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ABSTRACT

In this paper, we consider model-free federated reinforcement learning for tabular
episodic Markov decision processes. Under the coordination of a central server,
multiple agents collaboratively explore the environment and learn an optimal policy
without sharing their raw data. Despite recent advances in federated Q-learning
algorithms achieving near-linear regret speedup with low communication cost,
existing algorithms only attain suboptimal regrets compared to the information
bound. We propose a novel model-free federated Q-learning algorithm, termed
FedQ-Advantage. Our algorithm leverages reference-advantage decomposition
for variance reduction and adopts three novel designs: separate event-triggered
communication and policy switching, heterogeneous communication triggering
conditions, and optional forced synchronization. We prove that our algorithm
not only requires a lower logarithmic communication cost but also achieves an
almost optimal regret, reaching the information bound up to a logarithmic factor
and near-linear regret speedup compared to its single-agent counterpart when the
time horizon is sufficiently large.

1 INTRODUCTION

Federated reinforcement learning (FRL) is a distributed learning framework that combines the
principles of reinforcement learning (RL) (Sutton & Barto, 2018) and federated learning (FL)
(McMahan et al., 2017). Focusing on sequential decision-making, FRL aims to learn an optimal
policy through parallel explorations by multiple agents under the coordination of a central server.
Often modeled as a Markov decision process (MDP), multiple agents independently interact with an
initially unknown environment and collaboratively train their decision-making models with limited
information exchange between the agents. This approach accelerates the learning process with low
communication costs. Some model-based algorithms (e.g., Chen et al. (2023)) and policy-based
algorithms (e.g., Fan et al. (2021)) have shown speedup with respect to the number of agents in terms
of learning regret or convergence rate. Recent progress has been made in FRL algorithms based on
model-free value-based approaches, which directly learn the value functions and the optimal policy
without estimating the underlying model (e.g., Woo et al. (2023)). However, limiting our focus to
tabular MDPs, most existing model-free federated algorithms do not actively update the exploration
policies for local agents and fail to provide low regret. A comprehensive literature review is provided
in Appendix B.

1.1 FEDERATED Q-LEARNING: PRIOR WORKS AND LIMITATIONS

In this paper, we focus on model-free FRL based on the classic Q-learning algorithm (Watkins, 1989),
tailored for episodic tabular MDPs with inhomogeneous transition kernels. Specifically, we assume
the presence of a central server and M local agents in the system. Each agent interacts independently
with an episodic MDP consisting of S states, A actions, and H steps per episode.

Let T denote the number of steps for each agent. Under the single-agent setting of the episodic MDP,
Domingues et al. (2021) and Jin et al. (2018) established a lower bound for the expected total regret
of Ω(

√
H2SAT ). An algorithm is considered almost optimal when it achieves a regret upper bound

1
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of Õ(
√
H2SAT )1 for large values of T . Multiple model-based algorithms (e.g., Zhang et al. (2023))

have been shown to be almost optimal. Research on provably efficient model-free algorithms began
with Jin et al. (2018) and was further advanced by Bai et al. (2019); Zhang et al. (2020); Li et al.
(2021). Specifically, Zhang et al. (2020); Li et al. (2021) proposed almost optimal algorithms that
utilized reference-advantage decomposition for variance reduction.

For the federated setting, the information bound naturally translates to Ω(
√
H2SAMT ), allowing

us to define almost optimal federated algorithms similarly. However, the literature on federated
model-free algorithms is quite limited. Bai et al. (2019) and Zhang et al. (2020) proposed concurrent
algorithms where multiple agents generate episodes simultaneously and share their original data
with the central server. These designs achieved low policy-switching costs O(

√
H3SAT ) and

O(
√
H2SAT ) respectively but incurred a high communication cost of O(MT ). Zheng et al. (2024)

proposed federated algorithms with near-linear regret speedup compared to Jin et al. (2018) and Bai
et al. (2019) and logarithmic communication cost, but they only achieved a suboptimal regret of
Õ(
√
MH3SAT ). This raises the following question:

Is it possible to design an almost optimal federated model-free RL algorithm that enjoys a
logarithmic communication cost?

1.2 SUMMARY OF OUR CONTRIBUTIONS

We answer this question affirmatively by proposing the FedQ-Advantage algorithm to achieve the
almost optimal regret and the logarithmic communication cost. Our contributions are summarized
below.

• Algorithmic design. In FedQ-Advantage, the server coordinates the agents by actively updating
their policies, while the agents execute these policies, collect trajectories, and periodically share
local aggregations with the server. We adopt upper confidence bounds (UCB) to promote exploration
and use the reference-advantage decomposition when updating the Q-function. The algorithm
design features the following elements that are key to achieving the almost optimal regret.
(1) Aligned round-wise communication and unaligned stage-wise updates. We design a new
mechanism based on event-triggered communication and policy switching, both of which are
triggered when specific conditions are satisfied. This structure divides the learning process into
aligned communication rounds, which are grouped into stages. These stages are unaligned across
different state-action-step tuples. Communication takes place after each round, while policy
switching occurs only at the end of each stage. This mechanism accommodates the unaligned
stage design in Zhang et al. (2020), which is not accommodated in Zheng et al. (2024). During
communication, local agents share the round-wise aggregated sums of function values over visits to
each tuple rather than entire trajectories. The central server then constructs global estimates within
the reference-advantage decomposition framework, maintaining low communication costs.
(2) Heterogeneous event-triggered Communication. An agent terminates its exploration and
requests communication in a round when the number of visits to any state-action-step tuple reaches
a threshold, which guarantees sufficient exploration under restrictions. We adopt a heterogeneous
design for the threshold that encourages more visits in the early rounds of a stage and limits the
visits in later rounds to form desired stage renewals. This differs from the condition in Zheng et al.
(2024) that always poses strict limits.
(3) An optional forced synchronization mechanism. Under this mechanism offered by FedQ-
Advantage, when one agent triggers the communication condition, the central server terminates
the exploration for all agents and initiates a new round. This approach enhances robustness to
heterogeneity in agents’ exploration speeds and eliminates waiting time. In the absence of forced
synchronization, the central server waits for each agent to individually meet the communication
condition, thereby reducing the number of communication rounds required.

• Performance guarantees. FedQ-Advantage provably achieves an almost optimal regret and
near-linear speedup in the number of agents compared with its single-agent counterparts (Zhang
et al., 2020) when T is sufficiently large. The regret bound holds regardless of whether forced
synchronization is used. Its communication cost scales logarithmically with T , outperforming the
federated algorithms in Zheng et al. (2024) and matching the policy switching cost in Zhang et al.

1Õ hides logarithmic factors.
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Table 1: Comparison of regrets and communication costs for multi-agent RL algorithms.

Type Algorithm (Reference) Regret Communication cost

Model-based
Multi-batch RL (Zhang et al., 2022) Õ(

√
H2SAMT ) -

APEVE (Qiao et al., 2022) Õ(
√
H4S2AMT ) -

Byzan-UCBVI (Chen et al., 2023) Õ(
√
H3S2AMT ) O(M2H2S2A2 log T )

Model-free

Concurrent Q-UCB2H (Bai et al., 2019) Õ(
√
H4SAMT ) O(MT )

Concurrent Q-UCB2B (Bai et al., 2019) Õ(
√
H3SAMT ) O(MT )

Concurrent UCB-Advantage (Zhang et al., 2020) Õ(
√
H2SAMT ) O(MT )

FedQ-Hoeffding (Zheng et al., 2024) Õ(
√
H4SAMT ) O(M2H4S2A log T )

FedQ-Bernstein (Zheng et al., 2024) Õ(
√
H3SAMT ) O(M2H4S2A log T )

FedQ-Advantage (this work) Õ(
√
H2SAMT ) O(fMMH3S2A(logH) log T )

H: number of steps per episode; T : total number of steps; S: number of states; A: number of actions; M : number of agents. -: not discussed.
fM equals to M if the forced synchronization design is used and equals to 1 else.

(2020), which is the best cost for Q-learning in the literature. To the best of our knowledge, it
is the first model-free federated RL algorithm to achieve almost optimal regret with logarithmic
communication cost. We compare the regret and communication costs under multi-agent tabular
episodic MDPs in Table 1. Numerical experiments demonstrate that FedQ-Advantage has better
regret and communication cost compared to the federated algorithms in Zheng et al. (2024).

• Technical novelty. We highlight two technical contributions here. (1) Stage-wise approximations
in non-martingale analysis. The event-triggered stage renewal presents a non-trivial challenge
involving the concentration of the sum of non-martingale difference sequences. The weight
assigned to each visit of a given tuple (s, a, h) depends on the total number of visits between
two model aggregation points, which is not causally known during the visitation. This paper
proves the concentration by relating the sequence to a martingale difference sequence and bounding
their stage-wise gap, which is different from Woo et al. (2023) and Woo et al. (2024) that used
static behavior policies and bound similar gaps element-wisely. Our approach does not rely on a
stationary visiting probability or the estimation of visiting numbers. (2) Heterogeneous triggering
conditions for synchronization. For different rounds (of synchronization) in a given stage (of
policy update), we use different triggering conditions that allow more visits of a tuple (s, a, h) in
early rounds. This reduces the number of synchronizations within a stage to O(fM logH) from
O(fMH), which would occur under homogeneous triggering conditions in Zheng et al. (2024).
This is key to improving the communication cost of Zheng et al. (2024) and matching the policy
switching cost of Zhang et al. (2020).

The rest of this paper is organized as follows. Section 2 provides the background and problem
formulation. Section 3 presents the algorithm design of FedQ-Advantage. Section 4 studies the
performance guarantees in terms of regret and communication cost. Section 5 concludes the paper.
Related works, proofs, numerical experiments, and more details are presented in the appendices.

2 BACKGROUND AND PROBLEM FORMULATION

2.1 PRELIMINARIES

We first introduce the mathematical model and background on Markov decision processes. Through-
out this paper, we assume that 0/0 = 0. For any C ∈ N, we use [C] to denote the set {1, 2, . . . C}.
We use I[x] to denote the indicator function, which equals 1 when the event x is true and 0 otherwise.

Tabular episodic Markov decision process (MDP). A tabular episodic MDP is denoted asM :=
(S,A, H,P, r), where S is the set of states with |S| = S,A is the set of actions with |A| = A, H
is the number of steps in each episode, P := {Ph}Hh=1 is the transition kernel so that Ph(· | s, a)
characterizes the distribution over the next state given the state action pair (s, a) at step h, and
r := {rh}Hh=1 is the collection of reward functions. We assume that rh(s, a) ∈ [0, 1] is a deterministic
function of (s, a), while the results can be easily extended to the case when rh is random.

In each episode of M, an initial state s1 is selected arbitrarily by an adversary. Then, at each
step h ∈ [H], an agent observes a state sh ∈ S, picks an action ah ∈ A, receives the reward
rh = rh(sh, ah) and then transits to the next state sh+1. The episode ends when an absorbing state

3
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sH+1 is reached. Later on, for the ease of presentation, we use “for any (∀) (s, a, h)" to represent “for
any (∀) (s, a, h) ∈ S × A × [H]" and denote Ps,a,hf = Esh+1∼Ph(·|s,a)(f(sh+1)|sh = s, ah = a)
and 1sf = f(s),∀(s, a, h) for any function f : S → R.

Policies, state value functions, and action value functions. A policy π is a collection of H
functions

{
πh : S → ∆A}

h∈[H]
, where ∆A is the set of probability distributions over A. A policy

is deterministic if for any s ∈ S , πh(s) concentrates all the probability mass on an action a ∈ A. In
this case, we denote πh(s) = a.

Let V π
h : S → R and Qπ

h : S ×A → R denote the state value function and the action value function
at step h under policy π. Mathematically, V π

h (s) :=
∑H

h′=h E(sh′ ,ah′ )∼(P,π) [rh′(sh′ , ah′) | sh = s].
We also useQπ

h(s, a) := rh(s, a)+
∑H

h′=h+1 E(sh′ ,ah′ )∼(P,π) [rh′(sh′ , ah′) | sh = s, ah = a]. Since
the state and action spaces and the horizon are all finite, there always exists an optimal policy π⋆ that
achieves the optimal value V ⋆

h (s) = supπ V
π
h (s) = V π∗

h (s) for all s ∈ S and h ∈ [H] (Azar et al.,
2017). The Bellman equation and the Bellman optimality equation can be expressed as V π

h (s) = Ea′∼πh(s)[Q
π
h(s, a

′)]
Qπ

h(s, a) := rh(s, a) + Ps,a,hV
π
h+1

V π
H+1(s) = 0,∀(s, a, h)

and

 V ⋆
h (s) = maxa′∈AQ

⋆
h(s, a

′)
Q⋆

h(s, a) := rh(s, a) + Ps,a,hV
⋆
h+1

V ⋆
H+1(s) = 0,∀(s, a, h).

(1)

2.2 THE FEDERATED RL FRAMEWORK

We consider an FRL setting with a central server and M agents, each interacting with an independent
copy ofM. The agents communicate with the server periodically: after receiving local information,
the central server aggregates it and broadcasts certain information to the agents to coordinate their
exploration. We assume that the central server knows the reward functions {rh}Hh=1 beforehand2. We
define the communication cost of an algorithm as the number of scalars (integers or real numbers)
communicated between the server and agents similar to Zheng et al. (2024).

For agent m, let Um be the number of generated episodes, πm,u be the policy in the u-th episode, and
xm,u
1 be the corresponding initial state. The regret of M agents over T̂ = H

∑M
m=1 Um total steps is

Regret(T ) =
∑

m∈[M ]

Um∑
u=1

Ä
V ⋆
1 (s

m,u
1 )− V πm,u

1 (sm,u
1 )
ä
.

Here, T := T̂ /M is the average total steps for M agents.

3 ALGORITHM DESIGN

In this section, we elaborate on our model-free federated RL algorithm termed FedQ-Advantage.

3.1 BASIC STRUCTURE: ALIGNED ROUNDS AND UNALIGNED STAGES

We first review the single-agent algorithm in Zhang et al. (2020). The agent generates episodes and
splits them into stages for each (s, a, h). Denoting yt(s, a, h) as the number of visits to (s, a, h) in
the t−th stage for (s, a, h), it requires that yt+1(s, a, h) = ⌊(1 + 1/H)yt(s, a, h)⌋, and the updates
of estimated Q-functions at (s, a, h) only happen at the end of each stage. Due to the randomness of
the visits, stage renewals for different triples might not happen simultaneously, resulting in unaligned
stages. The exponential increase of the stage size leads to a low policy switching cost: the number of
different implemented policies is upper bounded by O(H2SA log T ). This provides the potential to
parallelize the episodes generated under the same policy to multiple agents.

However, the simple design in Zheng et al. (2024) does not accommodate the unaligned stages. Thus,
FedQ-Advantage designs novel aligned rounds for unaligned stages. Next, we introduce our algorithm
design, which is also visually shown in Figure 1. It proceeds in rounds indexed by k ∈ [K] and agent
m generates nm,k episodes in round k. The communication between agents and the central server

2To handle unknown reward functions, we only need to slightly modify our algorithm to let agents share this
information. This will not affect our Theorems 4.1 and 4.2 on regret and communication cost.
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occurs at the end of each round. For each (s, a, h), we divide rounds k ∈ [K] into stages t = 1, 2, . . ..
Each stage contains consecutive multiple rounds: denote kth(s, a) as the index of the first round that
belongs to stage t, so kth < kt+1

h , and stage t is composed of rounds kth, k
t
h + 1, . . . , kt+1

h − 1. Note
that the definition of stages is specific to (s, a, h), meaning that a given round may belong to different
stages for different (s, a, h). Each round equips the agents with a common policy πk for independent
explorations and an event-triggered termination condition that will be explained later. At the end of
each round, state renewal is judged for each (s, a, h) separately, resulting in unaligned stages.

K rounds

Stage 1 Stage 2
· · ·

Stage T1

Stage 1 Stage 2
· · ·

Stage T2

(s1, a1, h1)

(s2, a2, h2)

· · · · · · · · · · · ·1 2 k11 k12 K

· · · · · · · · · · · ·1 2 k12 k22 K

Figure 1: The relationship between rounds and stages for different triples (s1, a1, h1) and (s2, a2, h2).
Each square represents a round, and the number inside indicates the round index. A stage is composed
of consecutive rounds. Communication occurs at the end of each round and the estimated Q-function
is updated at the end of each stage. We can find from the figure that a round may belong to different
stages for different triples. For example, the round k11 is in stage 1 of (s1, a1, h1), while in stage
2 of (s2, a2, h2). Here, kit = kt+1

hi (si, ai) − 1 represents the index of the last round in stage t
for (si, ai, hi), t ∈ {1, 2, · · · , Ti} and i ∈ {1, 2}. T1 and T2 are the total number of stages for
(s1, a1, h1) and (s2, a2, h2) respectively.

FedQ-Advantage updates the estimated Q-function at (s, a, h) only at the end of each stage using
stage-wise or global mean values regarding the next states of visits to (s, a, h). Thus, agents only
need to prepare and share corresponding local round-wise means for global aggregations. It results in
an O(MHS) communication cost within each round that is independent of the number of episodes.

3.2 ALGORITHM DETAILS

We provide a notation table in Appendix A to facilitate understanding of this section. For the
j-th (j ∈ [nm,k]) episode in the k-th round, let sk,m,j

1 be the initial state for the m-th agent,
and {(sk,m,j

h , ak,m,j
h , rk,m,j

h )}Hh=1 be the corresponding trajectory. Define {V k
h : S → R}H+1

h=1 ,
{Qk

h : S × A → R}H+1
h=1 and {V ref,k

h : S → R}H+1
h=1 as the estimated V -function, the estimated

Q-function and the reference function at the beginning of round k. Here, Qk
H+1, V

k
H+1, V

ref,k
H+1 = 0.

We use V adv,k
h = V k

h − V ref,k
h to denote the estimated advantage function. For any predefined

functions g : S × A → R or f : S → R, we will use g or f in replace of g(s, a) or f(s) when
there is no ambiguity for simplification. We also denote tkh(s, a) as the stage index in round k and
Iren,k
h (s, a) = I[tkh > tk−1

h ] as a stage renewal indicator with Iren,1
h = 1,∀(s, a, h).

Then we briefly explain each component of the algorithm in round k as follows.

Step 1. Coordinated exploration for agents. At the beginning of round k, the server holds the
values on all states, actions, and steps for functions {Qk

h, V
k
h , V

ref,k
h , Nk

h , n
k
h, ñ

k
h}. Here, Nk

h (s, a)

is the total number of visits for all agents up to but not including stage tkh, nkh(s, a) is the total
number of visits for all agents in the stage tkh − 1, and ñkh(s, a) is the number of visits for all
the agents in the stage tkh before the start of round k. Here, nkh = 0 if tkh = 1. When k = 1,
Q1

h = V 1
h = V ref,1

h = H,∀(s, a, h) and π1 is an arbitrary deterministic policy. It also holds
the following global values µref,k

h (s, a), σref,k
h (s, a), µadv,k

h (s, a), σadv,k
h (s, a), µval,k

h (s, a),∀(s, a, h).
When k = 1, they are initialized as 0. Further explanations will be provided in their updates in Step 4.
Next, the central server decides a deterministic policy πk = {πk

h}Hh=1, and then broadcasts πk
h along

with {nkh(s, πk
h(s)), ñ

k
h(s, π

k
h(s))}s,h and {V k

h , V
ref,k
h }s,h to all of the agents. Once receiving such

information, the agents will execute policy πk and start collecting trajectories.

5
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Step 2. Event-triggered termination of exploration. We introduce a Boolean variable usyn as an
input to the algorithm for the forced synchronization. During the exploration under πk, every agent
will monitor its total number of visits for each (s, a, h) triple within the current round. Define

ckh(s, a) =

® ⌊
nkh(s, a)/(MH)

⌋
, if nkh(s, a) > 0, ñkh(s, a) > (1− 1/H)nkh(s, a),

max
{
1,
⌈
(nkh(s, a)− ñkh(s, a))/M

⌉}
, otherwise.

(2)

If usyn = TRUE, for any agent m, at the end of each episode, if any (s, a, h) has been visited by
ckh(s, a) times, the agent will stop exploration and send a signal to the server that requests all agents
to abort the exploration. If usyn = FALSE, the central server will wait until for each agent, there
exists a triple (s, a, h) that has been visited by ckh(s, a) times.

During this process, each agentm collect nm,k trajectories {(sk,m,j
h , ak,m,j

h , rk,m,j
h )}Hh=1, j ∈ [nm,k]

and calculates the following local quantities:

nm,k
h (s, a), µm,k

h,ref(s, a), µ
m,k
h,adv(s, a), µ

m,k
h,val, σ

m,k
h,ref(s, a), σ

m,k
h,adv(s, a),∀(s, a, h). (3)

Here, nm,k
h (s, a) is the number of visits to (s, a, h) for agent m in round k. Thus, we have

∀(s, a, h,m, k), nm,k
h (s, a) ≤ ckh(s, a),

∀k, ∃(s, a, h,m), s.t. nm,k
h (s, a) = ckh(s, a), if usyn = TRUE (4)

∀m, k, ∃(s, a, h), s.t. nm,k
h (s, a) = ckh(s, a), if usyn = FALSE. (5)

Other quantities correspond to the summation of the values of five different functions applied
to the next states of all the visits to (s, a, h) for agent m in round k. These five functions are
V ref,k
h+1 , V

adv,k
h+1 , V

k
h+1, [V

ref,k
h+1 ]

2, [V adv,k
h+1 ]2. Mathematically, for f : S → R, letting Ak

m,s,a,h(f) =∑nm,k

j=1 f(sk,m,j
h+1 )× I[(s, a)k,m,j

h = (s, a)] as the summation of f on the next states for all the
visits to (s, a, h) for agent m in round k. When there is no ambiguity, we will use the simplified
notation Ak

m(f) = Ak
m,s,a,h(f). Then, µm,k

h,ref(s, a) = Ak
m(V ref,k

h+1 ), µ
m,k
h,adv(s, a) = Ak

m(V adv,k
h+1 ),

µm,k
h,val(s, a) = Ak

m(V k
h+1), σ

m,k
h,ref(s, a) = Ak

m([V ref,k
h+1 ]

2) and σm,k
h,adv(s, a) = Ak

m([V adv,k
h+1 ]2). These

quantities correspond to local aggregations of different types of value functions and can be adaptively
calculated when collecting the trajectories as shown in Algorithm 2.

Step 3. Stage renewal. After the exploration in round k, agents share local quantities in Equation (3)
on all (s, a, h) such that a = πk

h(s) to the central server. Then it finds existing visits in stage tkh as

n̂k+1
h (s, a) = ñkh(s, a) +

M∑
m=1

nm,k
h (s, a),∀(s, a, h), (6)

and renew the stages for triples that are sufficiently visited: ∀(s, a, h),

tk+1
h (s, a) = tkh(s, a) + 1 ⇐⇒ n̂k+1

h (s, a) ≥ I[nkh(s, a) = 0]MH + (1 + 1/H)nkh(s, a). (7)

In Equation (7), when nkh = 0, i.e., tkh = 1, the state renewal threshold is MH . Else, it is
(1 + 1/H)nkh. With Equation (7), the central can determine the stage renewal indicator Iren,k+1

h and
the counts Nk+1

h , nk+1
h , ñk+1

h as shown in lines 13 and 18 in Algorithm 1.

Step 4. Updates of estimated value functions and policies. According to the stage renewal, the
central server updates the global values µref,k

h , σref,k
h , µadv,k

h , σadv,k
h , µval,k

h at all (s, a, h) as follows:

(µ, σ)ref,k+1
h = (µ, σ)ref,k

h +
∑
m

(µ, σ)m,k
h,ref, (8)

(µadv, µval, σadv)k+1
h = (1− Iren,k

h )(µadv, µval, σadv)kh +
∑
m

(µh,adv, µh,val, σh,adv)
m,k. (9)

Equation (8) implies that (µ, σ)ref,k+1
h (s, a) gives the sum of the estimated reference functions and

squared reference functions at the next states for all agents and all visits to (s, a, h) up to the end
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of round k. (µadv, µval, σadv)k+1
h (s, a) gives the sum of the estimated advantage functions, value

functions, and squared advantage functions at the next states for all agents and all visits to (s, a, h)

in stage tkh and up to the end of round k. Here, (1− Iren,k
h ) clears the historical cumulation if k and

k − 1 belong to different stages. If stage renewal is triggered at the end of round k for some (s, a, h),
(µadv, µval, σadv)k+1

h (s, a) represents the sums for all the visits to (s, a, h) in the stage tkh(s, a).

Next, the central server updates the estimated Q-function for all (s, a, h) triples with a stage renewal
while keeping others unchanged:

Qk+1
h = min{Qk+1,1

h , Qk+1,2
h , Qk

h}I[tk+1
h > tkh] +Qk

hI[t
k+1
h = tkh],∀(s, a, h), (10)

Here, Qk+1,1
h , Qk+1,2

h represents the Hoeffding-type used in Zheng et al. (2024), and the reference-
advantage type update used in Zhang et al. (2020), respectively:

Qk+1,1
h (s, a) = rh(s, a) + µval,k+1

h /nk+1
h + bk+1,1

h (s, a), (11)

Qk+1,2
h (s, a) = rh(s, a) + µref,k+1

h /Nk+1
h + µadv,k+1

h /nk+1
h + bk+1,2

h (s, a). (12)

In these updates where stage renewal happens, Nk+1
h , nk+1

h count all historical visits and visits in
stage tkh, respectively. Thus, µval,k+1

h /nk+1
h is the stage-wise mean of the estimated value function,

µadv,k+1
h /nk+1

h is the stage-wise mean of the estimated advantage function, and µref,k+1
h /Nk+1

h gives
the all-history estimated mean of reference function. bk+1,1

h , bk+1,2
h are upper confidence bounds

(UCB) that dominate the variances in the above empirical mean estimations. Their expressions are
provided in line 14 of Algorithm 1.

Next, the central server updates the estimated V -function and the policy based on Equation (1):

V k+1
h (s) = max

a′∈A
Qk+1

h (s, a′), πk+1
h (s) ∈ argmax

a′∈A
Qk+1

h (s, a′) ,∀(s, h) ∈ S × [H]. (13)

Step 5. Updates of the reference function. With a constant N0 ∈ R+, the central server conducts

V ref,k+1
h (s) = V ref,1

h (s)I[k < ks,h] + V
ks,h+1
h (s)I[k ≥ ks,h],∀(s, h) ∈ S × [H]. (14)

Here, ks,h = inf{k ∈ N+ :
∑

a′∈AN
k+1
h (s, a′) ≥ N0}. Equation (14) means that at the end of

round k, for all (s, h) such that the stage for (s, πk
h(s), h) is renewed, we will update the reference

function at (s, h) based on the updated value function V k+1
h if round k is the first round such that

the global visiting number to (s, h) in complete stages reaches N0. “First round" indicates that
the reference update on each (s, h) happens at most once during the whole learning process with
k = 1, 2 . . ., and the reference function on (s, h) will be settled after its update. This design matches
the single-agent algorithms in Zhang et al. (2020) and Li et al. (2021).

Now we are ready to provide FedQ-Advantage in Algorithms 1 and 2 for the behaviors of the central
server and the agents. In Algorithm 1, T0 limits the total number of steps for all agents. Line 20 in
Algorithm 1 updates the reference function at (s, h) when the visiting number exceeds N0 for the
first time and keeps it unchanged for other situations, coinciding with Equation (14).

3.3 INTUITION BEHIND THE ALGORITHM DESIGN

Exponentially increasing stage sizes: infrequent policy switching. FedQ-Advantage guarantees
that yt+1(s, a, h) = (1 + Θ(1)/H)yt(s, a, h), where yt(s, a, h) represents the number of visits
to (s, a, h) in stage t. The exponential increasing rate is controlled by the threshold ckh(s, a) in
Equation (2) and stage renewal condition in Equation (7). By analyzing the two cases of Equation (2),
we can prove that n̂k+1

h ≤ (1 + 2/H)nkh, which implies that yt+1 ≤ (1 + 2/H)yt. Equation (7)
further implies that yt+1 ≥ (1 + 1/H)yt. The details are provided in (d) and (e) of Lemma D.1. Our
visits in stages satisfy a similar exponential increasing pattern as yt+1 = ⌊(1 + 1/H)yt⌋ in Zhang
et al. (2020), and FedQ-Advantage switches policies infrequently since estimated Q−functions and
the policies are only updated after stage renewals.

Reference-advantage decompositions: the key to the almost optimal regret. Q-learning algo-
rithms Jin et al. (2018); Bai et al. (2019); Zhang et al. (2020); Li et al. (2021); Zheng et al. (2024)
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Algorithm 1 FedQ-Advantage (Central Server)

1: Input and Initialization: T0, N0 ∈ N+, p ∈ (0, 1). Functions Q1
h = V 1

h = V ref,1
h = H ,

function Iren,1
h = 1, functions Iref,1

h (s, a) = N1
h = n1h = ñ1h = µref,1

h = µadv,1
h = µval,1

h =

σref,1
h = σadv,1

h = 0,∀(s, a, h). Arbitrary deterministic policy π1. nstep = k = 0. usyn ∈
{TRUE,FALSE}.

2: while nstep < T0 do
3: % Step 1. Coordinated exploration for agents.
4: Broadcast πk and (V k

h , V
ref,k
h , nkh, ñ

k
h),∀(s, a, h) with a = πk

h(s) to all clients.
% Step 2. Event-triggered termination of exploration.

5: if usyn = TRUE then
6: Wait until receiving an abortion signal and send the signal to all agents.
7: else
8: Wait until receiving abortion signals from all agents.
9: end if

10: Receive nm,k
h and {µm,k

h,ref, µ
m,k
h,adv, µ

m,k
h,val}, {σ

m,k
h,ref, σ

m,k
h,adv},∀(s, πk

h(s), h) from agents.
11: Calculate n̂k+1

h , (µ, σ)ref,k+1
h , (µadv, µval, σadv)k+1

h via Equations (6), (8) and (9), ∀(s, a, h).
% Step 3. Stage renewal.

12: for ∀(s, a, h) do
13: if n̂k+1

h (s, a) ≥ I[nkh(s, a) = 0]MH + (1 + 1/H)nkh(s, a), then
14: (Stage renewal) Iren,k+1

h = 1, nk+1
h = n̂k+1

h , ñk+1
h = 0, Nk+1

h = Nk
h (s, a) + nk+1

h .
% Step 4. Updates of estimated value functions and policies.

15: Update Qk+1
h (s, a) based on Equations (10) to (12). Here, bk+1,1

h (s, a) =
»

2H2ι/nk+1
h .

bk+1,2
h (s, a) = 2

»
v̂arref,k+1

h /Nk+1
h + 2

»
v̂aradv,k+1

h /nk+1
h + 10H((ι/Nk+1

h )3/4 +

(ι/nk+1
h )3/4 + ι/Nk+1

h + ι/nk+1
h ), ι = log(2/p), v̂arref,k+1

h = σref,k+1
h /Nk+1

h −
(µref,k+1

h /Nk+1
h )2, v̂aradv,k+1

h = σadv,k+1
h /nk+1

h − (µadv,k+1
h /nk+1

h )2.
16: else
17: (Stage unchanged) Qk+1

h = Qk
h, Iren,k+1

h = 0, nk+1
h = nkh, ñ

k+1
h = n̂k+1

h , Nk+1
h = Nk

h .
18: end if
19: end for
20: Find V k+1

h , πk+1
h from Equation (13), Iref,k+1

h = I[
∑

a′∈AN
k+1
h (s, a′) ≥ N0],∀(s, h).

% Step 5. Updates of the reference function.
21: V ref,k+1

h = V ref,k
h

Ä
1− Iref,k+1

h (1− Iref,k
h )
ä
+ V k+1

h Iref,k+1
h (1− Iref,k

h ),∀(s, h).

22: nstep
+
=
∑

m,s,a,h n
m,k
h , k

+
= 1.

23: end while

Algorithm 2 FedQ-Advantage (Agent m in round k)

1: Receive πk and (V k
h , V

ref,k
h , nkh, ñ

k
h),∀(s, a, h) with a = πk

h(s) from the central server.
2: Initialization: functions nmh , µ

m
h,ref, µ

m
h,adv, µ

m
h,val, σ

m
h,ref, σ

m
h,adv ← 0,∀(s, πk

h(s), h).
3: while no abortion signal sent or from the central server do
4: while nmh (s, a) < ckh(s, a),∀(s, a, h) with a = πk

h(s) do
5: Collect a new trajectory {(sh, ah, rh)}Hh=1 with ah = πk

h(sh).
6: Update local incremental quantities: (nmh , µ

m
h,ref, µ

m
h,adv, µ

m
h,val, σ

m
h,ref, σ

m
h,adv)(sh, ah)

7:
+
= (1, V ref,k

h+1 , V
adv,k
h+1 , V

k
h+1, [V

ref,k
h+1 ]

2, [V adv,k
h+1 ]2)(sh+1),∀h.

8: end while
9: Send an abortion signal to the central server.

10: end while
11: Functions (nm,k

h , µm,k
h,ref, µ

m,k
h,adv, µ

m,k
h,val, σ

m,k
h,ref, σ

m,k
h,adv) ← (nmh , µ

m
h,ref, µ

m
h,adv, µ

m
h,val, σ

m
h,ref,

σm
h,adv),∀(s, πk

h(s), h) and send
¶
(nm,k

h , µm,k
h,ref, µ

m,k
h,adv, µ

m,k
h,val, σ

m,k
h,ref, σ

m,k
h,adv)

©
s,h

to the central
server.
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update the estimatedQ-function in the following form: Qh(s, a)← rh(s, a)+EST(Ps,a,hV
⋆
h+1)+b.

Here, b > 0 is the upper confidence bound (UCB) that promotes exploration, and EST(·) represents
the empirical estimation, which takes the form of a weighted sum of the historically estimated value
functions for the next states following the visits to (s, a, h). This update is motivated by the Bellman
optimality equation. The error EST(Ps,a,hV

⋆
h+1)− Ps,a,hV

⋆
h+1 can be decomposed into the variance

from the random transitions to the next states and the bias in the estimated value functions. To
handle the bias that is more severe in the early visits, Jin et al. (2018); Bai et al. (2019); Zheng
et al. (2024) required that the weights concentrate on the most recent Θ(1/H) proportion of visits
like Equation (11) that only use visits in the current stage, which causes sample inefficiency and
suboptimal regret.

To address this issue, FedQ-Advantage uses the reference-advantage decomposition adopted by
Zhang et al. (2020); Li et al. (2021). Equation (12) in Step 4 represents the decomposition. We
decompose the estimation of Ps,a,hV

⋆
h+1 into the reference part µref,k+1

h /Nk+1
h and the advantage part

µadv,k+1
h /nk+1

h . For the advantage part, we use stage-wise mean to eliminate the large biases in early
value estimations. For the reference part, since the reference function will settle after N0 = Õ(1)
visits as shown in Step 5, we can neglect the bias and use the mean of all historical visits. This design
reduces the error in the empirical estimation by improving the sample efficiency in the reference
part and restricting the error ranges in the advantage part. The reference-advantage decomposition,
together with the exponentially increasing rate of stage sizes, is the key to our improved regret
compared to Zheng et al. (2024) and our linear regret speedup compared to the almost optimal regret
given in Zhang et al. (2020).

Heterogeneous event-triggered communication: the key to our improved communication cost.
FedQ-Advantage uses ckh given in Equation (2) to limit the number of new visits for agent m in
round k. While the first case in Equation (2) is similar to the homogeneous condition in Zheng
et al. (2024), we design the second case to allow more new visits when the number of existing
visits in the current stage is small. Specifically, when nkh ≥ MH and ñkh ≤ (1 − 1/H)nkh, ckh =⌈
(nkh − ñkh)/M

⌉
≥
⌊
nkh/(MH)

⌋
. Thus, FedQ-Advantage allows more visits in the early rounds of

each stage compared to Zheng et al. (2024) and reduces the number of communication rounds, which
is key to our improved communication cost shown in Table 1.

Optional forced synchronization: accommodating heterogeneous exploration speeds. Section 3.2
and eqs. (4) and (5) highlight the effect of the optional forced synchronization used in Step 2.
Section 3.2 shows a common limitation of new visits, which is sufficient for our linear regret speedup
compared to the single-agent algorithm in Zhang et al. (2020). Next, we discuss the robustness and
trade-offs of optional forced synchronization when under heterogeneous exploration speeds of the
agents.

When optional forced synchronization is enabled (i.e., usyn = TRUE), exploration and commu-
nication occur as soon as one agent reaches the threshold ckh(s, a). This allows faster agents to
avoid waiting for slower ones, minimizing waiting time. However, Equation (4) guarantees sufficient
exploration by only one agent, resulting in varied episode counts across agents. This configuration is
suitable for tasks sensitive to waiting time.

When optional forced synchronization is disabled (i.e., usyn = FALSE), communication occurs only
after all agents meet the threshold ckh(s, a). Equation (5) ensures sufficient exploration by all agents,
with episode counts being roughly balanced. This allows for more extensive exploration within a
round, reducing communication costs but potentially increasing waiting time for faster agents.

4 PERFORMANCE GUARANTEES

Next, we provide regret upper bound for FedQ-Advantage as follows.

Theorem 4.1 (Regret of FedQ-Advantage). Let ι = log(2/p) with p ∈ (0, 1) andN0 = 5184SAH5ι
β2 +

16MSAH3

β with β ∈ (0, H]. For Algorithms 1 and 2, with probability at least 1−(4SAT 5
1+SAHT

4
1+

5SAT 2
1 /H + 5SAT1 + 5)p, we have

Regret(T ) ≤ Õ
Ä
(1 + β)

√
MSAH2T +Mpoly(HSA, 1/β)

ä
.
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Here, K is the total number of rounds, T = H
∑K

k=1 n
k is the total number of steps for each agent,

T1 = (2+ 2
H )T0+MSAH(H+1), and Õ hides logarithmic multipliers on T0,M,H, S,A, 1/p and

poly represents some polynomial. This result does not depend on the value of usyn. See Equation (26)
in Appendix E for the complete upper bound.

Theorem 4.1 indicates that the total regret scales as Õ(
√
H2MTSA) when T is larger than some

polynomial of MHSA and β = Ω(1) in N0. This is almost optimal compared to the information
bound Ω(

√
H2SAMT ) and is better than Õ(

√
H3SAMT ) for algorithms in Zheng et al. (2024).

When M = 1, our regret bound becomes Õ((1 + β)
√
H2TSA) when T is large, which is better

than Õ((1 + β
√
H)
√
H2TSA) in Zhang et al. (2020) thanks to our tighter regret analysis. This also

means that to reach an almost optimal regret bound, Zhang et al. (2020) requires β ≤ O(1/
√
H)

and FedQ-Advantage lays a weaker one β ≤ Ω(1). When M > 1, focusing on the dominate terms
Õ
Ä
(1 + β)

√
MSAH2T

ä
when T is large, our algorithm achieves a near-linear regret speedup

while the overhead term Õ(Mpoly(HSA, 1/β)) results from the burn-in cost for using reference-
advantage decomposition (Zhang et al., 2020), and the Ω(HM) visits collected in the first stage for
each (s, a, h), which servers as the multi-agent burn-in cost that is common in federated algorithms
(see e.g. Zheng et al. (2024); Woo et al. (2023; 2024)).

Next, we discuss the improved communication cost compared to Zheng et al. (2024) as follows.

Theorem 4.2 (Communication rounds of FedQ-Advantage). Under Algorithms 1 and 2 with usyn =
TRUE, the number of communication rounds K and the total number of steps T satisfy that

K ≤MSAH2 + SAH

Ç
log(H)

log( M
M−1 )

+ 4M + 2

å
log( T

SAH3 + 1)

log(1 + 1/H)
.

If usyn = FALSE, the number of communication rounds K and the total number of steps T satisfy
that

K ≤ SAH2 + SAH (log(H) + 6)
log( T

SAH3 + 1)

log(1 + 1/H)
.

Theorem 4.2 implies if usyn = TRUE and T is sufficiently large, K = O
(
MH2SA(logH) log T

)
.

Since the total number of communicated scalars is O(MHS) in each round, the total communication
cost scales in O(M2H3S2A(logH) log T ). Thanks to the heterogeneous design in ckh(s, a), it is
better than O(M2H4S2A log T ) for FedQ-Hoeffding and FedQ-Bernstein in Zheng et al. (2024). If
usyn = FALSE, when T is sufficiently large, K = O

(
H2SA(logH) log T

)
, which is independent

of M . Since the total number of communicated scalars is O(MHS) in each round, the total
communication cost scales in O(MH3S2A(logH) log T ).

Our result for usyn = FALSE also implies a low policy switching cost, which is defined as the
times of policy switching. Knowing that the cost of Zhang et al. (2020) is O(H2SA log(T )) and
K = O

(
H2SA(logH) log T

)
for FedQ-Advantage, our communication round matches the policy

switching cost up to a logarithmic factor under restrictions on sharing original trajectories. We also
remark Equation (103) in Appendix F shows that FedQ-Advantage can also reach the same local
switching cost as Zhang et al. (2020). We refer readers with interest to Zhang et al. (2020) for
additional information.

We will provide the complete proofs of Theorems 4.1 and 4.2 in Appendices E and F respectively.

5 CONCLUSION

This paper develops the model-free FRL algorithm FedQ-Advantage with provably almost optimal
regret and logarithmic communication cost. Specifically, it achieves an almost-optimal regret,
reaching the information bound up to a logarithmic factor and near-linear regret speedup compared to
its single-agent counterpart when the time horizon is sufficiently large. Our algorithm also improves
the logarithmic communication cost in the literature. Technically, our algorithm uses the UCB,
reference-advantage decomposition and designs separate mechanisms for synchronization and policy
switching, which can find broader applications for other RL problems.
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Organization of the appendix. In the appendix, we will first provide two tables to summarize
the notations in Section A. Section B provides related works. Section C presents numerical results.
Section D provides basic facts of FedQ-Advantage and a lemma of concentration inequalities for
regret analysis. Section E presents the proof of Theorem 4.1 (regret). Section F presents the proof of
Theorem 4.2 (communication cost).

A NOTATION TABLES

In this section, we provide two notation tables to enhance the readability of the paper. The notations
are categorized into two groups: one group consists of global variables utilized for central server
aggregation, while the other group consists of local variables employed for agent training. First,

Table 2: Global Variables

Variable Definition
V π
h the state value function at step h under policy π
Qπ

h the state-action value function at step h under policy π
V ⋆
h the state value function at step h under the optimal policy π⋆

Q⋆
h the state-action value function at step h under the optimal policy π⋆

Ps,a,hf Esh+1∼Ph(·|s,a)(f(sh+1)|sh = s, ah = a)

1s,a,hf f(s)

V ref
h the reference function at step h

V adv
h the advantage function at step h
V k
h the estimated state value function of step h at the beginning of the round k
Qk

h the estimated state-action value function of step h at the beginning of the round k
V ref,k
h the estimated reference function of step h at the beginning of the round k

V adv,k
h the estimated advantage function of step h at the beginning of the round k

tkh(s, a) the stage index of the triple (s, a, h) in the round k
Iren,k
h I[tkh > tk−1

h ], a stage renewal indicator in the round k − 1

Nk
h (s, a) the total number of visits to (s, a, h) before the stage tkh(s, a)

nkh(s, a) the total number of visits to (s, a, h) in the stage tkh(s, a)− 1

ñkh(s, a) the number of visits to (s, a, h) in the stage tkh(s, a) before the start of round k
n̂kh(s, a) the number of visits to (s, a, h) in the stage tk−1

h (s, a) before the start of round k

µref,k
h (s, a)

the sum of the reference function at step h+ 1 with regard to all visits to (s, a, h)
before round k

σref,k
h (s, a)

the sum of the squared reference function at step h+ 1 with regard to all visits to
(s, a, h) before round k

µadv,k
h (s, a)

the sum of the advantage function at step h+1 with regard to all visits to (s, a, h)

during stage tk−1
h and before round k

σadv,k
h (s, a)

the sum of the squared advantage function at step h+ 1 with regard to all visits
to (s, a, h) during stage tk−1

h and before round k

µval,k
h (s, a)

the sum of the value function at step h + 1 with regard to all visits to (s, a, h)

during stage tk−1
h and before round k

ckh(s, a) the exploration termination constant for triple (s, a, h)

Iref,k
h a reference function renewal indicator in the round k − 1

we introduce some local quantities. For f : S → R, letting Ak
m,s,a,h(f) =

∑nm,k

j=1 f(sk,m,j
h+1 )×

I[(s, a)k,m,j
h = (s, a)] as the summation of f on the next states for all the visits to (s, a, h) in round k
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Table 3: Local Variables

Variable Definition
nm,k
h (s, a) the total number of visits to (s, a, h) of the agent m in the round k

µm,k
h,ref(s, a)

the sum of the reference function at step h+ 1 with regard to all visits to (s, a, h)
of the agent m in the round k

σm,k
h,ref(s, a)

the sum of the squared reference function at step h+ 1 with regard to all visits to
(s, a, h) of the agent m in the round k

µm,k
h,adv(s, a)

the sum of the advantage function at step h+1 with regard to all visits to (s, a, h)
of the agent m in the round k

σm,k
h,adv(s, a)

the sum of the squared advantage function at step h+ 1 with regard to all visits
to (s, a, h) of the agent m in the round k

µm,k
h,val(s, a)

the sum of the value function at step h+ 1 with regard to all visits to (s, a, h) of
the agent m in the round k

for agent m. When there is no ambiguity, we will use the simplified notation Ak
m(f) = Ak

m,s,a,h(f).
Then, we let nm,k

h (s, a) = Ak
m(1), µm,k

h,ref(s, a) = Ak
m(V ref,k

h+1 ), µ
m,k
h,adv(s, a) = Ak

m(V adv,k
h+1 ),

µm,k
h,val(s, a) = Ak

m(V k
h+1), σ

m,k
h,ref(s, a) = Ak

m([V ref,k
h+1 ]

2) and σm,k
h,adv(s, a) = Ak

m([V adv,k
h+1 ]2). For

these functions of (s, a), nm,k
h is the local count of visits for agent m in round k, and the remaining

ones are local summations related to the reference function, the estimated advantage functions, and
the estimated value functions for visits.

Accordingly, we define some global quantities. First, we focus on visiting counts. We let
Nk

h (s, a) =
∑

k′:tk
′

h <tkh

∑
m nm,k′

h be the total number of visits to (s, a, h) up to but not includ-

ing stage tkh, nkh(s, a) =
∑

k′:tk
′

h =tkh−1

∑
m nm,k′

h be the number of visits to (s, a, h) in the stage

tkh − 1. Here, nkh = 0 if tkh = 1. We also let ñkh(s, a) =
∑

k′:k′<k,tk
′

h =tkh

∑
m nm,k′

h and n̂kh(s, a) =∑
k′:k′<k,tk

′
h =tk−1

h

∑
m nm,k′

h be the number of visits to (s, a, h) in the stage tkh or tk−1
h before the

start of round k. Next, we provide quantities of summations. Let µref,k
h (s, a) =

∑
k′:k′<k

∑
m µm,k′

h,ref ,

σref,k
h (s, a) =

∑
k′:k′<k

∑
m σm,k′

h,ref , µadv,k
h (s, a) =

∑
k′:k′<k,tk

′
h =tk−1

h

∑
m µm,k′

h,adv, σadv,k
h (s, a) =∑

k′:k′<k,tk
′

h =tk−1
h

∑
m σm,k′

h,adv and µval,k
h (s, a) =

∑
k′:k′<k,tk

′
h =tk−1

h

∑
m µm,k′

h,val . Here, µref,k
h and

σref,k
h represent the sum of the reference function or squared reference function at step h+ 1 with

regard to all visits of (s, a, h) before round k, and µadv,k
h , σadv,k

h , µval,k
h are the sum of the advantage

function, squared advantage function, and the estimated value function at step h+ 1 with regard to
visits of (s, a, h) during stage tk−1

h and before round k.

B RELATED WORKS

Single-agent episodic MDPs. There are mainly two types of algorithms for reinforcement learning:
model-based and model-free learning. Model-based algorithms learn a model from past experience
and make decisions based on this model, while model-free algorithms only maintain a group of value
functions and take the induced optimal actions. Due to these differences, model-free algorithms
are usually more space-efficient and time-efficient compared to model-based algorithms. However,
model-based algorithms may achieve better learning performance by leveraging the learned model.

Next, we discuss the literature on model-based and model-free algorithms for single-agent episodic
MDPs. Auer et al. (2008), Agrawal & Jia (2017), Azar et al. (2017), Kakade et al. (2018), Agarwal
et al. (2020), Dann et al. (2019), Zanette & Brunskill (2019),Zhang et al. (2021),Zhou et al. (2023)
and Zhang et al. (2023) worked on model-based algorithms. Notably, Zhang et al. (2023) provided an
algorithm that achieves a regret of Õ

Ä
min{

√
SAH2T , T}

ä
, which matches the information lower

bound. Jin et al. (2018), Yang et al. (2021), Zhang et al. (2020), Li et al. (2021) and Ménard et al.
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(2021) work on model-free algorithms. The latter three have introduced algorithms that achieve
minimax regret of Õ

Ä√
SAH2T

ä
.

Variance reduction in RL. The reference-advantage decomposition used in Zhang et al. (2020)
and Li et al. (2021) is a technique of variance reduction that was originally proposed for finite-sum
stochastic optimization (see e.g. Gower et al. (2020); Johnson & Zhang (2013); Nguyen et al. (2017)).
Later on, model-free RL algorithms also used variance reduction to improve the sample efficiency.
For example, it was used in learning with generative models Sidford et al. (2018; 2023); Wainwright
(2019), policy evaluation Du et al. (2017); Khamaru et al. (2021); Wai et al. (2019); Xu et al. (2020),
offline RL Shi et al. (2022); Yin et al. (2021), and Q-learning Li et al. (2020); Zhang et al. (2020); Li
et al. (2021); Yan et al. (2023).

RL with low switching cost and batched RL. Research in RL with low-switching cost aims to
minimize the number of policy switches while maintaining comparable regret bounds to fully adaptive
counterparts, and it can be applied to federated RL. In batched RL (e.g., Perchet et al. (2016), Gao
et al. (2019)), the agent sets the number of batches and the length of each batch upfront, implementing
an unchanged policy in a batch and aiming for fewer batches and lower regret. Bai et al. (2019) first
introduced the problem of RL with low-switching cost and proposed a Q-learning algorithm with lazy
updates, achieving Õ(SAH3 log T ) switching costs. This work was advanced by Zhang et al. (2020),
which improved the regret upper bound and the switching cost. Additionally, Wang et al. (2021)
studied RL under the adaptivity constraint. Recently, Qiao et al. (2022) proposed a model-based
algorithm with Õ(log log T ) switching costs. Zhang et al. (2022) proposed a batched RL algorithm
that is well-suited for the federated setting.

Multi-agent RL (MARL) with event-triggered communications. We review a few recent works for
on-policy MARL with linear function approximations. Dubey & Pentland (2021) introduced Coop-
LSVI for cooperative MARL. Min et al. (2023) proposed an asynchronous version of LSVI-UCB
that originates from Jin et al. (2020), matching the same regret bound with improved communication
complexity compared to Dubey & Pentland (2021). Hsu et al. (2024) developed two algorithms
that incorporate randomized exploration, achieving the same regret and communication complexity
as Min et al. (2023). Dubey & Pentland (2021); Min et al. (2023); Hsu et al. (2024) employed
event-triggered communication conditions based on determinants of certain quantities. Different
from our federated algorithm, during the synchronization in them, local agents share original rewards
or trajectories with the server.

Federated and distributed RL. Existing literature on federated and distributed RL algorithms
highlights various aspects. For value-based algorithms, Guo & Brunskill (2015), Zheng et al. (2024),
and Woo et al. (2023) focused on linear speed up. Agarwal et al. (2021) proposed a parallel
RL algorithm with low communication cost. Woo et al. (2023) and Woo et al. (2024) discussed
the improved covering power of heterogeneity. Wu et al. (2021) and Chen et al. (2023) worked
on robustness. Particularly, Chen et al. (2023) proposed algorithms in both offline and online
settings, obtaining near-optimal sample complexities and achieving superior robustness guarantees.
In addition, several works have investigated value-based algorithms such as Q-learning in different
settings, including Beikmohammadi et al. (2024), Jin et al. (2022), Khodadadian et al. (2022), Fan
et al. (2023), Woo et al. (2023), and Woo et al. (2024); Anwar & Raychowdhury (2021); Zhao et al.
(2023); Yang et al. (2023); Zhang et al. (2024). The convergence of decentralized temporal difference
algorithms has been analyzed by Doan et al. (2019), Doan et al. (2021), Chen et al. (2021b), Sun et al.
(2020), Wai (2020), Wang et al. (2020), Zeng et al. (2021), and Liu & Olshevsky (2023).

Some other works focus on policy gradient-based algorithms. Communication-efficient policy
gradient algorithms have been studied by Fan et al. (2021) and Chen et al. (2021a). Lan et al.
(2023) further shows the simplicity compared to the other RL methods, and a linear speedup has
been demonstrated in the synchronous setting. Optimal sample complexity for global optimality in
federated RL, even in the presence of adversaries, is studied in Ganesh et al. (2024). Lan et al. (2024)
propose an algorithm to address the challenge of lagged policies in asynchronous settings.

The convergence of distributed actor-critic algorithms has been analyzed by Shen et al. (2023) and
Chen et al. (2022). Federated actor-learner architectures have been explored by Assran et al. (2019),
Espeholt et al. (2018), and Mnih et al. (2016). Distributed inverse reinforcement learning has been
examined by Liu & Zhu (2022) and Liu & Zhu (2024).
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C NUMERICAL EXPERIMENTS

C.1 EXPERIMENTS COMPARING CANDIDATE ALGORITHMS

In this subsection, we conduct experiments3 in a synthetic environment to demonstrate the better regret
and communication cost of FedQ-Advantage compared to FedQ-Hoeffding and FedQ-Bernstein
proposed by (Zheng et al., 2024). We follow Zheng et al. (2024) to use forced synchronization
and generate a synthetic environment to evaluate the proposed algorithms on a tabular episodic
MDP. We set H = 10, S = 5, and A = 5. The reward rh(s, a) for each (s, a, h) is generated
independently and uniformly at random from [0, 1]. Ph(· | s, a) is generated on the S-dimensional
simplex independently and uniformly at random for (s, a, h). Under the given MDP, we set M = 10
and generate 105 episodes for each agent, resulting in a total of 106 episodes for all algorithms. For
each episode, we randomly choose the initial state uniformly from the S states. In FedQ-Hoeffding
and FedQ-Bernstein, we use their hyper-parameter settings based on their publicly available code4.
For FedQ-Advantage, we set ι = 1 and N0 = 200. To show error bars, we collect 10 sample paths
for all algorithms under the same MDP environment and show the regret and communication cost
in Figure 2. For both panels, the solid line represents the median of the 10 sample paths, while the
shaded area shows the 10th and 90th percentiles.

Figure 2: Numerical comparison of regrets and communication costs.

The left panel of Figure 2 plots Regret(T )/
√
MT versus MT/H , the total number of episodes

for all agents, showing the lower regret of FedQ-Advantage compared to FedQ-Hoeffding and
FedQ-Bernstein. The right panel tracks the number of communication rounds throughout the
learning process. All three federated algorithms show a sublinear pattern when T is large, and
FedQ-Advantage requires the fewest communication rounds. Since the communication cost for one
synchronization is O(MHS) for each of the three algorithms, FedQ-Advantage enjoys the least
communication cost. These numerical results are consistent with our theoretical results in Table
1. We also provide numerical experiments to replicate the setting in Zheng et al. (2024), show the
performance on different combinations of H,S,A, and explore the multi-agent speedup in Appendix
C. The conclusions are consistent with those for Figure 2.

C.2 EXPERIMENTS FOR MULTI-AGENT SPEEDUP.

In this subsection, we provide experiments on the multi-agent speedup of FedQ-Advantage under the
same experimental setting as Appendix C.1. Figure 3 reports R(T )/

√
T versus T/H based on the 10

sample trajectories for FedQ-Advantage and UCB-A. Here, R(T ) = Regret(T )/M . UCB-A is our
single-agent counterpart from Zhang et al. (2020), and we show the experimental results for both 105

episodes for the single-agent experiment and 106 episodes, representing the situation where a single
agent generates all episodes for FedQ-Advantage under a high communication cost. When showing
R(T ) for UCB-A with 106 episodes, we pretend that M = 10 and the total number of episodes is

3All the experiments are run on a server with Intel Xeon E5-2650v4 (2.2GHz) and 100 cores. Each replication
is limited to a single core and 4GB RAM. The total execution time is less than 2 hours. The code for the numerical
experiments is included in the supplementary materials along with the submission.

4https://openreview.net/attachment?id=fe6ANBxcKM&name=supplementary_
material
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105 so that the three situations are comparable. We find that FedQ-Advantage shows a multi-agent
speedup compared to UCB-A with 105 episodes. However, it exhibits larger regret compared to
UCB-A with 106 episodes, which results from the multi-agent burn-in cost discussed in Section 4.

Figure 3: Multi-agent speedup

C.3 OTHER COMBINATIONS OF H,S,A

Figure 3 gives additional numerical experiment under different combinations of H,S,A. The top
panels show 10 replications on S = 3, A = 2, H = 5, which replicates the experiments in Zheng
et al. (2024). The second one chooses relatively large parameters where H = 20, S = 20, A = 5 and
shows one replication. The conclusion is the same as that in Appendix C.1.

D BASIC FACTS AND CONCENTRATION INEQUALITIES

In this section, we provide some basic facts and lemmas of concentration inequalities for FedQ-
Advantage. For any triple (s, a, h) ∈ S ×A× [H], we let Y t

h(s, a) =
∑

m,k:k≤K nm,k
h I[tkh ≤ t] be

the number of visits to (s, a, h) up to and including stage t and yth(s, a) =
∑

m,k:k≤K nm,k
h I[tkh = t]

be the visiting number in stage t. Here, we have that Y 0
h = y0h = 0, Nk

h = Y
tkh−1
h , nkh = y

tkh−1
h . We

also denote Th(s, a) = tKh (s, a) as the total number of stages for (s, a, h). Here, we emphasize that
the stage renewal condition might not be triggered in FedQ-Advantage for stage Th(s, a).

Next, we assign an order to the visits of any (s, a, h). Let Li(s, a, h) denote the i-th visit to (s, a, h)
in FedQ-Advantage for i ∈ N+, and (kLi

(s, a, h),mLi
(s, a, h), jLi

(s, a, h)) be the corresponding
(round, agent, episode) index of the i-th visit. Similarly, let li(s, a, h, k), i ∈ [nkh(s, a)] denote the
i-th visit to (s, a, h) during the stage tkh(s, a)− 1, and (kli(s, a, h, k),mli(s, a, h, k), jli(s, a, h, k))
be the corresponding (round, agent, episode) index of the i-th visit li(s, a, h, k). The indices follow
the chronological order of the visits. Specifically, under the synchronization assumption nm,k =
nk,∀m ∈ [M ], a viable order can be determined by the “round index first, episode index second, agent
index third” rule. When (s, a, h, k) is clear from the context, we use Li, li, (k,m, j)Li

, (k,m, j)li
for simplicity.

Next, we provide Lemma D.1 on some basic relationships for quantities in FedQ-Advantage.
Lemma D.1. For any (s, a, h, k) ∈ S × A × [H] × [K], the following relationships hold for
FedQ-Advantage.
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(a) Regret: replication (b) Communication cost: replication

(c) Regret: large scale (d) Communication cost: large scale

Figure 4: Additional Experiments. The upper panels (a) and (b) replicate the numerical setting in
Zheng et al. (2024) where S = 3, A = 2, H = 5. The bottom panels (c) and (d) perform experiments
with H = 20, S = 20, A = 5.

(a) T0 ≤ T̂ .

(b) nm,k
h (s, a) ≤ ckh(s, a), ∀m ∈ [M ]. In addition, ∀k ∈ [K], there exists (s, a, h,m) ∈
S ×A× [H]× [M ] such that nm,k

h (s, a) = ckh(s, a).

(c) If Th(s, a) ≥ 2, we have MH ≤ Y 1
h (s, a) ≤MH +M .

(d) If nkh(s, a) > 0, we have that n̂k+1
h (s, a) ≤ (1 + 2/H)nkh(s, a), ∀k ∈ [K].

(e) 1 + 1
H ≤

yt+1
h (s,a)

yt
h(s,a)

≤ 1 + 2
H ,∀t ∈ [1, Th(s, a)− 2], t ∈ N. In addition, 0 ≤ y

Th
h (s,a)

y
Th−1

h (s,a)
≤

1 + 2
H .

(f) 1 ≤ Y t+1
h (s,a)

Y t
h(s,a)

≤ 2 + 2
H ≤ 4,∀t ∈ [Th(s, a)− 1].

(g) The following relationships hold.

Y t
h(s, a)

yth(s, a)
≤ 2H,∀t ∈ [Th(s, a)− 1]. (15)»

yth(s, a) ≤ 3
√
H
(»

Y t
h(s, a)−

»
Y t−1
h (s, a)

)
,∀t ∈ [Th(s, a)− 1]. (16)

Y t
h(s, a)

yth(s, a)
≥ H

4
,∀t ∈ [H,Th(s, a)], t ∈ N. (17)

(h)
∑

s,a,h y
Th(s,a)−1
h (s, a) ≤ 9MSAH(H+1)+ 4T0

H .
∑

s,a,h y
Th(s,a)
h (s, a) ≤ 9MSAH(H+

1) + 4T0

H .
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(i) Denote T1 = (2 + 2
H )T0 +MSAH(H + 1), we have

T̂ ≤ T1 ≤ (2 +
2

H
)T̂ +MSAH(H + 1).

(j) Qk+1
h (s, a) ≤ Qk

h(s, a), V
k+1
h (s) ≤ V k

h (s), V ref,k+1
h (s) ≤ V ref,k

h (s), ∀(s, a, h, k) ∈ S ×
A× [H]× [K − 1].

Here, we use
∑

s,a as a simplified notation for
∑

s∈S
∑

a∈A and
∑

s,a,h as a simplified notation

for
∑

s∈S
∑

a∈A
∑H

h=1. Th is the simplified notation of Th(s, a). Those simplifications will also be
used later.

Proof of Lemma D.1. (a) This relationship holds from the stopping condition of the loop (line
2) in Algorithm 1.

(b) From the triggering condition for terminating the exploration in a round (line 4 in Algorithm
2), we can prove the relationship.

(c) Since Th(s, a) ≥ 2, there exists a round k satisfying tkh(s, a) = 1 and tk+1
h (s, a) = 2. Then

according to Equation (7), we have Y 1
h (s, a) = n̂k+1

h (s, a) ≥MH . Meanwhile, according
to (b), we have:

Y 1
h (s, a) = n̂k+1

h (s, a) = ñkh(s, a) +

M∑
m=1

nm,k
h (s, a)

≤ ñkh(s, a) +Mckh(s, a) ≤ ñkh(s, a) +M.

Since round k is in stage 1, we know stage 1 is not renewed before the start of round k.
Then according to Equation (7) and the definition of ñkh(s, a), we have ñkh(s, a) ≤ MH
and Y 1

h (s, a) ≤ ñkh(s, a) +M =MH +M .

(d) Since round k is in the stage tkh, we know stage tkh is not renewed before the start of round
k. Then according to Equation (7) and the definition of ñkh(s, a), we have ñkh(s, a) ≤
(1 + 1/H)nkh(s, a).

If 0 ≤ ñkh(s, a) ≤ (1− 1
H )nkh(s, a), then according to Equation (2) we have:

n̂k+1
h (s, a) ≤ ñkh(s, a) +Mckh(s, a) ≤ ñkh(s, a) +M

Ç
nkh(s, a)− ñkh(s, a)

M
+ 1

å
= nkh(s, a) +M.

Since nkh(s, a) > 0, we know tkh(s, a) > 1 and then nkh(s, a) ≥ Y 1
h (s, a) ≥ MH . There-

fore, n̂k+1
h (s, a) ≤ nkh(s, a) +M ≤ (1 + 2

H )nkh(s, a).

If (1− 1/H)nkh(s, a) < ñkh(s, a) ≤ (1 + 1/H)nkh(s, a), then according to Equation (2) we
have:

n̂k+1
h (s, a) ≤ ñkh(s, a) +Mckh(s, a) ≤ ñkh(s, a) +M · 1

MH
nkh(s, a) ≤ (1 +

2

H
)nkh(s, a).

Therefore, ñkh(s, a) ≤ (1 + 2
H )nkh(s, a).

(e) For t ≤ Th(s, a)−2, there exists a round k satisfying tkh(s, a) = t+1 and tk+1
h (s, a) = t+2.

Then according to Equation (7), we have yt+1
h (s, a) = n̂k+1

h (s, a) ≥ (1 + 1/H)nkh(s, a) =

(1 + 1/H)yth(s, a). Moreover, according to (d), we have yt+1
h (s, a) = n̂k+1

h (s, a) ≤
(1 + 2/H)nkh(s, a) = (1 + 2/H)yth(s, a).

For t = Th(s, a) − 1, we have yTh

h (s, a) = n̂K+1
h (s, a) ≤ (1 + 2/H)nKh (s, a) = (1 +

2/H)yTh−1
h (s, a).
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(f) According to (e), for t ≤ Th(s, a)− 1 we have yt+1
h (s, a) ≤ (1 + 2/H)yth(s, a). Then:

1 ≤
Y t+1
h (s, a)

Y t
h(s, a)

= 1 +
yt+1
h (s, a)

Y t
h(s, a)

≤ 1 +
(1 + 2

H )yth(s, a)

Y t
h(s, a)

≤ 2 +
2

H
≤ 4.

(g) We will use the mathematical induction to prove the Equation (15).

For t = 1,
Y 1
h (s, a)

y1h(s, a)
= 1 ≤ 2H.

If Y t−1
h (s,a)

yt−1
h (s,a)

≤ 2H , then for t (2 ≤ t ≤ Th(s, a)− 1), according to (e), we have yth(s, a) ≥
(1 + 1/H)yt−1

h (s, a). Then:

Y t
h(s, a)

yth(s, a)
= 1 +

Y t−1
h (s, a)

yth(s, a)
≤ 1 +

Y t−1
h (s, a)

(1 + 1
H )yt−1

h (s, a)
≤ 1 +

2H

1 + 1
H

≤ 2H.

Therefore, we finish the proof of the Equation (15).

For Equation (16), we have:

3
√
H
(»

Y t
h(s, a)−

»
Y t−1
h (s, a)

)
=
»
yth(s, a) · 3

√
H

Ç 
Y t
h(s, a)

yth(s, a)
−
 
Y t
h(s, a)

yth(s, a)
− 1

å
=
»
yth(s, a) · 3

√
H

1√
Y t
h(s,a)

yt
h(s,a)

+
√

Y t
h(s,a)

yt
h(s,a)

− 1

≥
»
yth(s, a) · 3

√
H

1√
2H +

√
2H − 1

≥
»
yth(s, a).

The last but one inequality is because Y t
h(s,a)

yt
h(s,a)

≤ 2H according to Equation (15).

For Equation (17), according to (e), we have yth(s, a) ≤ (1+2/H)h−1yt−h+1
h (s, a) for any

h ∈ [H]. Then:

Y t
h(s, a)

yth(s, a)
≥
∑H

h=1 y
t−h+1
h (s, a)

yth(s, a)
≥
∑H

h=1(1 +
2
H )1−hyth(s, a)

yth(s, a)

=
H

2
(1 +

2

H
)(1− (1 +

2

H
)−H).

Because (1 + 2
H )H is increasing in H , we have (1 + 2

H )H ≥ 3 and 1− (1 + 2
H )−H ≥ 2

3 .
Therefore,

Y t
h(s, a)

yth(s, a)
≥ H

2
(1 +

2

H
)(1− (1 +

2

H
)−H) ≥ H

4
.

We finish the proof of (g).

(h) ∑
s,a,h

y
Th(s,a)−1
h (s, a) =

∑
s,a,h

yTh−1
h (s, a)I[Th(s, a) < H + 1]

+
∑
s,a,h

yTh−1
h (s, a)I[Th(s, a) ≥ H + 1]

Because of (e), we have:

yTh−1
h (s, a)I[Th(s, a) < H + 1] ≤ (1 +

2

H
)Th−1y1h(s, a)I[Th(s, a) < H + 1]

≤ (1 +
2

H
)H(MH +M).
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The last inequality is because y1h(s, a) = Y 1
h (s, a) ≤MH +M according to (c). Moreover,

according to Equation (17), we have∑
s,a,h

yTh−1
h (s, a)I[Th(s, a) ≥ H + 1] ≤

∑
s,a,h

4

H
Y Th−1
h (s, a)I[Th(s, a) ≥ H + 1] ≤ 4T0

H
.

The last inequality holds because
∑

s,a,h Y
Th−1
h (s, a) ≤ T0 according to the algorithm.

Therefore, we have∑
s,a,h

y
Th(s,a)−1
h (s, a) ≤

∑
s,a,h

(1 +
2

H
)H(MH +M) +

4T0
H
≤ 9MSAH(H + 1) +

4T0
H

.

Similarly, we have:∑
s,a,h

y
Th(s,a)
h (s, a)

=
∑
s,a,h

yTh

h (s, a)I[Th(s, a) < H + 1] +
∑
s,a,h

yTh−1
h (s, a)I[Th(s, a) ≥ H + 1]

≤ (1 +
2

H
)Th−1y1h(s, a)I[Th(s, a) < H + 1] +

∑
s,a,h

4

H
Y Th−1
h (s, a)I[Th(s, a) ≥ H + 1]

≤ 9MSAH(H + 1) +
4T0
H

.

(i) First, according to (f), we have:

Y Th

h (s, a) ≤ Y 1
h (s, a)I[Th(s, a) = 1] + (2 +

2

H
)Y Th−1

h (s, a)I[Th(s, a) > 1]

≤ (2 +
2

H
)Y Th−1

h (x, a) +MH +M.

The last inequality is because of (c). Then we have:

T̂ =
∑
s,a,h

Y Th

h (s, a) ≤
∑
s,a,h

Å
(2 +

2

H
)Y Th−1

h (s, a) +MH +M

ã
≤ (2 +

2

H
)T0 +MSAH(H + 1).

The last inequality is because of
∑

s,a,h Y
Th−1
h (s, a) ≤ T0 according to the algorithm.

Because T0 ≤ T̂ from (a), we have:

T̂ ≤ T1 ≤ (2 +
2

H
)T̂ +MSAH(H + 1).

(j) According to Equation (10), we know Qk
h(s, a) is non-increasing with respect to k. Then

based on the update rule Equation (13) for V k
h (s, a) and the update rule Equation (14) for

V ref,k
h (s, a), we find that they are also non-increasing with respect to k.

Next, we provide Lemma D.2 that discusses the weighted sum of all the steps.
Lemma D.2. For any non-negative weight sequence {ωh(s, a)}s,a,h and any α ∈ (0, 1), it holds that

H∑
h=1

∑
k,m,j

ωh(s
k,m,j
h , ak,m,j

h )

Nk
h (s

k,m,j
h , ak,m,j

h )α
I
î
tk,m,j
h > 1

ó
≤ 4α

1− α
∑
s,a,h

ωh(s, a)Y
Th

h (s, a)1−α,

and
H∑

h=1

∑
k,m,j

ωh(s
k,m,j
h , ak,m,j

h )

nkh(s
k,m,j
h , ak,m,j

h )α
I
î
tk,m,j
h > 1

ó
≤ (8H)α

1− α
∑
s,a,h

ωh(s, a)Y
Th

h (s, a)1−α.
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For α = 1, it holds that
H∑

h=1

∑
k,m,j

ωh(s
k,m,j
h , ak,m,j

h )

Nk
h (s

k,m,j
h , ak,m,j

h )
I
î
tk,m,j
h > 1

ó
≤ 4

∑
s,a,h

ωh(s, a) log(Y
Th

h (s, a)),

and
H∑

h=1

∑
k,m,j

ωh(s
k,m,j
h , ak,m,j

h )

nkh(s
k,m,j
h , ak,m,j

h )
I
î
tk,m,j
h > 1

ó
≤ 8H

∑
s,a,h

ωh(s, a) log(Y
Th

h (s, a)).

Here, tk,m,j
h = tkh(s

k,m,j
h , ak,m,j

h ).

Proof of Lemma D.2. According to Equation (15), for any (sk,m,j
h , ak,m,j

h , h) ∈ S × A × [H] and
tk,m,j
h > 1,

Nk
h (s

k,m,j
h , ak,m,j

h )

nkh(s
k,m,j
h , ak,m,j

h )
=
Y

tk,m,j
h −1

h (sk,m,j
h , ak,m,j

h )

y
tk,m,j
h −1

h (sk,m,j
h , ak,m,j

h )
≤ 2H.

Therefore, we only need to prove the first and the third inequalities.

We first provide two conclusions. For 1 ≤ x ≤ 4 and 0 < α < 1, it holds:
x1−α − 1 ≥ (1− α)(x− 1)x−α ≥ 4−α(1− α)(x− 1) (18)

log(x) ≥ x− 1

x
≥ x− 1

4
. (19)

Next, we go back to the proof. For any (s, a, h) ∈ S × A × [H] and 2 ≤ t ≤ Th(s, a), let
x =

Y t
h(s,a)

Y t−1
h (s,a)

. According to (f) in Lemma D.1, we have 1 ≤ x ≤ 4. Using Equation (18), and
Equation (19), then it holds:

Y t
h(s, a)

1−α − Y t−1
h (s, a)

1−α ≥ 4−α(1− α) yth(s, a)

Y t−1
h (s, a)α

, (20)

and

log(Y t
h(s, a))− log(Y t−1

h (s, a)) ≥ yth(s, a)

4Y t−1
h (s, a)

. (21)

Now,
H∑

h=1

∑
k,m,j

ωh(s
k,m,j
h , ak,m,j

h )

Nk
h (s

k,m,j
h , ak,m,j

h )α
I
î
tk,m,j
h > 1

ó
=

H∑
h=1

∑
k,m,j

ωh(s
k,m,j
h , ak,m,j

h )

Nk
h (s

k,m,j
h , ak,m,j

h )α
I
î
tk,m,j
h > 1

ó(∑
s,a

I
î
(sk,m,j

h , ak,m,j
h ) = (s, a)

ó)
=
∑
s,a,h

∑
k,m,j

ωh(s, a)

Nk
h (s, a)

α
I
[
tkh(s, a) > 1

]
I
î
(sk,m,j

h , ak,m,j
h ) = (s, a)

ó
=
∑
s,a,h

∑
k,m,j

ωh(s, a)

Nk
h (s, a)

α
I
î
(sk,m,j

h , ak,m,j
h ) = (s, a)

ó( Th∑
t=2

I
[
tkh(s, a) = t

])

=
∑
s,a,h

Th∑
t=2

ωh(s, a)

Nk
h (s, a)

α

∑
k,m,j

I
î
(sk,m,j

h , ak,m,j
h ) = (s, a), tkh(s, a) = t

ó
In the last equality, I[(sk,m,j

h , ak,m,j
h ) = (s, a), tkh(s, a) = t] = 1 if and only if (sk,m,j

h , ak,m,j
h ) =

(s, a) and k in stage t of (s, a, h), so
∑

k,m,j I[(s
k,m,j
h , ak,m,j

h ) = (s, a), tkh(s, a) = t] = yth(s, a). In
this case, Nk

h (s, a) = Y t−1
h (s, a) and then we have :

H∑
h=1

∑
k,m,j

ωh(s
k,m,j
h , ak,m,j

h )

Nk
h (s

k,m,j
h , ak,m,j

h )α
I
î
tk,m,j
h > 1

ó
=
∑
s,a,h

Th∑
t=2

ωh(s, a)y
t
h(s, a)

Y t−1
h (s, a)α

. (22)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Summing Equation (20) for 2 ≤ t ≤ Th(s, a), for any 0 < α < 1, we have:

Th∑
t=2

yth(s, a)

Y t−1
h (s, a)α

≤ 4α

1− α

Th∑
t=2

(Y t
h(s, a)

1−α − Y t−1
h (s, a)

1−α
) ≤ 4α

1− α
Y Th

h (s, a)1−α (23)

Combining Equation (22) and Equation (23), we can finish the proof of the first inequality.

In Equation (22), let α = 1, we have:

H∑
h=1

∑
k,m,j

ωh(s
k,m,j
h , ak,m,j

h )

Nk
h (s

k,m,j
h , ak,m,j

h )
I
î
tk,m,j
h > 1

ó
=
∑
s,a,h

ωh(s, a)

Th∑
t=1

yth(s, a)

Y t−1
h (s, a)

(24)

Summing Equation (21) for 2 ≤ t ≤ Th(s, a) , we have:

Th∑
t=2

yth(s, a)

Y t−1
h (s, a)

≤ 4

Th∑
t=2

(
log(Y t

h(s, a))− log(Y t−1
h (s, a))

)
≤ 4 log(Y Th

h (s, a)) (25)

Combining Equation (24) with Equation (25), we finish the proof of the third inequality. Then we
finish the proof.

Next, we provide auxiliary lemmas.
Lemma D.3. (Azuma-Hoeffding Inequality) Suppose {Xk}∞k=0 is a martingale and |Xk −Xk−1| ≤
ck, ∀k ∈ N+ almost surely. Then for any positive integers N and any positive real number ϵ, it holds
that:

P (|XN −X0| ≥ ϵ) ≤ 2 exp

Ç
− ϵ2

2
∑N

k=1 c
2
k

å
.

Lemma D.4. (Lemma 10 of Zhang et al. (2020)) Let {Mn}∞n=0 be a martingale such that
M0 = 0 and |Mn − Mn−1| ≤ c. Let V arn =

∑n
k=1 E[(Mk − Mk−1)

2|Fk−1], where
Fk−1 = σ(M0,M1, ...,Mk−1). Then for any positive integer n and any ϵ, p > 0, we have that:

P
(
|Mn| ≥ 2

»
Varn log(1/p) + 2

»
ϵ log(1/p) + 2c log(1/p)

)
≤
(
2nc2/ϵ+ 2

)
p.

At the end of this section, we provide a lemma of concentration inequalities.
Lemma D.5. Let ι = log(2/p) with p ∈ (0, 1). Using ∀(s, a, h, k) as the simplified notation
for ∀(s, a, h, k) ∈ S × A × [H] × [K]. For any function f : S → R, we denote Vs,a,h(f) =
Ps,a,hf

2 − (Ps,a,hf)
2. Next, we define the following events.

E1 =

 1

nkh

∣∣∣∣∣∣
nk
h∑

i=1

(
V ⋆
h+1(s

(k,m,j)li
h+1 )− Ps,a,hV

⋆
h+1

)∣∣∣∣∣∣ ≤
 

2H2ι

nkh
,∀(s, a, h, k)

 .

E2 =

|χ1| ≤
2

Nk
h

ÖÃ
Nk

h∑
i=1

Vs,a,h(V
ref,kLi

h+1 )ι+

√
ι

T1
+Hι

è
,∀(s, a, h, k)

 ,

in which χ1 is the abbreviation for

χ1(s, a, h, k) =
1

Nk
h (s, a)

Nk
h∑

i=1

Å
Ps,a,h − 1

s
(k,m,j)Li
h+1

ã
V

ref,kLi

h+1 .

E3 =


∣∣∣∣∣∣
Nk

h∑
i=1

Å
Ps,a,h − 1

s
(k,m,j)Li
h+1

ã
V

ref,kLi

h+1

∣∣∣∣∣∣ ≤ H
»
2Nk

h (s, a)ι, ∀(s, a, h, k)

 .

E4 =


∣∣∣∣∣∣
Nk

h∑
i=1

Å
Ps,a,h − 1

s
(k,m,j)Li
h+1

ã
(V

ref,kLi

h+1 )2

∣∣∣∣∣∣ ≤ H2
»

2Nk
h (s, a)ι, ∀(s, a, h, k)

 .
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E5 =

|χ2| ≤
2

nkh

ÖÃ
nk
h∑

i=1

Vs,a,h(V
kli

h+1 − V
ref,kli

h+1 )ι+

√
ι

T1
+ 2Hι

è
,∀(s, a, h, k)

 ,

in which χ2 is the abbreviation for

χ2(s, a, h, k) =
1

nkh

nk
h∑

i=1

Å
Ps,a,h − 1

s
(k,m,j)li
h+1

ã
(V

kli

h+1 − V
ref,kli

h+1 ).

E6 =


∣∣∣∣∣∣
nk
h∑

i=1

Å
Ps,a,h − 1

s
(k,m,j)li
h+1

ã
(V

kli

h+1 − V
ref,kli

h+1 )

∣∣∣∣∣∣ ≤ 2H
»
2nkh(s, a)ι, ∀(s, a, h, k)

 .

E7 =


∣∣∣∣∣∣
nk
h∑

i=1

Å
Ps,a,h − 1

s
(k,m,j)li
h+1

ã
(V

kli

h+1 − V
ref,kli

h+1 )2

∣∣∣∣∣∣ ≤ 2H2
»
2nkh(s, a)ι,∀(s, a, h, k)

 .

E8 =


∣∣∣∣∣∣

H∑
h=1

∑
k,m,j

(
Psk,m,j

h ,ak,m,j
h ,h − 1sk,m,j

h+1

)
λkh+1(s

k,m,j
h+1 )

∣∣∣∣∣∣ ≤√2T1ι

 .

Here, λkh(s) = I[Nk
h (s) < N0] with Nk

h (s) =
∑

a∈AN
k
h (s, a). Especially, λkH+1(s) = 0.

∑
k,m,j

is the abbreviation of
∑K

k=1

∑M
m=1

∑nm,k

j=1 . We will also use the abbreviation later.

E9 =

{
H∑

h=1

∑
k,m,j

(1 +
2

H
)h−1(1 +

1

H
)
(
Psk,m,j

h ,ak,m,j
h ,h − 1sk,m,j

h+1

) (
V k
h+1 − V ⋆

h+1

)
.

≤ 18H
√
2T1ι

}

E10 =
{
|V (s, a, h, t)| ≤ H

»
2yth(s, a)ι,∀(s, a, h) and ∀t ∈ [Th(s, a)]

}
.

Here,

V (s, a, h, t) =
∑
k,m,j

(
Ps,a,h − 1sk,m,j

h+1

) (
V k
h+1 − V ⋆

h+1

)
I
î
(sk,m,j

h , ak,m,j
h ) = (s, a), tkh(s, a) = t

ó
.

E11 =

{
H∑

h=1

∑
k,m,j

(1 +
2

H
)h−1I

î
tk,m,j
h > 1

ó(
Psk,m,j

h ,ak,m,j
h ,h − 1sk,m,j

h+1

) Ä
V ⋆
h+1 − V πk

h+1

ä
≤ 9H

√
2T1ι

}
.

E12 =

 1

Nk
h (s, a)

∣∣∣∣∣∣
Nk

h (s,a)∑
i=1

Å
Ps,a,h − 1

s
(k,m,j)Li
h+1

ã
λ
kLi

h+1

∣∣∣∣∣∣ ≤
 

2ι

Nk
h (s, a)

,∀(s, a, h, k)

 .

E13 =


∣∣∣∣∣∣

H∑
h=1

∑
k,m,j

Ä
Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)− V ⋆

h+1(s
k,m,j
h+1 )

ä∣∣∣∣∣∣ ≤ H√2T1ι

 .

E14 =


∣∣∣∣∣∣

H∑
h=1

∑
k,m,j

Ä
Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)

2 − V ⋆
h+1(s

k,m,j
h+1 )2

ä∣∣∣∣∣∣ ≤ H2
√
2T1ι

 .

E15 =


∣∣∣∣∣∣ 1

Nk
h (s, a)

Nk
h (s,a)∑
i=1

Å
Ps,a,h − 1

s
(k,m,j)Li
h+1

ãÄ
V

ref,kLi

h+1 − V ⋆
h+1

ä∣∣∣∣∣∣ ≤ 2H

 
2ι

Nk
h (s, a)

.

 .
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Then we have
P(Ei) ≥ 1− SAT 2

1 /Hp, i ∈ {1, 6, 7, 10},
P(Ei) ≥ 1− SAT1p, i ∈ {3, 4, 12, 15},
P(Ei) ≥ 1− p, i ∈ {8, 9, 11, 13, 14},
P(E2) ≥ 1− SAT1(HT 3

1 + 1)p

and
P(E5) ≥ 1− SAT 2

1 (4HT
3
1 + 1)/Hp.

Proof of Lemma D.5. First, we will prove with probability at least 1 − SAT 2
1 /Hp, E1 holds. The

sequence {V ⋆
h+1(s

(k,m,j)li
h+1 ) − Ps,a,hV

⋆
h+1}i∈N+ is a martingale sequence with its absolute values

bounded by H . Then according to Azuma-Hoeffding inequality, for any p ∈ (0, 1), with probability
at least 1− p, it holds for given nkh(s, a) = n ∈ N+ that:

1

n

∣∣∣∣∣
n∑

i=1

(
V ⋆
h+1(s

(k,m,j)li
h+1 )− Ps,a,hV

⋆
h+1

)∣∣∣∣∣ ≤
…

2H2ι

n
.

For any k ∈ [K], we have nkh(s, a) ∈ [T1

H ]. Considering all the possible combinations (s, a, h, k) ∈
S ×A× [H]× [T1

H ] and nkh(s, a) ∈ [T1

H ], with probability at least 1− SAT 2
1 /Hp, it holds simulta-

neously for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

1

nkh(s, a)

∣∣∣∣∣∣
nk
h∑

i=1

(
V ⋆
h+1(s

(k,m,j)li
h+1 )− Ps,a,hV

⋆
h+1

)∣∣∣∣∣∣ ≤
 

2H2ι

nkh(s, a)
.

This conclusion also holds for for E6 and E7 as {(Ps,a,h − 1
s
(k,m,j)li
h+1

)(V
kli

h+1 − V
ref,kli

h+1 )}i∈N+ is a

martingale sequence with its absolute values bounded by 2H , and {(Ps,a,h − 1
s
(k,m,j)li
h+1

)(V
kli

h+1 −

V
ref,kli

h+1 )2}i∈N+ is a martingale sequence with its absolute values bounded by 2H2.

Next, we will prove with probability at least 1 − SAT1p, E3 holds. {(Ps,a,h −
1
s
(k,m,j)Li
h+1

)V
ref,kLi

h+1 }i∈N+ is a martingale sequence bounded by H . Then according to Azuma-

Hoeffding inequality, for any p ∈ (0, 1), with probability at least 1 − p, it holds for a given
Nk

h (s, a) = N ∈ N+ that:∣∣∣∣∣
N∑
i=1

Å
Ps,a,h − 1

s
(k,m,j)Li
h+1

ã
V

ref,kLi

h+1

∣∣∣∣∣ ≤ H√2Nι.
For any k ∈ [K], we have Nk

h (s, a) ∈ [T1

H ]. Considering all the possible combinations (s, a, h,N) ∈
S ×A× [H]× [T1

H ], with probability at least 1−SAT1p, it holds simultaneously for all (s, a, h, k) ∈
S ×A× [H]× [K] that:∣∣∣∣∣∣

Nk
h∑

i=1

Å
Ps,a,h − 1

s
(k,m,j)Li
h+1

ã
V

ref,kLi

h+1

∣∣∣∣∣∣ ≤ H
»
2Nk

h (s, a)ι.

This conclusion also holds for E4, E12 and E15 because of the similar martingale structures as
follows. For E4, the sequence {(Ps,a,h − 1

s
(k,m,j)Li
h+1

)(V
ref,kLi

h+1 )2}i∈N+ is a martingale sequence with

its absolute values bounded by H2. For E12, the sequence {(Ps,a,h − 1
s
(k,m,j)Li
h+1

)λ
kLi

h+1}i∈N+ is

a martingale sequence with its absolute values bounded by 1. For E15, the sequence {(Ps,a,h −
1
s
(k,m,j)Li
h+1

)(V
ref,kLi

h+1 − V ⋆
h+1)}i∈N+ is a martingale sequence with its absolute values bounded by

2H .

Now, we will prove, with probability at least 1 − p, E8 holds. Because of (i) in Lemma D.1,
we can append multiple 0s to the summation such that there are T1 terms. Since the sequence
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{(Psk,m,j
h ,ak,m,j

h ,h − 1sk,m,j
h+1

)λkh+1(s
k,m,j
h+1 )}h,k,m,j can be reordered chronologically to a martingale

sequence with its absolute values bounded by 1, it is still a martingale sequence with its absolute
values bounded by 1 after appending some 0 terms. According to Azuma-Hoeffding inequality, for
any p ∈ (0, 1), with probability at least 1− p, it holds that:∣∣∣∣∣∣

H∑
h=1

∑
k,m,j

(
Psk,m,j

h ,ak,m,j
h ,h − 1sk,m,j

h+1

)
λkh+1(s

k,m,j
h+1 )

∣∣∣∣∣∣ ≤√2T1ι.

Similarly, the conclusion also holds for E9, E11, E13 and E14 because of their similar martingale struc-
tures as follows. For E9, the sequence {(1+2/H)h(Psk,m,j

h ,ak,m,j
h ,h−1sk,m,j

h+1
)(V k

h+1−V ⋆
h+1)}k,m,j,h

can be reordered to a martingale sequence with the absolute values bounded by 18H . For E11,
the sequence {(1 + 2/H)h−1I[tk,m,j

h > 1](Psk,m,j
h ,ak,m,j

h ,h − 1sk,m,j
h+1

)(V ⋆
h+1 − V πk

h+1)}k,m,j,h can
be reordered to a martingale sequence with its absolute values bounded by 9H . For E13, the
sequence {Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1) − V ⋆

h+1(s
k,m,j
h+1 )}k,m,j,h can be reordered to a martingale se-

quence with the absolute values bounded by H . For E14, the sequence {Psk,m,j
h ,ak,m,j

h ,h(V
⋆
h+1)

2 −
(V ⋆

h+1(s
k,m,j
h+1 ))2}k,m,j,h can be reordered to a martingale sequence with its absolute values bounded

by H2.

Now, we will prove with probability at least 1−SAT1(HT 3
1 +1)p, E2 holds. According to the Lemma

D.4 with ϵ = 1
T 2
1

, c = H and p← p
2 , we have that with probability at least 1− (NH2T 2

1 + 1)p, it

holds for a given Nk
h (s, a) = N ∈ N+ that:

|χ1| ≤
2

N

ÑÃ
N∑
i=1

Vs,a,h(V
ref,kLi

h+1 )ι+

√
ι

T1
+Hι

é
,

For any k ∈ [K], we have Nk
h (s, a) ∈ [T1

H ]. Considering all the possible combination (s, a, h,N) ∈
S ×A× [H]× [T1

H ], then with probability at least 1− SAT1(HT 3
1 + 1)p, it holds simultaneously

for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

|χ1| ≤
2

Nk
h (s, a)

ÖÃ
Nk

h∑
i=1

Vs,a,h(V
ref,kLi

h+1 )ι+

√
ι

T1
+Hι

è
.

Similarly, with probability at least 1− SAT 2
1 (4HT

3
1 + 1)/Hp, E5 holds.

Finally, we will prove, with probability at least 1 − SAT 2
1 /Hp, E10 holds. V (s, a, h, t) is the

summation for all the visits to (s, a, h) in stage t, which is a martingale sequence with the order
assigned chronologically. According to Azuma-Hoeffding Inequality, for any p ∈ (0, 1), with
probability at least 1− p, it holds for a given yth(s, a) = y ∈ N+ that:∣∣∣∣∣∣ ∑k,m,j

(
Ps,a,h − 1sk,m,j

h+1

) (
V k
h+1 − V ⋆

h+1

)
I
î
(sk,m,j

h , ak,m,j
h ) = (s, a), tkh(s, a) = t

ó∣∣∣∣∣∣ ≤ 2H
√

2yι.

For any t ∈ [Th(s, a)], yth(s, a) ∈ [T1

H ]. Considering all combination of (s, a, h, y) ∈ S ×A×H ×
[T1

H ], with probability at least 1−SAT 2
1 /Hp, it holds simultaneously for any (s, a, h) ∈ S ×A×H

and any t ∈ [T1/H] that:

|V (s, a, h, t)| ≤ 2H
»

2yth(s, a)ι.
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E PROOF OF THEOREM 4.1

In this section, we provide the proof of Theorem 4.1. Throughout this section, we will discuss under
the event

⋂15
i=1 Ei and show

Regret(T )

≤ O((1 +
√
β + β)

√
MSAH2Tι+H

√
MTι log(T ) +H

√
MTι log(MSAH2)

+M
1
4SAH

11
4 T

1
4 ι

3
4 + SH2N0 log(T ) +

√
MSAH2 log(T )

√
ι+ S

3
2AH3

√
N0 log(T )ι

+ SAH
5
2 (Mι)

1
2 +MSAH2

√
ι+MSAH2

√
βι+MSAH2

√
β2ι+M

1
4S

5
4A

5
4H

13
4 ι

3
4

+ S
3
2AH3

√
N0 log(MSAH2)ι+ SH2N0 log(MSAH2) +

√
MSAH2 log(MSAH2)

√
ι),
(26)

where Eis are the events in Lemma D.5 which shows that P(
⋂15

i=1 Ei) ≥ 1− (SAT 5
1 + SAHT 4

1 +
5SAT 2

1 /H + 5SAT1 + 5)p. Thus, showing Equation (26) will complete the proof. Before
we start, we introduce some stage-wise notations. Let µ̃ref,k

h (s, a) =
∑

k′:tk
′

h <tkh

∑
m µm,k′

h,ref ,

σ̃ref,k
h (s, a) =

∑
k′:tk

′
h <tkh

∑
m σm,k′

h,ref , µ̃adv,k
h (s, a) =

∑
k′:tk

′
h =tkh−1

∑
m µm,k′

h,adv, σ̃adv,k
h (s, a) =∑

k′:tk
′

h =tkh−1

∑
m σm,k′

h,adv, µ̃val,k
h (s, a) =

∑
k′:tk

′
h =tkh−1

∑
m µm,k′

h,val , ṽ
ref,k
h =

σ̃ref,k
h

Nk
h

− (
µ̃ref,k
h

Nk
h

)2 and

ṽadv,k
h =

σ̃adv,k
h

nk
h

− (
µ̃adv,k
h

nk
h

)2. Here, µ̃ref,k
h and σ̃ref,k

h represent the sum of the reference function or

squared reference function at step h + 1 with regard to all visits of (s, a, h) before stage tkh(s, a),
and µ̃adv,k

h , σ̃adv,k
h , µ̃val,k

h are the sum of the advantage function, squared advantage function, and the
estimated value function at step h + 1 with regard to visits of (s, a, h) during stage tkh(s, a) − 1.
Using the definition of Li(s, a, h) and li(s, a, h, k), we have the following equalities:

µ̃ref,k
h (s, a) =

Nk
h∑

i=1

V
ref,kLi

h+1 (s
(k,m,j)Li

h+1 ), σ̃ref,k
h (s, a) =

Nk
h∑

i=1

(
V

ref,kLi

h+1 (s
(k,m,j)Li

h+1 )
)2
,

µ̃adv,k
h (s, a) =

nk
h∑

i=1

(V
kli

h+1 − V
ref,kli

h+1 )(s
(k,m,j)li
h+1 ), σ̃adv,k

h (s, a) =

nk
h∑

i=1

(V
kli

h+1 − V
ref,kli

h+1 )2(s
(k,m,j)li
h+1 ),

µ̃val,k
h (s, a) =

nk
h∑

i=1

V
kli

h+1(s
(k,m,j)li
h+1 ).

We also denote
b̃k+1,1
h = bk+1,1

h =
»
2H2ι/nk+1

h ,

b̃k+1,2
h (s, a) = 2

»
ṽref,k+1
h /Nk+1

h + 2
»
ṽadv,k+1
h /nk+1

h

+ 10H
Ä
(ι/Nk+1

h )3/4 + (ι/nk+1
h )3/4 + ι/Nk+1

h + ι/nk+1
h

ä
,

and
Q̃k+1,1

h (s, a) = rh(s, a) + µ̃val,k+1
h /nk+1

h + b̃k+1,1
h (s, a),

Q̃k+1,2
h (s, a) = rh(s, a) + µ̃ref,k+1

h /Nk+1
h + µ̃adv,k+1

h /nk+1
h + b̃k+1,2

h (s, a).

For k ∈ N+ such that tk+1
h > tkh, we have the following relationships:

µ̃adv,k+1
h (s, a) = µadv,k+1

h (s, a),

σ̃adv,k+1
h (s, a) = σadv,k+1

h (s, a),

µ̃val,k+1
h (s, a) = µval,k+1

h (s, a).

In this case, we have Q̃k+1,1
h (s, a) = Qk+1,1

h (s, a) and Q̃k+1,2
h (s, a) = Qk+1,2

h (s, a). There-
fore, based on the update rule Equation (7), for tk+1

h (s, a) > tkh(s, a), we have Qk+1
h (s, a) =
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min{Q̃k+1,1
h (s, a), Q̃k+1,2

h (s, a), Qk
h(s, a)}. Since these stage-wise notations µ̃ref,k

h , µ̃adv,k
h and µ̃val,k

h

have the same value for different rounds in the same stage, for tk+1
h (s, a) = tkh(s, a), we have

Q̃k+1,1
h (s, a) = Q̃k,1

h (s, a) and Q̃k+1,2
h (s, a) = Q̃k,2

h (s, a). According to the update rule Equa-
tion (7), in this case we have Qk+1

h (s, a) = Qk
h(s, a). In each stage, using mathematical induction,

we can find that for any k ∈ N+, it holds:

Qk+1
h (s, a) = I

î
tk+1
h = 1

ó
H + I

î
tk+1
h > 1

ó
min{Q̃k+1,1

h (s, a), Q̃k+1,2
h (s, a), Qk

h(s, a)}. (27)

Here, tk+1
h is the abbreviation of tk+1

h (s, a). Since Qk
h(s, a) is non-increasing with respect to k, in

the following Lemma E.1, we will give a lower bound of Qk
h(s, a).

Lemma E.1. Under the event
⋂7

i=1 Ei in Lemma D.5, it holds that for any (s, a, h, k) ∈ S ×A×
[H]× [K]:

Qk
h(s, a) ≥ Q⋆

h(s, a).

Then we have V k
h (s) ≥ V ⋆

h (s) for any (s, a, h, k) ∈ S ×A× [H]× [K].

Proof. We first claim that based on the event E3 ∩ E4 in Lemma D.5, it holds for any (s, a, h, k) ∈
S ×A× [H]× [K] that

Nk
h∑

i=1

Vs,a,h(V
ref,kLi

h+1 ) ≤ Nk
h (s, a)ṽ

ref,k
h (s, a) + 5H2

»
Nk

h (s, a)ι, (28)

and based on the event E6 ∩ E7, for any (s, a, h, k) ∈ S ×A× [H]× [K], we have:

nk
h∑

i=1

Vs,a,h(V
kli

h+1 − V
ref,kli

h+1 ) ≤ nkh(s, a)ṽ
adv,k
h (s, a) + 10H2

»
nkh(s, a)ι. (29)

We will prove Equation (28) and Equation (29) at the end of the proof for Lemma E.1. Combining
Equation (28) with the event E2, for any (s, a, h, k) ∈ S ×A× [H]× [K], we have:

|χ1| ≤
2

Nk
h (s, a)

ÖÃ
Nk

h∑
i=1

Vs,a,h(V
ref,kLi

h+1 )ι+

√
ι

T1
+Hι

è
≤ 2

Nk
h (s, a)

Å»
Nk

h (s, a)ṽ
ref,k
h (s, a)ι+

√
5H2ι

»
Nk

h (s, a)ι+

√
ι

T1
+Hι

ã
= 2

Ñ√
ṽref,k
h (s, a)ι

Nk
h (s, a)

+

√
5Hι

3
4

Nk
h (s, a)

3
4

+

√
ι

Nk
h (s, a)T1

+
Hι

Nk
h (s, a)

é
≤ 2

√
ṽref,k
h (s, a)ι

Nk
h (s, a)

+ 5H

Ç
ι

Nk
h (s, a)

å 3
4

+ 4H
ι

Nk
h (s, a)

.

Similarly, combining Equation (29) with the event E5 in Lemma D.5, for any (s, a, h, k) ∈ S ×A×
[H]× [K], we have:

|χ2| ≤ 2

√
ṽadv,k
h (s, a)ι

nkh(s, a)
+ 10H

Ç
ι

nkh(s, a)

å 3
4

+ 6H
ι

nkh(s, a)
.

Therefore, according to the definition of b̃k,2h (s, a), for any (s, a, h, k) ∈ S ×A× [H]× [K], it holds
that:

b̃k,2h (s, a) ≥ |χ1|+ |χ2|. (30)

Now we use mathematical induction on k to prove Qk
h(s, a) ≥ Q⋆

h(s, a) for any (s, a, h, k) ∈
S × A × [H] × [K]. For k = 1, Q1

h(s, a) = H ≥ Q⋆
h(s, a) for any (s, a, h) ∈ S × A × [H]. For

k ≥ 2, assume we already have Qk′

h (s, a) ≥ Q⋆
h(s, a) for any (s, a, h, k′) ∈ S ×A× [H]× [k − 1],
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then we will prove for any (s, a, h) ∈ S×A×[H],Qk
h(s, a) ≥ Q⋆

h(s, a). According to Equation (27),
the following relationship holds:

Qk
h(s, a) = I

[
tkh = 1

]
H + I

[
tkh > 1

]
min{Q̃k,1

h (s, a), Q̃k,2
h (s, a), Qk−1

h (s, a)}.
Then for any given (s, a, h) ∈ S ×A× [H], we have the following four cases:

(a) If tkh(s, a) = 1, then Qk
h(s, a) = H ≥ Q⋆

h(s, a).

(b) If tkh(s, a) > 1 and Qk
h(s, a) = Qk−1

h (s, a), then the conclusion holds.

(c) If tkh(s, a) > 1 and Qk
h(s, a) = Q̃k,1

h (s, a) = rh(s, a) + µ̃val,k
h /nkh + b̃k,1h (s, a).

Because of Equation (1), we have the following equality:

Q⋆
h(s, a) = rh(s, a) + Ps,a,hV

⋆
h+1.

Then we have:

Qk
h(s, a)−Q⋆

h(s, a) = µ̃val,k
h /nkh + b̃k,1h (s, a)− Ps,a,hV

⋆
h+1

=
1

nkh

nk
h∑

i=1

(
V

kli

h+1(s
(k,m,j)li
h+1 )− Ps,a,hV

⋆
h+1

)
+ b̃k,1h (s, a). (31)

According to the definition of li(s, a, h, k), we know kli < k for i ∈ [nkh(s, a)]. Then Q
kli

h (s, a) ≥
Q⋆

h(s, a) based on the induction. Therefore, according to the update rule Equation (13) and Equa-
tion (1), for any (s, h) ∈ S × [H] and any i ∈ [nkh(s, a)], we have:

V
kli

h+1(s) = max
a∈A

Q
kli

h+1(s, a) ≥ max
a∈A

Q⋆
h+1(s, a) = V ⋆

h+1(s), (32)

and for any i ∈ [nkh(s, a)] it holds:

Ps,a,hV
kli

h+1 ≥ Ps,a,hV
⋆
h+1. (33)

Combining Equation (31) and Equation (32), we have:

Qk
h(s, a)−Q⋆

h(s, a) ≥
1

nkh(s, a)

nk
h∑

i=1

(
V ⋆
h+1(s

(k,m,j)li
h+1 )− Ps,a,hV

⋆
h+1

)
+ b̃k,1h (s, a) ≥ 0.

The last inequality is because b̃k,1h =
»
2H2ι/nkh and the event E1 in Lemma D.5.

(d) If tkh(s, a) > 1 and Qk
h(s, a) = Q̃k,2

h (s, a) = rh(s, a) + µ̃ref,k+1
h /Nk+1

h + µ̃adv,k+1
h /nk+1

h +

b̃k,2h (s, a). We have that

Qk
h(s, a)−Q⋆

h(s, a)

= µ̃ref,k
h /Nk

h + µ̃adv,k
h /nkh + b̃k,2h (s, a)− Ps,a,hV

⋆
h+1

=

∑Nk
h

i=1 V
ref,kLi

h+1 (s
(k,m,j)Li

h+1 )

Nk
h (s, a)

+

∑nk
h

i=1(V
kli

h+1 − V
ref,kli

h+1 )(s
(k,m,j)li
h+1 )

nkh(s, a)
+ b̃k,2h (s, a)− Ps,a,hV

⋆
h+1

=

∑Nk
h

i=1 Ps,a,hV
ref,kLi

h+1

Nk
h (s, a)

+

∑nk
h

i=1 Ps,a,h(V
kli

h+1 − V
ref,kli

h+1 )

nkh(s, a)
− Ps,a,hV

⋆
h+1 + b̃k,2h (s, a)− χ1 − χ2

=

Ñ∑Nk
h

i=1 Ps,a,hV
ref,kLi

h+1

Nk
h (s, a)

−
∑nk

h
i=1 Ps,a,hV

ref,kli

h+1

nkh(s, a)

é
+

∑nk
h

i=1 Ps,a,hV
kli

h+1 − Ps,a,hV
⋆
h+1

nkh(s, a)
(34)

+
Ä
b̃k,2h (s, a)− χ1 − χ2

ä
.

As V ref,k
h+1 is non-increasing with regard to k based on (j) in Lemma D.1, we have:

1

Nk
h (s, a)

Nk
h∑

i=1

Ps,a,hV
ref,kLi

h+1 ≥ 1

nkh(s, a)

nk
h∑

i=1

Ps,a,hV
ref,kli

h+1 . (35)
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Based on Equation (35), Equation (33), and Equation (30), we know each term in Equation (34) is
nonnegative. Therefore, in this case Qk

h(s, a)−Q⋆
h(s, a) ≥ 0.

In summary, we prove the conclusion that Qk
h(s, a) ≥ Q⋆

h(s, a) for any (s, a, h, k) ∈ S ×A× [H]×
[K]. The only thing left is to prove Equation (28) and Equation (29).

Proof of Equation (28) and Equation (29). For any given (s, a, h, k) ∈ S ×A× [H]× [K], let:

χ3(s, a, h, k) =

Nk
h∑

i=1

Å
Ps,a,h − 1

s
(k,m,j)Li
h+1

ãÄ
V

ref,kLi

h+1

ä2
, (36)

χ4(s, a, h, k) =

(∑Nk
h

i=1 V
ref,kLi

h+1 (s
(k,m,j)Li

h+1 )
)2

Nk
h (s, a)

−

(∑Nk
h

i=1 Ps,a,hV
ref,kLi

h+1

)2
Nk

h (s, a)
, (37)

χ5(s, a, h, k) =

(∑Nk
h

i=1 Ps,a,hV
ref,kLi

h+1

)2
Nk

h (s, a)
−

Nk
h∑

i=1

Ä
Ps,a,hV

ref,kLi

h+1

ä2
. (38)

Without ambiguity, we will use the abbreviations χ3, χ4, and χ5 in the following proof.

First, we focus on bounding |χ3|. Using the definition of ṽref,k
h (s, a), we have:

Nk
h (s, a)ṽ

ref,k
h (s, a) =

Nk
h∑

i=1

(
V

ref,kLi

h+1 (s
(k,m,j)Li

h+1 )
)2
−

(∑Nk
h

i=1 V
ref,kLi

h+1 (s
(k,m,j)Li

h+1 )
)2

Nk
h (s, a)

. (39)

Summing Equation (36), Equation (37), Equation (38) and Equation (39), we can find that:

Nk
h∑

i=1

Vs,a,h(V
ref,kLi

h+1 ) =

Nk
h∑

i=1

Ps,a,h(V
ref,kLi

h+1 )2 −
Nk

h∑
i=1

Ä
Ps,a,hV

ref,kLi

h+1

ä2
= Nk

h (s, a)ṽ
ref,k
h + χ3 + χ4 + χ5. (40)

Because of the event E4 in Lemma D.5, we know:

|χ3| ≤ H2
»
2Nk

h (s, a)ι. (41)

Next, we focus on bounding |χ4|. Using the absolute value inequality, it holds that:∣∣∣∣∣∣
Nk

h∑
i=1

(
V

ref,kLi

h+1 (s
(k,m,j)Li

h+1 ) + Ps,a,hV
ref,kLi

h+1

)∣∣∣∣∣∣
≤

Nk
h∑

i=1

(∣∣∣V ref,kLi

h+1 (s
(k,m,j)Li

h+1 )
∣∣∣+ ∣∣∣Ps,a,hV

ref,kLi

h+1

∣∣∣) ≤ 2H.

Then we have: :

|χ4| =
1

Nk
h (s, a)

∣∣∣∣∣∣
Nk

h∑
i=1

(
V

ref,kLi

h+1 (s
(k,m,j)Li

h+1 ) + Ps,a,hV
ref,kLi

h+1

)∣∣∣∣∣∣×∣∣∣∣∣∣
Nk

h∑
i=1

(
V

ref,kLi

h+1 (s
(k,m,j)Li

h+1 )− Ps,a,hV
ref,kLi

h+1

)∣∣∣∣∣∣
≤ 2H

∣∣∣∣∣∣
Nk

h∑
i=1

Å
Ps,a,h − 1

s
(k,m,j)Li
h+1

ã
V

ref,kLi

h+1

∣∣∣∣∣∣ ≤ 2H2
»
2Nk

h (s, a)ι. (42)

The last inequality is because of the event E3 in Lemma D.5.
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For χ5, according to the Cauchy-Schwarz Inequality, we have χ5 ≤ 0.

Applying the upper bound of χ3 Equation (41), χ4 Equation (42) and χ5 to Equation (40), we have:

Nk
h∑

i=1

Vs,a,h(V
ref,kLi

h+1 ) ≤ Nk
h (s, a)ṽ

ref,k
h + 5H2

»
Nk

h (s, a)ι,

Then we finish the proof of Equation (28). The proof for Equation (29) is similar, in which we just
need to substitute Nk

h (s, a) with nkh(s, a) and H2 with 2H2.

With Lemma E.1, Equation (13) and Equation (1), for any (s, h, k) ∈ S × [H]× [K], we have:

V k
h (s) = max

a′∈A
Qk

h(s, a
′) ≥ max

a′∈A
Q⋆

h(s, a
′) = V ⋆

h (s). (43)

The following lemma gives a viable value of N0 to learn the reference function V ref,k
h (s). Denote

V REF
h (s) = V ref,K+1

h (s) as the final value of the reference function V ref,k
h (s).

Lemma E.2. Under the event
⋂7

i=1 Ei in Lemma D.5, it holds for any h ∈ [H] and β ∈ (0, H] that:∑
k,m,j

I
î
V k
h (sk,m,j

h )− V ⋆
h (s

k,m,j
h ) ≥ β

ó
< 5184

SAH5ι

β2
+ 16

MSAH3

β
.

In addition, letting

N0 = 5184
SAH5ι

β2
+ 16

MSAH3

β
, β ∈ (0, H],

we have that for any (s, h) ∈ S × [H],

V REF
h (s) = H or V ⋆

h (s) ≤ V REF
h (s) ≤ V ⋆

h (s) + β.

Proof. We claim that for any non-negative weight sequence {ωk,m,j}k,m,j and any h ∈ [H],∑
k,m,j

ωk,m,j

(
V k
h − V ⋆

h

)
(sk,m,j

h ) ≤ 8H2
(
MSAH||ω||∞ + 9

»
SAHι||ω||∞||ω||1

)
. (44)

Here, ||ω||∞ = maxk,m,j ωk,m,j and ||ω||1 =
∑

k,m,j ωk,m,j . If we have proved Equation (44), then
letting ωk,m,j = I[V k

h (sk,m,j
h ) − V ⋆

h (s
k,m,j
h ) ≥ β], according to Equation (44) and Equation (43),

we have:

||ω||1 =
∑
k,m,j

I
î
V k
h (sk,m,j

h )− V ⋆
h (s

k,m,j
h ) ≥ β

ó
≤ 1

β

∑
k,m,j

I
î
V k
h (sk,m,j

h )− V ⋆
h (s

k,m,j
h ) ≥ β

ó Ä
V k
h (sk,m,j

h )− V ⋆
h (s

k,m,j
h )

ä
≤ 1

β
· 8H2(MSAH + 9

»
SAHι||ω||1).

Letting b = 72H2
√
SAHι and c = 8MSAH3, we have:

β||ω||1 − b
»
||ω||1 − c ≤ 0.

Solving the inequality, we have:

0 ≤
»
||ω||1 ≤

b+
√
b2 + 4βc

2β
.

Then:

||ω||1 ≤ (
b+

√
b2 + 4βc

2β
)2 <

b2 + b2 + 4βc

2β2
= 5184

SAH5ι

β2
+ 16

MSAH3

β
.
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Therefore, for any h ∈ [H], it holds that:∑
k,m,j

I
î
V k
h (sk,m,j

h )− V ⋆
h (s

k,m,j
h ) ≥ β

ó
= ||ω||1 < 5184

SAH5ι

β2
+ 16

MSAH3

β
.

Especially, for any (s, h) we have:∑
k,m,j

I
î
V k
h (s)− V ⋆

h (s) ≥ β, s
k,m,j
h = s

ó
< N0.

Since V k
h (s) is non-increasing with regard to k under the event

⋂7
i=1 Ei according to Lemma E.1 and

(j) in Lemma D.1, V k
h (s)− V ⋆

h (s) is also non-increasing. Before we update the reference function at
(s, h), V ref,k

h (s) = V 1
h (s) = H . Therefore, if the reference function at (s, h) is not updated in the

algorithm, V REF
h (s) = H . Next, we discuss the situation in which the reference function at (s, h)

is updated in FedQ-Advantage. When we update the reference function at the end of round k, we
have

∑
k′,m,j:k′≤k I

î
sk

′,m,j
h = s

ó
≥ N0 and thus 0 ≤ V k

h (s)− V ⋆
h (s) < β. Therefore, for the final

value V REF
h (s) = V ref,k+1

h (s) = V k+1
h (s), it holds that 0 ≤ V REF

h (s) − V ⋆
h (s) < β. Then we have

V REF
h (s) = H or V ⋆

h (s) ≤ V REF
h (s) ≤ V ⋆

h (s) + β under the event
⋂7

i=1 Ei. Now, we only need to
prove Equation (44).

Proof of Equation (44). According to the update rule Equation (13) and Equation (27), for h ∈ [H],
we have:

V k
h (sm,k,j

h ) = max
a∈A

Qk
h(s

k,m,j
h , a) = Qk

h(s
k,m,j
h , ak,m,j

h )

≤ I
î
tk,m,j
h ) = 1

ó
H + I

î
tk,m,j
h > 1

ó
Q̃k,1

h (sk,m,j
h , ak,m,j

h )

= I
î
tk,m,j
h = 1

ó
H + I

î
tk,m,j
h > 1

ó
×Ñ

rh(s
k,m,j
h , ak,m,j

h ) +

∑nk
h

i=1 V
kli

h+1(s
(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
+ b̃k,1h (sk,m,j

h , ak,m,j
h )

é
,

and according to the Bellman equality Equation (1), we have:

V ⋆
h (s

m,k,j
h ) = max

a∈A
Q⋆

h(s
k,m,j
h , a) ≥ Q⋆

h(s
k,m,j
h , ak,m,j

h )

≥ I
î
tk,m,j
h > 1

ó Ä
rh(s

k,m,j
h , ak,m,j

h ) + Psk,m,j
h ,ak,m,j

h ,hV
⋆
h+1

ä
.

Combined these two inequalities, it holds for any h ∈ [H] that:(
V k
h − V ⋆

h

)
(sk,m,j

h )

≤ I
î
tk,m,j
h = 1

ó
H + I

î
tk,m,j
h > 1

ó
× (45)Ñ∑nk

h
i=1 V

kli

h+1(s
(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
+ b̃k,1h (sk,m,j

h , ak,m,j
h )− Psk,m,j

h ,ak,m,j
h ,hV

⋆
h+1

é
≤ I
î
tk,m,j
h = 1

ó
H + I

î
tk,m,j
h > 1

óÑ∑nk
h

i=1(V
kli

h+1 − V ⋆
h+1)(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
+ 2b̃k,1h

é
.

The last inequality is because of the event E1 in Lemma D.5. Then for any h ∈ [H]:∑
k,m,j

ωk,m,j(V
k
h − V ⋆

h )(s
k,m,j
h ) ≤

∑
k,m,j

ωk,m,jI
î
tk,m,j
h = 1

ó
H + I

î
tk,m,j
h > 1

ó
×Ñ∑

k,m,j

ωk,m,j

∑nk
h

i=1(V
kli

h+1 − V ⋆
h+1)(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
+ 2

∑
k,m,j

ωk,m,j b̃
k,1
h (sk,m,j

h , ak,m,j
h )

é
. (46)
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For the first term in Equation (46), we have:

∑
k,m,j

I
î
tk,m,j
h = 1

ó
H = H

∑
k,m,j

I
î
tkh(s

k,m,j
h , ak,m,j

h ) = 1
óÑ∑

(s,a)

I
î
(sk,m,j

h , ak,m,j
h ) = (s, a)

óé
= H

∑
(s,a)

∑
k,m,j

I
î
(sk,m,j

h , ak,m,j
h ) = (s, a), tkh(s, a) = 1

ó
.

For any (s, a, h) ∈ S × A × [H], I[(sk,m,j
h , ak,m,j

h ) = (s, a), tkh(s, a) = 0] = 1 if and only if
(sk,m,j

h , ak,m,j
h ) = (s, a) and tkh(s, a) = 1. Therefore,

∑
k,m,j I[(s

k,m,j
h , ak,m,j

h ) = (s, a), tkh(s, a) =

0] = Y 1
h (s, a). Because of (c) in Lemma D.1, we have:∑

k,m,j

I
î
tk,m,j
h = 1

ó
H = H

∑
(s,a)

Y 1
h (s, a) ≤ H · SAM(H + 1) ≤ 2MSAH2. (47)

Then it holds for any h ∈ [H] that:∑
k,m,j

ωk,m,jI[tk,m,j
h = 1]H ≤ ||ω||∞

∑
k,m,j

I[tk,m,j
h = 1]H ≤ 2MSAH2||ω||∞. (48)

For the second term in Equation (46), we have:

∑
k,m,j

ωk,m,j

∑nk
h

i=1

Ä
V

kli

h+1 − V ⋆
h+1

ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
I[tk,m,j

h > 1]

=
∑
k,m,j

nk
h∑

i=1

ωk,m,j

Ä
V

kli

h+1 − V ⋆
h+1

ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
I[tk,m,j

h > 1] ·
∑

k′,m′,j′

I[(k,m, j)li = (k′,m′, j′)]

=
∑
k,m,j

nk
h∑

i=1

∑
k′,m′,j′

ωk,m,j

Ä
V k′

h+1 − V ⋆
h+1

ä
(sk

′,m′,j′

h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
I[tk,m,j

h > 1] · I[(k,m, j)li = (k′,m′, j′)]

=
∑

k′,m′,j′

(
∑
k,m,j

ωk,m,j

∑nk
h

i=1 I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

nkh(s
k,m,j
h , ak,m,j

h )
)(V k′

h+1 − V ⋆
h+1)(s

k′,m′,j′

h+1 ).

Let:

ω̃k′,m′,j′ =
∑
k,m,j

ωk,m,j

∑nk
h

i=1 I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

nkh(s
k,m,j
h , ak,m,j

h )
≥ 0,

and
||ω̃||∞ = max

k′,m′,j′
ω̃k′,m′,j′ , ||ω̃||1 =

∑
k′,m′,j′

ω̃k′,m′,j′ .

We have:

∑
k,m,j

ωk,m,j

∑nk
h

i=1

Ä
V

kli

h+1 − V ⋆
h+1

ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
I[tk,m,j

h > 1]

=
∑

k′,m′,j′

ω̃k′,m′,j′(V
k′

h+1 − V ⋆
h+1)(s

k′,m′,j′

h+1 ). (49)

Next, we will explore the relationship between the norm of {ωk,m,j}k,m,j and {ω̃k,m,j}k,m,j . For a

given triple (k′,m′, j′), according to the definition of li(s
k,m,j
h , ak,m,j

h , h, k),
∑nk

h
i=1 I[(k,m, j)li =

(k′,m′, j′), tk,m,j
h > 1]) = 1 if and only if (sk,m,j

h , ak,m,j
h ) = (sk

′,m′,j′

h , ak
′,m′,j′

h ) and 1 <

tkh(s
k,m,j
h , ak,m,j

h ) = tk
′

h (sk,m,j
h , ak,m,j

h ) + 1. In this case, we have tk
′

h (sk,m,j
h , ak,m,j

h ) > 0 and
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nkh(s
k,m,j
h , ak,m,j

h ) = y
tk

′
h

h (sk
′,m′,j′

h , ak
′,m′,j′

h ). Then for a given triple (k′,m′, j′), it holds that:

∑
k,m,j

nk
h∑

i=1

I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

=
∑
k,m,j

I
î
(sk,m,j

h , ak,m,j
h ) = (sk

′,m′,j′

h , ak
′,m′,j′

h ), tkh(s
k,m,j
h , ak,m,j

h ) = tk
′

h (sk,m,j
h , ak,m,j

h ) + 1
ó

= y
tk

′
h +1
h (sk

′,m′,j′

h , ak
′,m′,j′

h ).

Then according to (e) in Lemma D.1, it holds that:

∑
k,m,j

∑nk
h

i=1 I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

nkh(s
k,m,j
h , ak,m,j

h )
=
y
tk

′
h +1
h (sk

′,m′,j′

h , ak
′,m′,j′

h )

y
tk

′
h

h (sk
′,m′,j′

h , ak
′,m′,j′

h )
≤ 1 +

2

H
.

Then we have:

||ω̃||∞ ≤ ||ω||∞
∑
k,m,j

∑nk
h

i=1 I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

nkh(s
k,m,j
h , ak,m,j

h )
≤ (1 +

2

H
)||ω||∞.

We also have:

||ω̃||1 =
∑

k′,m′,j′

∑
k,m,j

ωk,m,j

nk
h∑

i=1

I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

nkh(s
k,m,j
h , ak,m,j

h )

=
∑
k,m,j

ωk,m,j

nk
h∑

i=1

∑
k′,m′,j′

I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

nkh(s
k′,m′,j′

h , ak
′,m′,j′

h )

≤
∑
k,m,j

ωk,m,j = ||ω||1.

For the third term in Equation (46), we have:∑
k,m,j

ωk,m,j b̃
k,1
h (sk,m,j

h , ak,m,j
h )I[tk,m,j

h > 1]

=
∑
k,m,j

ωk,m,j

√
2H2ι

nkh(s
k,m,j
h , ak,m,j

h )
I
î
tk,m,j
h > 1

ó(∑
s,a

I
î
(sk,m,j

h , ak,m,j
h ) = (s, a)

ó)
=
∑
s,a

∑
k,m,j

ωk,m,j

 
2H2ι

nkh(s, a)
I
î
(sk,m,j

h , ak,m,j
h ) = (s, a)

óÑTh(s,a)∑
t=2

I
[
tkh(s, a) = t

]é
=
∑
s,a

∑
k,m,j

Th(s,a)∑
t=2

ωk,m,j

 
2H2ι

yt−1
h (s, a)

I
î
(sk,m,j

h , ak,m,j
h ) = (s, a), tkh(s, a) = t

ó
=
∑
s,a

Th(s,a)−1∑
t=1

Ñ∑
k,m,j

ωk,m,jI
î
(sk,m,j

h , ak,m,j
h ) = (s, a), tkh(s, a) = t+ 1

óé  2H2ι

yth(s, a)
.

Denote
q(s, a, t) =

∑
k,m,j

ωk,m,jI
î
(sk,m,j

h , ak,m,j
h ) = (s, a), tkh(s, a) = t+ 1

ó
,

and

q(s, a) =

Th(s,a)−1∑
t=1

q(s, a, t) for Th(s, a) ≥ 2. (50)
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Then we have:∑
k,m,j

ωk,m,j b̃
k,1
h (sk,m,j

h , ak,m,j
h )I[tk,m,j

h > 1] =
∑
s,a

Th(s,a)−1∑
t=1

q(s, a, t)

 
2H2ι

yth(s, a)
. (51)

For the coefficient q(s, a, t), we have the following properties:

q(s, a, t) ≤ ||ω||∞
∑
k,m,j

I
î
(sk,m,j

h , ak,m,j
h ) = (s, a), tkh(s, a) = t+ 1

ó
= ||ω||∞yt+1

h (s, a), (52)

and ∑
s,a

q(s, a) =
∑
k,m,j

ωk,m,j

∑
s,a

Th(s,a)−1∑
t=1

I
î
(sk,m,j

h , ak,m,j
h ) = (s, a), tkh(s, a) = t+ 1

ó
≤
∑
k,m,j

ωk,m,j

∑
s,a

I
î
(sk,m,j

h , ak,m,j
h ) = (s, a), tkh(s, a) > 1

ó
≤
∑
k,m,j

ωk,m,j = ||w||1. (53)

Because yth(s, a) is increasing for 1 ≤ t ≤ Th(s, a)− 1, given the equation Equation (50), when the
weights q(s, a, t) concentrates on former terms, we can obtain the larger value of the right term in
Equation (51). There exists some positive integer t0 ≤ Th(s, a)− 1 satisfying:

||ω||∞
t0−1∑
t=1

yt+1
h (s, a) ≤ q(s, a) ≤ ||ω||∞

Th−1∑
t=1

yt+1
h (s, a). (54)

and

||ω||∞
t0∑
t=1

yt+1
h (s, a) ≥ q(s, a).

Then according to Equation (52), we have
Th(s,a)−1∑

t=1

q(s, a, t)

 
1

yth(s, a)
≤

t0∑
t=1

||ω||∞yt+1
h (s, a)

 
1

yth(s, a)
. (55)

Since t0 ≤ Th(s, a)− 1, according to (e) and Equation (16) in Lemma D.1, we have:

yt+1
h (s, a)

 
1

yth(s, a)
≤ (1+

2

H
)
»
yth(s, a) ≤ 3(1+

2

H
)
√
H
(»

Y t
h(s, a)−

»
Y t−1
h (s, a)

)
. (56)

If t0 ≥ 2, we also have:

||ω||∞
t0−1∑
t=1

yt+1
h (s, a) ≥ (1 +

1

H
)||ω||∞

t0−1∑
t=1

yth(s, a) = (1 +
1

H
)||ω||∞Y t0−1

h (s, a) (57)

≥ ||ω||∞
2

Y t0
h (s, a). (58)

The last inequality is because of (f) in Lemma D.1. Then according to Equation (54), it holds that:

||ω||∞Y t0
h (s, a) ≤ 2||ω||∞

t0−1∑
t=1

yt+1
h (s, a) ≤ 2q(s, a).

Applying inequalities Equation (56) and Equation (57) to Equation (55), we have:
Th(s,a)−1∑

t=1

q(s, a, t)

 
1

yth(s, a)

≤ 3(1 +
2

H
)
√
H||ω||∞ ·

t0∑
t=1

(»
Y t
h(s, a)−

»
Y t−1
h (s, a)

)
= 3(1 +

2

H
)
»
H||ω||∞ ·

»
||ω||∞Y t0

h (s, a)

≤ 9
»
2H||ω||∞q(s, a).
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Here, the first inequality is because of Equation (16). The last inequality uses Equation (57) and
1 + 2

H ≤ 3.

If t0 = 1, then q(s, a) ≤ ||ω||∞y2h(s, a). Therefore, according to Equation (55), we have:

Th(s,a)−1∑
t=1

q(s, a, t)

 
1

yth(s, a)
≤ q(s, a)

 
1

y1h(s, a)
≤
 
||ω||∞y2h(s, a)q(s, a)

y1h(s, a)
.

Based on (e) in Lemma D.1, it holds:
Th(s,a)−1∑

t=1

q(s, a, t)

 
1

yth(s, a)
≤
…
(1 +

2

H
)||ω||∞q(s, a) ≤ 9

»
2H||ω||∞q(s, a).

Therefore, for any t0 ≤ Th(s, a)− 1 defined in Equation (54), we have:

Th(s,a)−1∑
t=1

q(s, a, t)

 
1

yth(s, a)
≤ 9
»
2H||ω||∞q(s, a).

Combined with Equation (51), we have∑
k,m,j

ωk,m,j b̃
k,1
h (sk,m,j

h , ak,m,j
h )I[tk,m,j

h > 1] ≤ 18
»
H3||ω||∞ι

∑
s,a

»
q(s, a)

≤ 18
»
SAH3||ω||∞||ω||1ι. (59)

The last inequality uses the Cauchy-Schwarz inequality.

Based on Equation (45), applying Equation (48), Equation (49) and Equation (59), for any h ∈ [H],
we have: ∑

k,m,j

ωk,m,j(V
k
h − V ⋆

h )(s
k,m,j
h ) ≤ 2MSAH2||ω||∞ + 18

»
SAH3ι||ω||∞||ω||1

+
∑
k,m,j

ω̃k,m,j(V
k
h+1 − V ⋆

h+1)(s
k,m,j
h+1 ), (60)

where ||ω̃||∞ ≤ (1 + 2
H )||ω||∞, and ||ω̃||1 = ||ω||1.

Using Equation (60), with induction on h = H,H − 1, ..., 1, we can prove that for any h ∈ [H]:∑
k,m,j

ωk,m,j(V
k
h − V ⋆

h )(s
k,m,j
h ) ≤ Ch

(
2MSAH2||ω||∞ + 18

»
SAH3ι||ω||∞||ω||1

)
, (61)

where Ch = (1 + H
2 )(1 +

2
H )H−h − H

2 . Note that Ch ≤ 4H , based on Equation (61), it holds for
any h ∈ [H] that:∑

k,m,j

ωk,m,j(V
k
h − V ⋆

h )(s
k,m,j
h ) ≤ 8H2(MSAH||ω||∞ + 9

»
SAHι||ω||∞||ω||1).

Therefore, we finish the proof of Equation (44).

Next, we go back to the proof of Equation (26). In the following content,
∑

k,m,j is the simplified no-

tation of
∑K

k=1

∑M
m=1

∑nm,k

j=1 . Nk
h , nkh, Li, li represent simplified notations for Nk

h (s
k,m,j
h , ak,m,j

h ),
nkh(s

k,m,j
h , ak,m,j

h ), Li(s
k,m,j
h , ak,m,j

h , h) and li(s
k,m,j
h , ak,m,j

h , h, h, k) respectively.

For h ∈ [H + 1], denote:

δkh =

M∑
m=1

nm,k∑
j=1

(
V k
h − V ⋆

h

)
(sk,m,j

h ),
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ζkh =

M∑
m=1

nm,k∑
j=1

Ä
V k
h − V πk

h

ä
(sk,m,j

h ).

Here, δkH+1 = ζkH+1 = 0. Because V ⋆
h (s) = supπ V

π
h (s), we have δkh ≤ ζkh for any h ∈ [H + 1]. In

addition, as V k
h (s) ≥ V ⋆

h (s) for all (s, h, k) ∈ S × [H]× [K], according to Lemma E.1, we have:

Regret(T ) =
∑
k,m,j

Ä
V ⋆
1 (s

k,m,j
1 )− V πk

1 (sk,m,j
1 )

ä
≤
∑
k,m,j

Ä
V k
1 (sk,m,j

1 )− V πk

1 (sk,m,j
1 )

ä
=

K∑
k=1

ζk1 .

Thus, we only need to bound
∑K

k=1 ζ
k
1 . Let:

ψk
h+1 =

M∑
m=1

nm,k∑
j=1

I
î
tkh(s

k,m,j
h , ak,m,j

h ) > 1
ó

Nk
h (s

k,m,j
h , ak,m,j

h )

Nk
h∑

i=1

Psk,m,j
h ,ak,m,j

h ,h

Ä
V

ref,kLi

h+1 − V REF
h+1

ä
, (62)

ϵkh+1 =

M∑
m=1

nm,k∑
j=1

I
î
tkh(s

k,m,j
h , ak,m,j

h ) > 1
ó

nkh(s
k,m,j
h , ak,m,j

h )

nk
h∑

i=1

Å
Psk,m,j

h ,ak,m,j
h ,h − 1s

(k,m,j)li
h+1

ãÄ
V

kli

h+1 − V
⋆
h+1

ä
,

(63)

ϕkh+1 =

M∑
m=1

nm,k∑
j=1

I
î
tkh(s

k,m,j
h , ak,m,j

h ) > 1
ó(

Psk,m,j
h ,ak,m,j

h ,h − 1sk,m,j
h+1

) Ä
V ⋆
h+1 − V πk

h+1

ä
, (64)

where ψk
H+1 = ϵkH+1 = ϕkH+1 = 0. According to the update rule Equation (27), we have:

V k
h (sk,m,j

h ) = max
a∈A

Qk
h(s

k,m,j
h , a) = Qk

h(s
k,m,j
h , ak,m,j

h )

≤ I
î
tk,m,j
h = 1

ó
H + I

î
tk,m,j
h > 1

ó
Q̃k,2

h (sk,m,j
h , ak,m,j

h )

≤ I
î
tk,m,j
h = 1

ó
H + I

î
tk,m,j
h > 1

ó
(rh(s

k,m,j
h , ak,m,j

h ) +

∑Nk
h

i=1 V
ref,kLi

h+1 (s
(k,m,j)Li

h+1 )

Nk
h (s

k,m,j
h , ak,m,j

h )

+

∑nk
h

i=1

Ä
V

kli

h+1 − V
ref,kli

h+1

ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
+ b̃k,2h (sk,m,j

h , ak,m,j
h )).

Also using Equation (1), we have:

V πk

h (sk,m,j
h ) = Qπk

h (sk,m,j
h , ak,m,j

h ) ≥ I[tk,m,j
h > 1]

Ä
rh(s

k,m,j
h , ak,m,j

h ) + Psk,m,j
h ,ak,m,j

h ,hV
πk

h+1

ä
.

Then with Equation (30), it holds that:

ζkh =

M∑
m=1

nm,k∑
j=1

Ä
V k
h − V πk

h

ä
(sk,m,j

h )

≤
M∑

m=1

nm,k∑
j=1

Ä
I
î
tk,m,j
h = 1

ó
H + I

î
tk,m,j
h > 1

ó
b̃k,2h (sk,m,j

h , ak,m,j
h )

ä
+

M∑
m=1

nm,k∑
j=1

I
î
tk,m,j
h > 1

ó
×

Ñ∑Nk
h

i=1 V
ref,kLi

h+1 (s
(k,m,j)Li

h+1 )

Nk
h (s

k,m,j
h , ak,m,j

h )
+

∑nk
h

i=1

Ä
V

kli

h+1 − V
ref,kli

h+1

ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
− PV πk

h+1

é
≤

M∑
m=1

nm,k∑
j=1

Ä
I
î
tk,m,j
h = 1

ó
H + 2I

î
tk,m,j
h > 1

ó
b̃k,2h (sk,m,j

h , ak,m,j
h )

ä
+

M∑
m=1

nm,k∑
j=1

I
î
tk,m,j
h > 1

óÑ ∑Nk
h

i=1 PV
ref,kLi

h+1

Nk
h (s

k,m,j
h , ak,m,j

h )
+

∑nk
h

i=1 P
Ä
V

kli

h+1 − V
ref,kli

h+1

ä
nkh(s

k,m,j
h , ak,m,j

h )
− PV πk

h+1

é
. (65)
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Here P is the simplified notation for Psk,m,j
h ,ak,m,j

h ,h. Because the reference function is non-increasing

based on (j) in Lemma D.1, we have V
ref,kli

h+1 (s) ≥ V REF
h+1(s) for any s ∈ S and any positive integer i,

Psk,m,j
h ,ak,m,j

h ,hV
ref,kli

h+1 ≥ Psk,m,j
h ,ak,m,j

h ,hV
REF
h+1 and∑nk

h
i=1 Psk,m,j

h ,ak,m,j
h ,hV

ref,kli

h+1

nkh(s
k,m,j
h , ak,m,j

h )
≥ Psk,m,j

h ,ak,m,j
h ,hV

REF
h+1. (66)

According to the definition of δkh+1, ψk
h+1, ϵkh+1, ϕkh+1 and Equation (66) , we have:

M∑
m=1

nm,k∑
j=1

I
î
tk,m,j
h > 1

óÑ∑Nk
h

i=1 Psk,m,j
h ,ak,m,j

h ,hV
ref,kLi

h+1

Nk
h (s

k,m,j
h , ak,m,j

h )
−

∑nk
h

i=1 Psk,m,j
h ,ak,m,j

h ,hV
ref,kli

h+1

nkh(s
k,m,j
h , ak,m,j

h )

é
≤ ψk

h+1, (67)

M∑
m=1

nm,k∑
j=1

I
î
tk,m,j
h > 1

ó∑nk
h

i=1 Psk,m,j
h ,ak,m,j

h ,h

Ä
V

kli

h+1 − V ⋆
h+1

ä
nkh(s

k,m,j
h , ak,m,j

h )

= ϵkh+1 +

M∑
m=1

nm,k∑
j=1

I
î
tk,m,j
h > 1

ó∑nk
h

i=1

Ä
V

kli

h+1 − V ⋆
h+1

ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
, (68)

and
M∑

m=1

nm,k∑
j=1

I
î
tk,m,j
h > 1

ó
Psk,m,j

h ,ak,m,j
h ,h

Ä
V ⋆
h+1 − V πk

h+1

ä
= ϕkh+1 + ζkh+1 − δkh+1. (69)

Summing Equation (67), Equation (68) and Equation (69), we can bound the second term in Equa-
tion (65) as follows:

M∑
m=1

nm,k∑
j=1

I
î
tk,m,j
h > 1

óÑ ∑Nk
h

i=1 PV
ref,kLi

h+1

Nk
h (s

k,m,j
h , ak,m,j

h )
+

∑nk
h

i=1 P
Ä
V

kli

h+1 − V
ref,kli

h+1

ä
nkh(s

k,m,j
h , ak,m,j

h )
− PV πk

h+1

é
≤

M∑
m=1

nm,k∑
j=1

I[tk,m,j
h > 1]

∑nk
h

i=1

Ä
V

kli

h+1 − V ⋆
h+1

ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
+ ψk

h+1 + ϵkh+1 + ϕkh+1 + ζkh+1 − δkh+1.

Together with Equation (65), we have

ζkh ≤
M∑

m=1

nm,k∑
j=1

(I
î
tk,m,j
h = 1

ó
H + 2I

î
tk,m,j
h > 1

ó
b̃k,2h ) +

M∑
m=1

nm,k∑
j=1

I
î
tk,m,j
h > 1

ó
×

∑nk
h

i=1

Ä
V

kli

h+1 − V ⋆
h+1

ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
+ ψk

h+1 + ϵkh+1 + ϕkh+1 + ζkh+1 − δkh+1.

Summing the above inequality for k = 1, 2, ..,K, we have:
K∑

k=1

ζkh ≤
∑
k,m,j

(I
î
tk,m,j
h = 1

ó
H + 2I

î
tk,m,j
h > 1

ó
b̃k,2h (sk,m,j

h , ak,m,j
h )) +

∑
k,m,j

I
î
tk,m,j
h > 1

ó
×

∑nk
h

i=1

Ä
V

kli

h+1 − V ⋆
ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
+

K∑
k=1

(ψk
h+1 + ϵkh+1 + ϕkh+1 + ζkh+1 − δkh+1). (70)

We claim the following conclusions:∑
k,m,j

I
î
tk,m,j
h = 1

ó
H ≤ 2MH2SA,
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∑
k,m,j

I
î
tk,m,j
h > 1

ó∑nk
h

i=1

Ä
V

kli

h+1 − V ⋆
h+1

ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
≤ (1 +

2

H
)

K∑
k=1

δkh+1. (71)

The first conclusion has been proved in Equation (47), and we will prove the second conclusion in
Lemma E.3 in the last subsection. Applying the two conclusions to Equation (70), it holds:

K∑
k=1

ζkh ≤ 2MH2SA+ (1 +
2

H
)

K∑
k=1

δkh+1 +

K∑
k=1

(ψk
h+1 + ϵkh+1 + ϕkh+1 + ζkh+1 − δkh+1)

+ 2
∑
k,m,j

I
î
tk,m,j
h > 1

ó
b̃k,2h (sk,m,j

h , ak,m,j
h )

≤ 2MH2SA+ (1 +
2

H
)

K∑
k=1

ζkh+1 +

K∑
k=1

(ψk
h+1 + ϵkh+1 + ϕkh+1)

+ 2
∑
k,m,j

I
î
tk,m,j
h > 1

ó
b̃k,2h (sk,m,j

h , ak,m,j
h ).

Here, the last inequality is because δkh+1 ≤ ζkh+1. By recursion on H,H − 1, H − 2 . . . , 1, with
ζKH+1 = 0, we have:

K∑
k=1

ζk1 ≤ 2

H∑
h=1

(1 +
2

H
)h−1MH2SA+

H∑
h=1

K∑
k=1

(1 +
2

H
)h−1(ψk

h+1 + ϵkh+1 + ϕkh+1)

+ 2

H∑
h=1

(1 +
2

H
)h−1

∑
k,m,j

I
î
tk,m,j
h > 1

ó
b̃k,2h (sk,m,j

h , ak,m,j
h )

≤ 18MH3SA+

H∑
h=1

K∑
k=1

(1 +
2

H
)h−1(ψk

h+1 + ϵkh+1 + ϕkh+1)

+ 18

H∑
h=1

∑
k,m,j

I
î
tk,m,j
h > 1

ó
b̃k,2h (sk,m,j

h , ak,m,j
h )

= O(MH3SA+

H∑
h=1

K∑
k=1

(1 +
2

H
)h−1(ψk

h+1 + ϵkh+1 + ϕkh+1)

+

H∑
h=1

∑
k,m,j

I
î
tk,m,j
h > 1

ó
b̃k,2h (sk,m,j

h , ak,m,j
h )). (72)

Here, the second inequality is because (1 + 2
H )h−1 ≤ (1 + 2

H )H ≤ e2 < 9. Based on the Lemma
E.4, Lemma E.5, Lemma E.6, and Lemma E.7 provided in the last subsection, we have:

H∑
h=1

K∑
k=1

(1 +
2

H
)h−1ψk

h+1 ≤ O
Ä
H
√
T1ι log(T1) +H2SN0 log(T1)

ä
,

H∑
h=1

K∑
k=1

(1 +
2

H
)h−1ϵkh+1 ≤ O

Ä√
SAH2T1ι+ SAH

5
2 (Mι)

1
2

ä
,

H∑
h=1

K∑
k=1

(1 +
2

H
)h−1ϕkh+1 ≤ O(H

√
T1ι),

H∑
h=1

∑
k,m,j

I
î
tk,m,j
h > 1

ó
b̃k,2h (sk,m,j

h , ak,m,j
h ) ≤

O
(√

SAH2T1ι+
√
βSAH2T1ι+

√
β2SAH2T1ι+ SAH

11
4 T

1
4
1 ι

3
4 + S

3
2AH3

√
N0 log(T1)ι

)
.
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Inserting these relationships into Equation (72), we have
Regret(T )

≤ O((1 +
√
β + β)

√
SAH2T1ι+H

√
T1ι log(T1) + SAH

11
4 T

1
4
1 ι

3
4 + SH2N0 log(T1)

+ S
3
2AH3

√
N0 log(T1)ι+ SAH

5
2 (Mι)

1
2 +MSAH3)

≤ O((1 +
√
β + β)

√
MSAH2Tι+H

√
MTι log(T ) +H

√
MTι log(MSAH2)

+M
1
4SAH

11
4 T

1
4 ι

3
4 + SH2N0 log(T ) +

√
MSAH2 log(T )

√
ι+ S

3
2AH3

√
N0 log(T )ι

+ SAH
5
2 (Mι)

1
2 +MSAH2

√
ι+MSAH2

√
βι+MSAH2

√
β2ι+M

1
4S

5
4A

5
4H

13
4 ι

3
4

+ S
3
2AH3

√
N0 log(MSAH2)ι+ SH2N0 log(MSAH2) +

√
MSAH2 log(MSAH2)

√
ι).

In the last step, we use T1 ≤ (2+2/H)MT +MSAH(H +1) according to (i) in Lemma D.1. This
finishes the proof of Theorem 4.1

E.1 PROOF OF SOME INDIVIDUAL COMPONENT

This subsection collects the proof of some individual components for Theorem 4.1.

Lemma E.3 (Proof of Equation (71)). Under the event
⋂15

i=1 Ei, we have that Equation (71) holds.

Proof.∑
k,m,j

I
î
tk,m,j
h > 1

ó∑nk
h

i=1

Ä
V

kli

h+1 − V ⋆
h+1

ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )

=
∑
k,m,j

nk
h∑

i=1

I
î
tk,m,j
h > 1

ó ÄV kli

h+1 − V ⋆
h+1

ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )

Ñ ∑
k′,m′,j′

I[(k,m, j)li = (k′,m′, j′)]

é
=
∑
k,m,j

∑
k′,m′,j′

nk
h∑

i=1

(V k′

h+1 − V ⋆
h+1)(s

k′,m′,j′

h+1 )

nkh(s
k,m,j
h , ak,m,j

h )
I[(k,m, j)li = (k′,m′, j′), tk,m,j

h > 1]

=
∑

k′,m′,j′

∑
k,m,j

Ñ
nk
h∑

i=1

I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

é
(V k′

h+1 − V ⋆
h+1)(s

k′,m′,j′

h+1 )

nkh(s
k,m,j
h , ak,m,j

h )

=
∑

k′,m′,j′

Ñ∑
k,m,j

∑nk
h

i=1 I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

nkh(s
k,m,j
h , ak,m,j

h )

é
(V k′

h+1 − V ⋆
h+1)(s

k′,m′,j′

h+1 ).

For a given triple (k′,m′, j′), according to the definition of li(s
k,m,j
h , ak,m,j

h , h, k),∑nk
h

i=1 I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]) = 1 if and only if (sk,m,j

h , ak,m,j
h ) =

(sk
′,m′,j′

h , ak
′,m′,j′

h ) and 1 < tkh(s
k,m,j
h , ak,m,j

h ) = tk
′

h (sk,m,j
h , ak,m,j

h ) + 1. In this case, we have

nkh(s
k,m,j
h , ak,m,j

h ) = y
tk

′
h

h (sk
′,m′,j′

h , ak
′,m′,j′

h ) and

∑
k,m,j

nk
h∑

i=1

I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

=
∑
k,m,j

I
î
(sk,m,j

h , ak,m,j
h ) = (sk

′,m′,j′

h , ak
′,m′,j′

h ), tkh(s
k,m,j
h , ak,m,j

h ) = tk
′

h (sk,m,j
h , ak,m,j

h ) + 1
ó

= y
tk

′
h +1
h (sk

′,m′,j′

h , ak
′,m′,j′

h ).

Then according to (f) in Lemma D.1:∑
k,m,j

∑nk
h

i=1 I
î
(k,m, j)li = (k′,m′, j′), tk,m,j

h > 1
ó

nkh(s
k,m,j
h , ak,m,j

h )
=
y
tk

′
h +1
h (sk

′,m′,j′

h , ak
′,m′,j′

h )

y
tk

′
h

h (sk
′,m′,j′

h , ak
′,m′,j′

h )
≤ 1 +

2

H
.
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Therefore, since V k′

h+1 ≥ V ⋆
h+1 according to Lemma E.1, we have:

∑
k,m,j

I
î
tk,m,j
h > 1

ó∑nk
h

i=1

Ä
V

kli

h+1 − V ⋆
h+1

ä
(s

(k,m,j)li
h+1 )

nkh(s
k,m,j
h , ak,m,j

h )

≤ (1 +
2

H
)
∑

k′,m′,j′

(V k′

h+1 − V ⋆
h+1)(s

k′,m′,j′

h+1 )

= (1 +
2

H
)

K∑
k=1

δkh+1.

Next, we will give lemmas on the upper bounds of each term in Equation (72).

Lemma E.4. Under the event E8 in Lemma D.5, it holds that:

H∑
h=1

K∑
k=1

(1 +
2

H
)h−1ψk

h+1 ≤ O
Ä
H
√
T1ι log(T1) +H2SN0 log(T1)

ä
.

Proof. For any (s, h, k) ∈ S× [H]× [K], ifNk
h (s) =

∑
a∈AN

k
h (s, a) ≥ N0, the reference function

V ref,k
h (s) is updated to its final value with V ref,k

h (s) = V REF
h (s). If Nk

h (s) < N0, since the reference
function is non-increasing and V ref,1

h (s) = H , we have 0 ≤ V ref,k
h (s)− V REF

h (s) ≤ H . Combining
two cases, for any (s, h, k) ∈ S × [H] × [K], it holds that 0 ≤ V ref,k

h (s) − V REF
h (s) ≤ Hλkh(s),

where λkh(s) = I[Nk
h (s) < N0] is defined in the event E8 in Lemma D.5. The conclusion also holds

for h = H + 1 because V ref,k
H+1(s) = V REF

H+1(s) = 0. Then for any (s, a, h, k) ∈ S ×A× [H]× [K]
we have:

0 ≤ Ps,a,h

Ä
V ref,k
h+1 − V

REF
h+1

ä
≤ HPs,a,hλ

k
h+1. (73)

Applying Equation (73) to the definition of ψk
h+1 Equation (62), we have:

K∑
k=1

ψk
h+1

=
∑
k,m,j

I
î
tk,m,j
h > 1

ó∑Nk
h

i=1 Psk,m,j
h ,ak,m,j

h ,h(V
ref,kLi

h+1 − V REF
h+1)

Nk
h (s

k,m,j
h , ak,m,j

h )

≤ H
∑
k,m,j

I
î
tk,m,j
h > 1

ó∑Nk
h

i=1 Psk,m,j
h ,ak,m,j

h ,hλ
kLi

h+1

Nk
h (s

k,m,j
h , ak,m,j

h )

= H
∑
k,m,j

I
î
tk,m,j
h > 1

ó∑Nk
h

i=1 Psk,m,j
h ,ak,m,j

h ,hλ
kLi

h+1

Ä∑
k′,m′,j′ I[(k,m, j)Li

= (k′,m′, j′)]
ä

Nk
h (s

k,m,j
h , ak,m,j

h )

= H
∑
k,m,j

∑
k′,m′,j′

∑Nk
h

i=1 I[(k,m, j)Li
= (k′,m′, j′), tk,m,j

h > 1]Psk,m,j
h ,ak,m,j

h ,hλ
k′

h+1

Nk
h (s

k′,m′,j′

h , ak
′,m′,j′

h )
.

According to the definition of Li(s
k,m,j
h , ak,m,j

h , h), for a given triple (k′,m′, j′),∑Nk
h

i=1 I[(k,m, j)Li = (k′,m′, j′), tk,m,j
h > 1] = 1 if and only if (sk,m,j

h , ak,m,j
h ) =

(sk
′,m′,j′

h , ak
′,m′,j′

h ) and 1 ≤ tk
′

h (sk,m,j
h , ak,m,j

h ) < tkh(s
k,m,j
h , ak,m,j

h ). Then we have
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tk,m,j
h = tkh(s

k′,m′,j′

h , ak
′,m′,j′

h ). For t > tk
′

h (sk
′,m′,j′

h , ak
′,m′,j′

h ) ≥ 1, we also have:

∑
k,m,j

Nk
h∑

i=1

I
î
(k,m, j)Li = (k′,m′, j′), tkh(s

k′,m′,j′

h , ak
′,m′,j′

h ) = t
ó

=
∑
k,m,j

I
î
(sk,m,j

h , ak,m,j
h ) = (sk

′,m′,j′

h , ak
′,m′,j′

h ), tkh(s
k′,m′,j′

h , ak
′,m′,j′

h ) = t
ó

= yth(s
k′,m′,j′

h , ak
′,m′,j′

h ). (74)

Let:

Wk′,m′,j′ =
∑
k,m,j

∑Nk
h

i=1 I[(k,m, j)Li
= (k′,m′, j′), tk,m,j

h > 1]

Nk
h (s

k′,m′,j′

h , ak
′,m′,j′

h )
.

Then, since (1 + 2
H )h−1 ≤ (1 + 2

H )H < e2 < 9, we have:

H∑
h=1

K∑
k=1

(1 +
2

H
)h−1ψk

h+1 ≤ 9H

H∑
h=1

∑
k′,m′,j′

Wk′,m′,j′Psk
′,m′,j′

h ,ak′,m′,j′
h ,h

λk
′

h+1. (75)

Applying Equation (74), we have:

Wk′,m′,j′ =
∑
k,m,j

∑Nk
h

i=1 I[(k,m, j)Li = (k′,m′, j′)]

Nk
h (s

k′,m′,j′

h , ak
′,m′,j′

h )

Ñ
Th∑

t=tk
′

h +1

I
î
tkh(s

k′,m′,j′

h , ak
′,m′,j′

h ) = t
óé

=
∑
k,m,j

Th∑
t=tk

′
h +1

∑Nk
h

i=1 I[(k,m, j)Li = (k′,m′, j′)]

Y t−1
h (sk

′,m′,j′

h , ak
′,m′,j′

h )
I
î
tkh(s

k′,m′,j′

h , ak
′,m′,j′

h ) = t
ó

=

Th∑
t=tk

′
h +1

∑
k,m,j

∑Nk
h

i=1 I
î
(k,m, j)Li = (k′,m′, j′), tkh(s

k′,m′,j′

h , ak
′,m′,j′

h ) = t
ó

Y t−1
h (sk

′,m′,j′

h , ak
′,m′,j′

h )

=

Th∑
t=tk

′
h +1

yth(s
k′,m′,j′

h , ak
′,m′,j′

h )

Y t−1
h (sk

′,m′,j′

h , ak
′,m′,j′

h )
.

According to (f) in Lemma D.1, for any (s, a, h) ∈ S × A × [H], t ∈ [2, Th(s, a)] and 1 ≤ p ≤
yth(s, a), we have:

Y t−1
h (s, a) + p ≤ Y t

h(s, a) ≤ (2 +
2

H
)Y t−1

h (s, a).

Then it holds that:

Wk′,m′,j′ =

Th∑
t=tk

′
h +1

yth(s
k′,m′,j′

h , ak
′,m′,j′

h )

Y t−1
h (sk

′,m′,j′

h , ak
′,m′,j′

h )

=

Th∑
t=tk

′
h +1

yt
h∑

p=1

1

Y t−1
h (sk

′,m′,j′

h , ak
′,m′,j′

h )

≤ (2 +
2

H
)

Th∑
t=tk

′
h +1

yt
h∑

p=1

1

Y t−1
h (sk

′,m′,j′

h , ak
′,m′,j′

h ) + p

≤ (2 +
2

H
)

T1∑
q=1

1

q
≤ 4(log(T1) + 1).
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Applying the inequality of the coefficient Wk′,m′,j′ to Equation (75), we have:

H∑
h=1

K∑
k=1

(1 +
2

H
)h−1ψk

h+1

= 9H

H∑
h=1

∑
k′,m′,j′

Wk′,m′,j′Psk
′,m′,j′

h ,ak′,m′,j′
h ,h

λk
′

h+1(s
k′,m′,j′

h+1 )

≤ 9H · 4(log(T1) + 1)

H∑
h=1

∑
k′,m′,j′

P
sk

′,m′,j′
h ,ak′,m′,j′

h ,h
λk

′

h+1(s
k′,m′,j′

h+1 )

= 36H(log(T1) + 1)

H∑
h=1

∑
k,m,j

(
λkh+1(s

k,m,j
h+1 ) +

(
Psk,m,j

h ,ak,m,j
h ,h − 1sk,m,j

h+1

)
λkh+1(s

k,m,j
h+1 )

)

≤ 36H(log(T1) + 1)

Ñ
H∑

h=1

∑
k,m,j

λkh+1(s
k,m,j
h+1 ) +

√
2T1ι

é
. (76)

The last inequality is because of the event E8 in Lemma D.5. Next, we will bound the term∑H
h=1

∑
k,m,j λ

k
h+1(s

k,m,j
h+1 ) in Equation (76). We have:

H∑
h=1

∑
k,m,j

λkh+1(s
k,m,j
h+1 ) =

H∑
h=1

∑
k,m,j

λkh+1(s
k,m,j
h+1 )

(∑
s∈S

I
î
sk,m,j
h+1 = s

ó)
=

H∑
h=1

∑
s∈S

∑
k,m,j

λkh+1(s)I
î
sk,m,j
h+1 = s

ó
=

H+1∑
h=2

∑
s∈S

∑
k,m,j

I
î
Nk

h (s) < N0, s
k,m,j
h = s

ó
. (77)

For any state (s, h) ∈ S × [H] and k ∈ [K], there exists the largest positive integer k0 such that
Nk0

h (s) < N0. Then for any h ∈ [H + 1], it holds that

∑
k,m,j

I
î
Nk

h (s) < N0, s
k,m,j
h = s

ó
=
∑
k,m,j

I
î
k ≤ k0, sk,m,j

h = s
ó

=

k0∑
k=1

∑
m,j

I
î
sk,m,j
h = s

ó
=

k0∑
k=1

∑
m,j

∑
a∈A

I
î
sk,m,j
h = s, ak,m,j

h = a
ó

≤
∑
a∈A

Y
t
k0
h

h (s, a). (78)

However, according to the definition of Nk0

h (s), we have:

N0 > Nk0

h (s) =
∑
a∈A

Nk0

h (s, a) ≥
∑
a∈A

Y
t
k0
h −1

h (s, a)I[tk0

h (s, a) > 1]

≥ 1

4

∑
a∈A

Y
t
k0
h

h (s, a)I[tk0

h (s, a) > 1].
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The last inequality is because of (f) in Lemma D.1. Combined with Equation (78), we have:∑
k,m,j

I
î
Nk

h (s) < N0, s
k,m,j
h = s

ó
=
∑
a∈A

Y
t
k0
h

h (s, a)I[tk0

h (s, a) > 1] +
∑
a∈A

Y
t
k0
h

h (s, a)I[tk0

h (s, a) = 1]

≤ 4N0 +MA(H + 1) ≤ 5N0. (79)

Here, the last inequality holds because β ≤ H . Applying the inequality Equation (79) to Equa-
tion (77), we have:

H∑
h=1

∑
k,m,j

λkh+1(s
k,m,j
h+1 ) ≤

H+1∑
h=2

∑
s∈S

5N0 ≤ 5SHN0.

Therefore, we bound the term
∑H

h=1

∑
k,m,j λ

k
h+1(s

k,m,j
h+1 ). Back to Equation (76), we have that

H∑
h=1

K∑
k=1

(1 +
2

H
)h−1ψk

h+1 ≤ 36H (log(T1) + 1)
Ä
5SHN0 +

√
2T1ι
ä

= O
Ä
H
√
T1ι log(T1) + SH2N0 log(T1)

ä
.

Lemma E.5. Under the event E9 ∩ E10, it holds:
H∑

h=1

K∑
k=1

(1 +
2

H
)h−1ϵkh+1 ≤ O

Ä√
SAH2T1ι+ SAH

5
2 (Mι)

1
2

ä
.

Proof. According to the definition of ϵkh+1 Equation (63), we have:

K∑
k=1

ϵkh+1 =
∑
k,m,j

I
î
tk,m,j
h > 1

ó∑nk
h

i=1

Å
Psk,m,j

h ,ak,m,j
h ,h − 1s

(k,m,j)li
h+1

ãÄ
V

kli

h+1 − V ⋆
h+1

ä
nkh(s

k,m,j
h , ak,m,j

h )

=
∑
k,m,j

∑
k′,m′,j′

∑nk
h

i=1

Å
Psk,m,j

h ,ak,m,j
h ,h − 1s

(k,m,j)li
h+1

ãÄ
V

kli

h+1 − V ⋆
h+1

ä
nkh(s

k,m,j
h , ak,m,j

h )
×

I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

=
∑

k′,m′,j′

∑
k,m,j

∑nk
h

i=1 I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

nkh(s
k,m,j
h , ak,m,j

h )
×

(
Psk,m,j

h ,ak,m,j
h ,h − 1sk

′,m′,j′
h+1

) Ä
V k′

h+1 − V ⋆
h+1

ä
. (80)

For a given triple (k′,m′, j′), according to the definition of li(s
k,m,j
h , ak,m,j

h , h, k),∑nk
h

i=1 I[(k,m, j)li = (k′,m′, j′)]) = 1 if and only if (sk,m,j
h , ak,m,j

h ) = (sk
′,m′,j′

h , ak
′,m′,j′

h )

and tkh(s
k,m,j
h , ak,m,j

h ) = tk
′

h (sk,m,j
h , ak,m,j

h ) + 1. In this case, we have nkh(s
k,m,j
h , ak,m,j

h ) =

y
tk

′
h

h (sk
′,m′,j′

h , ak
′,m′,j′

h ) and:

∑
k,m,j

nk
h∑

i=1

I[(k,m, j)li = (k′,m′, j′), tk,m,j
h > 1]

=
∑
k,m,j

I
î
(sk,m,j

h , ak,m,j
h ) = (sk

′,m′,j′

h , ak
′,m′,j′

h ), 1 < tk,m,j
h = tk

′

h (sk,m,j
h , ak,m,j

h ) + 1
ó

= y
tk

′
h +1
h (sk

′,m′,j′

h , ak
′,m′,j′

h ).
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Let:

y(s, a, h, t) = (1 +
2

H
)h−1

Ç
yt+1
h (s, a)

yth(s, a)
− 1− 1

H

å
.

Applying the equation to Equation (80), it holds that:
H∑

h=1

K∑
k=1

(1 +
2

H
)h−1ϵkh+1

=

H∑
h=1

∑
k′,m′,j′

(1 +
2

H
)h−1 y

tk
′

h +1
h (sk

′,m′,j′

h , ak
′,m′,j′

h )

y
tk

′
h

h (sk
′,m′,j′

h , ak
′,m′,j′

h )
×

(
P
sk

′,m′,j′
h ,ak′,m′,j′

h ,h
− 1

sk
′,m′,j′

h+1

) Ä
V k′

h+1 − V ⋆
h+1

ä
(81)

=

H∑
h=1

∑
k,m,j

y(sk,m,j
h , ak,m,j

h , h, tkh)
(
Psk,m,j

h ,ak,m,j
h ,h − 1sk,m,j

h+1

) (
V k
h+1 − V ⋆

h+1

)
+

H∑
h=1

(1 +
2

H
)h−1(1 +

1

H
)
∑
k,m,j

(
Ps,a,h − 1sk,m,j

h+1

) (
V k
h+1 − V ⋆

h+1

)
. (82)

The term in Equation (81) is a summation of non-martingale difference, and we cannot directly use
Azuma-Hoeffding inequality to bound it. Therefore, we split the term with a constant coefficient
1 + 1

H , which can be bounded directly by Azuma-Hoeffding inequality. According to the event E9 in
Lemma D.5, we can bound the second term in Equation (82) with 18H

√
2T1ι.

We claim that for any t ∈ [Th(s, a)], it holds that |y(s, a, h, t)| ≤ 9 with the proof as follows.
According to (e) in Lemma D.1, since (1+ 2

H )H ≤ 9, for any h ∈ [H] and 1 ≤ t ≤ Th(s, a)− 2, we
have 0 ≤ y(s, a, h, t) ≤ (1+ 2

H )h−1 1
H ≤

9
H . For t = Th(s, a)−1, we have−9 ≤ −(1+ 2

H )h−1(1+
1
H ) ≤ y(s, a, h, Th − 1) ≤ (1 + 2

H )h−1 1
H ≤

9
H . For t = Th(s, a), since yTh+1

h (s, a) = 0, we have
y(s, a, h, Th) = −(1 + 2

H )h−1(1 + 1
H ) ∈ [−9, 0].

Now we will deal with the first term in Equation (82):
H∑

h=1

∑
k,m,j

y(sk,m,j
h , ak,m,j

h , h, tkh)
(
Psk,m,j

h ,ak,m,j
h ,h − 1sk,m,j

h+1

) (
V k
h+1 − V ⋆

h+1

)
=
∑
s,a,h

∑
k,m,j

y(s, a, h, tkh)
(
Ps,a,h − 1sk,m,j

h+1

) (
V k
h+1 − V ⋆

h+1

)
I
î
(sk,m,j

h , ak,m,j
h ) = (s, a)

ó
=
∑
s,a,h

Th(s,a)∑
t=1

y(s, a, h, t)
∑
k,m,j

(
Ps,a,h − 1sk,m,j

h+1

) (
V k
h+1 − V ⋆

h+1

)
×

I
î
(sk,m,j

h , ak,m,j
h ) = (s, a), tkh(s, a) = t

ó
= C1 + C2 + C3,

where

C1 =
∑
s,a,h

Th−2∑
t=1

y(s, a, h, t)V (s, a, h, t),

C2 =
∑
s,a,h

y(s, a, h, Th − 1)V (s, a, h, Th − 1),

C3 =
∑
s,a,h

y(s, a, h, Th)V (s, a, h, Th).

Here, V (s, a, h, t) =
∑

k,m,j(Ps,a,h−1sk,m,j
h+1

)(V k
h+1−V ⋆

h+1)I[(s
k,m,j
h , ak,m,j

h ) = (s, a), tkh(s, a) =

t], which is defined in the event E10 in Lemma D.5. Then based on the event E10, we have:

|V (s, a, h, t)| ≤ 2H
»

2yth(s, a)ι.
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Since |y(s, a, h, t)| ≤ 9, it holds that:

C1 ≤
∑
s,a,h

Th(s,a)−2∑
t=1

|y(s, a, h, t)| · |V (s, a, h, t)| ≤ 18
∑
s,a,h

Th(s,a)−2∑
t=1

»
2yth(s, a)ι.

Because of Equation (16) in Lemma D.1, we have:

C1 ≤ 18
∑
s,a,h

Th(s,a)−2∑
t=1

√
2ι · 3

√
H
(»

Y t
h(s, a)−

»
Y t−1
h (s, a)

)
= 54

√
2Hι

∑
s,a,h

»
Y Th

h (s, a)

≤ 254
√
2Hι
 
SAH

∑
s,a,h

Y Th

h (s, a)

≤ O
Ä√

SAH2T1ι
ä
. (83)

The second inequality uses Cauchy-Schwarz Inequality. Similarly, it also holds:

C2 ≤
∑
s,a,h

|y(s, a, t, Th − 1)| · |V (s, a, h, Th(s, a)− 1)|

≤
∑
s,a,h

9 · 2H
√
2y

Th(s,a)−1
h (s, a)ι

≤ 18H
 
2SAH

∑
s,a,h

y
Th(s,a)−1
h (s, a)ι

≤ 26H
(»

SAH · 9MSAH(H + 1)ι+
√
4SAT1ι

)
(84)

≤ O
Ä
SAH

5
2 (Mι)

1
2 +

√
SAH2T1ι

ä
. (85)

Here, the third inequality uses Cauchy-Schwarz Inequality. Inequality Equation (84) is because of (h)
in Lemma D.1. Similarly, since y(s, a, t, Th) = −(1 + 2

H )h−1(1 + 1
H ), we have:

C3 ≤
∑
s,a,h

(1 +
2

H
)h−1(1 +

1

H
)|V (s, a, h, Th)|

≤ 18H
∑
s,a,h

√
2y

Th(s,a)
h (s, a)ι

≤ 18H
 

2SAH
∑
s,a,h

y
Th(s,a)
h (s, a)ι

≤ O
Ä√

SAH2T1ι+ SAH
5
2 (Mι)

1
2

ä
. (86)

Here, the last inequality uses Cauchy-Schwarz Inequality. The last inequality is because of (h) in
Lemma D.1.

Using the upper bound of C1 Equation (83), C2 Equation (85) and C3 Equation (86), we can bound
the first term in Equation (82) with O(

√
SAH2T1ι+SAH

5
2 (Mι)

1
2 ). Then combined with the event

E9 in Lemma D.1, it holds that:
H∑

h=1

K∑
k=1

(1 +
2

H
)h−1ϵkh+1 ≤ O

Ä√
SAH2T1ι+ SAH

5
2 (Mι)

1
2

ä
.

Lemma E.6. Under the event E11 in Lemma D.5, it holds that:
H∑

h=1

K∑
k=1

(1 +
2

H
)h−1ϕkh+1 ≤ O(H

√
T1ι).
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Proof. Based on the definition of ϕkh+1 Equation (64) and the event E11 in Lemma D.5, we have:

H∑
h=1

K∑
k=1

(1 +
2

H
)h−1ϕkh+1

=

H∑
h=1

∑
k,m,j

(1 +
2

H
)h−1I

î
tk,m,j
h > 1

ó(
Psk,m,j

h ,ak,m,j
h ,h − 1sk,m,j

h+1

) Ä
V ⋆
h+1 − V πk

h+1

ä
≤ 9H

√
2T1ι = O(H

√
T1ι).

Lemma E.7. Under the event
⋂15

i=1 Ei in Lemma D.5, we have:

H∑
h=1

∑
k,m,j

I
î
tk,m,j
h > 1

ó
b̃k,2h (sk,m,j

h , ak,m,j
h ) ≤

O
(√

SAH2T1ι+
√
βSAH2T1ι+

√
β2SAH2T1ι+ SAH

11
4 T

1
4
1 ι

3
4 + S

3
2AH3

√
N0 log(T1)ι

)
.

Proof.

H∑
h=1

∑
k,m,j

I
î
tk,m,j
h > 1

ó
b̃k,2h (sk,m,j

h , ak,m,j
h )

= 2

H∑
h=1

∑
k,m,j

I
î
tk,m,j
h > 1

óÃ ṽref,k
h (sk,m,j

h , ak,m,j
h )ι

Nk
h (s

k,m,j
h , ak,m,j

h )
+ 2

H∑
h=1

∑
k,m,j

I
î
tk,m,j
h > 1

ó
×Ã

ṽadv,k
h (sk,m,j

h , ak,m,j
h )ι

nkh(s
k,m,j
h , ak,m,j

h )
+ 10H

H∑
h=1

∑
k,m,j

I
î
tk,m,j
h > 1

óÇ
(
ι

Nk
h

)
3
4 + (

ι

nkh
)

3
4 +

ι

Nk
h

+
ι

nkh

å
.

(87)

Next, we will bound the first term in Equation (87). Based on Equation (40), we have:

ṽref,k
h (s, a) =

∑Nk
h

i=1 Vs,a,h(V
ref,kLi

h+1 )− (χ3 + χ4 + χ5)

Nk
h (s, a)

. (88)

According to the upper bound given in Equation (41) and Equation (42), we have:

1

Nk
h (s, a)

|χ3| ≤ 2H2

 
2ι

Nk
h (s, a)

,
1

Nk
h (s, a)

|χ4| ≤ 4H2

 
2ι

Nk
h (s, a)

. (89)
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Since V ref,k
h (s) ≥ V REF

h (s), we have Ps,a,hV
ref,k
h+1 ≥ Ps,a,hV

REF
h+1. Then according to Equation (73),

using the definition of χ5 Equation (38), it holds that:

|χ5| =
Nk

h∑
i=1

Ä
Ps,a,hV

ref,kLi

h+1

ä2
−

(∑Nk
h

i=1 Ps,a,hV
ref,kLi

h+1

)2
Nk

h (s, a)

≤
Nk

h∑
i=1

Ä
Ps,a,hV

ref,kLi

h+1

ä2
−Nk

h (s, a)
(
Ps,a,hV

REF
h+1

)2
=

Nk
h∑

i=1

ïÄ
Ps,a,hV

ref,kLi

h+1

ä2
−
(
Ps,a,hV

REF
h+1

)2ò
≤ 2H

Nk
h∑

i=1

Ä
Ps,a,hV

ref,kLi

h+1 − Ps,a,hV
REF
h+1

ä
≤ 2H2

Nk
h∑

i=1

Ps,a,hλ
kLi

h+1. (90)

The last inequality is because of Equation (73). According to Equation (77) and Equation (79), we
have:

Nk
h∑

i=1

λ
kLi

h+1(s
(k,m,j)Li

h+1 ) ≤
∑
k,m,j

λkh+1(s
k,m,j
h+1 ) =

∑
s∈S

∑
k,m,j

I
î
Nk

h (s) < N0, s
k,m,j
h+1 = s

ó
≤ 5SN0.

(91)
Because of the event E12 in Lemma D.5 and Equation (91), back to Equation (90), we have:

1

Nk
h (s, a)

|χ5| ≤ 2H2

 
2ι

Nk
h (s, a)

+
10SH2N0

Nk
h (s, a)

. (92)

Applying inequalities Equation (89) and Equation (92) to Equation (88), we have:

ṽref,k
h (s, a) ≤

∑Nk
h

i=1 Vs,a,h(V
ref,kLi

h+1 )

Nk
h (s, a)

+
10SH2N0

Nk
h (s, a)

+ 12H2

 
ι

Nk
h (s, a)

. (93)

For any s ∈ S, V ref,k
h (s) ≥ V ⋆

h (s), we have (Ps,a,hV
ref,k
h+1 )

2 ≥ (Ps,a,hV
⋆
h+1)

2. Then:∑Nk
h

i=1 Vs,a,h(V
ref,kLi

h+1 )

Nk
h (s, a)

− Vs,a,h(V
⋆
h+1) ≤

1

Nk
h (s, a)

Nk
h∑

i=1

Ä
Ps,a,h(V

ref,kLi

h+1 )2 − Ps,a,h(V
⋆
h+1)

2
ä

≤ 2H

Nk
h (s, a)

Nk
h∑

i=1

Ä
Ps,a,h(V

ref,kLi

h+1 )− Ps,a,h(V
⋆
h+1)
ä
.

(94)

Because for any s ∈ S, V ref,k
h (s) ≥ V REF

h (s) ≥ V ⋆
h (s), we have:

0 ≤ V ref,k
h+1 (s)− V

⋆
h+1(s) = (V ref,k

h+1 (s)− V
⋆
h+1(s))λ

k
h+1(s) + (V ref,k

h+1 (s)− V
⋆
h+1(s))(1− λkh+1(s)).

If λkh+1(s) = 0, the reference function is updated and we have V ref,k
h+1 (s) − V ⋆

h+1(s) ≤ β; if
λkh+1(s) = 1, then we have V ref,k

h+1 (s)− V ⋆
h+1(s) ≤ H = Hλkh+1(s). Therefore, we have:

0 ≤ V ref,k
h+1 (s)− V

⋆
h+1(s) ≤ Hλkh+1(s) + β. (95)

Combined with the inequality Equation (91), we have:
Nk

h∑
i=1

(
V

ref,kLi

h+1 (s
(k,m,j)Li

h+1 )− V ⋆
h+1(s

(k,m,j)Li

h+1 )
)
≤

Nk
h∑

i=1

(
Hλkh+1(s

(k,m,j)Li

h+1 ) + β
)

≤ 5SHN0 + βNk
h (s, a).
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Based on the event E15 in Lemma D.5, applying the inequality to Equation (94), we have:

∑Nk
h

i=1 Vs,a,h(V
ref,kLi

h+1 )

Nk
h (s, a)

− Vs,a,h(V
⋆
h+1) ≤

10SH2N0

Nk
h (s, a)

+ 2Hβ + 4H2

 
2ι

Nk
h (s, a)

,

and then back to Equation (93), it holds:

ṽref,k
h (s, a) ≤ Vs,a,h(V

⋆
h+1) +

20SH2N0

Nk
h (s, a)

+ 18H2

 
ι

Nk
h (s, a)

+ 2Hβ.

Therefore according to Lemma D.2, we have:Ã
ṽref,k
h (sk,m,j

h , ak,m,j
h )ι

Nk
h (s

k,m,j
h , ak,m,j

h )
I
î
tk,m,j
h > 1

ó
≤

H∑
h=1

∑
k,m,j

Ñ√
Vsk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)ι

Nk
h

+

√
20SH2N0ι

Nk
h

+

√
18H2ι

3
2

(Nk
h )

3
4

+

 
2Hβι

Nk
h

é
×

I
î
tk,m,j
h > 1

ó
≤
∑
s,a,h

»
Vs,a,h(V ⋆

h+1)Y
Th

h (s, a)ι+ 20
√
SH2N0ι · SAH log(T1) + 2

7
2

√
18H2ι

3
2 · SAHT

1
4
1

+ 4
√
2Hβι ·

√
SAHT1

≤
 
SAH

∑
s,a,h

Vs,a,h(V ⋆
h+1)Y

Th

h (s, a)ι+ 20S
3
2AH2

√
N0ι log(T1) + 64SAH2T

1
4
1 ι

3
2

+ 6
√
βSAH2T1ι. (96)

In the last inequality, we use Cauchy-Schwarz Inequality.

Next we will bound
∑

s,a,h Vs,a,h(V
⋆
h+1)Y

Th

h (s, a). Because V ⋆
H+1(s) = 0, removing the term∑

k,m,j V
⋆
1 (s

k,m,j
1 )2, we have the following inequality:

H∑
h=1

∑
k,m,j

Ä
Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)

2 − V ⋆
h (s

k,m,j
h )2

ä
≤

H∑
h=1

∑
k,m,j

Ä
Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)

2 − V ⋆
h+1(s

k,m,j
h+1 )2

ä
.

Because of the event E14 in Lemma D.5, then we have:

H∑
h=1

∑
k,m,j

Ä
Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)

2 − V ⋆
h (s

k,m,j
h )2

ä
≤ H2

√
2T1ι. (97)

According to Equation (1), for any a ∈ A, we have:

V ⋆
h (s) ≥ Q⋆

h(s, a) = rh(s, a) + Ps,a,hV
⋆
h+1 ≥ Ps,a,hV

⋆
h+1.
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Therefore, we have:
H∑

h=1

∑
k,m,j

(
V ⋆
h (s

k,m,j
h )2 −

Ä
Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)
ä2)

=

H∑
h=1

∑
k,m,j

Ä
V ⋆
h (s

k,m,j
h ) + Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)
ä Ä
V ⋆
h (s

k,m,j
h )− Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)
ä

≤ 2H

H∑
h=1

∑
k,m,j

Ä
V ⋆
h (s

k,m,j
h )− Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)
ä

= 2H
∑
k,m,j

V ⋆
1 (s

k,m,j
1 ) + 2H

H∑
h=1

∑
k,m,j

Ä
V ⋆
h+1(s

k,m,j
h )− Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)
ä

≤ 2HT1 + 2H2
√
2T1ι. (98)

Here, the first inequality is because V ⋆
h (s

k,m,j
h ), Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1) ≤ H . The last step is because

of the event E13 in Lemma D.5. Summing Equation (97) and Equation (98) up, we have:∑
s,a,h

Vs,a,h(V
⋆
h+1)Y

Th

h (s, a) =

H∑
h=1

∑
k,m,j

Vsk,m,j
h ,ak,m,j

h ,h(V
⋆
h+1)

=

H∑
h=1

∑
k,m,j

(
Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)

2 −
Ä
Psk,m,j

h ,ak,m,j
h ,h(V

⋆
h+1)
ä2)

≤ 2HT1 + 3H2
√
2T1ι.

Applying the inequality to Equation (96), we have:Ã
ṽref,k
h (sk,m,j

h , ak,m,j
h )ι

Nk
h (s

k,m,j
h , ak,m,j

h )
I
î
tk,m,j
h > 1

ó
≤
»

3SAH3ι
√
2T1ι+

√
2SAH2T1ι+ 20S

3
2AH2

√
N0ι log(T1) + 64SAH2T

1
4
1 ι

3
2

+ 6
√
βSAH2T1ι

= O
(√

SAH2T1ι+
√
βSAH2T1ι+ SAH2T

1
4
1 ι

3
2 + S

3
2AH2

√
N0ι log(T1)

)
. (99)

Now we successfully bound the first term in Equation (87). For the second term, according to the
definition of ṽadv,k

h (s, a), we have:

nkh(s
k,m,j
h , ak,m,j

h )ṽadv,k
h (sk,m,j

h , ak,m,j
h ) ≤

nk
h∑

i=1

(
V

ref,kli

h+1 (s
(k,m,j)li
h+1 )− V kli

h+1(s
(k,m,j)li
h+1 )

)2

≤
nk
h∑

i=1

(
V

ref,kli

h+1 (s
(k,m,j)li
h+1 )− V ⋆

h+1(s
(k,m,j)li
h+1 )

)2
.

The last inequality is because for any s ∈ S, V ref,k
h (s) ≥ V k

h (s) ≥ V ⋆
h (s). Using Equation (95) and

Cauchy-Schwarz inequality, we have:

nkhṽ
adv,k
h ≤

nk
h∑

i=1

(
Hλ

kli

h+1(s
(k,m,j)li
h+1 ) + β

)2
≤ 2

nk
h∑

i=1

(
H2λ

kli

h+1(s
(k,m,j)li
h+1 ) + β2

)
. (100)

Similar to Equation (91), we have:

nk
h∑

i=1

λ
kli

h+1(s
(k,m,j)li
h+1 ) ≤

∑
k,m,j

λkh+1(s
k,m,j
h+1 ) ≤ 5SN0.
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Back to Equation (100), we have:

ṽadv,k
h (sk,m,j

h , ak,m,j
h ) ≤ 10SH2N0

nkh(s
k,m,j
h , ak,m,j

h )
+ 2β2.

Then using Lemma D.2, we have:
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nkh(s
k,m,j
h , ak,m,j

h )
I
î
tk,m,j
h > 1

ó
≤ 2

H∑
h=1

∑
k,m,j

I
î
tk,m,j
h > 1

ó( √
10SH2N0ι
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+

√
2β2ι
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h )

)
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√
2SH2N0ι · 10SAH2 log(T1) + 2

√
2β2ι · 4

√
2H

∑
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»
Y Th
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≤ 40
√
2S

3
2AH3

√
N0ι log(T1) + 16

√
β2Hι ·

√
SAHT1

= O
Ä√

β2SAH2T1ι+ S
3
2AH3

√
N0ι log(T1)

ä
. (101)

For the third term in Equation (88), according to Lemma D.2, we have:
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I
î
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ó ι
3
4

Nk
h (s

k,m,j
h , ak,m,j

h )
3
4

≤ 4
7
4 ι
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4
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h )
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3
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∑
k,m,j

I
î
tk,m,j
h > 1
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h )
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4
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4 H

3
4 ι

3
4

∑
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Y Th

h (sk,m,j
h , ak,m,j
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1
4

≤ 32SAH
7
4T

1
4
1 ι

3
4 ,

H∑
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∑
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I
î
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ó ι

Nk
h (s

k,m,j
h , ak,m,j

h )
≤ 4ι

∑
s,a,h

log(Y Th

h (sk,m,j
h , ak,m,j

h ))

≤ 4SAH log(T1)ι,

and
H∑

h=1

∑
k,m,j

I
î
tk,m,j
h > 1

ó ι

nkh(s
k,m,j
h , ak,m,j

h )
≤ 8Hι

∑
s,a,h

log(Y Th

h (sk,m,j
h , ak,m,j
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≤ 8SAH2 log(T1)ι.

Summing the four inequalities, we can bound the third term in Equation (88) with:

O
(
SAH

11
4 T

1
4
1 ι

3
4 + SAH3 log(T1)ι

)
. (102)

Applying the upper bound Equation (99), Equation (101) and Equation (102) to Equation (87), we
have:
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.
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F PROOF OF THEOREM 4.2

Proof. Because of (e) in Lemma D.1, we have:

T̂ ≥
∑
s,a,h

Th−1∑
t=1

yth(s, a) ≥
∑
s,a,h

y1h(s, a)

Th−1∑
t=1

(1 +
1

H
)t−1 ≥

∑
s,a,h

MH2

ï
(1 +

1

H
)Th−1 − 1

ò
.

The last inequality is because y1h(s, a) ≥ MH according to (c) in Lemma D.1. Using Jensen’s
inequality, we have: ∑

s,a,h

(1 +
1

H
)Th−1 ≥ SAH(1 +

1

H
)

∑
s,a,h(Th−1)

SAH .

Therefore, it holds:

T̂ ≥MSAH3(1 +
1

H
)

∑
s,a,h(Th−1)

SAH −MSAH3.

This indicates that ∑
s,a,h

Th(s, a) ≤ SAH + SAH
log( T̂

MSAH3 + 1)

log(1 + 1
H )

. (103)

Because usyn = TRUE, in each round, there exists at least one triple (s, a, h) such that the triggering
condition is met on it, the total number of rounds is at most the total times of triggering conditions
met for ∀(s, a, h) ∈ (S,A, H). Next, we will discuss the times of triggering conditions met for each
triple (s, a, h). If the triggering condition for (s, a, h) is met at round k, the increase of visits to
(s, a, h) is between ckh(s, a) and Mckh(s, a). We will discuss how many times the triggering condition
can be met at most in one stage for each (s, a, h) ∈ (S,A, H).

1. In the first stage of (s, a, h), ckh(s, a) = 1. Then FedQ-Advantage will meet at most MH
times the triggering condition for (s, a, h).

2. In the stage t (2 ≤ t ≤ Th(s, a)) of (s, a, h), when ñkh(s, a) ≤ (1− 1
H )yt−1

h (s, a) for round

k, we have ckh(s, a) = ⌈
yt−1
h (s,a)−ñk

h(s,a)

M ⌉.
Assume in this case, it meets p times the corresponding triggering condition at the round
k1 < k2 < ... < kp. For any i ∈ [p], since ki ≥ ki−1 + 1, and ki and ki−1 are in the same
stage, we have n̂ki−1+1

h ≤ ñki

h . Especially, we know n̂
kp−1+1
h ≤ ñkp

h ≤ (1− 1
H )yt−1

h (s, a).
For any i ∈ [p], since the triggering condition is met at the round ki, the increase of the
visits to (s, a, h) in round ki is at least cki

h (s, a). Therefore, according to Equation (6), we
have:

n̂ki+1
h − ñki

h ≥ c
ki

h (s, a) ≥
yt−1
h (s, a)− ñki

h (s, a)

M
.

Let S0 = 0 and Si = n̂ki+1
h , then for i ∈ [p] we have:

Si ≥
M − 1

M
ñki

h +
yt−1
h (s, a)

M
≥ M − 1

M
n̂
ki−1+1
h +

yt−1
h (s, a)

M

=
M − 1

M
Si−1 +

yt−1
h (s, a)

M
.

From the inequality, with mathematical induction, we can derive that:

Si ≥
Å
1− (

M − 1

M
)i
ã
yt−1
h (s, a).

According to Sp−1 ≤ (1− 1
H )yt−1

h (s, a), we know p ≤ log(H)

log( M
M−1 )

+ 1.

3. In the stage t (2 ≤ t ≤ Th(s, a)) of (s, a, h), when ñkh(s, a) > (1− 1
H )yt−1

h (s, a) for round
k, we have ckh(s, a) = ⌊ 1

MHn
k
h(s, a)⌋ = ⌊ 1

MH y
t−1
h (s, a)⌋.
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Assume it meets q times the triggering condition for (s, a, h) in this case. For t ≥ 2, there
exists a positive integer r such that rMH ≤ yt−1

h (s, a) < (r+1)MH and then ckh(s, a) = r.
When the triggering condition of (s, a, h) is met for one time, the increase in the visits is
at least r. After it is met for q − 1 times, we have r(q − 1) ≤ 2

H y
t−1
h (s, a) < 2(r + 1)M .

Here, the first inequality is because yth/y
t−1
h ≤ 1 + 2/H , and the second one is because

yt−1
h (s, a) < (r + 1)MH . Therefore, we know q ≤ 4M + 1.

Combining the three cases, the total times of triggering conditions met for given triple (s, a, h) is at
most:

MH +

Ç
log(H)

log( M
M−1 )

+ 4M + 2

å
(Th(s, a)− 1) .

Therefore, combined with the inequality Equation (103), we have:

K ≤
∑
s,a,h

Ç
MH +

Ç
log(H)

log( M
M−1 )

+ 4M + 2

å
(Th(s, a)− 1)

å
≤MSAH2 + SAH

Ç
log(H)

log( M
M−1 )

+ 4M + 2

å
log( T̂

MSAH3 + 1)

log(1 + 1
H )

=MSAH2 + SAH

Ç
log(H)

log( M
M−1 )

+ 4M + 2

å
log( T

SAH3 + 1)

log(1 + 1
H )

.

The last equality is because T̂ =MT .

For usyn = FALSE, in each round, all M agents meet the trigger condition, then the round number
is at least:

K ≤ SAH2 + SAH

Ç
log(H)

M log( M
M−1 )

+ 4 +
2

M

å
log( T

SAH3 + 1)

M log(1 + 1
H )

≤ SAH2 + SAH (log(H) + 6)
log( T

SAH3 + 1)

log(1 + 1
H )

.
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