max; || Wi, :]||3

M MDY, NIN )y = [|[W , R = , :
( 1 1)7 ( 1 1>bb H 1[ H|2 = med,2 med1an||W1[i,:]||§

Hence we have related the uniformity of diagonal Hessian to that of weight matrices. In the detailed
analysis, for both GD and Adam, we can prove that I¥; converges to an approximately rank 1 matrix.
The following lemma allows us to use this rank 1 structure to compute Ried,1 and Fmed,2.

Lemma 31. Suppose W, € R4*? and Wy € RY*? have the following structure:
Wy = uwv” + R,
Wo = cu® + Ry,

where u € R% v € R? Ry € R4 Ry € R4 and that

| R1li, ]| | Rai
|u;v;] |cu;]

V1<ij<d: <,

<4, 0€(0,1).

Then we have
(1-6)? max;u? (1+6)? max;u?

R 5 R, € : . ’ : .
med 1y Simed 2 = (TE5)2 median w2’ (1—0)2  median u?

Proof. Let’s first consider Rpeq,1. We have
Vie[d:(1—06)>%*(cu)? <wd < (146)(cu;)?
= (1-96)? mlax(cul) < maxwzl < (1+90)? m?X(cui)2
(1 — 6)?median (cu;)? < median w3, < (1 4 §)*median (cu;)?,
which yields

(1-10)?  max;u? R _ max; w3, < (14+6)?  max; u?
(1+06)2 medianu? =~ ™'~ median w2, =~ (1—6)% median u2’

Similarly, for Rpeq,2. We have that
Vi, j € [d] : (1= 6)*(usv;)* <WF[i,j
= (1=0)uf|lvll3 < [Wali, 1]
= (1-90)? mf:Lxu2||'u||2 < maxHWl[z, ]

(1+0)%u|vl3

] < (1+0)%(uiv;)?

I3 <

13 < (14 6)? maxu?|v|3
2

2

(1 — 6)?median u?||v||3 < median ||W;[i,:]]|3 < (1 + §)*median u?||v||3,

which yields
(1—-9)2 | max; u?||v3 Rty — max; ||W1li, |3 (1 +9)?2 | max; u?||v3
(1+96)2 medianu?||v[]3 ~— ™% median||[Wy]i,:]|3 ( —6)?  median u?||v|3’

That means

1—6)? max;u?
( ) i <Rmed,2§

_ 1+46)? . max; u?
(14 6)? median u? ~ 2

1—-0)? median u;

—~|—~
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H Auxiliary lemmas

Lemma 32. Let A = LY X7, A, := LXXT, g\ = Wy, L(W®), k = 1,2. Denote A®, R

) ,k = 1,2 as the corresponding batch versions at time t. Let Ml( )

(t)

Wa,

and g, = max; ; ‘Wl(t) [i,j]‘ and
MQ(t) = max;

Vi, j € [d],

. Under Assumption we have with probability at least 1 — é, for¥Vt <T and

2
30,91 - o110, < @M (M) o VT + MV VT,

’ g(t) ()

2
957 | < d* (Ml(t)) Mét)av aT + dMl(t)O' d2T

Proof. By Assurnption and Chebyshev’s inequality, we have for fixed ¢, j € [d] and ¢t < T,
2

~ 2 ~
P(|A0 -4 >2) <55 P (|A00I] - Awalis )] > 2) < 5.
Applying the union bound gives us
N Tdo?
P(Eie[d},HtST: ‘AE”—Ai >/\> < A;" :
P Td*c?
P(3ijeld3t<T: |00 - Awlil] > ) < =5,

which gives us with probability at least 1 — 2, for V¢ < T',Vi, j € [d],

‘AE” ~ A| < oV, ‘ngfg [i, 5] — Auali, j]‘ < odVdT.

Now we are ready to bound g( ) (t) fork=1,2andt <T.
Note that for all ¢ < T and Vi € [d],

d
(w7 m%) | = EZ%NW”L' < 3 ][50 < v

Then we have with probability at least 1 — %, for all ¢ < T and Vi € [d],

(W Wi (R = ) )

d
SERTEDY
7 = 7
<MY M oVaT.

Combining with g(t) g%t) = WQ(t)T (Wz(t)Wl(t) ([ng - Am) - ([1(’5) - A)), we get that with
probability at least 1 — l, forallt < T and Vi,j € [d],

(WO (3 - n,0)) |+

A1) = Avalji ]

~(_t) A,

t
370,91 - 91,41 < ) =4

o9

2
< @m? (Mgt)) oVdT + MY oV T.

Similarly, note that gé? - gétl) = (WQ(t)Wl(t) (]\;2 - Am> - (/I(t) - A)) Wl(t)T, we then have
that with probability at least 1 — %, for all ¢t < T and Vi, j € [d],

d
(0 z‘wmw G — Am))j"Wl(t)[i,j](JrZ‘fig-t)—Aj"Wl(t)[i,j]‘
j=1

’921 - 921

<dt (Mft)) MO oAl + dMY o VT
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Lemma 33. Consider two sequences {a)};>¢, {b® };>0, which satisfy

t
a(t) _ (1 o ﬂ) ZBTb(tiT)?B c (071)

7=0

Suppose Nt <t : ‘b(t)’ < B, then for any € > 0, the following truncated version
H
é(t) _ (1 _ B) Z BTb(t—T)
7=0

with H > ﬁ log % =0 (%) satisfies

‘a(t) —a®| <e.

Proof. We have that
t

<(1-p) >, B B<BpIH.

T=H+1

(1=8) > s

T=H+1

’aa) _ a@)‘ <

To make it less than e, it suffices to choose H > log( %)/ log 3.
Since 3 € (0,1), we know that log # < # — 1 < 0. We also have log 5 < 0. Then it suffices to

choose I B 1 B 1 B 1
s losle/B) log(e/B) log:Q( )
€

-1 = logp 1-p

Y

1-p5
O
Lemma 34. Suppose a,b,c,eq,ep,e. € R;b>0,¢> 0satisfy b+ e, + e. > 0, |eq| < dlal,|ep] <
b, lec] < 82c® with 0 < § < 1, then we have
a—+ e, a

Vbte,tecte Vhte

(14+ R), where|R|= O(0).

Proof. We have
a—+ eq e

a a a a
Vb+er+e+c Vbte Vbtert+e.+c Vbte Vbhtepte.+c

o a 14 \/5+c 1+ea \/Z;Jrc
Vb+e Vb+ep,t+e.+c a +Vb+e,te.+c
q1 q2

Define R := g1 + ¢2. The term |¢; | can be bounded by

\/l;—\/b—l—eb—l—ec
o] = Vb+ep,+e.+c

_ ley + el
(Vb +ep+ec+c) (\/B—i-s/b—i-eb—i-eC)
les| lec|

< +
(\/b—&—eb—i—ec—l—c)(\/I;—i—s/b—i—eb—l—eC) (\/b—l—eb—l—ec—l—c)(\/B—i—\/b—i—eb—&—ec)
< les] LV lec| . Vel

T (Vbtertect+c)vb ¢ Vb+vbte,te.

< les] 4 Vel

T (Whtetectovh  Vb+vbtep teo

q3 qa
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where |g3| can be bounded by

(i) b Vb Vb
lgs] < < < = 0(9).

(Vb ¥ ey, — e +e)vVb ~ /b1 =6) 4+ ¢(1—=08) ~ /b(1=0)

Here the denominator of (i) uses b+ e, > b(1 —4§) > 0and \/z +y > x — /|y| when
z>0,z+y>0.

Now let’s bound |q4]. If e, > 0, we have e, = |e.| and |g4| < \/@ 1since b+ e, > b(1 —d) > 0.

ec

If e. < 0, note that b+ ep, + e, > 0, we have |e.| < b+ b, < b(1 + ¢), which yields |g4| < ¥ lecl _

Vb
O(1). Combining the above bounds give us |¢1| < |g3| + &|qa| = O(9).
On the other hand, |g2| can be bounded by
b b
plco——Y0re o5 re o)
Vb+ey — /e +¢ b(1—96)+c(1—90)
Then [R| < |q1| + |g2| = O(9) 0

Lemma 35. Suppose X1, Xo, ..., Xy are i.i.d Gaussian with mean 0 and variance o2, then for
0<d< é, we have with probability at least 1 — 6,

1
X2 > 2| C logd — Cyloglog =
g%xd i =20 ( 1 10g 20g0g5

for some C,Cs > 0.

Proof. Tt suffices to assume that 0> = 1 and prove that w.p. at least 1 — §, maxj<j<q X7 >
Cilogd — Csloglog %.

First, by the lower bound of Gaussian tail, there exists «, 5 > 0 such that P(| X;| > z) = 2P(X; >
z) > ae= P for z > 0. Then by i.i.d., we have

d
P(max | X;| <) =P (_ﬂ{lXil < x})

d
[IP(Xi| < @) = (1 =P(Xi| > 2))

?
(1- ae*mz)d
ex

p(_daeiﬂaﬁ):

IN

IN

where the last inequality uses 1 — z < e~ for z € [0, 1]. Let exp(—dae=52") = §, we get that w.p.
atleast 1 — 6,

1 1
>0/ = — - .
1%?<Xd|XZ| \/ (log(ad) log log 6)

Then we have w.p. at least 1 — 4,

2
max X? = | max |[X;|] >
1<i<d 1<i<d 1)

| =

<log(ad) — loglog 1) .

O

Lemma 36. Suppose X1, Xo, ..., X4 are i.i.d Gaussian with mean 0 and variance o2, then we have

with constant probability,
1. 1 1
- <O =logd].
d; 1 Xl — (0' o )
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Proof. It suffices to assume that 02 = 1 and prove that with constant probability, é Zle i )%il <
O (logd).

Consider X; for some fixed . Since X; ~ N(0,1), we have P(|X;| < t) < % Then we know
that with probability at least 1 — © (d~1!), | X;| > & for some C' > 0. Then by union bound, with
constant probability, Vi € [d] : | X;| > &.

Now we split the interval [%, 1] into several subintervals Z, = {i : |X;| € [27%71 27%]} for
k=0,1,..,[log, 2] — 1. Let pp = P(|X;| € [27%~1,27¥]), we know that |Z,| ~ Binomial(d, px)
and p < C - 2=k=1 Then by the concentration of binomial variables, we have w.p. at least 1 —d P
forp > 0, [Zy| = O (dpx + Vdprlogd +logd) = O (d-z—k—l + «/d-2*k*110gd+logd>.
Then we have

ZIXI_

1€Ly

d
(d—|— \/m+ ok+1 logd) , k=0,1,..., [logy 6] —1.

Therefore, with constant probability,

d [log, &1-1
+
; | Xi k=0 ZEXI: 1Xil |);;1 |X |
Mogy &1

0 (d +/d- 2 log d + 28+ log d) +d

( log, O) (\/dlogd - (V2)ltos: %”02) 4 2log2 &1+ 1100 4 4 ¢

MQ

= O (logd). O

which means with constant probability, % ZZ 17X
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