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ABSTRACT

Knowledge distillation is an effective approach to leverage a well-trained network
or an ensemble of them, named as the teacher, to guide the training of a student
network. The outputs from the teacher network are used as soft labels for super-
vising the training of a new network. Recent studies (Müller et al., 2019; Yuan
et al., 2020) revealed an intriguing property of the soft labels that making labels
soft serves as a good regularization to the student network. From the perspec-
tive of statistical learning, regularization aims to reduce the variance, however
how bias and variance change is not clear for training with soft labels. In this
paper, we investigate the bias-variance tradeoff brought by distillation with soft
labels. Specifically, we observe that during training the bias-variance tradeoff
varies sample-wisely. Further, under the same distillation temperature setting, we
observe that the distillation performance is negatively associated with the num-
ber of some specific samples, which are named as regularization samples since
these samples lead to bias increasing and variance decreasing. Nevertheless, we
empirically find that completely filtering out regularization samples also deterio-
rates distillation performance. Our discoveries inspired us to propose the novel
weighted soft labels to help the network adaptively handle the sample-wise bias-
variance tradeoff. Experiments on standard evaluation benchmarks validate the
effectiveness of our method. Our code is available at https://github.com/
bellymonster/Weighted-Soft-Label-Distillation.

1 INTRODUCTION

For deep neural networks (Goodfellow et al., 2016), knowledge distillation (KD) (Ba & Caruana,
2014; Hinton et al., 2015) refers to the technique that uses well-trained networks to guide the train-
ing of another network. Typically, the well-trained network is named as the teacher network while
the network to be trained is named as the student network. For distillation, the predictions from the
teacher network are leveraged and referred to as the soft labels (Balan et al., 2015; Müller et al.,
2019). Soft labels generated by the teacher network have been proven effective in large-scale em-
pirical studies (Liang et al., 2019; Tian et al., 2020; Zagoruyko & Komodakis, 2017; Romero et al.,
2015) as well as recent theoretical studies (Phuong & Lampert, 2019).

However, the reason why soft labels are beneficial to the student network is still not well explained.
Giving a clear theoretical explanation is challenging: The optimization details of a deep network
with the common one-hot labels are still not well-studied (Nagarajan & Kolter, 2019), not to mention
training with the soft labels. Nevertheless, two recent studies (Müller et al., 2019; Yuan et al.,
2020) shed light on the intuitions about how the soft labels work. Specifically, label smoothing,
which is a special case of soft labels based training, is shown to regularize the activations of the
penultimate layer to the network (Müller et al., 2019). The regularization property of soft labels is
further explored in (Yuan et al., 2020). They hypothesize that in KD, one main reason why the soft
labels work is the regularization introduced by soft labels. Based on the assumption, the authors
∗These authors contributed equally to this work.
†Work done while the author was a research intern at Horizon Robotics.
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design a teacher-free distillation method by turning the predictions of the student network into soft
labels.

Considering that soft labels are targets for distillation, the evidence of the regularization brought
by soft labels drives us to rethink soft labels for KD: Soft labels are both supervisory signals and
regularizers. Meanwhile, it is known that there is a tradeoff between fitting the data and imposing
regularizations, i.e., the bias-variance dilemma (Kohavi & Wolpert, 1996; Bishop, 2006), but it
is unclear how bias and variance change for distillation with soft labels. Since the bias-variance
tradeoff is an important issue in statistical learning, we investigate whether the bias-variance tradeoff
exists for soft labels and how the tradeoff affects distillation performance.

We first compare the bias and variance decomposition of direct training with that of distillation with
soft labels, noticing that distillation results in a larger bias error and a smaller variance. Then, we
rewrite distillation loss into the form of a regularization loss adding the direct training loss. Through
inspecting the gradients of the two terms during training, we notice that for soft labels, the bias-
variance tradeoff varies sample-wisely. Moreover, by looking into a conclusion from (Müller et al.,
2019), we observe that under the same temperature setting, the distillation performance is nega-
tively associated with the number of some certain samples. These samples lead to bias increase and
variance decrease and we name them as regularization samples. To investigate how regularization
samples affect distillation, we first examine if we can design ad hoc filters for soft labels to avoid
training with regularization samples. But completely filtering out regularization samples also de-
teriorates distillation performance, leading us to speculate that regularization samples are not well
handled by standard KD. In the light of these findings, we propose weighted soft labels for distil-
lation to handle the sample-wise bias-variance tradeoff, by adaptively assigning a lower weight to
regularization samples and a larger weight to the others. To sum up, our contributions are:

• For knowledge distillation, we analyze how the soft labels work from a perspective of bias-
variance tradeoff.
• We discover that the bias-variance tradeoff varies sample-wisely. Also, we discover that

if we fix the distillation temperature, the number of regularization samples is negatively
associated with the distillation performance.
• We design straightforward schemes to alleviate negative impacts from regularization sam-

ples and then propose the novel weighted soft labels for distillation. Experiments on large
scale datasets validate the effectiveness of the proposed weighted soft labels.

2 RELATED WORKS

Knowledge distillation. Hinton et al. (2015) proposed to distill outputs from large and cumber-
some models into smaller and faster models, which is named as knowledge distillation. The outputs
for large networks are averaged and formulated as soft labels. Also, other kinds of soft labels have
been widely used for training deep neural networks (Szegedy et al., 2016; Pereyra et al., 2017).
Treating soft labels as regularizers were pointed out in (Hinton et al., 2015) since a lot of helpful
information can be carried in soft labels. More recently, Müller et al. (2019) showed the adverse
effect of label smoothing upon distillation. It is a thought-provoking discovery for the reason that
both label smoothing and distillation are exploiting the regularization property behind soft labels.
Yuan et al. (2020) further investigated the regularization property of soft labels and then proposed a
teacher free distillation scheme.

Distillation loss. One of our main contributions is that we improve the distillation loss. For adap-
tively adjusting the distillation loss, Tang et al. (2019) pays attention to hard-to-learn and hard-to-
mimic samples, and the latter is weighted based on the prediction gap between teacher and student.
However, it does not consider that the teacher may give an incorrect guide to the student, under
which the prediction gap is still large and such a method may lead to the performance being hurt.
Saputra et al. (2019) transfers teacher’s guidance only on the samples where the performance of the
teacher surpasses the student, while Wen et al. (2019) deals with the incorrect guidance by probabil-
ity shifting strategy. Our approach is different from the above methods, in terms of motivations as
well as the proposed solutions.

Bias-variance tradeoff. Bias-variance tradeoff is a well-studied topic in machine learning (Kohavi
& Wolpert, 1996; Domingos, 2000; Valentini & Dietterich, 2004; Bishop, 2006) and for neural
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networks (Geman et al., 1992; Neal et al., 2018; Belkin et al., 2019; Yang et al., 2020). Existing
methods are mainly concerned with the variance brought by the choice of network models. Our
perspective is different from the previous methods since we focus on the behavior of samples during
training. In our work, based on the results from Heskes (1998), we present the decomposition of
distillation loss, which is defined by Kullback-Leibler divergence. Besides, our main contribution is
not to study how to theoretically analyze the tradeoff, but how to adaptively tune the sample-wise
tradeoff during training.

3 BIAS-VARIANCE TRADEOFF FOR SOFT LABELS One-hot Label

Soft LabelLabel set B

Label set A

Bias

Variance

Figure 1: Bias and variance.

Soft labels play the role of supervisory signals and regularizations
at the same time, which inspires us to rethink soft labels from the
perspective of the bias-variance tradeoff. We begin our analysis
with some mathematical descriptions. For a sample x labeled as i-th
class, let the ground-truth label be a one-hot vector y where yi = 1
and other entries are 0. Then for x and softmax output temperature
τ , the soft label predicted by the teacher network is denoted as ŷtτ
and the output from the student is denoted as ŷsτ . The soft label
ŷtτ is then used for training the student by the distillation loss, i.e. Lkd = −τ2

∑
k ŷ

t
k,τ log ŷsk,τ ,

where ŷsk,τ , ŷ
t
k,τ means the k-th element of the student’s output ŷsτ and the teacher’s output ŷtτ ,

respectively. With the above notations, the cross-entropy loss for training with one-hot labels is
Lce = −yk log ŷsk,1.

We now present the bias-variance decomposition for Lce and Lkd, based on the definition and no-
tations from Heskes (1998). First, we denote the train dataset as D and the output distribution on
a sample x of the network trained without distillation as ŷce = fce(x;D). For the network trained
with distillation, the model also depends on the teacher network, so we define the output on x as
ŷkd = fkd(x;D, T ), where T is the selected teacher network. Then, let the averaged output of ŷkd

and ŷce be ȳkd and ȳce, that is,

ȳce =
1

Zce
exp(ED[log ŷce]), ȳkd =

1

Zkd
exp(ED,T [log ŷkd]), (1)

where Zce, Zkd are two normalization constant. Then according to Heskes (1998), we have the
following decomposition for the expected error on the sample x and y = t(x) is the ground truth
label:

errorce = Ex,D [−y log ŷce] = Ex,D

[
−y logy + y log

y

ȳce
+ y log

ȳce

ŷce

]
= Ex[−y logy] + Ex

[
y log

y

ȳce

]
+ ED

[
Ex

[
y log

ȳce

ŷce

]]
= Ex[−y logy] +DKL(y, ȳce) + ED[DKL(ȳce, ŷce)]

= intrinsic noise + bias + variance,

(2)

where DKL is the Kullback-Leibler divergence. The derivation of the variance term is based on the
facts that log ȳce

ED[log ŷce] is a constant and Ex[y] = Ex[ȳce] = 1. Detailed derivations can be found from
Eq. (4) in Heskes (1998). Next, we analyze the bias-variance decomposition of Lkd. As mentioned
above, when training with soft labels, extra randomness is introduced for the selection of a teacher
network. In Fig. 1, we illustrate the corresponding bias and variance for the selection process of
a set of soft labels, which are generated by a teacher network. In this case, a high variance model
indicates the model (grey point) is closer to the one-hot trained model (black point), while a low
variance model indicates that the model is closer to other possible models trained with soft labels
(red points). Although for KD there are more sources introducing randomness, the overall variance
brought by Lkd is not necessarily higher than Lce. In fact, existing empirical results strongly
suggest that the overall variance is smaller with KD. For example, students trained with soft labels
are better calibrated than one-hot baselines (Müller et al., 2019) and KD makes the predictions of
students more consistent when facing adversarial noise (Papernot et al., 2016). Here, we present
these empirical evidence as an assumption:
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Assumption 1 The variance brought by KD is smaller than direct training, that is,
ED,T [DKL(ȳkd, ŷkd)] 6 ED[DKL(ȳce, ŷce)].

Similar to Eq. (2), we write the decomposition for Lkd as

errorkd = Ex[−y logy] +DKL(y, ȳce) + Ex

[
y log

(
ȳce

ȳkd

)]
+ ED,T [DKL(ȳkd, ŷkd)]. (3)

An observation here is that ȳce converges to one-hot labels while ȳkd converges to soft labels, so
ȳce is closer to the one-hot ground-truth distribution y than ȳkd, i.e., Ex

[
y log

(
ȳce

ȳkd

)]
> 0. If

we rewrite Lkd as Lkd = Lkd − Lce + Lce, then Lkd − Lce causes that the bias increases by
Ex

[
y log

(
ȳce

ȳkd

)]
and the variance decreases by ED[DKL(ȳce, ŷce)]− ED,T [DKL(ȳkd, ŷkd)].

From the above analysis, we separate Lkd into two terms, and Lkd−Lce leads to variance reduction,
and Lce leads to bias reduction. In the following sections, we first analyze how Lkd − Lce links to
the bias-variance tradeoff during training. Then we analyze the changes in the relative importance
between bias reduction and variance reduction during training with soft labels.

3.1 THE BIAS-VARIANCE TRADEOFF DURING TRAINING

It is known that bias reduction and variance reduction are often in conflict and we cannot minimize
bias and variance together. However, if we consider the change of bias and variance during the
training process, the importance of tuning the tradeoff also changes during training. Specifically,
shortly after the training of the network starts, the bias error dominates the total error and the variance
is less important. As training goes on, gradients of reducing the bias error (induced by Lce) and
reducing the variance (induced by Lkd − Lce) can be of the same scale for some samples, then we
need to balance the tradeoff because reducing one term is likely to increase another one. Therefore
for soft labels, we need to handle the bias-variance tradeoff in a sample-wise manner and take the
training process into consideration.

To study the bias-variance tradeoff during training, we consider the gradients of bias and variance
reduction. Let z be the logits output of the student on input x and zi is i-th element of it, then
we are interested in ∂(Lkd−Lce)

∂zi
. For simplifying analysis, we are concerned with the gradients on

the ground-truth related logit, that is, the sample x is labeled as i-th class. Mathematically, for the
gradients of variance reduction, we have

∂(Lkd − Lce)

∂zi
= τ(ŷsi,τ − ŷti,τ )− (ŷsi,1 − yi) = τ

(
ezi/τ∑
k e

zk/τ
− ŷti,τ

)
−
(

ezi∑
k e

zk
− yi

)
, (4)

where ŷti,τ denotes the i-th element of the teacher’s prediction, i.e., ŷtτ . The term Lkd−Lce is easy to
understand when τ = 1 since the gradient now becomes yi− ŷti,1. Meanwhile, for the bias reduction,

we have ∂Lce

∂zi
= ŷsi,1− yi, so ∂Lce

∂zi
and ∂(Lkd−Lce)

∂zi
always have different signs, leading to a tradeoff.

If ∂Lce

∂zi
is much higher than ∂(Lkd−Lce)

∂zi
, the bias reduction dominates the overall optimization direc-

tion. Instead, if ∂(Lkd−Lce)
∂zi

becomes higher, the sample is used for variance reduction. Interestingly,
we discover that under a fixed distillation temperature, the final performance is worse when more
training samples are used for variance reduction, which will be introduced in the next section.

3.2 REGULARIZATION SAMPLES

Our analysis starts with a conclusion from Müller et al. (2019): if a teacher network is trained with
label smoothing, knowledge distillation into a student network is much less effective. Inspired by the
phenomenon, we gather the impact of bias and variance during training with different distillation
settings. Let a = ∂Lce

∂zi
and b = ∂(Lkd−Lce)

∂zi
, then as introduced before, we use a and b to represent

the impact of bias and variance, respectively. If we have |b| > |a| for a sample, we name the
sample as a regularization sample since the variance dominates the optimization direction. From
the collected data, we find that the number of regularization samples is closely related to distillation
performance.
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Table 1: We count the number of regularization samples with different distillation settings on
CIFAR-100. The teacher-student network pair is WRN-40-2 (Zagoruyko & Komodakis, 2017) and
WRN-16-2. Results are averaged over 5 repeated runs. The temperature column means the temper-
ature for distillation and the label smoothing column means whether the teacher network is trained
with label smoothing trick.

Baseline Top-1 Acc Teacher: 76.55 w/ label smoothing, 75.61 w/o label smoothing
Student: 73.26

Temperature Label smoothing? Student Top-1 Acc Number of regularization samples

τ = 2
7 74.79 15379
3 74.62 25235

τ = 4
7 74.92 17709
3 74.59 24775

τ = 6
7 75.10 17408
3 74.46 24538
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Figure 2: The number of regularization samples with respect to training epochs. The distillation
settings are the same as the settings in Tab. 1.

In Tab. 1, we present the count of regularization samples for a student network trained by knowledge
distillation. For distillation with a temperature higher than 1, which is the common setting, we
observe that if the teacher network is trained with label smoothing, more samples will be involved in
variance reduction. Also, distillation from a teacher trained with label smoothing performs worse,
which is consistent with Müller et al. (2019). Therefore, we conclude that for distillation with soft
labels, the regularization samples during training affect the final distillation performance.

Moreover, we plot the number of regularization samples with respect to different training epochs in
Fig. 2. As demonstrated in the plots, the number of such samples increases much faster when using
the teacher trained with label smoothing for distillation. For regularization samples, the gap of their
number between with and without label smoothing becomes larger for more training epochs. These
observations verify our motivation that the bias-variance tradeoff varies sample-wisely and evolves
during the training process.

From the above results, we conclude that bias-variance tradeoff for soft labels varies sample-wisely,
therefore the strategy for tuning the tradeoff should also be sample-wise. In the next section, we set
up ad hoc filters for soft labels and further investigate how regularization samples affect distillation.

3.3 HOW REGULARIZATION SAMPLES AFFECT DISTILLATION

The results presented in the last section suggest that we should avoid training with regularization
samples. Hence, we design two straightforward solutions and then find that totally filtering out
regularization samples deteriorates the distillation performance.
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Figure 3: Computational graph of knowledge distillation with our proposed weighted soft labels.

Table 2: Study of the impact on distillation for regularization samples. Loss function presented here
is for the loss on a specific sample. Results are classification Top-1 accuracy. We follow the settings
used in Tab. 1 and set τ = 4. Results are averaged over 5 runs.

Teacher: 75.61; Student with direct training: 73.26; Student with standard KD: 74.92

Setting Loss function Student performance Performance gap

to direct training to KD

Mask KD loss on
the label related logit Lce + L∗kd 73.51 +0.25 -1.41

Excluding regularization samples
{
Lce, if |a| < |b|
Lce + Lkd, if |a| > |b|

74.59 +1.33 -0.33

Only on regularization samples
{
Lce, if |a| > |b|
Lce + Lkd, if |a| < |b|

73.86 +0.60 -1.06

The first experiment we conduct is to manually resolve the conflicting gradient on the label related
logit, as defined in section 3.2. Specifically, we apply a mask to the distillation loss Lkd such
that ∂Lkd

∂zi
= 0 where i is the label. Consequently, the loss for this sample now becomes L∗kd =∑

k 6=i ŷ
t
k,τ log ŷsk,τ . The motivation behind the masked distillation loss is that we only transfer

the knowledge of resemblances among the labels. Another experiment is to figure out what role
in distillation those regularization samples will play. To investigate this, we carry out knowledge
distillation on two subsets of samples: 1) Lkd is not valid on regularization samples, and 2) Lkd is
valid only on regularization samples.

The results of the two experiments are presented in Tab. 2. We can observe that all of the three
approaches are not as good as the baseline knowledge distillation performance, but are better than
the direct training baseline. First, since masking Lkd loss on the label related logit results in worse
performance compared to standard KD, we cannot resolve the tradeoff by applying a mask on the
ground truth related logit. Then, from the second experiment, we can see that filtering out regulariza-
tion samples deteriorates the distillation performance. Moreover, the result of the third experiment
is higher than the direct training baseline, indicating that regularization samples are still valuable for
distillation. The above results motivate us to think that regularization samples are not fully exploited
by standard KD and we can tune the tradeoff to fulfill the potential of regularization samples.

4 WEIGHTED SOFT LABELS

From the last section, we realize that the bias-variance tradeoff varies sample-wisely during training
and under fixed distillation settings, the number of regularization samples is negatively associated
with the final distillation performance. Yet, discarding regularization samples deteriorates distil-
lation performance and distilling knowledge from these samples is better than the direct training
baseline. The above evidence inspires us to lower the weight of regularization samples.

Recall that regularization samples are defined by the relative value of a and b, we propose to assign
importance weight to a sample according to a and b. However, since Lkd is computed with the
hyperparameter temperature, a and b are correlated with the temperature and thus bring difficulty
to tuning the hyperparameter. To make the weighting scheme independent of the temperature hy-
perparameter, we compare a and b with temperature τ = 1. Note that when τ = 1, a = ŷsi,1 − yi
and b = yi − ŷti,1, so we compare ŷsi,1 and ŷti,1 instead. Finally, in the light of previous works that
assign sample-wise weights (Lin et al., 2017; Tang et al., 2019), we propose weighted soft labels for
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Table 3: Top-1 classification accuracy results on CIFAR-100. Comparison results are quoted from
Tian et al. (2020). We report our results over 5 repeated runs.

Same architecture style Different architecture style

Teacher WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 resnet32x4 resnet32x4 WRN-40-2

Student WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

Teacher 75.61 72.34 74.31 74.31 79.42 79.42 79.42 75.61
Student 71.98 69.06 69.06 71.14 72.50 70.5 71.82 70.5

FitNet 72.24 69.21 68.99 71.06 73.50 73.59 73.54 73.73
AT 72.77 70.55 70.22 72.31 73.44 71.73 72.73 73.32
SP 72.43 69.67 70.04 72.69 72.94 73.48 74.56 74.52
CC 72.21 69.63 69.48 71.48 72.97 71.14 71.29 71.38
VID 73.30 70.38 70.16 72.61 73.09 73.38 73.40 73.61
RKD 72.22 69.61 69.25 71.82 71.90 72.28 73.21 72.21
PKT 73.45 70.34 70.25 72.61 73.64 74.10 74.69 73.89
AB 72.38 69.47 69.53 70.98 73.17 73.55 74.31 73.34
FT 71.59 69.84 70.22 72.37 72.86 71.75 72.50 72.03

FSP n/a 69.95 70.11 71.89 72.62 n/a n/a n/a
NST 72.24 69.60 69.53 71.96 73.30 74.12 74.68 74.89
KD 73.54 70.66 70.67 73.08 73.33 74.07 74.45 74.83

CRD 74.14 71.16 71.46 73.48 75.51 75.11 75.65 76.05

Ours 74.48 72.15 72.19 74.12 76.05 75.46 75.93 76.21

knowledge distillation, which is formally defined as

Lwsl =

(
1− exp

(
−

log ŷsi,1
log ŷti,1

))
Lkd =

(
1− exp

(
−L

s
ce

Ltce

))
Lkd, (5)

where i is the ground truth class of the sample. The above equation means that a weighting factor
is assigned to each sample’s Lkd according to the predictions of the teacher and the student. In this
way, if compared to the teacher, a student network is relatively better trained on a sample, we have
ŷsi,1 > ŷti,1, then a smaller weight is assigned to this sample. In Fig. 3, the whole computational
graph of knowledge distillation with the proposed weighted soft labels is demonstrated. Finally,
we add Lwsl and Lce together to supervise the network, i.e., Ltotal = Lce + αLwsl, where α is a
balancing hyperparameter.

5 EXPERIMENTS

To evaluate our weighted soft labels comprehensively, we first conduct experiments with various
teacher-student pair settings on CIFAR-100 (Krizhevsky et al., 2009). Next, we compare our method
with current state-of-the-art distillation methods on ImageNet (Deng et al., 2009). To validate the
effectiveness of our method in terms of handling the bias-variance tradeoff, we conduct ablation
experiments by applying weighted soft labels on different subsets.

5.1 DATASET AND HYPERPARAMETER SETTINGS

The datasets used in our experiments are CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng
et al., 2009). CIFAR-100 contains 50K training and 10K test images of size 32 × 32. ImageNet
contains 1.2 million training and 50K validation images. Except the loss function, training settings
like learning rate or training epochs are the same with Tian et al. (2020) for CIFAR-100 and Heo
et al. (2019) for ImageNet. For distillation, we set the temperature τ = 4 for CIFAR and τ = 2 for
ImageNet. For loss function, we set α = 2.25 for distillation on CIFAR and α = 2.5 for ImageNet
via grid search. The teacher network is well-trained previously and fixed during training.

For comparison, the following recent state-of-the-art methods are chosen: FitNet (Romero et al.,
2015), AT (Zagoruyko & Komodakis, 2017), SP (Tung & Mori, 2019), CC (Peng et al., 2019), VID
(Ahn et al., 2019), RKD (Park et al., 2019), PKT (Passalis & Tefas, 2018), AB (Heo et al., 2019),
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Table 4: Top-1 and Top-5 classification accuracy results on ImageNet validation set. All training
hyperparameter like learning rate and training epochs are in accordance with (Heo et al., 2019).

Teacher: ResNet-34→ Student: ResNet-18

Method Top-1 Acc Top-5 Acc

Teacher 73.31 91.42
Student 69.75 89.07

KD 70.67 90.04
AT 71.03 90.04

NST 70.29 89.53
FSP 70.58 89.61
RKD 70.40 89.78

Overhaul 71.03 90.15
CRD 71.17 90.13

Ours 72.04 90.70

Teacher: ResNet-50→ Student: MobileNet-v1

Method Top-1 Acc Top-5 Acc

Teacher 76.16 92.87
Student 68.87 88.76

KD 70.49 89.92
AT 70.18 89.68
FT 69.88 89.5
AB 68.89 88.71

RKD 68.50 88.32
Overhaul 71.33 90.33

CRD 69.07 88.94

Ours 71.52 90.34

FT (Kim et al., 2018), FSP (Yim et al., 2017), NST (Huang & Wang, 2017), Overhaul (Heo et al.,
2019) and CRD (Tian et al., 2020).

5.2 MODEL COMPRESSION

Results on CIFAR-100 In Tab. 3, we present the Top-1 classification accuracy of our method
and comparison methods. The results of comparison methods are quoted from Tian et al. (2020).
Teacher-student pairs of the same and different architecture styles are considered. For pairs of same
architecture style, we use wide residual networks (Zagoruyko & Komodakis, 2017) and residual
networks (He et al., 2016). For pairs of different architecture style, residual networks and ShuffleNet
(Zhang et al., 2018) pairs are chosen for experiments. As shown in the table, for distillation with both
same and different architecture style, our method reached new state-of-the-art results. Specifically,
our method outperforms standard KD by a large margin, which verifies the effectiveness of our
method.

Results on ImageNet In Tab. 4, we compare our method with current SOTA methods on Ima-
geNet. Note that for the ResNet34 → ResNet-18 distillation setting, the result of CRD is trained
10 more extra epochs while ours is the same as other methods. For ResNet-50 → MobileNet-v1
distillation setting, NST and FSP are not chosen for comparison as the two methods require too
large GPU memories, so we include the accuracy of FT and AB reported in Heo et al. (2019) for
comparison. Our results outperform all the existing methods, verifying the practical value of our
method.

5.3 ABLATION STUDIES

Table 5: Performance on different subsets
with soft labels and our weighted soft la-
bels. RS means regularization samples.
Results are averaged over 5 runs.

Subsets Standard KD Weighted

Only on RS 73.86 74.46
Excluding RS 74.59 75.35

Weighted soft labels on different subsets. Recall
that we propose weighted soft labels for tuning sample-
wise bias-variance tradeoff, it is still unclear whether
the improvements come from a well-handled sample-
wise bias-variance tradeoff. To investigate this issue,
we compare the performance gain of weighted soft la-
bels on different training subsets. Similar to the settings
used in Tab. 2, we apply weighted soft labels on two
different subsets: only the regularization samples and
excluding regularization samples. In Tab. 5, we show
the results on subsets of only regularization samples and excluding regularization samples. From
the significant improvements, we can see that our method can not only improve performance on the
RS subset, the improvements on excluding RS subset is also significant. We conclude that weighted
soft labels can tune sample-wise bias-variance tradeoff globally and lead to an improved distillation
performance.

8
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Table 6: Distillation using weighted soft
labels and teacher trained with label
smoothing (denoted as LS?). Results
are averaged over 5 runs.

τ LS? Standard KD Weighted

4 7 74.92 75.78
4 3 74.59 75.60
6 7 75.10 75.74
6 3 74.46 75.42

Distillation with label smoothing trained teacher.
Our exploration of bias-variance tradeoff starts with the
conclusion made in Müller et al. (2019): a teacher net-
work trained with the label smoothing trick is less effec-
tive for distillation. It is worthwhile to study whether the
conclusion remains true for distillation with our weighted
soft labels. As discussed before, we hold the opinion that
too many regularization samples make the distillation less
effective. Since our weighted soft label is proposed to
mitigate the negative effects of the regularization sam-
ples, with the same settings from Tab. 1, we conduct com-
parison experiments in Tab. 6 to see if the negative effects still exist. It is evident that weighted soft
labels significantly improve the distillation performance, especially for distillation from the teacher
trained with label smoothing. Besides, using the teacher trained with label smoothing still performs
worse than that without label smoothing, which again verifies the conclusion drawn by Müller et al.
(2019).

6 CONCLUSION

Recent studies (Müller et al., 2019; Yuan et al., 2020) point out that one important reason behind
the effectiveness of distillation is the regularization effect brought by being soft. In this paper, we
rethink the soft labels for distillation from a bias-variance tradeoff perspective. The tradeoff varies
sample-wisely and we propose weighted soft labels to handle the tradeoff, of which the effectiveness
is verified with experiments on standard evaluation benchmarks.
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Figure 4: Visualization of the resemblances introduced by soft label regularizers: (a) VGG-19
(Teacher) → VGG-16 (Student), (b) ResNet-50 (Teacher) → ResNet-18 (Student). And seman-
tic similarity between label names: (c) LCH similarity (Pedersen et al., 2004), (d) WUP similarity
(Pedersen et al., 2004). Darker areas denote larger values.
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A APPENDIX

A.1 VISUALIZATION OF THE RESEMBLANCES INTRODUCED BY SOFT LABEL REGULARIZER

In Sec 3.1, we propose to study ∂(Lkd−Lce)
∂zi

during the training process. When τ = 1, we show

that ∂(Lkd−Lce)
∂zi

equals yi − ŷti,1. As yti,τ is the output from the teacher network and computed by
a linear mapping of the activations in the teacher’s penultimate layer, the regularization indicates
that the student should follow the learned the resemblances between classes (Hinton et al., 2015;
Müller et al., 2019). Still, two questions are unclear: 1) what the resemblances are and 2) whether
the regularization still indicates resemblances if τ is set to 4, a widely adopted hyperparameter (Tian
et al., 2020).

Towards answering the questions, we visualize the value of gradient vector ∂(Lkd−Lce)
∂z concerning

each class. Specifically, on ImageNet (Deng et al., 2009) training set and τ = 4, we calculate the
average value of ∂(Lkd−Lce)

∂z for each class. Let M be the matrix of values with the ij-th entry
Mij means averaged ∂(Lkd−Lce)

∂zi
for class j. Since

∑
iMij = 0, diagonal elements are ignored for

visualization. The results are visualized in Fig. 4. We find that plotting the common correlation
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Table 7: Intermediate states between excluding and only on regularization samples

(a) CIFAR100 (WRN-40-2→WRN-40-1 with KD)
Percentage of excluded regularization samples.

100% 75% 50% 25%

74.59 74.63 74.72 74.87
Percentage of adding non-regularization samples

0% 25% 50% 75%

73.86 74.12 74.47 74.71

(b) CIFAR100 (WRN-40-2→WRN-40-1 with weighted soft labels)
Percentage of excluded regularization samples

100% 75% 50% 25%

75.35 75.48 75.61 75.72
Percentage of adding non-regularization samples

0% 25% 50% 75%

74.46 74.79 75.18 75.53

matrix heatmap is ambiguous, because the matrix to be visualized is of large size (1000 × 1000)
with a large variance. By treating each entry Mij as a vertex and then constructing a mesh for
the matrix, we apply subdivision (Loop, 1987) to the mesh for smoothing the extreme points and
finally rendering the mesh by ray-tracing package PlotOptiX. We can observe the several facts from
the figures: 1) Comparing the sub-figure (a) and (b), we can see that for distillation resemblances
implied by regularizers are similar across different teacher-student pairs. 2) Comparing (ab) with
(cd), we can see that the resemblances are consistent with the semantic similarity of image class
names.

In a word, for τ = 4, the variance reduction brought by soft labels still implies resemblances among
labels, which are consistent with the semantic distance of class names. In the next section, we will
analyze how bias-variance tradeoff changes when training with soft labels.

A.2 INTERMEDIATE STATES BETWEEN EXCLUDING AND ONLY ON REGULARIZATION
SAMPLES

To further investigate the phenomenon about regularization samples, we conduct experiments to
show the intermediate states between excluding and only on regularization samples. Two settings
are considered here: First, we gradually exclude regularization samples during training, from ex-
cluding all regularization samples to excluding 25% regularization samples; Second, we keep all
regularization samples and then gradually add non-regularization samples. Since we judge a sample
is regularization or not according to the training loss, we cannot pre-define a sample set such that a
certain percentage samples are kept or dropped. Therefore, we propose to conduct these experiments
by assigning a probability to whether backward the loss computed with regularization samples. For
example, if during training, a sample is marked as regularization sample according to the value of
a and b, we backward the loss of this sample by a probability p = 0.5. In this way, we can get the
performance of excluding 75% regularization samples. In Tab. 7, we first present result with KD in
(a) and then present result with weighted soft labels applied in (b). We can observe that weighted
soft labels are indeed balancing the sample-wise, not on dataset scale, bias and variance.

A.3 COMBINING WITH RKD (PARK ET AL., 2019).

To investigate how the weighted soft labels can be applied to the variants of KD, we conduct an
experiment of combining RKD (Park et al., 2019) with our weighted soft labels. Relational knowl-
edge distillation measures the L2 distance of features between two samples or the angle formed by
three samples as knowledge to transfer. In other words, the knowledge in RKD is measured by
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Table 8: Combining weighted soft labels with RKD (Park et al., 2019).

Distillation settings WRN-40-2→WRN-16-2 WRN-40-2→WRN-40-1 resnet56→ resnet20

Teacher 75.61 75.61 72.34
Student 73.26 71.98 69.06
RDK 74.12 73.34 70.25

WSL + RKD 74.65 73.89 70.73

Table 9: Comparison to other weighting forms. (Setting: CIFAR100, WRN-40-2→WRN-40-1)

α 2.0 3.0 4.0

Sigmoid baseline 74.13 73.97 73.29
Ours 74.38 74.12 73.46

the relations between sample pairs. It is no longer sample-independent, which is different from the
weighted soft labels applied to KD which can assign the weights sample-wisely. We currently take
the averaged weighting factors of the involved sample pairs when calculating the distance/angle ma-
trix. The results on CIFAR-100 are presented in Tab. 8 (averaged over 5 runs). As can be observed
from the table, the weighted soft label applied to RKD still brings improvements, though not that
big compared with WSL applied to KD. Also, we believe that it is an important future direction to
explore the applications to more variants of KD.

A.4 OTHER VARIANTS OF WEIGHTING.

In the work, the weighting scheme is defined as
(

1− exp
(
−L

s
ce

Lt
ce

))
, which is inspired by Lin et al.

(2017); Tang et al. (2019). The basic idea is to convert L
s
ce

Lt
ce

into a value in [0, 1], so that the weights of
regularization samples are lower than those non-regularization samples. A straightforward baseline
is that we can use the Sigmoid function to convert L

s
ce

Lt
ce

into a value in [0, 1]. Note that L
s
ce

Lt
ce

is always
bigger than 1, so the weight needs scaling and can be defined as 2

1+exp(−Ls
ce

Lt
ce

)
− 1. In Tab. 9, we

present the comparison between adopted weighting form and the Sigmoid baseline. We can see that
as long as we can adaptively tune the sample-wise bias-variance tradeoff, the performance is better
than KD, i.e., without weighted soft labels.Therefore, although the proposed weighting form is not
mathematically optimal, the not-too-big or not-too-small weights for these regularization examples
are not hard to tune. These results verify our main contribution that there is sample-wise bias-
variance tradeoff and we need to assign weights to the regularization examples.

A.5 ABLATION ON α.

In Tab. 10 We first tune the value of α on CIFAR100, with four values {1, 2, 3, 4} tested. Then we
test with three values in [2, 3] in (b). Finally, we tune α on ImageNet in (c). As a conclusion, the
results are not very sensitive to α and the cost of searching α in our work is not expensive.

A.6 RESULTS ON MULTINLI

To further validate our method, we conduct experiments on an NLP dataset MultiNLI (Williams
et al., 2018). In this setting, the teacher is BERT-base-cased with 12 layers, 768 Hidden and 108M
params. The student is T3 with 3 layers, 768 Hidden and 44M params. Besides, we follow the
training setting in Sun et al. (2019). In Tab. 11, we present the result comparisons of standard KD
and our weighted soft labels.
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Table 10: Ablation on α.

(a) CIFAR100 (WRN-40-2→WRN-40-1)
α 1 2 3 4

Top1 73.67 74.38 74.12 73.46

(b) CIFAR100 (WRN-40-2→WRN-40-1)
α 2.25 2.5 2.75

Top1 74.48 74.34 74.21

(c) ImageNet (ResNet-34→ResNet-18)
α 2 2.25 2.5

Top1 71.91 71.96 72.04

Table 11: Results on MultiNLI.

Teacher (BERT-12) Student (BERT-3) KD (BERT-3) Ours (BERT-3)

Results reported by Sun et al. (2019) 83.7 74.8 75.4 -
Our replications 83.57 75.06 75.50 76.28
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