JOINT LEARNING BETWEEN REFERENCE IMAGE AND TEXT PROMPT FOR FASHION IMAGE EDITING

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

020

021

022

024

025

026

027

028

029

031 032 033

034

037

038

040

041

043

044

046

047

048

051

052

ABSTRACT

Fashion image editing is an essential tool for designers to visualize design concepts, aiming to modify the garment in an input fashion image while ensuring that other areas of the image remain unaffected. Existing methods primarily focus on images-based virtual try-on or text-driven fashion image editing, often relying on multiple auxiliary information including segmentation masks or dense poses. However, they struggle with error accumulation or high computational costs when performing try-on and editing simultaneously. In this work, we introduce a joint learning fashion image editing framework based on text prompts and reference images, named D²-Edit. It aims at flexible, fine-grained editing including garment migration and attribute adjustments such as sleeve length, texture, color, and material via textual descriptions. Our proposed D²-Edit consists of four key components: (i) image degradation module, which introduces controlled noise to facilitate the learning of the target garment concept and preserves the contextual relationships between the target concept and other elements; (ii) image recon**struction module**, responsible for reconstructing both the fashion image and the reference image; (iii) garment concept learning module that encourages each text token (e.g., skirt) to attend solely to the image regions corresponding to the target concept via cross-attention loss; and (iv) concept editing direction identification module, designed to enable flexible attribute adjustments like fabric, color, and sleeve length. Extensive comparisons, ablations, and analyses demonstrate the effectiveness of our method across various test cases, highlighting its superiority over existing alternatives.

1 Introduction

Fashion image editing aims to modify an input fashion image to achieve enhanced or distinctive visual clothing effects, while enabling the adjustment of garment attributes such as color, texture, and fabric. This approach facilitates various applications for creating novel content, such as personalized outfit generation, virtual try-on experiences, and concept visualization. The advanced fashion image editing methods could satisfy a large variety of user requirements for modifying either a full image Baldrati et al. (2023); Song et al. (2023); Baldrati et al. (2024); Pernuš et al. (2025) or its local regions Huang et al. (2025); Wang & Ye (2024); Anonymous (2024).

Existing methods can be categorized into three groups: inpainting-based, product image-based and text-based fashion image editing methods, as illustrated in Fig. 1. The first two approaches Cui et al. (2024); Song et al. (2024a) typically rely on inputs such as source fashion images, reference images, and multi-modal cues (e.g., masks, keypoints) to perform virtual try-on. However, inpainting-based methods (see Fig. 1(a)) are generally limited to overlaying the garment from the reference image onto the source image, and their effectiveness heavily depends on the quality of the segmentation mask. Imperfect masks may result in misalignment or inaccuracies results. Product image-based methods (see Fig. 1(c)), on the other hand, rely on high-quality, background-free images of garments as reference inputs. While these images provide clear garment details, they are difficult to obtain in practical scenarios. Moreover, these methods often require multi-modal cues (e.g., segmentation masks, dense poses and keypoints), which are time-consuming and prone to errors in annotation. While both of these approaches can achieve virtual try-on, they lack the flexibility to edit garment attributes. In contrast, text-based fashion image editing methods (see Fig. 1(b)) allow users to guide edits through textual prompts, enabling adjustments to garment attributes like *color*, *style*, and *fabric*.

However, they struggle with more complex modifications (e.g., fabric texture or intricate details), as text descriptions often lack the precision needed for accurate virtual try-on results. For example, in Fig. 1(b), the details and style of the skirt are hard to describe accurately in text. Therefore, these methods fail to deliver accurate and realistic virtual try-on results.

Yet, all three types of existing methods fail to achieve the goal of dressing the person in the original image with the target garment while simultaneously editing other fashion attributes (e.g., color, fabric, style). To solve these issues, a straightforward way is to incorporate a virtual try-on method with a text-based image editing method (i.e., try-on first then edit, or edit first then try-on). However, this method suffers from the following drawbacks: 1) The two-phase editing process increases the processing time and reduces the overall efficiency. 2) Errors in the first phase may be amplified in the second phase, resulting in the final result deviation from expectations. 3) The accuracy of the

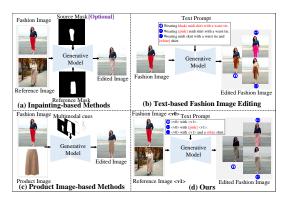


Figure 1: Conceptual Comparisons for Different Pipelines. (a) and (c) simulate virtual try-on using reference or product images but lack flexible editing capabilities; (b) support fine-grained fashion image editing but cannot achieve accurate virtual try-on results. (d) Our method leverages reference and original images with textual prompts to enable both precise virtual try-on and flexible garment edits (e.g., texture, color.)

editing result is highly dependent on the edit mask or other auxiliary information (e.g., keypoints, skeletons) provided by the user, which increases the burden on the user.

To address these issues, we propose a novel end-to-end framework, **D**²-**Edit**, that allows for virtual try-on and garment attributes editing simultaneously via a joint learning of text prompt and reference images. Specifically, to ensure the relationships between the target garment concepts and other contextual elements are preserved while the target garment concepts are learned, we introduce an image degradation module (IDM). This module combines a pre-trained text-based image segmentation model with a weighted Gaussian noise degradation strategy. Then, the image reconstruction module (IRM) is proposed to reconstruct the fashion image and target garment in the reference images simultaneously. Next, to promote the learning of the desired garment concepts, we introduce the garment concept learning module (GCLM) to encourage each text token (e.g., *skirt*, *trousers*) to attend exclusively to the image regions occupied by the corresponding concept via cross-attention loss. Furthermore, we develop a clothing attribute editing direction identification module (CAEDIM) that uses a pair of text descriptions to determine the editing direction of a concept, enabling flexible editing of attributes such as *fabric* and *color*, etc. The main contributions are summarized as follows:

- We reveal three key challenges in fashion image editing method: a) inefficiency of the two-stage process, b) error accumulation, and c) reliance on user-provided masks.
- We propose a novel end-to-end framework, **D**²-**Edit**, which contains four modules: i) IDM to learn the target garment and preserve its contextual relationship with other elements, ii) IRM to ensure accurate image reconstruction, iii) GCLM to encourage the alignment of the target garment concept with text tokens, and iv) CAEDIM to enable controllable attribute adjustments, e.g., *color*, *texture*.
- Comprehensive qualitative and quantitative experiments validate the effectiveness of D²-Edit, demonstrating its superiority over other state-of-the-art methods.

2 METHODOLOGY

2.1 PROBLEM SETUP

In this study, Let $I, I^r \in \mathbb{R}^{H \times W}$ represent the input fashion image and the reference image, respectively, where H and W denote the height and width of the image, respectively. I^r provides the target garment concept for modification. The editing process is guided by a text prompt P, which specifies the desired modifications (e.g., *clothing type, color, fabric*). Additionally, auxiliary prompt pair (t_0, t_1) is introduced to encode the directions of conceptual transformations. The goal of fashion

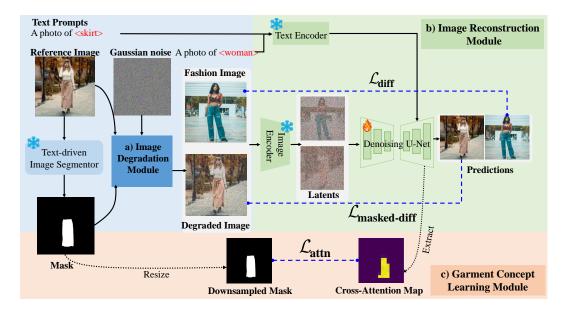


Figure 2: **The Overview of D**²**-Edit.** Our D²-Edit consists of four key components: (a) Image degradation module. (b) Image reconstruction module. (c) Garment concept learning module. (d) Clothing attribute editing direction identification module. Module (d) is not shown in this figure.

image editing is to identify a function \mathcal{F} that generates the edited image $I' = \mathcal{F}(I, P, I^r, (t_0, t_1))$, modifying specific garment attributes in I according to P, while preserving the unaffected regions.

2.2 Overview

Fig. 2 illustrates the framework of our D^2 -Edit, which aims to generate a new fashion image I' by modifying specific conceptual attributes (e.g., *clothing type, color*) of the input fashion image I, while leaving the unrelated region unchanged. The specific implementation of D^2 -Edit consists of four steps: 1) **Image Degradation Module** (§ **2.3**) is designed to disturb irrelevant visual semantics via a weighted Gaussian noise degradation strategy, and thus suppresses the model's sensitivity to irrelevant visual details while preserving the overall visual context; 2) **Image Reconstruction Module** (§ **2.4**) is proposed to ensure simultaneous learning of both the fashion image I and the target garment concept in the reference image I^r ; 3) **Garment Concept Learning Module** (§ **2.5**) is employed to strengthen the correlation between the learned target garment concept and text token v; and 4) **Attribute Editing Direction Identification** (§ **2.6**), which enables flexible text-driven fashion image editing by mapping a predefined text prompt pair (t_0, t_1) (e.g., "long-sleeved shirt" and "shirt" for *sleeve length* attribute.) into the denoising U-Net representation space and computing their vector difference to determine semantic editing directions for specific attributes.

2.3 IMAGE DEGRADATION MODULE

To focus on the target garment concepts in the reference image while preserving their contextual relationships with other elements, the image degradation module is introduced to obtain the degraded reference image. Specifically, we first utilize a pre-trained text-guided semantic segmentation model, i.e., Grounded-SAM Ren et al. (2024), to extract the semantic segmentation mask M_c = Grounded-SAM(I^r, P_r) corresponding to the garment concepts (e.g., shirt) in the reference image. Here, P_r is the text description for the target garment in reference image I^r . This segmentation mask M_c serves two key purposes: a) To ensure the learned garment concepts can seamlessly integrate into the original fashion image, we combine the obtained mask with a weighted Gaussian image degradation strategy to perturb unrelated regions of the reference image. This strategy preserves the contextual relationships between the target garment concepts and the rest of the image, while perturbing irrelevant regions to minimize the influence of extraneous visual information. Specifically, we first generate a Gaussian noise matrix $N^r \sim \mathcal{N}(0,1)$ with the same shape as the reference image I^r . Then, we combine the noise matrix N^r with the corresponding mask M_c and

apply it to the reference image I^r . The degradation process is:

$$I^{rd} = \alpha N^r \odot (1 - M_c) + I^r, \tag{1}$$

where I^{rd} is the degraded reference image, α is a weight controlling the noise intensity, and \odot denotes element-wise multiplication. M_c is the mask indicating the target garment region. b) In the GCLM module, the extracted mask M_c is further employed to compute the difference with the cross-attention maps extracted from the denoising U-Net. This process encourages each text token v to attend exclusively to the image regions occupied by the corresponding garment. More detailed description will be given in \S 2.5.

2.4 IMAGE RECONSTRUCTION MODULE

Further, IRM is designed to reconstruct both the original fashion image and the target garment concept in the reference image accurately. Specifically, on one hand, to ensure faithful reconstruction of the original fashion image in pixel space, we employ a traditional diffusion loss, i.e.,

$$\mathcal{L}_{\text{diff}} = \mathbb{E}_{(I_t, e, t)} \left[|| \epsilon(I_t, e, t) - \varepsilon ||_2^2 \right]. \tag{2}$$

Here, $\varepsilon \sim \mathcal{N}(0,1)$ is the unscaled noise, and $\epsilon(\cdot)$ represents the denoising U-Net, $I_t = \sqrt{\alpha_t}I_0 + \sqrt{(1-\alpha_t)}\epsilon$ is the noisy latent image of I at the t-th time step during the diffusion process, where α_t denotes a predefined variance schedule, latents $I_0 = E_I(I)$ is obtained by image encoder E_I . The text embedding $e = E_T(P_s)$ is obtained by encoding the source prompt P_s with the text encoder $E_T(\cdot)$. On the other hand, unlike the learning objective for the original image, our goal is to focus on learning the target garment concepts in the reference image rather than the entire image. To achieve this, we use a masked diffusion loss that encourages the model to accurately reconstruct the target garment concepts. This can be formalized as follows:

$$\mathcal{L}_{\text{masked-diff}} = \mathbb{E}_{(I_t^r, e_r, t)} \left[|| M_c' \odot \epsilon(I_t^r, e_r, t) - \varepsilon_r ||_2^2 \right], \tag{3}$$

where M'_c is resized from M_c to match the shape of unscaled noise ε_r and I_t^r , $e_r = E_T(P_r)$ is the text embedding of the source textual prompt P_r , such as "a photo of < v >.".

2.5 GARMENT CONCEPT LEARNING MODULE

To acquire target garment concepts from the reference image, the GCLM module is designed to strengthen the correlation between the visual semantics of garment concepts and their corresponding text tokens v, where cross-attention loss $\mathcal{L}_{\rm att}$ is proposed to enhance the model's focus on desired garment concepts by computes the discrepancy between the cross-attention map $CA(v, I_t^r)$ (associated with the text tokens v) extracted from the denoising U-Net and the corresponding segmentation mask. Specifically, during the model fine-tuning phase, we first extract attention maps $CA(v, I_t^r)$ from the denoising U-Net that correspond to the newly added text tokens v with a resolution of 16×16 , which contain the most semantic information Hertz et al. (2022). These maps are then normalized to the range [0,1], and the difference between them and the resized mask $resize(M_c)$ is computed as the cross-attention loss $\mathcal{L}_{\rm att}$. This procedure can be written as Eq. (4).

$$\mathcal{L}_{\text{att}} = \mathbb{E}_{(I_r^r, t)}[||CA(v, I_t^r) - resize(M_c)||_2^2], \tag{4}$$

where $CA(v,I_t^r)$ denotes cross-attention maps between text token v and latent noisy image I_t^r at the t-th time step averaged over the cross-attention layers of the upsampling blocks in the denoising U-Net model, $resize(M_c)$ represents the resized version of the generated concept mask M_c that matches the shapes of the cross-attention maps.

Finally, the overall loss of D2-Edit can be formalized as

$$\mathcal{L} = \lambda_{\text{diff}} \mathcal{L}_{\text{diff}} + \lambda_{\text{mask}} \mathcal{L}_{\text{masked-diff}} + \lambda_{\text{att}} \mathcal{L}_{\text{att}}. \tag{5}$$

Here, λ_{diff} , λ_{mask} , λ_{att} are empirically set to 1, 1, and $2\mathrm{e}{-2}$,, respectively. The first two terms of \mathcal{L} ensure that the visual semantics of garment concepts and fashion images are learned simultaneously, while the last term enhances the correlation between the semantics of garment concepts and the corresponding text token v. Note that to enable efficient fine-tuning, we train only the denoising U-Net ϵ using LoRA and the embedding vector of the text token v while freezing the other components.

```
216
          Algorithm 1 The overall process of D<sup>2</sup>-Edit.
217
          Require: Fashion Image I, Reference Image I^r, Source Prompt P_s, Target Prompt P, Reference
218
          Prompt P_r, Auxiliary Prompts t_0, t_1, Degradation weight \alpha; Pre-trained CLIP Text Encoder E_T,
219
          Image Encoder E_I, Denosing U-Net \epsilon, Guidance scale w, Concept intensity weight \gamma.
220
          Output: Well-trained Model \{\epsilon, E_T, E_I, D\}.
221
            1: M_c = \text{Grounded-SAM}(I^r, P_r). # Get segmentation mask of target garment concept.
222
            2: # (Training Phase).
223
            3: for training step t in [0, T] do
224
                  # Image degradation.
                  I^{rd} = \alpha N^r \odot (1 - M_c) + I^r, N^r \sim N(0, 1), \# Get the degraded image.
225
                  (I_0, I_0^r) = E_I((I, I^{rd})), # Convert image to latents.
226
                  (I_t, I_t^r) = \sqrt{\alpha_t}(I_0, I_0^r) + \sqrt{(1 - \alpha_t)}\epsilon #Noisy latents
227
            7:
                  (e, e_r) = E_T((P_s, P_r)), \# Get the text embedding.
228
                  (\epsilon', \epsilon'_r) = \epsilon((I_t, I_t^r), (e, e_r), t), # Predict the noise residual.
            9:
229
          10:
                  Optimize \epsilon via Eq. (5).
230
          11: end for
231
          12: # (Inference Phase).
232
          13: (e_t, e, e_\emptyset) = E_T(P), E_T(P_s), E_T(""), \# Get the text embedding.
233
          14: e_0, e_1 = E_T(t_0), E_T(t_1), \# Get the text embedding.
234
          15: for inference step t in [0, T] do
235
                  s_{\emptyset} = \epsilon(I_t, e_{\emptyset}, t),# Unconditional score.
236
                  s_{\rm src}, s_{\rm tar} = \epsilon(I_t, e, t), \epsilon(I_t, e_t, t), \# Conditional score.
          17:
237
          18:
                  Compute the clothing attribute editing direction \Delta C_t via Eq. (7).
238
          19:
                  Compute new conditional score via Eq. (6).
239
          20:
                  s \leftarrow s_{\emptyset} + w(s_{\text{new}} - s_{\emptyset}). # For attribute editing.
                  I_{t-1} \sim \mathcal{N}(I_t - s), \sigma_t^2 I).
          21:
240
          22: end for
241
```

2.6 ATTRIBUTE EDITING DIRECTION IDENTIFICATION

242243244

245246

247

249

250

251

252253

254255

256

257

258

259

260

261

262

263

264 265

266

267 268

269

Now, our method leverages text prompts to integrate garment concepts learned from reference images into fashion images, but it does not support fine-grained clothing attribute editing, such as fabric texture, color, sleeve length, or skirt length. To overcome this limitation, we introduce a novel module in the inference phase, inspired by Wang et al. (2024), which constructs an attribute editing space using only a pair of auxiliary textual descriptions. By identifying the clothing attribute editing direction ΔC_t , our method generates new conditional score s_{new} to enable flexible fashion image editing. This process is formally expressed as:

$$s_{\text{new}} = s_{\text{src}} - \lambda \cdot \langle (s_{\text{tar}} - s_{\text{src}}), \Delta C_t \rangle \cdot \Delta C_t$$
 (6)

Here, $s_{\rm src} = \epsilon(I_t,e,t)$ and $s_{tar} = \epsilon(I_t,e_{\rm t},t)$, where $e_{\rm t}$ represents the text embedding of the text prompt P used for target attribute editing. $\langle (s_{\rm tar} - s_{\rm src}), \Delta C_t \rangle$ denotes the inner product between the difference vector and the attribute direction vector. The term $s_{\rm tar} - s_{\rm src}$ denotes the score difference. The attribute editing direction vector ΔC_t at time step t controls the editing process of a specific concept in the fashion image, and the weight γ modulates the effect of that direction, w represents the guidance scale that controls the balance between text adherence and image diversity. By projecting the score difference onto the attribute editing direction ΔC_t , the image editing is guided along the desired direction, preventing unintended changes to other areas of the image. Specifically, we provide a pair of text prompts t_0 and t_1 like "a long-sleeved shirt" and "a short-sleeved shirt" to define an attribute editing direction ΔC_t by

$$\Delta C_t = \frac{\epsilon(I_t, e_0, t) - \epsilon(I_t, e_1, t)}{||\epsilon(I_t, e_0, t) - \epsilon(I_t, e_1, t)||_2},$$
(7)

where e_0 and e_1 are the embedding of text prompts t_0 and t_1 , with $e_0 \neq e_1$. See **Appendix** (§ **B.5**) for $e_0 = e_1$ case. The overall process is summarized in Algorithm 1.

Figure 3: **Experimental Results of Our Method.** By providing a reference image and the original fashion image, our method enables fashion image editing based on the reference image through the target editing text prompt, and simultaneously enables editing of multiple clothing attributes, including texture, color, material, and sleeve length. More results are shown in **Appendix** § **B**.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Setup. Following the prior work Song et al. (2024b); Zhou et al. (2024), we employ the official pre-trained Stable Diffusion v2.1-base Rombach et al. (2022) as our foundational model, downsampling all images to a resolution of 512×512 pixels for consistency across experiments, and the LoRA rank is set to 512. In addition, we set the training steps to 1000 and learning rate to 1e-4, using AdamW Loshchilov (2017) as the optimizer. The degradation weight α is experimentally determined to be 1. The guidance scale is empirically set to 5, balancing text adherence and image diversity. All experiments are conducted on one NVIDIA RTX 4090 GPU with 24 GB of memory. **Dataset.** To facilitate a fair result comparison with state-of-the-art methods, we follow the settings in Cui et al. (2024); Song et al. (2024b) and conduct experiments on two commonly used datasets, including the StreetTryOn Dataset Cui et al. (2024) and the fashion image dataset from Unsplash Unsplash (2025). The StreetTryOn Dataset Cui et al. (2024) is a fashion image dataset specifically designed for virtual try-on tasks, derived from the large-scale fashion retrieval dataset DeepFashion2 Ge et al. (2019). It comprises 12,364 street fashion images for training and 2,089 for validation. Additionally, following the prior work Huang et al. (2025); Song et al. (2024b); Zhang et al. (2023); Kawar et al. (2023), we select multiple fashion street photography images from Unsplash, encompassing both full-body and half-body styles.

Baselines. To verify the effectiveness of D²-Edit, we compare it with the following baselines: Break-A-Scene Avrahami et al. (2023) & blended diffusion Avrahami et al. (2022) (BAS-BD), Any-

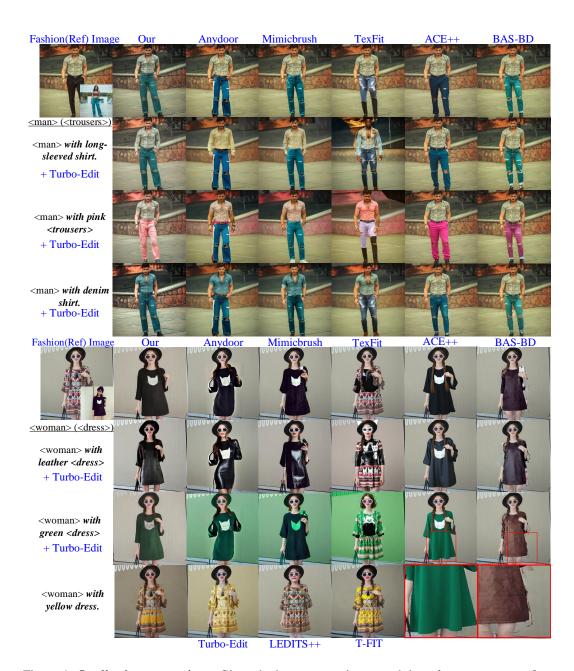


Figure 4: **Qualitative comparison.** Given the input person image and the reference garment (first column), we compare editing results across different methods under various text instructions (rows). Columns 2–7 show different methods, with Columns 3 and 4 requiring Turbo-Edit for editing (otherwise limited to try-on). Edited images highlighted in red box show noticeable artifacts.

door Chen et al. (2024), Mimicbrush Zhao (2024), TexFit Wang & Ye (2024), and ACE++ Mao et al. (2025). Note that these four methods are combined with advanced text-driven editing methods (i.e., Turbo-Edit Deutch et al. (2024), LEDITS++ Brack et al. (2024), and T-FIT Huang et al. (2025)) to achieve more diverse editing results. More details of these methods are provided in **Appendix** § C. **Evaluation Metrics.** We evaluate the similarity between the edited image and the original fashion image by calculating the learned perceptual image patch similarity (LPIPS) Zhang et al. (2018) and peak signal-to-noise ratio (PSNR) Wang et al. (2004). Note that, LPIPS* and PSNR* are used to calculate the similarity between the edited image and the target garment in the reference image. Specifically, we first extract the target garment regions from both the edited and reference images, and then calculate the PSNR and LPIPS between these two regions. This allows for a quantitative assessment of the visual consistency between the garment in the edited image and the garment in

Table 1: **Quantitative Comparisons.** Optimal results in bold, suboptimal results underlined. † denotes the results obtained by combining these methods with the text-driven editing method, Turboedit. M and V denote mean and variance, respectively.

Method	LPIPS $(M \pm V) \downarrow$	PSNR (M \pm V) \uparrow	CLIP-T (M \pm V) \uparrow	CLIP-I $(M \pm V) \uparrow$	KID (M ± V)↓
Our	0.2417 (± 0.032)	29.37 (± 0.487)	0.1656 (± 0.056)	0.9386 (± 0.020)	0.0265 (± 0.013)
Mimicbrush†(NeurIPS, 2024)	$0.2760 (\pm 0.035)$	29.29 (± 0.836)	$0.1528 (\pm 0.023)$	$0.9378 (\pm 0.016)$	$0.0551 (\pm 0.015)$
Anydoor† (CVPR, 2024)	$0.2705 (\pm 0.060)$	30.00 (± 1.328)	$0.1574 (\pm 0.021)$	$\overline{0.9189 (\pm 0.045)}$	$0.0344 (\pm 0.015)$
BAS-BD (SIGGRAPH, 2023)	$0.2545 (\pm 0.003)$	$30.36 (\pm 0.352)$	$\overline{0.1546 (\pm 0.001)}$	$0.8966 (\pm 0.002)$	$0.0459 (\pm 0.008)$
TexFit (AAAI, 2024)	0.2944 (± 0.003)	20.97 (± 54.65)	$0.1245 (\pm 0.002)$	$0.8901 (\pm 0.003)$	$0.0299 (\pm 0.002)$
ACE++ (Arxiv, 2025)	0.1964 (± 0.005)	15.59 (± 4.570)	$0.1254 (\pm 0.001)$	$0.8607 (\pm 0.002)$	$\overline{0.0758 (\pm 0.007)}$

Table 2: **Quantitative Comparisons.** Optimal results in bold, suboptimal results underlined. * Indicates that for each metric, we focus on the image similarity between the target garment in the reference image and the corresponding garment in the edited image. "Time" represents the average time spent during the inference process. M and V denote mean and variance, respectively.

Method	LPIPS* (M ± V)↓	PSNR* (M ± V)↑	CLIP-I* (M ± V)↑	Time↓
Our	0.1479 (± 0.002)	19.10 (± 0.573)	0.9132 (± 0.000)	6s
Mimicbrush (NeurIPS, 2024)	$0.1928 (\pm 0.002)$	18.22 (± 0.149)	$0.9049 (\pm 0.000)$	31s
Anydoor (CVPR, 2024)	$0.2035 (\pm 0.004)$	16.98 (± 2.247)	$\overline{0.8796 (\pm 0.003)}$	40s
BAS-BD (SIGGRAPH, 2023)	$0.1686 (\pm 0.003)$	19.04 (± 0.978)	$0.8302 (\pm 0.004)$	<u>12s</u>
TexFit (AAAI, 2024)	$\overline{0.2228(\pm 0.009)}$	16.22 (± 14.54)	$0.8026 (\pm 0.005)$	24s
ACE++ (Arxiv, 2025)	$0.2253 (\pm 0.009)$	13.64 (± 11.08)	$0.8385 (\pm 0.005)$	21s

the reference image. Further, CLIP-based metrics Radford et al. (2021) are employed to assess two aspects: **image-text alignment**, by computing the CLIP similarity between the edited fashion images and the target text prompts (i.e., CLIP-T), and **identity preservation**, by measuring the cosine similarity between the edited image and the original fashion image using CLIP image embeddings (i.e., CLIP-I). We also report Kernel Inception Distance (KID) Bińkowski et al. (2018) to assess the fidelity of the edited fashion images.

3.2 Comparison with State-of-the-Art Methods

In this section, we present a comprehensive comparison of the editing results achieved by our D²-Edit against other state-of-the-art methods, both quantitatively and qualitatively. It is worth noting that since Anydoor Chen et al. (2024) and Mimicbrush Zhao (2024) are only capable of virtual try-on but fail to achieve other attribute editing simultaneously, for this reason, we select three state-of-the-art text-driven image editing methods (i.e., Turbo-Edit Deutch et al. (2024), LEDITS++ Brack et al. (2024), and T-FIT Huang et al. (2025)) for clothing attribute editing. Due to page limitations, additional results of LEDITS++, Turbo-Edit, and T-FIT are provided in the **Appendix** § **C.2**.

Qualitative Comparison: Fig. 3 illustrates the experimental results of our method and Fig. 4 provides a comparative analysis against other baselines. From Fig. 4, it is evident that the edited images obtained by the AnyDoor, TexFit, ACE++, and BAS-BD often exhibit noticeable artifacts, which can be attributed to their heavy reliance on semantic segmentation masks for the edited regions. This dependency makes it challenging to seamlessly integrate the target garment concepts with the original fashion images. Additionally, AnyDoor, MimicBrush, and TexFit struggle to edit other clothing attributes simultaneously. To address this, we combined them with methods like Turbo-Edit, and the experimental results are shown in rows 2-4 and 6-7 of Fig. 4. We observe that the editing results either alter irrelevant areas(e.g., body identity or background), or deviate from the desired editing target due to errors in the first phase. Furthermore, ACE++ often preserves the source garment's shape or pleats (Fig. 4, col 6), which contradicts the goal of faithful editing—these should instead conform to the target garment in reference image. In contrast, our approach not only enables the seamless try-on of a specific garment item, but also enables the editing of various clothing attributes simultaneously, including the *fabric, color, sleeve length*, etc. This is largely due to our method's joint learning of fashion images and reference images and CAEDIM.

Quantitative Comparison: Tab. 1 show that our method overall outperforms other methods in terms of LPIPS, PSNR, CLIP-I, and KID, indicating that the edited images of our D²-Edit perform better in terms of background preservation. This is mainly attributed to the IRM module, which allows the model to better reconstruct the detailed information of the original fashion image. In addition, our method also achieves higher scores on the CLIP-T, indicating that D²-Edit can follow the text editing instructions more accurately and generate editing results that meet expectations. Although our LPIPS is slightly higher than ACE++ and PSNR marginally lower than BAS-BD, these

metrics are misleading: ACE++ erroneously preserves the original garment's shape or pleats, while these two methods cannot edit beyond the mask—e.g., the *fabric* and *sleeve length* of 'shirt' in Fig. 4 remains unchanged. Further, Tab. 2 shows the similarity between the tried-on garment generated by our method and the target garment in reference images. The results illustrate that our method is more effective in learning the target garment and achieving more accurate garment try-on. Morerover, D²-Edit consistently outperforms both one-stage and two-stage approaches in terms of inference time. Overall, our method not only achieves precise fashion image editing but also keeps unrelated areas unchanged, outperforming existing methods in both objective and subjective metrics.

3.3 ABLATION STUDY

We validate the effectiveness of D^2 -Edit by individually removing key modules. The experiment results are shown in Fig. 5, with additional quantitative comparisons in the **Appendix** \S **E**. Red boxes highlight noteworthy aspects of the edited results produced by the various variants of D^2 -Edit.

Effect of the IDM. From Fig. 5, we can observe that removing IDM leads to the model inadvertently learning irrelevant garment concepts, resulting in unintended alterations to non-target regions in the edited images. For instance, as shown in Fig. 5, row 2, col 2 & 4, the person's position and background in the edited image are incorrectly influenced by the reference image. This result suggests that IDM effectively prevents the model from being influenced by irrelevant regions by perturbing these areas, thereby ensuring the learning process focuses on the desired garment concepts.

Effect of the $\mathcal{L}_{masked\text{-}diff}$. Experimental results show that even with IRM, the absence of the masked diffusion loss $\mathcal{L}_{masked\text{-}diff}$ in our D^2 -Edit leads to unintended influences from the reference image. As depicted in Fig. 5, the edited images exhibit undesired elements from the reference image, such as the person's position and body shape. This underscores the effectiveness of $\mathcal{L}_{masked\text{-}diff}$ in accurately reconstructing the target garment elements from the reference image, ensuring that only the intended garment concept is transferred during the editing process.

Effect of the CAEDIM. As illustrated in Fig. 5, the removal of CAEDIM significantly affects the model's editability. The edited image generated by D^2 -Edit without CAEDIM is limited by the original fashion style of the image, making it difficult to achieve large structural edits, such as changing the *sleeve length* to long sleeves. In contrast, D^2 -Edit with CAEDIM can produce more diverse editing results by progressively identifying the clothing attribute editing directions based on differences in predicted noise within the representation space. The sensitivity analysis of the degradation weight α and con-

Figure 5: Qualitative ablation studies.

cept intensity weight γ is provided in **Appendix** \S **D**. Overall, the extensive ablation study indicates the effectiveness of each key component in D²-Edit.

4 Conclusion

In this paper, we introduce a novel fashion image editing method driven by both text and reference images, addressing the limitations of existing methods that rely on user-supplied edit masks and employ a two-stage framework leading to error accumulation and inefficiency. By introducing four key modules—the image degradation module, image reconstruction module, garment concept learning module, and clothing attribute editing direction identification module—our method effectively learns garment concepts while preserving contextual relationships and ensuring precise image reconstruction. Additionally, the identification of editing directions in representation space enables more diverse editing outcomes. Experimental results demonstrate that our method achieves end-to-end fashion image editing and virtual try-on using only a text prompt, an original fashion image, and a reference image, eliminating the need for manual editing masks or the two-stage process. However, our method currently faces limitations in that it lacks an explicit module to preserve the brightness of the original fashion image. In future work, we plan to incorporate perceptual color spaces, like CIELAB, to overcome this limitation.

REFERENCES

- Anonymous. Dpdedit: Detail-preserved diffusion models for multimodal fashion image editing. *arXiv preprint arXiv:2409.01086*, 2024.
- Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of natural images. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18208–18218, 2022.
- Omri Avrahami, Kfir Aberman, Ohad Fried, Daniel Cohen-Or, and Dani Lischinski. Break-a-scene: Extracting multiple concepts from a single image. In *SIGGRAPH Asia 2023 Conference Papers*, pp. 1–12, 2023.
- Alberto Baldrati, Davide Morelli, Giuseppe Cartella, Marcella Cornia, Marco Bertini, and Rita Cucchiara. Multimodal garment designer: Human-centric latent diffusion models for fashion image editing. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 23393–23402, 2023.
- Alberto Baldrati, Davide Morelli, Marcella Cornia, Marco Bertini, and Rita Cucchiara. Multimodal-conditioned latent diffusion models for fashion image editing. *arXiv preprint arXiv:2403.14828*, 2024.
- Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd gans. In *International Conference on Learning Representations*, 2018.
- Manuel Brack, Felix Friedrich, Katharia Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian Kersting, and Apolinário Passos. Ledits++: Limitless image editing using text-to-image models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8861–8870, 2024.
- Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao, and Hengshuang Zhao. Anydoor: Zeroshot object-level image customization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6593–6602, 2024.
- Seunghwan Choi, Sunghyun Park, Minsoo Lee, and Jaegul Choo. Viton-hd: High-resolution virtual try-on via misalignment-aware normalization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14131–14140, 2021.
- Aiyu Cui, Jay Mahajan, Viraj Shah, Preeti Gomathinayagam, Chang Liu, and Svetlana Lazebnik. Street tryon: Learning in-the-wild virtual try-on from unpaired person images. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8235–8239, 2024.
- Gilad Deutch, Rinon Gal, Daniel Garibi, Or Patashnik, and Daniel Cohen-Or. Turboedit: Text-based image editing using few-step diffusion models. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–12, 2024.
- Ganggui Ding, Canyu Zhao, Wen Wang, Zhen Yang, Zide Liu, Hao Chen, and Chunhua Shen. Freecustom: Tuning-free customized image generation for multi-concept composition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9089–9098, 2024.
- Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and Daniel Cohen-or. An image is worth one word: Personalizing text-to-image generation using textual inversion. In *The Eleventh International Conference on Learning Representations*.
- Yuying Ge, Ruimao Zhang, Lingyun Wu, Xiaogang Wang, Xiaoou Tang, and Ping Luo. Deepfashion2: A versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2019.
- Junhong Gou and et al Sun. Taming the power of diffusion models for high-quality virtual try-on with appearance flow. In *ACM MM*, 2023.

- Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-or. Prompt-to-prompt image editing with cross-attention control. In *The Eleventh International Conference on Learning Representations*, 2022.
 - Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*, 2021.
 - Shanshan Huang, Haoxuan Li, Chunyuan Zheng, Mingyuan Ge, Wei Gao, Lei Wang, and Li Liu. Text-driven fashion image editing with compositional concept learning and counterfactual abduction. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 28726–28735, 2025.
 - Yuming Jiang, Shuai Yang, Haonan Qiu, Wayne Wu, Chen Change Loy, and Ziwei Liu. Text2human: Text-driven controllable human image generation. *ACM Transactions on Graphics* (*TOG*), 41(4):1–11, 2022.
 - Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic: Text-based real image editing with diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6007–6017, 2023.
 - Jeongho Kim, Guojung Gu, Minho Park, Sunghyun Park, and Jaegul Choo. Stableviton: Learning semantic correspondence with latent diffusion model for virtual try-on. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8176–8185, 2024.
 - Anran Lin, Nanxuan Zhao, Shuliang Ning, Yuda Qiu, Baoyuan Wang, and Xiaoguang Han. Fashiontex: Controllable virtual try-on with text and texture. In *ACM SIGGRAPH 2023 conference proceedings*, pp. 1–9, 2023.
 - I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
 - Chaojie Mao, Jingfeng Zhang, Yulin Pan, Zeyinzi Jiang, Zhen Han, Yu Liu, and Jingren Zhou. Ace++: Instruction-based image creation and editing via context-aware content filling. *arXiv* preprint arXiv:2501.02487, 2025.
 - Davide Morelli, Matteo Fincato, Marcella Cornia, Federico Landi, Fabio Cesari, and Rita Cucchiara. Dress code: High-resolution multi-category virtual try-on. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2231–2235, 2022.
 - Martin Pernuš, Clinton Fookes, Vitomir Štruc, and Simon Dobrišek. Fice: Text-conditioned fashionimage editing with guided gan inversion. *Pattern Recognition*, 158:111022, 2025.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PMLR, 2021.
 - Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual tasks. *arXiv preprint arXiv:2401.14159*, 2024.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022.
 - Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–22510, 2023.
 - Mehdi Safaee, Aryan Mikaeili, Or Patashnik, Daniel Cohen-Or, and Ali Mahdavi-Amiri. Clic: Concept learning in context. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6924–6933, 2024.

- Dan Song, Jian-Hao Zeng, Min Liu, Xuan-Ya Li, and An-An Liu. Fashion customization: Image generation based on editing clue. *IEEE Transactions on Circuits and Systems for Video Technology*, 2023.
 - Dan Song, Xuanpu Zhang, Juan Zhou, Weizhi Nie, Ruofeng Tong, Mohan Kankanhalli, and An-An Liu. Image-based virtual try-on: A survey. *International Journal of Computer Vision*, pp. 1–29, 2024a.
 - Xue Song, Jiequan Cui, Hanwang Zhang, Jingjing Chen, Richang Hong, and Yu-Gang Jiang. Doubly abductive counterfactual inference for text-based image editing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9162–9171, 2024b.
 - Unsplash. Unsplash: Beautiful free images & pictures. https://unsplash.com/, 2025. Accessed: 2025-07-13.
 - Tongxin Wang and Mang Ye. Texfit: Text-driven fashion image editing with diffusion models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 10198–10206, 2024.
 - Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.
 - Zihao Wang, Lin Gui, Jeffrey Negrea, and Victor Veitch. Concept algebra for (score-based) text-controlled generative models. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Young Beom Woo and Sun Eung Kim. Flipconcept: Tuning-free multi-concept personalization for text-to-image generation. *arXiv preprint arXiv:2502.15203*, 2025.
 - Zhenyu Xie, Zaiyu Huang, Fuwei Zhao, Haoye Dong, Michael Kampffmeyer, and Xiaodan Liang. Towards scalable unpaired virtual try-on via patch-routed spatially-adaptive gan. *Advances in Neural Information Processing Systems*, 34:2598–2610, 2021.
 - Jianhao Zeng, Dan Song, Weizhi Nie, Hongshuo Tian, Tongtong Wang, and An-An Liu. Cat-dm: Controllable accelerated virtual try-on with diffusion model. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8372–8382, 2024.
 - Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.
 - Zhixing Zhang, Ligong Han, Arnab Ghosh, Dimitris N Metaxas, and Jian Ren. Sine: Single image editing with text-to-image diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6027–6037, 2023.
 - Hengshuang Zhao. Zero-shot image editing with reference imitation. *Neural Information Processing Systems (NeurIPS)*, 2024 (10/12/2024-15/12/2024, Vancouver, Canada), 2024.
 - Donghao Zhou, Jiancheng Huang, Jinbin Bai, Jiaze Wang, Hao Chen, Guangyong Chen, Xiaowei Hu, and Pheng-Ann Heng. Magictailor: Component-controllable personalization in text-to-image diffusion models. *arXiv preprint arXiv:2410.13370*, 2024.
 - Luyang Zhu, Dawei Yang, Tyler Zhu, Fitsum Reda, William Chan, Chitwan Saharia, Mohammad Norouzi, and Ira Kemelmacher-Shlizerman. Tryondiffusion: A tale of two unets. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4606–4615, 2023.
 - Shizhan Zhu, Raquel Urtasun, Sanja Fidler, Dahua Lin, and Chen Change Loy. Be your own prada: Fashion synthesis with structural coherence. In *Proceedings of the IEEE international conference on computer vision*, pp. 1680–1688, 2017.

A STATEMENT ON LLMs USAGE

Large Language Model (LLMs) was used solely for language polishing. It did not contribute to the research design, analysis, or conclusions, which remain the sole responsibility of the authors.

B MORE EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our proposed method under various conditions, including its compatibility with different versions of Stable Diffusion (SD), its effectiveness when the reference images are product flat-lay photos, its capability in handling complex and fine-grained fashion attribute editing tasks, and its robustness in scenarios where there is a significant pose difference between the source and reference images. Additionally, we investigate the impact of different settings for e_0 and e_1 in Eq. (7), and present additional editing results produced by our D²-Edit framework. Fig. 6-11 show the results of our method under various editing scenarios.

B.1 COMPATIBILITY ACROSS DIFFERENT SD VERSIONS

To evaluate the performance of our method across different SD versions, we test D^2 -Edit on two widely used models: SD v1.5 and SD 2-1-base Rombach et al. (2022). As shown in Fig. 6, while there are slight variations in the visual results across versions, our method consistently demonstrates comparable fashion editing capabilities. This indicates that D^2 -Edit is generalizable and compatible with different versions of Stable Diffusion.

Figure 6: Experimental results with different SD versions.

B.2 PERFORMANCE ON PRODUCT FLAT-LAY IMAGES

Fig. 7 presents try-on results generated by our method using flat product images as reference. As shown, our method still achieves satisfactory editing performance under this setting, demonstrating its adaptability. It is important to highlight that our method is primarily designed to work with inthe-wild reference images—i.e., images of people wearing the target garments—due to the practical difficulty of obtaining clean, flat product images.

Figure 7: Effectiveness of D²-Edit with Clean Product Garment References.

B.3 PERFORMANCE ON COMPLEX AND FINE-GRAINED EDITS

Fig. 8 illustrates the results of our method on complex, fine-grained, and multi-attribute editing tasks, where different colored texts indicate distinct fashion attributes. As shown, our method generalizes well to challenging scenarios involving intricate and diverse attribute manipulations, further demonstrating its effectiveness in handling complex fashion editing tasks.

Figure 8: Experimental results of complex editing tasks. Different colored texts indicate distinct fashion attributes.

B.4 ROBUSTNESS TO LARGE POSE DIFFERENCES

We investigate the performance of our method under scenarios where the reference image and the original fashion image exhibit significant pose differences. As shown in Fig. 9, our method still achieves favorable editing results despite the challenging discrepancies in human pose, further demonstrating its robustness and generalizability.

Figure 9: Experimental results under different poses/viewpoints.

B.5 Impact of different settings for e_0 and e_1 in Eq. (7)

To further validate the impact of different settings for e_0 and e_1 in Eq. (7), we explore two scenarios: (1) $e_0 = e_1$ and (2) $e_0 \neq e_1$, and evaluate their performance on both try-on and editing tasks. The results are presented in Fig. 10. As shown, when $e_0 = e_1$, the model is able to perform garment try-on but fails to support attribute editing. In contrast, when $e_0 \neq e_1$, our method can not only preserve the try-on capability but also enable controllable fashion attribute editing. Therefore, in our final design, we adopt the $e_0 \neq e_1$ setting by providing distinct prompt texts to specify user-desired garment attributes.

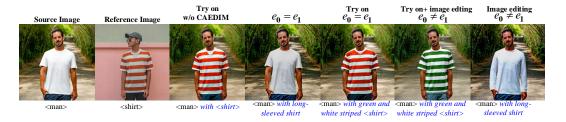


Figure 10: More results of our method. Our method enables garment try-on, original fashion image editing, and the simultaneous editing of try-on images. Blue colored texts indicate added or modified garment concepts.

B.6 More Experimental Results of D²-Edit

Fig. 11 presents additional experimental results of our method, demonstrating that the proposed D^2 -Edit not only enables virtual try-on and original fashion image editing but also allows simultaneous editing of the try-on clothing. These edits encompass various aspects, including *color*, *sleeve length*, *material*, *texture*, *clothing type*, etc.

C EXPERIMENTAL COMPARISON WITH SOTA METHODS

C.1 DETAILS OF BASELINES

To verify the effectiveness of D²-Edit, we compare it with the following baselines: **Break-A-Scene Avrahami et al. (2023) & blended diffusion Avrahami et al. (2022) (BAS-BD)**, where BAS is a method for extracting multiple concepts from a single image, allowing flexible

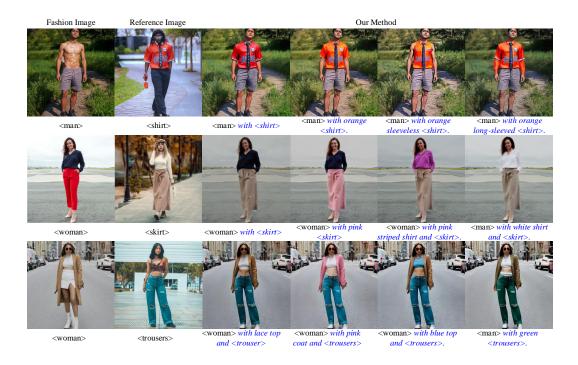


Figure 11: More results of our method. Our method enables garment try-on, original fashion image editing, and the simultaneous editing of try-on images. Blue colored texts indicate added or modified garment concepts.

editing of specific concepts using text prompts. BD is an image generation method combining the diffusion model with blended latent space, which generates high-quality image variants by mixing different concepts in the latent space. This method can create diverse and realistic image variants by manipulating the underlying latent representations. By combining BAS with BD, the personalized editing of fashion images can be achieved.

Anydoor Chen et al. (2024) is a method that utilizes both the source and reference images and their respective target masks to guide image editing. This method allows the integration of objects from the reference image into the original image. It combines advanced text-driven image editing methods such as Turbo-Edit Deutch et al. (2024), LEDITS++ Brack et al. (2024), and T-FIT Huang et al. (2025) to achieve even more diverse editing results.

Mimicbrush Zhao (2024) is a reference image-based editing method that enables fashion image editing by a reference image and a user-supplied mask. It can also be combined with text-driven methods to realize fashion image editing.

TexFit Wang & Ye (2024) is a text-driven fashion image editing method designed to enable local editing of fashion images using textual guidance.

ACE++ Mao et al. (2025) is an instruction-based diffusion framework that tackles various image generation and editing tasks, which follows a two-stage training scheme.

C.2 COMPARISON WITH TEXT-DRIVEN IMAGE EDITING METHODS

To compare the performance of our method with text-driven image editing methods, we conduct experiments from two perspectives: original fashion image attribute editing and virtual try-on. On one hand, we directly compare various methods for editing attributes such as *fabric*, *color*, and *sleeve length* in the source image; on the other hand, we evaluate text-driven methods versus our method in the try-on task by providing detailed text prompts for the clothing. Therefore, we choose three state-of-the-art text-driven image editing methods, i.e., LEDITS++ Brack et al. (2024), Turbo-Edit Deutch et al. (2024), and T-FIT Huang et al. (2025) as baseline. The experimental results, presented in Fig. 13 and Fig. 12, reveal the following:

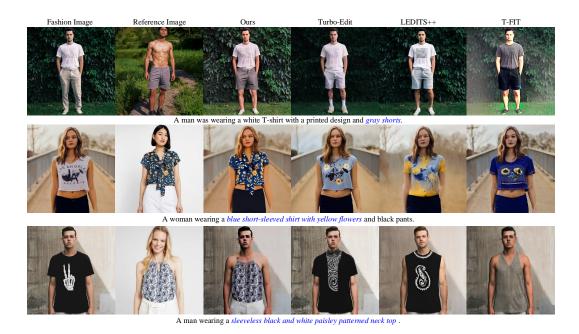


Figure 12: Experimental comparison with a text-driven image editing methods on virtual try-on task. Blue text is used to label edited garment concepts or attributes.

Figure 13: Experimental comparison with text-driven image editing methods on the original fashion image editing task. Blue text is used to label edited garment concepts or attributes; red boxes are used to highlight significant differences in the edited image.

(i) In the virtual try-on task, even when detailed text descriptions are provided, text-driven methods fail to fully reproduce the try-on effect, primarily because text alone is insufficient to capture the intricate details of clothing (see Fig. 14). Conversely, our method achieves promising results in virtual try-on while keeping unrelated regions unaffected.

(ii) In the original fashion image attribute editing task, text-driven image editing methods often induce unintended changes to unrelated regions. For example, as shown in the first row of Fig. 13, LEDITS++ Brack et al. (2024) alters the shoulder details of a skirt and severely disrupts the background, while Turbo-Edit Deutch et al. (2024) erroneously modifies the skirt's style—likely due to dataset biases—and may even change the subject's identity. Although T-FIT Huang et al. (2025) achieves competitive results in clothing attribute editing, it still struggles to preserve the background and often unintentionally alters non-target regions when editing a specific clothing attribute. For example, as shown in the Fig. 13, when editing the skirt fabric to denim, the material of the hat is incorrectly changed. In contrast, our method preserves both background and identity while achieving superior visual quality, demonstrating more precise and fine-grained editing of fashion attributes.

(iii) Table 3 presents the quantitative performance of our method compared to text-driven methods on the fashion image editing task. As shown, our method achieves the best results in both CLIP-I and CLIP-T. This indicates that the edited images produced by our method not only align well with the given text prompts but also preserve irrelevant regions of the image, ensuring more faithful editing.

Overall, our method outperforms existing text-driven methods in both virtual try-on and original image fashion attribute editing.

C.3 COMPARISON WITH VIRTUAL TRY-ON METHODS

We also compare our proposed method with state-of-the-art virtual try-on methods, including VITON-HD Choi et al. (2021), DCI-VTON Gou & Sun (2023), and Stable VITON Kim et al. (2024). As shown in Table 3, our method demonstrates competitive performance on the virtual try-on task.

Table 3: Performance comparison with the image editing & try-on methods

Category

Methods CLIP-I CLIP-T CLI

Category	Methods	CLIP-I ↑	CLIP-T↑
	Turbo-edit (SIGGRAPH Asia 2024)	0.9101	0.1547
	UltraEdit (NeurIPS 2024)	0.9056	0.1651
Fashion Image Editing	LEDITS++ (CVPR 2024)	0.9160	0.1367
	G & R (ECCV 2024)	0.9116	0.1529
	T-FIT (CVPR 2025)	0.8878	0.2118
	StableVITON (CVPR2024)	0.8362	0.1329
Virtual Try-on	DCI-VTON (ACM MM 2023)	0.7520	0.1344
	VITON-HD (CVPR 2021)	0.7402	0.1226
	Our (Only edit)	0.9561	0.1558
Both	Our (try-on & edit)	0.9386	0.1656

D SENSITIVITY ANALYSIS

To evaluate the sensitivity of our model to key weight parameters, we conduct experiments to examine the impact of the degradation weight α and the concept intensity modulation weight γ on the editing results.

Fig. 14 displays the outputs under different degradation weight α . When α is low, the edited images tend to blend features from the reference image—for instance, causing the subject's body to appear bulkier and their position to shift. As α increases, the generated images progressively preserve more information from the original fashion image and are less influenced by the reference image. Notably, when α is set to 1, the image achieves the optimal performance, retaining irrelevant attributes while effectively implementing virtual try-on.

The effects of varying the concept intensity modulation weights γ on image attribute modifications are also illustrated in Fig. 14. As γ increases, the intensity of the edited attribute changes gradually. For example, given the text prompt "a <man >with green <sleeveless top >", the garment's color

Figure 14: Experimental results under varying degradation weight α and concept intensity modulation weight γ settings. Row 1 shows the editing outcomes using the text prompt 'a <man > with <sleeveless top >' under different degradation weights. Row 2 presents the editing outcomes using the text prompt 'a <man > with green <sleeveless top >' under different concept intensity modulation weights.

shifts through progressively stronger shades of green, thereby offering enhanced controllability for fashion image editing.

E QUANTITATIVE RESULTS OF THE ABLATION STUDIES

We present quantitative results (of Fig. 5) in the Table 4, confirming the positive contribution of each component. Note that, when the CAEDIM module is ablated from our method, the model struggles to produce significant structural modifications (e.g., adjusting *sleeve length*), resulting in edited images that remain highly similar to the originals. Consequently, although the model achieves strong performance on LPIPS, PSNR, and CLIP-I, it fails to effectively follow text instructions for structural editing, leading to inferior CLIP-T scores. This highlights the critical role of the CAEDIM module in fashion image editing, as it enables flexible and accurate semantic-guided attribute manipulation.

Table 4: The quantitative evaluation of the ablation study

Model	LPIPS ↓	PSNR ↑	CLIP-T↑	CLIP-I ↑
w/o CAEDIM	0.2560	0.2339	0.1137	0.9770
w/o $\mathcal{L}_{masked_diff}$	0.4042	0.1277	0.1343	0.9517
w/o IDM	0.4669	0.0825	0.1447	0.9554
Our (Fig. 5, row 1)	0.3525	0.1806	0.1369	0.9593
Our (Fig. 5, row 2)	0.3281	0.1889	0.1481	0.9554

F RELATED WORK

Text-driven Fashion Image Editing. Text-driven fashion image editing has made significant progress in recent years, enabling the precise editing of fashion images based on a given textual description. These methods have evolved from GAN-based methods Zhu et al. (2017); Jiang et al. (2022); Pernuš et al. (2025) to diffusion models Baldrati et al. (2023; 2024); Wang & Ye (2024); Anonymous (2024). TexFit Wang & Ye (2024) localizes editing regions using only text, while DPDEdit Anonymous (2024) enhances precision by integrating Grounded-SAM Ren et al. (2024) and leveraging multimodal inputs. However, even with the aid of multimodal information, accurately describing the details of the target garment remains challenging, thereby hindering the achievement of virtual try-on.

Image-based Virtual Try-On. Image-based virtual try-on method aims to generate the target image

sharing the same identity as the input portrait in a fashion image while wearing the specific garment Lin et al. (2023); Zhu et al. (2023); Zeng et al. (2024); Cui et al. (2024). Most methods are trained on paired datasets, like VITONHD Choi et al. (2021) and DressCode Morelli et al. (2022), which can achieve high-quality results on in-domain images. However, they struggle with generalizing to out-of-domain data and cannot be trained when paired data is unavailable. Moreover, these methods often rely on a well-designed fashion product image. Therefore, several works Xie et al. (2021); Cui et al. (2024) are designed to exchange garments between two street-style images with different portraits, without requiring a product reference image. Despite this progress, these methods are limited to virtual try-on and cannot perform fine-grained attribute editing on the generated images, e.g., altering the color or fabric of the clothing. In our work, the proposed method enables simultaneous fashion image editing and virtual try-on in an end-to-end manner.

Image Personalization. Image personalization aims to identify a personalized concept from user-provided images and guide the generation of new images containing the learned concept Avrahami et al. (2023); Safaee et al. (2024); Zhou et al. (2024). Initial approaches such as textual inversion Gal et al. and DreamBooth Ruiz et al. (2023), addressed this task by either optimizing a text embedding or fine-tuning the entire T2I model. Additionally, the research community has widely adopted low-rank adaptation (LoRA) Hu et al. (2021) for personalization, offering an efficient and lightweight solution. Besides, numerous works Ding et al. (2024); Woo & Kim (2025) have explored tuning-free approaches to personalization. However, these methods often rely on training an encoder with extensive domain-specific image datasets. In contrast, our method can achieve precise fashion image personalization (i.e., editing and virtual try-on) with just a reference image, a source image, and the corresponding target text prompts.

G LIMITATIONS

 Although our method demonstrates robust performance in real-world fashion image editing and supports background modification—a promising feature for enhancing style transfer—it does have certain limitations. Specifically, when processing images with solid backgrounds—especially white—the method encounters challenges, resulting in edited images that tend to exhibit a darker tone, as shown in Fig. 15. This issue represents a significant challenge that requires further investigation. To mitigate this problem, we plan to incorporate perceptual color spaces, like CIELAB, to overcome this limitation.

Figure 15: The limitation of our method.