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Abstract

The wide application of pre-trained models is
driving the trend of once-for-all training in one-
shot neural architecture search (NAS). However,
training within a huge sample space damages
the performance of individual subnets and re-
quires much computation to search for an op-
timal model. In this paper, we present Pre-
NAS, a search-free NAS approach that accentu-
ates target models in one-shot training. Specifi-
cally, the sample space is dramatically reduced
in advance by a zero-cost selector, and weight-
sharing one-shot training is performed on the
preferred architectures to alleviate update con-
flicts. Extensive experiments have demonstrated
that PreNAS consistently outperforms state-of-
the-art one-shot NAS competitors for both Vi-
sion Transformer and convolutional architectures,
and importantly, enables instant specialization
with zero search cost. Our code is available at
https://github.com/tinyvision/PreNAS.

1. Introduction

Deep learning has made significant strides in a wide range
of tasks, including image classification (Tan & Le, 2019;
Dosovitskiy et al., 2021), speech recognition (Hsu et al.,
2021), and natural language processing (Devlin et al., 2019).
One of the key factors contributing to their success is the
design of model architectures, which can have a decisive
impact on the final performance. However, manual design
of model architectures is often time-consuming and requires
significant expertise across different tasks. As a result, there
is a growing need for automated design process.

Neural architecture search (NAS) is a promising approach
to address the challenges, with the goal of finding optimal
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Figure 1. PreNAS first identifies the preferred architectures via
zero-cost proxies within similar architectures, denoted as isomers,
and then performs concentrated one-shot learning on only preferred
architectures to achieve better convergence. The size of triangles
implies different resource consumption of the architectures.

architectures for a given task with minimal human interven-
tion. One-shot NAS is a kind of NAS family that performs
search through a well-trained weight-sharing model, known
as a supernet. By training and evaluating possible subnets
within a search space using only one single supernet, one-
shot NAS significantly reduces the computational cost com-
pared to other NAS methods that train and evaluate every
model individually from scratch. One-shot NAS has demon-
strated strong performance and has been applied to both
convolutional neural networks (CNNs) and Transformer-
based architectures (Chitty-Venkata et al., 2022).

In order to reliably search for high-performance models,
one-shot NAS solutions mostly employ a redundant learn-
ing strategy. During the training phase, a plethora of subnets
are sampled from a vast search space (can be 10° or even
much larger) to iteratively update the supernet; during the
search phase, sufficient candidate subnets are populated to
rank the optimal architecture. While this redundant strategy
has indeed achieved good performance and reduced the un-
certainty of NAS, it may also be limiting the cutting-edge
breakthrough of one-shot NAS. To summarize, there are
two specific issues to be concerned. (i) Search efficiency.
Each search under the given resource constraints requires
the evaluation of several thousand models, which is time-
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Figure 2. lustration of PreNAS. Previous one-shot NAS samples all architectures in the search space when one-shot training of the
supernet for better evaluation in evolution search. Instead, PreNAS first searches the target architectures via a zero-cost proxy and next
applies preferred one-shot training to supernet. PreNAS improves the Pareto Frontier benefited from the preferred one-shot learning and is
search-free after training by offering the models with the advance selected architectures from the zero-cost search.

consuming and resource-intensive (Cummings et al., 2022).
(ii) Training efficacy. The vast training space makes learn-
able parameters within the supernet struggle to adapt to
various subnets (Liu et al., 2022). The resultant gradient
oscillations can impair training convergence and hurt the
ultimate performance (Gong et al., 2022).

This work presents a novel preferred learning strategy to
fulfil the potential of one-shot NAS, namely PreNAS. Con-
sidering practical application, NAS methods select high-
performance models from the Pareto frontier under given
resource constraints, as illustrated in Fig. 1. We are therefore
inspired to pre-identify high-quality architectures with vari-
ous resources in order to enable efficient access to optimal
models, achieving nearly search-free specialization. Corre-
spondingly, the selected candidates form a narrow sampling
set, which we refer to as the preferred space. During train-
ing, the supernet is optimized on the preferred sample space
to concentrate the training efficacy, which reduces gradient
conflict and thus can potentially reach a better convergence
state.

Identifying high-quality architectures without training is a
non-trivial task. Another line of NAS research, zero-shot
NAS, may provide a feasible solution in this regard. The
core of zero-shot NAS lies in designing a zero-cost evalua-
tion metric that serves as a fast proxy with high correlation
to the actual performance. In this work, we creatively estab-
lish a linkage between one-shot NAS and zero-shot NAS to
fully leverage the advantages of both. The key innovation
is to enhance scoring-oriented proxy with design capabil-

ity to handle isomeric Transformers. An undervalued but
crucial phenomenon in NAS is that multiple architectures
may own the same resource consumption, and this is partic-
ularly prevalent in Transformer architectures. The standard
Vision Transformers are designed to have homogeneous
embedding dimensions across blocks, which produces an in-
teresting property that blocks can be rearranged to form new
architectures while maintaining constant parameters and
computation. Therefore, the evaluation proxy is revised to
own the ability of eliminating isomeric architectures. Fig. 1
provides a schematic diagram for the described process.
Overall, the combination of one-shot and zero-shot NAS
makes PreNAS not only achieve rapid search of optimal
neural architectures, but also obtain well-trained parameters
efficiently, enabling out-of-the-box model specialization.

The main contributions are summarized as follows:

* PreNAS, a new learning paradigm that combines one-
shot and zero-shot NAS, is proposed to train and search
for optimal architectures within a preferred sample
space, aiming to improve search efficiency and training
efficacy.

* A compound architecture selection mechanism is de-
signed to construct and evaluate high-quality architec-
tures, with a particular focus on addressing structural
isomerism in Transformer architectures.

» Extensive experiments and analysis are conducted to
verify the effectiveness of PreNAS, showing that it is
competent to search for both CNN and ViT architec-
tures with superior performance on various tasks.
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2. Background and Related Work
2.1. One-Shot NAS

In one-shot NAS, a weight-sharing supernet is built and
trained to jointly optimize subnets within a pre-defined
search space. Let A be the architecture search space and
W be all the learnable weights. The objective of one-shot
training is to obtain the optimal weights

W* = argV[I/nin EQNU{A} [Ltrain(a | W(x; Dtrain)]7 (1)

where subnet « is uniformly sampled from the search space
A, W, is the corresponding part of inherited weights, and
Lirain 1s a loss function defined on the training dataset. Upon
the well-trained supernet, the best model a* under the given
resource constraint c is searched by ranking subnets as

o = argmax Pyy(a | W2, Dya) st. () <c¢, (2)
acA

where P, evaluates performance on the validation dataset

and r(-) reports the resource consumption. During special-

ization, the search step can be conducted multiple times to

obtain deploying models for different resource constraints.

The one-shot NAS (Brock et al., 2018) is proposed to amor-
tize the cost from the training of each model at the beginning.
It emphasizes high rank correlation of the accuracy with
the quality of subnets (Su et al., 2022), hence requires an
additional retraining step after the best architecture is identi-
fied (Wu et al., 2019; Li et al., 2020). Recent works propose
to alleviate this issue by training a once-for-all supernet
in convolution networks (Yu & Huang, 2019; Cai et al.,
2020; Yu et al., 2020), Transformer (Wang et al., 2020b;
Chen et al., 2021b) and hybrid networks of them (Gong
et al., 2022). However, it is difficult to take account of both
keeping the performance rank of all subnets in search space
and achieving high performances of the target subnets in a
once-for-all supernet. FocusFormer (Liu et al., 2022) trains
an architecture sampler instead of the uniform sampler in
Eq. 1, but does not fully address the problem. Instead, Pre-
NAS isolates the ranking task from the one-shot training via
zero-shot NAS in advance.

2.2. Zero-Shot NAS

The advantage of one-shot NAS lies in its ability to simul-
taneously return both the architectures and optimized pa-
rameters. It is more suitable for scenarios where pre-trained
models are required, e.g., AutoTinyBERT (Yin et al., 2021)
for BERT (Devlin et al., 2019) and LightHuBERT (Wang
et al., 2022) for HuBERT (Hsu et al., 2021). However, when
only architectures are needed, one-shot NAS would be over
cumbersome.

Zero-shot NAS seeks to find high-quality architectures with-
out costly model training. Various zero-cost proxies have

been proposed to efficiently estimate architecture quality.
The general purpose can be formulized as

rl@)<e, G

o = argmax Pyore (@) s.t.
acA

where Pscore can rapidly score architectures without training
and validation on large-scale datasets.

For instance, Mellor et al. (2021) have developed a zero-cost
proxy by the overlap of activations between datapoints in
untrained networks. Lin et al. (2021) propose Zen-Score
to represent the network expressivity. Meanwhile, previous
works have leveraged the high correlation of the gradient-
based zero-cost proxies with the model performances, such
as the gradient norm (Abdelfattah et al., 2021), SNIP (Lee
et al., 2019), GraSP (Wang et al., 2020a), SynFlow (Tanaka
et al., 2020), NASI (Shu et al., 2022a). Further, Shu et al.
(2022b) theoretically prove the connections among different
gradient-based zero-cost proxies and propose HNAS to con-
sistently boost existing training-free NAS algorithms. Xu
et al. (2021a) apply their proposed gradient-based proxy to
RoBERTa (Liu et al., 2019). TF-TAS (Zhou et al., 2022)
is the first gradient-based zero-cost proxy especially for
ViT (Dosovitskiy et al., 2021). Javaheripi et al. (2022)
surprisingly find that the number of decoder parameters in
autoregressive Transformers has a high rank correlation with
task performance.

Without loss of generality, SNIP (Lee et al., 2019), a repre-
sentative gradient-based proxy, is adopted in this work. The
scoring function of SNIP is defined as:
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We use 6 to denote randomly initialized parameters to be
differentiated from trained weights W. In order to define
the loss function £, at least one mini-batch data is required
to perform a forward inference. SNIP can be freely replaced
with other zero-cost proxies as long as they are competent
to select high-quality architectures. As shown in Fig. 2,
the models sampled by zero-cost proxy are typically good
enough with only a small deviation from the Pareto Frontier.

3. PreNAS

In this section, we begin by revealing the underlying po-
tential of conventional one-shot NAS, and introduce a new
preferred learning strategy to fully release its capability as
Fig. 2 shows. Then we discuss the isomeric issue in Trans-
former architectures and detail the adapted zero-cost proxy.
Finally, we propose addressing training fairness to balance
performance distribution.
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3.1. One-Shot NAS with Preferred Learning

As mentioned earlier, conventional one-shot NAS has short-
comings in terms of search efficiency and training efficacy.
During the training phase, Eq. 1 expects every subnet « € A
to be sampled and optimized to reach matchable perfor-
mance with the architecture quality. However, the search
space A is almost infinitely large, and even redundant train-
ing strategy cannot traverse all subnet architectures. More
importantly, since the learnable weights 11 are shared across
high-quality and low-quality subnets, the final convergence
state is weakened due to conflicting adaptations. Besides,
to search for the best architecture from a group of candi-
date architectures, the performance evaluator P,, in Eq. 2
could be executed several thousand times in a single search.
This search-time overhead is inevitable even with improved
strategies like random search (Bender et al., 2018; Li & Tal-
walkar, 2019), evolution algorithm (Real et al., 2019; Guo
et al., 2020) and reinforcement learning (Pham et al., 2018;
Tan et al., 2019).

From the perspective of improving search efficiency, the
number of candidates to be evaluated should be minimized.
A beneficial side effect of this treatment is that it allows for
focused updates on fewer subnets, and potentially enables
each model to reach a better convergence state. Therefore,
we propose performing one-shot learning within a much
smaller preferred search space A that which satisfies

AC A and |A] < |A| (5)

The reduced search space should be of sufficient quality,
so that the best architecture found under the given resource
constraint is comparable to the theoretically optimal one in
the entire search space, i.e.,

max Py (&) ~ max Pyy () (6)
acA acA
subject to
r(&) < c and r(a) < c. 7

The symbols of weight and dataset in P, are omitted for
simplicity.

More clearly, the preferred search space is formed by se-
lecting high-quality architectures under various resource
constraints:

A={S8(A,,N)|VeecC}. ®)

The selector S chooses the top-N best architectures from
the valid subsets and A| is defined as

Ag ={alacAst r(a) <c}. )

Constraints C are a series of limitations on resource con-
sumption, e.g., model size or FLOPs,

C=(a,a+e,a+2¢e--,b), (10)

where ¢ is the discretization margin and a, b are the lower
and upper bounds of the search space.

Upon the preferred search space, the supernet is trained
in a weight-entanglement manner (Chen et al., 2021b) but
focusing on only high-quality architectures. The preferred
one-shot training process can be rewritten as:

W* =argminE__ . [Couin(@ | Wa, Dean)). - (11)
w

Concentrated optimization on high-quality subnets avoids
sharing weights with poor architectures and results in su-
perior individual performance, which is confirmed by our
state-of-the-art results reported in Section 4.2.

In the specialization stage, the optimal architectures under
given resource constraints can be directly obtained:

A = A (12)

This procedure does not require costly search and evalua-
tion on a large number of candidates. It achieves zero-cost
specialization in most cases and is sufficient for general
uses. For rare finer-grained use cases, there is only a small
additional overhead to rank a few subnets.

3.2. Zero-Cost Transformer Selector

Proxy Confusion The foundation of PreNAS lies in se-
lecting high-quality architectures before data-based training,
i.e., the selector S in Eq. 8. This is a non-trivial task and we
resort to the proxy techniques in zero-shot NAS research.
A naive idea would be to use gradient-based proxies such
as SNIP (Lee et al., 2019) to search for qualified subnets.
After preliminary experiments, we found that SNIP as well
as other similar proxies perform well across architectures
of varying capacity. The computed scores have a high cor-
relation to true accuracy. However, it encounters confusion
in distinguishing architectures with the same resource con-
sumption.

Definition 3.1 (Transformer isomers). For a L-block Trans-
former architecture « :== (31, B2, . .., 1) with 3; the con-
figurations of i-th block, all architectures produced by re-
ordering «v are isomers.

Understanding Isomers We attribute the confusion phe-
nomenon to the isomerism of Transformer architectures.
SNIP was originally proposed for CNN architectures and
shows a high correlation with model size. However, Trans-
former isomers have constant model sizes and FLOPs,
which deceives the SNIP score. Fig. 3(a) illustrates two
groups of isomers, and it is clear that there is no signifi-
cant correlation between SNIP and accuracy. By inspecting
per-block scores of the supernet, we observe from Fig. 3(c)
that the unit contribution of lower blocks is relatively higher.
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Table 1. The search space of PreNAS for Vision Transformer. Fol-
lowing AutoFormer (Chen et al., 2021b), three supernets are built
spanning different parameter scales. The triplet of each variable
factor means the lower bound, upper bound, and incremental step,
respectively. The Q-K-V dimensions, numbers of heads, and MLP
ratios varies across different layers.
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Figure 3. (a) The SNIP scores are uncorrelated with the test accu-
racy of various subnets in two isomers. (b) The SNIP scores with
the layer normalization have significant positively correlation with
the test accuracy of various subnets in the two isomers. (c) The
growth of the SNIP score in each layer with the increase of the
MLP ratio from 3.5 to 4.

Therefore, SNIP tends to select architectures with wider
lower blocks, which typically exhibit mediocre performance.
Refer to Appendix A for more detailed analyses. It is note-
worthy that the slight advantage of lower blocks can be
easily dominated by scaling embedding width and the num-
ber of blocks, which explains why the SNIP still works
under different resource consumption.

Normalized Isomer Proxy Based on the above analysis,
we propose a natural solution that normalizes SNIP on a
per-layer basis. The revised scoring function of normalized
SNIP is defined as:

norm
PSNIP - Z

=1
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(13)
where 6! denotes the randomly initialized parameters of the
supernet at [-th block and 6, is the inherited parameters of
subnet o. As Fig. 3(b) shows, the normalized SNIP score
shows a positive correlation with accuracy for isomers. It
is noteworthy that each isomer group may contain a large
number of architectures, and applying Pgnp on all of them
is inefficient. Other approximation techniques like random
search or evolutionary algorithm can help speed up but do
not guarantee always getting the best results. Therefore, we
provide an efficient allocation algorithm based on Pgxp that
greedily constructs the top-scoring isomer in O(1) complex-
ity. The algorithm is detailed in Appendix B.

‘Supernet-Tiny Supernet-Small Supernet-Base

Embed Dim | (192, 240, 24) (320, 448, 64) (528, 624, 48)
Q-K-VDim | (192,256, 64) (320, 448, 64) (512, 640, 64)
MLP Ratio (3.5,4,0.5) (3,4,0.5) (3,4,0.5)
Head Num (3.4, 1) (5,7, 1) (8, 10, 1)
Depth Num | (12,14, 1) (12,14, 1) (14,16, 1)
Params Range| 5.4 - 10.5M 13 -34M 42 —76M

Finally, the zero-cost selector S in Eq. 8 is a compound
two-step operation. It first apply Pgnp on isomers to elect
representatives and then apply Pgyp to select the top-N
preferred architectures under the given resource constraint.

3.3. Performance Balancing

We discuss training fairness and demonstrate how to dis-
tribute learning performance more fairly across subnets. As
indicated in Eq. 1, the usual one-shot training samples sub-
nets uniformly from the vast search space, i.e., « ~ U{A}.
In our preferred search space A, the candidate architectures
are evenly distributed in terms of resource consumption.
However, a uniform sampling on .4 do not result in fair up-
dates in terms of subnets. The variable building factors like
embedding dimension, number of blocks, and number of
attention heads do not appear equally, among which the for-
mer two have a greater impact. Hence, we propose grouping
the architectures in .A by both their embedding dimensions
and depths and perform uniform sampling on this calibrated
distribution, i.e., & ~ B{A} in Eq. 11.

4. Experiments
4.1. Setup

Search Space We employ the same search space of Auto-
Former (Chen et al., 2021b) including five variable factors
in Transformer blocks: embedding dimension, Q-K-V di-
mension, number of heads, MLP ratio, and network depth,
as shown in Tab. 1. We also apply the paradigm of PreNAS
to CNNs with the same search space of BigNAS (Yu et al.,
2020) in Tab. 2.

Implementation Details We implemented PreNAS upon
the PyTorch (Paszke et al., 2019) framework with improve-
ments from the timm (Wightman, 2019) library. The su-
pernets are trained following the recipe outlined in Auto-
Former (Chen et al., 2021b), where multiple data augmenta-
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Table 2. The search space of PreNAS based on MobileNetV2. Fol-
lowing BigNAS (Yu et al., 2020), the building blocks include
vanilla convolutions and inverted bottleneck residual blocks (MB-
Conv) (Sandler et al., 2018).

Stage\ Operator Resolution  #Channels #Layers Kernel

Conv 192 - 320 32-40 1 3

1 | MBConvl 96 - 160 16 - 24 1-2 3

2 | MBCouv6 96 — 160 24 -32 2-3 3

3 | MBCouv6 48 -80 40 -48 2-3 3,5

4 | MBCouv6 24 -40 80— 88 2-4 3,5

5 | MBCouv6 12-20 112 - 128 2-6 3,5

6 | MBCouv6 12-20 192 - 216 2-6 3,5

7 | MBCouv6 6-10 320 -352 1-2 3,5
Conv 6-10 1280 — 1408 1 1

tion and regularization techniques are utilized to facilitate
convergence, including RandAugment (Cubuk et al., 2020),
mixup (Zhang et al., 2018), CutMix (Yun et al., 2019), Ran-
dom Erasing (Zhong et al., 2020), stochastic depth (Huang
et al., 2016), Repeated Augmentation (Berman et al., 2019;
Hoffer et al., 2020) and Label Smoothing (Szegedy et al.,
2016; Yuan et al., 2020). The detailed hyper-parameters are
presented in Appendix C. The input images are all resized
to 224 x 244 and split into patches of size 16 x 16. We
use the AdamW optimizer with a mini-batch size of 1024.
The learning rate is initially set to le-3 and decays to 2e-5
through a cosine scheduler in 500 epoches. The discretiza-
tion margin € is set to IM. We conducted experiments and
measured design time on NVIDIA A100 GPUs.

4.2. Main Results

Comparison with NAS ViT The results of PreNAS are
presented in Tab. 3. In accordance with DeiT (Touvron et al.,
2021), we compare the best results on three specifications,
viz., PreNAS-Tiny, PreNAS-Small, and PreNAS-Base, each
corresponding to a parameter limit of 6M, 23M, and 54M,
respectively. The recent AutoFormer (Chen et al., 2021b)
is the most relevant NAS competitor, which adopted a re-
dundant one-shot training strategy and searched for optimal
subnets by evolutionary algorithm. It can be observed that
our PreNAS surpasses AutoFormer on both top-1 and top-5
accuracy under all three resource constraints. Besides, it is
important that these achievements are obtained with highly
competitive search efficiency. Specifically, AutoFormer uti-
lizes evolutionary algorithm and requires at least 90 GPU
hours to safely provide an optimal model. While PreNAS is
indeed search-free after one-shot training and can instantly
provide a desired model under the given resource constraint.

Comparison with Handcrafted ViT Some competitive
ViT models that were elaborately designed by humans are
also included, among which DeiT (Touvron et al., 2021),
ConViT (d’Ascoli et al., 2021), TNT (Han et al., 2021) and

Table 3. Comparison of different Vision Transformers on Ima-
geNet. *Hybrid models of convolutions and Transformer blocks.

MODEL Topr-1 Topr-5 #PArRAMS FLOPS
(%) (%) (M) (G)
LVT? 74.8  92.6 5.5 0.9
DEIT-T1 72.2 91.1 5.7 1.2
CONVIT-T1 73.1 91.7 6.0 1.0
TNT-T1 73.9 91.9 6.1 1.4
AUTOFORMER-T1I 74.7 92.6 5.9 1.3
PRENAS-TI 77.1 93.4 5.9 1.4
BOTNET-S1-59% 81.7 95.8 33.5 7.3
DEIT-S 79.8 95.0 22.1 4.7
CONVIT-S 81.3 95.7 27.0 5.4
TNT-S 81.5 95.7 23.8 5.2
T2T-VIT-14 81.7 - 21.5 6.1
AUTOFORMER-S 81.7 95.7 22.9 4.9
PRENAS-S 81.8 95.9 22.9 5.1
BOTNET-S1-110% 82.8 96.3 55 11
DEIT-B 81.8 95.6 86 18
CONVIT-B 82.4 95.9 86 17
AUTOFORMER-B 82.4 95.7 54 11
PRENAS-B 82.6 96.0 54 11

T2T-ViT Yuan et al. (2021) are pure ViT architectures, while
LVT (Yang et al., 2022) and BoTNet (Srinivas et al., 2021)
are hybrid architectures built of convolutions and Trans-
former blocks. While boosting accuracy, PreNAS also tend
to have fewer parameters and FLOPs than manual designs,
especially in larger-scale models. For example, PreNAS-
Base improves top-1 accuracy from 81.8% to 82.6% with
only 63% parameters and 61% FLOPs of DeiT-B. It is note-
worthy that hybrid architectures utilize convolutions to ef-
fectively down-sample features, which yields significant
advantageous in computation reduction. Surprisingly, Pre-
NAS demonstrates comparable performance to BoTNet with
similar or even fewer parameters and FLOPs.

In summary, the experimental results firmly reveal the ef-
fectiveness of PreNAS. It not only outperforms pure state-
of-the-art Vision Transformers, but also reaches an extraor-
dinary level of parity with compact hybrid architectures.

4.3. Analysis and Ablation study

Quality of Preferred Architegtures In PreNAS, the qual-
ity of preferred architectures A is crucial and is the basis of
the entire framework. Therefore, we take the architectures
selected by zero-cost selector S (without subsequent one-
shot training) and train them from scratch to solely verify
its effectiveness. The results are shown in Tab. 4 and all
the methods are fairly trained for 300 epochs with the same
recipe. In both the Tiny and Small search spaces, the trained
accuracy of PreNAS is superior to other competitors, ex-
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Table 4. Performance comparison of subnets trained from scratch
(300 epochs and 1024 batch size). SNIP is applied by replacing
the normalized SNIP in the first step of seletor S. The subscript
zs means using only the zero-shot selector of PreNAS.

METHOD Tor-1 Topr-5 #PARAMS TIME
(%) (%) M) (HOURS)
SNIP-T1 74.4 92.4 6.0 0.1
AUTOFORMER-TI 74.4 92.4 5.9 415
TF-TAS-TI 75.2 92.7 6.2 12
PRENAS-TI 25 74.8 92.6 6.0 0.1
SNIP-S 81.2 95.7 23 0.3
AUTOFORMER-S 81.5 95.6 23 667
TF-TAS-S 81.4 95.7 24 17
PRENAS-S zs 81.5 95.8 23 0.3
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Figure 4. ImageNet accuracy of
different routines of zero-cost
proxies and one-shot training in
the Small space.

Figure 5. ImageNet accuracy of
different sampling strategies
during one-shot training in the
Tiny space.

cept for TF-TAS-Ti, which actually has advantageous more
parameters. We attribute the benefits of PreNAS to its nor-
malization of isomer proxy, which eliminates the preference
for wider lower blocks in SNIP. For example, the MLP ratios
from low level layer to high level layer in SNIP-Ti are 4.0,
4.0,4.0,4.0,4.0, 4.0, 4.0,4.0, 4.0, 3.5, 3.5, 3.5 respectively,
while they are 4.0, 4.0, 4.0, 4.0, 4.0, 3.5, 3.5, 4.0, 4.0, 3.5,
4.0, 4.0 in PreNAS-Ti. From the perspective of efficiency,
our two-step selector is competent as an excellent zero-shot
proxy. The search time is nearly zero at the same level as
SNIP, and the architecture quality is comparable or even
better than evolutionary search in one-shot AutoFormer. TF-
TAS (Zhou et al., 2022) is a recently proposed zero-shot
proxy specifically for Transformers. Although it promoted
the search efficiency by 48 x compared to AutoFormer, it
still consumes at least 12 hours to offer an architecture via
massive forward inferences. In contrast, PreNAS requires
only one forward and backward propagation via a mini batch
and all subnets directly inherit the initialized weights and
gradients from supernet.

Investigation of Preferred Training PreNAS is a com-
bination of zero-shot selector and preferred one-shot train-
ing. It is possible to combine the proposed selector with
conventional redundant one-shot training. Fig. 4 shows
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Figure 6. Model quality in different search spaces. (a) Space A is
the initial entire space, B is the refined search space by applying
layer-normalized SNIP to isomers as in Eq. 13, and C is selected
by original SNIP without normalization. (b) Error rate statistic of
ImageNet classification in different spaces. We randomly sampled
500 models in each space to inspect their error distributions under
redundant one-shot training. Cumulative ratio represents the per-
centage of sampled models with error below a certain value.

several possible alternatives. “preferred & pre-selector” is
the recipe of PreNAS. “redundant & pre-selector” means
training supernet in the redundant manner and selecting
subnets beforehand with randomly initialized parameters,
while “redundant & post-selector” means that subnets are
selected afterwards from supernet with well-trained param-
eters. The figure confirms the effectiveness of preferred
training in convergence. Specifically, with the same selected
subnets in “preferred & pre-selector” and “redundant & pre-
selector”, the preferred training improves accuracy by about
0.5% for each subnet comparing to the redundant ones. By
concentrating on high-quality architectures, the preferred
training encounters less update conflicts and thus achieves
more adequate optimization for all selected subnets.

Effect of Normalized Proxy We further analyze the im-
portance of normalized isomer proxy in our twp-step selec-
tor S. In the first step, we preserve a unique representative
from each group of Transformer isomers using a normalized
SNIP score Pgrip, which forms a refined search space B as
in Fig. 6(a). As a comparison, we apply the original SNIP
without layer normalization in first step to obtain the search
space C. We follow the criteria of RegNet (Radosavovic
et al., 2020) to characterize the qualities of refined search
spaces. We randomly sample 500 architectures from the
entire search space A to analyze performance distribution.
The corresponding isomers in B and C' are picked to keep
the constant parameters for fair comparison. As shown in
Fig. 6(b), the curves imply that the quality of B covers A
and C' and the models in C' perform worst.

Effect of Performance Balancing During one-shot train-
ing, the optimizer will update the learnable weights of a
subnet chosen from the search space at each iteration. A
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Table 5. Transfer learning on different downstream tasks with ImageNet pre-training.

MODEL #PARAMS CIFAR-10 CIFAR-100 FLOWERS CARS PETS INAT-19
EFFICIENTNET-B5 30M 98.7 91.1 98.5 - - -
GRAFIT RESNET-50 25M - - 98.2 92.5 - 75.9
VIT-B/16 86M 98.1 87.1 89.5 - 93.8 -
VIT-L/16 307M 97.9 86.4 89.7 - - -
DEIT-B 86M 99.1 90.8 98.4 92.1 - 77.7
VITAE-S 24M 98.8 90.8 97.8 91.4 94.2 76.0
DEARKD-S 22M 98.4 89.3 97.4 91.3 - -
PRENAS-S 23M 99.1 91.2 97.6 92.2 94.9 76.4

Table 6. Comparative results of CNN architectures on ImageNet.
The paradigm of PreNAS is applied to BigNAS search space.
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basic sampling method is to uniformly choose candidate
architectures from the preferred space A with equal proba-
bility. However, this can lead to a suboptimal optimization
of certain weights as the variable building factors are trained
to different frequencies. As shown in Fig. 5, uniform sam-
pling leads to poor performance of small models due to the
uncommon selection of variable factors. As a contrast, we
also experimented with the resampling method employed
in redundant one-shot training, i.e., randomly construct new
architectures from the decomposed search space using vari-
able factors as the minimal component. This helps to im-
prove small models, but the performances of most subnets
deteriorate due to the growing number of subnets for op-
timization. The balanced sampling ensures that the most
critical embedding dimension and depth are fairly updated,
thus achieving consistently superior performance.

4.4. Transfer Learning Results

As the power of generalization is important for deep learning
models, we further evaluate PreNAS on various downstream
tasks to measure its transfer learning capability. Following
convention, the compared models are pre-trained on Ima-

geNet and then fine-tuned on the target datasets. As shown
in Tab. 5, we present results on CIFAR-10/100 (Krizhevsky
& Hinton, 2009), Flowers-102 (Nilsback & Zisserman,
2008), Stanford Cars (Krause et al., 2013), Oxford-IIIT
Pets (Parkhi et al., 2012), and iNaturalist 2019 (Horn et al.,
2018). Our small model is able to outperform ViT and DeiT
on multiple datasets with several-fold fewer parameters.
PreNAS-S is mostly superior to similar-scale VITAE-S (Xu
et al., 2021b) and DearKD-S (Chen et al., 2022) and is on
par with convnet models.

4.5. CNN Results

Although the main focus of PreNAS is on Vision Trans-
former, the concept of preferred learning for one-shot NAS
is general and can be applied to various architectures. Here
we demonstrate the adaptation on CNN architectures to
prove its versatility and extensibility. We choose Big-
NAS (Yu et al., 2020) as the experimental basis, which is a
popular single-stage NAS framework for CNN architectures.
The paradigm of PreNAS can be easily migrated to BigNAS,
with the main effort being replacing search space of trans-
former blocks with convolutional layers. The experimented
search space is detailed in Tab. 2. Since isomers rarely ap-
pear in CNN architectures due to the down-sampling nature,
the normalization step of Eq. 13 can be skipped. The bench-
mark results are shown in Tab. 6. Our PreNAS achieves
from 0.5% to 1.0% better accuracy for different model sizes
than BigNAS in terms of similar FLOPs.

5. Conclusion

In this paper, we proposed PreNAS, a one-shot neural ar-
chitecture search method that reduces the training space
by identifying promising isomers and further pruning the
training space through sparsification. By doing so, PreNAS
is able to conduct one-shot learning on a more focused set
of architectures, leading to higher accuracy and is search-
free after training by the zero-cost search in advance. Our
experiments demonstrate that PreNAS is able to produce
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highly accurate models with significantly reduced search
times compared to other NAS methods. We believe that
PreNAS represents a promising approach to improving the
efficiency and effectiveness of NAS, and we look forward
to further exploring its potential in future research.
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A. Statistical Analysis for SNIP with Weight Sharing Strategy in Transformer

We analyze the subnets after the conventional one-shot training since it fairly optimizes the subnets in the whole search space
and keeps the consistence of the performance with the model quality. We random sampling 2000 subnets with different
model sizes inheriting weights form supernet and find that the SNIP score has 0.86 Kendall correlation with the performance,
a littler higher than the 0.85 correlation of the model size and performance. To further leverage the reason of the bad
performance of SNIP on the whole search space, we devote ourselves to analyzing the performance of SNIP on the subnets
with equal model size.

Table 7. The statistics of the analyzed subnets in Case 1 and Case 2. We group the subnets by their size and make statistics of the number
of subnets and the accuracy span from the worst subnet to the best subnet in the group.

Group ID 1 2 3 4 5 6 7 8 9 10 11
Case 1 | Model Num. 12 66 220 495 792 924 792 495 220 66 12
Acc. Span 0.334 0542 0.730 0.842 1.008 0.958 0.944 0.820 0.762 0.378 0.336
Group ID 1 2 3 4 5 6 7 8 9 10 11
Case 2 | Model Num. 12 66 220 495 792 924 792 495 220 66 12
Acc. Span 0.280 0.322 0332 0372 0394 0382 0386 0372 0296 0.240 0.160

We focus our analysis on two cases:

(Case 1) We fix the embedding dimension as 192, depth as 12, number of heads in the multi-head attention block as 4 in
each layer and consider all the subnets with 3.5 or 4 MLP ratio. We group the subnets as the Tab. 7 shows where the group
ID is equal to the number of layers with 4 MLP ratio.

(Case 2) We fix the embedding dimension as 192, depth as 12, MLP ratio as 4 in each layer and consider all the subnets
with 3 or 4 heads in multi-head attention blocks. We group the subnets as the Tab. 7 shows where the group ID is equal to
the number of layers with 4 heads in multi-head attention blocks.

As the Tab. 7 shows, it is worthwhile to find a great distributions of the numbers of heads and especially of the MLP ratios
since of the obvious different performance in the subnets with equal model sizes. Besides, that reduces the search space
intensively while keeping the same range of model sizes as the whole search space. However, we find the SNIP proxy fails
in doing such things as following shows.

The mean Best Rank (mBR) (Chen et al., 2021a) is proposed for measuring the performance of the zero-cost proxy in
different sets of networks and emphasizes the actual quality of the best network selected by the proxy which is very suitable
for our situations. It can formalized as

Zg (rg —1)

(gl = 1)
where g denotes the groups in our situations, r, is the actual rank in accuracy of the subnet selected by the proxy as showed

in Eq. 3 and |g| is the number of subnets in this group. If the proxy always selects the best network, mBR = 0 but
mBR = 1 for the worst network.

mBR =

Table 8. The mBR of SNIP in Case 1 and Case 2.

mBR

Case 1 SNIP . 0.986
SNIP with layer norm. | 0.099

Case 2 SNIP . 0.825
SNIP with layer norm. | 0.180

As the Tab. 8 shows, the SNIP selects almost the worst subnets in both Case 1 and Case 2. Then we compare the SNIP score
in each layer of supernet. We find that there are higher SNIP scores in the lower layers since of the slight higher gradients.
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That leads SNIP to select the subnets with wider lower layers under the weight and gradient sharing strategy with supernet.
In view of this, we propose the SNIP proxy with layer normalization as the Eq. 13 shows. The small mBRs of the SNIP
proxy with layer normalization in Tab. 8 verify its effectiveness.

B. The Greedy Algorithm

The isomer architectures in A, € G, where G is the segmentation of the Transformer search space 4, have the same
embedding dimensions, depth, total number of heads and total MLP ratios in all layers since of the same structures in layers
of Transformer. Hence, we only need to consider how to allocate heads and MLP ratios to each layer to approximate the
architecture with max Pgyp in each A,. Here, we only show the allocation for heads in Algorithm 1 and the allocation of
MLP ratio is similar. It is obvious that when there are only two choices of the number of heads and MLP ratio in each layer,
the architecture induced by the greedy algorithm is exact the optimized one.

Algorithm 1 Greedy allocation of heads for isomer architectures

Input: The layer numbers n, total number h of heads, head number lower bound d and head number upper bound .
Output: Head allocation in each layer alc.
Initialize alc as alc|l] = d for each layer [.
Calculate the number of left heads to allocate as left = h — n x d.
fori =1toleft do
If alc[l] < u, calculate the SNIP score P[l] of the (alc[l] + 1)th head in each layer [ with layer normalization via
Eq. 13, else P[] = 0.
cur = arg max; P[l]
alc[eur] = ale[cur] + 1
end for
Return: alc

C. Regularization & Data Augmentation

The learning capacity of three supernets are significantly different, with parameters ranging from minimum 5.4M to maximum
76M. Therefore, we appropriately decrease regularization and data augmentation for Supernet-Tiny and accordingly increase
the magnitudes for Supernet-Base to avoid overfitting or underfitting. The detailed hyper-parameter settings are presented in
Tab. 9. The value terminology primarily follows timm (Wightman, 2019).

Table 9. Hyper-parameters of training regularization and data augmentation.

Techniques Supernet-Tiny Supernet-Small Supernet-Base
Weight decay 0.02 0.05 0.05
Label smoothing 0.1 0.1 0.1
Stoch. Depth v v v
Repeated Aug v v v

Mix switch prob X 0.5 0.5
Mixup alpha 0 0.8 0.8
Mixup mode X elem elem
Cutmix alpha 0 1 1

Rand Augment m9-n2-mstd0.5-inc1 X m10-n3-mstd0.5-inc1
AutoAug X vOr-mstd0.5 X
Erasing prob 0.25 0.25 0.25
Erasing count 1 1 2
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