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ABSTRACT

We propose a framework for evaluating carbon attribution
methods for multi-tenant LLM serving. The framework for-
malizes the problem using three key components: (1) a set
of requests with varying prompt and decode lengths, (2) the
LLM inference runtime including batching algorithms, and
(3) a carbon emission model accounting for both operational
carbon (proportional to power consumption and carbon in-
tensity) and embodied carbon from hardware manufactur-
ing. Using the Shapley value as ground truth for fair attribu-
tion, we demonstrate why simple ‘leave-one-out’ attribution
methods fail to satisfy efficiency properties. The framework
evaluates attribution methods against four criteria: scala-
bility (computational complexity), fairness (minimizing de-
viation from Shapley values), sample efficiency (algorithmic
approximations for complex cases), and incentivization (en-
couraging users to optimize their usage patterns).

1. INTRODUCTION

The exponential growth of Large Language Model (LLM)
applications has created unprecedented computational de-
mands on cloud infrastructure [8, 21]. As these workloads
surge, they increasingly challenge the sustainability commit-
ments made by public cloud providers. While training large
models receives significant attention, the continuous nature
of inference operations represents the dominant long-term
carbon contributor. This reality creates an urgent need
for accurate carbon attribution mechanisms that can pro-
vide visibility into environmental impacts and support var-
ious downstream LLM-empowered applications, such as Al
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agents during inference time [3, 29, 28, 31].
Despite growing recognition of this need, current approaches
to attributing carbon emissions in LLM inference workloads
remain inadequate and often fail to account for the complex,
multi-tenant nature of modern deployment environments. A
naive approach to carbon attribution might allocate emis-
sions proportionally to tokens processed in different phases
(e.g., decode vs. prefill) for requests sharing the same ex-
ecution backend, similar to OpenAl’s pricing model [19].
Another approach is to follow traditional carbon or price
attribution that uses time-based and utilization-based meth-
ods [10, 9, 5]. However, such methods break down in practi-
cal scenarios. As a simple example, decoding time is longer
per scheduling iteration when the context is longer, which
contributes to larger carbon footprint due to more memory
bandwidth overhead for fetching larger KV cache: if we treat
the 1000th token the same as the first few decoding token,
it would lead to users underestimating the carbon impact
of having long generation sequences, especially for complex
reasoning workloads [13]. This means that a token-based
strawman approach would not work well (Section 4.2).

The goal of this paper is to establish a principled frame-
work for carbon accounting in LLM serving systems. We
ask: What properties are essential for effective carbon attri-
bution frameworks in multi-tenant LLM environments? Our
contribution is a systematic approach that evaluates carbon
attribution methods through four critical dimensions: scal-
ability, fairness, sample efficiency, and incentiviza-
tion. Rather than proposing a single attribution solution,
we provide a comprehensive evaluation framework that en-
ables researchers and practitioners to develop carbon ac-
counting methods that balance accuracy, fairness, and prac-
ticality while accounting for the unique challenges of LLM
inference workloads in shared environments.

2. MOTIVATION
2.1 Need for LLM Carbon Attribution
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Multiple recent studies emphasize that inference plays a
significant role in the overall carbon lifecycle of LLMs [?,
15]. Notably, Jegham et al. [12] benchmarked 30 commer-
cial LLMs and found that a single short GPT-40 query
consumes approximately 0.43Wh, whereas more complex
long-prompt models (e.g., 03, DeepSeek-R1) may expend
over 33 Wh—over 70x more energy per request. Joanna
Stern’s field measurements corroborate this variability, re-
porting that GPT-4 text prompts range from roughly 0.17
to 1.7 Wh depending on infrastructure and model size [25].
Taken together, these findings illustrate that per-query en-
ergy usage spans two orders of magnitude—highlighting that
reliable carbon accounting demands granular, workload-level
measurement or more advanced techniques rather than coarse,
uniform estimates.

LLM inference APIs differ widely in their architectural
design. For instance, some APIs (e.g., OpenAl, Anthropic)
operate fully-managed, opaque inference endpoints, while
others like vLLM or Hugging Face Transformers offer more
customizable open-source backends with tunable scheduling
and caching policies. These differences influence hardware
utilization, latency, and energy efficiency per request. More-
over, proprietary APIs may abstract away infrastructure de-
cisions (e.g., GPU model, colocation, power capping), mak-
ing it difficult to assign fine-grained carbon responsibility to
end users or workloads.

The discrepancy between the actual carbon impact of a
workload and its attributed emissions represents a signifi-
cant challenge in cloud carbon accounting. This mismatch
can lead to several issues:

e Inaccurate reporting: Organizations may over- or under-
report their carbon emissions based on flawed attribu-
tion, potentially affecting their compliance with envi-
ronmental goals or regulations.

e Unfair cost distribution: In scenarios where carbon
emissions are tied to TCO (e.g., buying carbon off-
sets), inaccurate attribution could lead to unfair cost
distribution among tenants.

As regulatory pressure for environmental reporting in-
creases, providers need this framework to deliver transpar-
ent, defensible carbon attribution that aligns economic and
sustainability incentives across their customer base.

2.2 Challenges of LLM Carbon Attribution

Our framework primarily serves cloud providers and LLM
API services operating at a massive scale. Consider a provider
handling billions of daily inference requests across thousands
of tenants sharing the same infrastructure. In such environ-
ments, traditional attribution methods fail to capture the
complex dynamics of multi-tenant LLM serving. For in-
stance, when an e-commerce company’s customer service
chatbot (short prompts but high request volume) shares
GPUs with a legal firm’s document analysis service (long
prompts with low request volume), attributing request-level
carbon with low overhead becomes challenging for the fol-
lowing reasons:

No ground truth execution time. In multi-tenant envi-

ronments, resource sharing and system optimizations make
it challenging to determine the true execution time of in-
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dividual tasks, complicating the baseline establishment for
carbon attribution.

Multi-dimensional resources sharing. LLM inference
poses new challenges compared to traditional cloud work-
loads or training workloads. For example, earlier works con-
sider only a single tenant using an LLM backend [7, 23, 26].
In reality, different users’” LLM API calls can be batched
together, complicating the attribution across different user
requests.

Dynamic batching complexity. Continuous batching
techniques, while improving efficiency, complicate attribu-
tion as requests are dynamically grouped and processed to-
gether [30].

Non-linear energy and latency. The non-linear energy
savings from batching challenge conventional attribution meth-
ods that assume additive resource consumption (Figure 1).

Since there are many different ways to design an LLM
inference carbon attribution method, we take a principled
approach by first analyzing the metrics needed to evaluate
those methods.
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Figure 1: Non-linear scaling of energy / time for different
LLM inference operators across various token numbers in a
batch during request serving on Llama-8B model averaged
across 10 runs on A100-SXM4-80G. It is evident that simple
latency-based attribution fails.

3. ATTRIBUTION METRICS

3.1 Evaluating Fairness & Accuracy

The Shapley value as a ground truth for fairness.
Since formulated in 1951 by Lloyd Shapley [24], the Shap-
ley value has been the golden standard for solving fair
attribution problems [18]. The Shapley value is unique in
that it allows an intuitively fair attribution solution, as de-
fined by adherence to the four fairness properties: (1) Null
Player—null requests (i.e. empty requests) are attributed
no carbon, (2) Symmetry—the same requests that are
served at the same time are attributed the same amount
of carbon, (3) Efficiency—the entire carbon footprint of
the LLM inference system is fully attributed across served
requests, (4) Linearity—attributing carbon separately for
different parts (i.e nodes, node partitions) of the LLM infer-
ence system results in attributions consistent with attribut-
ing across the entire system at once.

The Shapley value has a rich history of being used as a
ground truth for fair attribution across many domains such
as environmental economics [20, 4], public infrastructure [16,
14, 27], networking and telecommunications [2], explainable
machine learning [17, 22], and energy attribution for com-
puter systems [6, 11].

The Shapley distance as a measure of fairness. With
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the Shapley value as the ground truth for fair attribution,
the Shapley distance, as defined by the deviation between
attribution and the Shapley value solution, can be used as
a quantitative measure of fairness [1]. In the case of carbon
attribution, the Shapley distance has units of COxze.

Fairness: We use Shapley value as the ground truth fair
carbon attribution. The relative Shapley distance (i.e. per-
centage deviation for the Shapley) will be used as a measure
of fairness to evaluate carbon attribution methods.

3.2 Evaluating Practicality
In addition to Shapley-based fairness, we propose the fol-
lowing quantifiable properties for practical evaluation:

1. Scalability: We define computational scalability through
Algorithmic complexity: The time complexity with re-
spect to the numbers of clients (C), scheduling iterations
(I), total tokens (t), and number of requests (R) should
be under POLY(C, I,t, R).

2. Sample efficiency: We evaluate algorithmic efficiency
using sample efficiency—the number of samples N, re-
quired to achieve an error bound ¢ when approximating
Shapley values: Ne = min{N : P(|¢ — ¢s| <€) > 1—a}
where rf)z is the approximated Shapley value, ¢; is the
true Shapley value, and « is the confidence level.

3. Incentivization: We quantify incentivization through a
practical, directly measurable metric: reduction reward.
For example, when the prompt length is reduced by 50%,
we can quantify prompt length reduction reward as the
percentage reduction of the attributed carbon:

_Cl-C®/2)
Rprompt = C'(p) X 100% (1)

where C(p) is the carbon attributed with prompt length
p. Higher values indicate stronger incentives to optimize
prompts. The larger the reward, the more incentivization
it provides for the users of the APIs. In a reasoning
model like DeepSeek-R1, a more carbon-conscious user
may preempt the running chain of thought during the
decoding phase, and it will have a similar formulation.

4. CASE STUDIES

4.1 Problem Formulation

A natural formulation of the problem is to consider the
carbon attribution of requests being served in the same LLM
backend from different users/applications. There are three
ingredients to the problem.

First, the Let R = {(pi,d:)}T, where p;,d; denotes the
prompt length and decode length of request ¢ (R;).

The second component is the LLM inference runtime, in-
cluding the batching or scheduling algorithm together with
the model itself, which we denote as system function S. This
is a latent variable internal to the LLM serving framework.
Any improvement on S will potentially change the carbon
attribution for a fixed request or request group.

The third component is the overall carbon emission model
C = C°" 4 C°P, where the operational carbon C°P? =
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f:ol P(t)CI(t)dt is proportional to the power and energy
supply carbon intensity (CI), and C°™* = ;01 eci(t) dt is
proportional to the embodied carbon intensity (eci) which

is a factor of hardware manufacturing carbon and the life-
time of the hardware.

4.2 Why Simple Attribution Fails

We present two case studies where simple carbon attribu-
tion methods can fail, particularly under fairness criteria.

Strawman’s approach 1 (LOO) A straightforward
approach to quantify each request i’s carbon impact is
to assess its marginal contribution to the total emis-
sions: ¢; = C(R) — C(R — {i}). This formula repre-
sents the difference in carbon emissions when includ-
ing versus excluding R;. Known as the ‘leave-one-out’
(LOO) method, this approach calculates how much
the overall carbon footprint would decrease if a spe-
cific request were omitted.

Consider a GPU batch serving system with two re-
quests coming in at the same time with the same
prompt, and C(#) = 30, C({r:}) = 40,Vi €
{1,2} 5 C({T’l,?"g}) =42.

Here we attribute only the GPU operational carbon with
fixed carbon intensity (CI). However, this attribution tech-
nique falls short of meeting efficiency criteria. Under LOO,
the carbon attributed to either r1 and r2 is 2. However,
30+ 2+ 2 # 42 which violates the Shapley’s efficiency prop-
erty when serving two requests together, being unfair for the
cloud provider. This makes the cloud provider taking more
carbon (42 — 4 = 38) though the runtime system didn’t
change compared with a zero load scenario (30).

Strawman’s approach 2 (TBA) Another way is
to use token based attribution (TBA). To attribute
the carbon in proportion to the request’s weighted
token length ¢; = W (p;,d;)C(R), where W (p;,d;) =
wipi +wadi, 32, W(pi,di)C(R) = C(R).

Consider a GPU batch serving system with two re-
quests 71,72 arriving at the same time with prompts
of the same length, but r2 generates more decoding
tokens. C denotes the carbon for decoding phase. C*
denotes the carbon per unit time for decoding phase
when the two requests are batched together until one
finishes, and C® denotes the carbon per unit time af-
ter either one of the requests finish before the GPU
becomes idle again. Then C = T,C* +TyC?. The idle
carbon per unit time is C(0) = 30, C*({ri,r2}) =
44, C*({r2}) = 40. Assume Ty = 2Ty, d> = 3d:.

We examine if the method satisfies the linearity property
in Sec 3. Assume it satisfies the linearity property. By
definition, it has proportionality to decoding tokens during

the batched phase C, where W = %.
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Using TBA, we can calculate

$1(C) = 1 (TaC* + THC") (Definition of C)
= Tug1(C*) + Topr (C*) (Linearity)
=Ta1(C*)
= (" ({r1,72}) ~ C°(0)) =TT, (Proportionality)

However, if we consider

$1(C) = ﬁ(TaCG + TyC")({r1,m2} — 0)  (Proportionality)
= %(Ta x 44 + 2T, x 40 — 3T, x 30)
= % = 8.5T, (Linearity)

The above contradicts each other; hence, the TBA doesn’t
satisfy linearity. [
Notes on the other criteria:

S.

e Fairness: LOO violates efficiency and fairness by mis-
allocating idle carbon to the provider, whereas TBA
fails linearity and proportional fairness, especially in
varied token-length scenarios.

e Sample Efficiency: Both methods require relatively
few computations, thus are highly efficient in a sample
efficiency perspective.

e Scalability: LOO faces computational overhead as
the number of requests grows (need to run the coun-
terfactual carbon for each request), while TBA scales
better due to straightforward proportional calculations

(O(R)).

e Incentivization: Both methods offer limited incen-
tivization for optimal behavior; they neither strongly
penalize nor reward strategic token usage.

CONCLUSION

We present LLMCarbAccountant, a framework for eval-
uating carbon attribution methods for LLM serving. By
highlighting the limitations of naive heuristics and lever-
aging cooperative game theory, our approach argues for a
more principled, transparent carbon accounting metric de-
sign. We hope this work encourages carbon-aware design to

bec
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ome a first-class concern in future agentic Al systems.
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