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ABSTRACT

We study differentially private continual release of the number of distinct items in
a stream, where items may be both inserted and deleted. In this turnstile setting,
a recent work of Jain, Kalemaj, Raskhodnikova, Sivakumar, and Smith (NeurIPS
’23) showed that for streams of length T , polynomial additive error of Ω(T 1/4)
is necessary, even without any space restrictions. We show that this additive error
lower bound can be circumvented if the algorithm is allowed to output estimates
with multiplicative error. We give an algorithm for the continual release of the
number of distinct elements with polylog(T ) multiplicative and polylog(T ) addi-
tive error. We also show a qualitatively similar phenomenon for estimating the F2

moment of a turnstile stream, where we can obtain 1 + o(1) multiplicative and
polylog(T ) additive error. Both results can be achieved by polylogarithmic space
streaming algorithms where some multiplicative error is necessary even without
privacy. Lastly, we raise questions aimed at better understanding trade-offs be-
tween multiplicative and additive error in private continual estimation problems.

1 INTRODUCTION

Differential privacy (DP) under continual release captures the setting where private data is updated
over time. The data arrives one at a time in a stream, and an algorithm must privately release an un-
derlying statistic of interest as the data changes. The continual release model goes back to the early
days of DP and has been extensively studied for counting the number of events in a binary stream,
also called continual counting (Dwork et al., 2010; Chan et al., 2011; Honaker, 2015; Andersson &
Pagh, 2023; Fichtenberger et al., 2023; Henzinger et al., 2023; Andersson et al., 2024; Henzinger
et al., 2024b; Dvijotham et al., 2024; Henzinger & Upadhyay, 2025), private machine learning ap-
plications (via DP-SGD and DP-FTRL) (Kairouz et al., 2021; Denissov et al., 2022; McMahan &
Thakurta, 2022; Choquette-Choo et al., 2023a;b; 2024) (also see the survey of Pillutla et al. (2025)),
and graph algorithms (Song et al., 2018; Fichtenberger et al., 2021; Jain et al., 2024; Raskhodnikova
& Steiner, 2024). In our setting, the stream is modeled as items from a known universe [n] of T
updates and we consider the turnstile model where items may be both inserted and deleted.

Continual release is algorithmically interesting since it combines challenges of both differential
privacy and streaming algorithms, and there is a recent line of work aiming to nail down the op-
timal privacy-utility trade-offs for continual release of some of the most basic and well-studied
statistics in a stream, including estimating the number of distinct elements and the F2-moment of
the stream (Epasto et al., 2023; Jain et al., 2023b;a; Henzinger et al., 2024a; Cummings et al.,
2025) (Epasto et al., 2023; Jain et al., 2023b;a; Henzinger et al., 2024a; Cummings et al., 2025).
These two problems are the main focus of our paper.

However, there remain substantial gaps in our understanding of these fundamental streaming prob-
lems when privacy is a concern. Even ignoring space considerations, which make the aforemen-
tioned problems trivial in the standard streaming setting without privacy, there exist polynomial
gaps (in the stream length T ) between known upper and lower bounds in turnstile streams. For
example, for estimating the number of distinct elements in the stream,1 the best known algorithms
achieve a Õ(T 1/3) additive error bound (Jain et al., 2023a; Cummings et al., 2025).2 On the flip

1The number of elements with non-zero frequency; see Section 2.1.
2We use Õ(f) to denote O(f · polylog(f)).
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side, it is known that any private algorithm must incur Ω(T 1/4) additive error (Jain et al., 2023a), and
closing this gap is a challenging open problem. Furthermore, just from sensitivity considerations, it
is easy to see that any algorithm for private F2 estimation must incur Ω(T ) additive error.

We are motivated by the fact that (low-space) streaming algorithms for both distinct elements and
F2 estimation3 must incur multiplicative error (Jayram & Woodruff, 2013), and thus it is natural to
ask if one can go beyond the existing additive error lower bounds for continual release in turnstile
streams if the algorithm is allowed to output estimates with both multiplicative and additive error.
Indeed, some evidence of why this is possible is already present in the prior work of Epasto et al.
(2023) which obtains polylogarithmic additive error along with small multiplicative error for Fp

moment estimation, including distinct elements, albeit in the significantly easier setting of insertion-
only streams where items are never deleted. Furthermore, it can be checked that the lower bound
instances for Ω(T 1/4) additive error for distinct elements (Jain et al., 2023a) and Ω(T ) additive error
for F2 estimation both occur when the true underlying value is itself much larger than the additive
error, meaning they do not imply any hardness for obtaining constant multiplicative error.

Thus, the main conceptual message of our paper is that polynomial additive errors for fundamental
streaming problems can be replaced with polylogarithmic additive errors, at the cost of some multi-
plicative error. Furthermore this can often be achieved while simultaneously using small space.

1.1 OUR RESULTS

We are focused on computation over data streams of length T from a universe of size n. We use
(a1, s1), . . . , (aT , sT ) to denote a general turnstile data stream where ai ∈ [n] is an element iden-
tifier and si ∈ {−1, 0, 1} is the increment amount. We call an update an insertion if si = 1 and a
deletion if si = −1. In insertion-only streams, si = 1 and in strict turnstile streams, at any point in
time, the number of deletions to any given element can never exceed the insertions to that element
(the element’s frequency cannot be negative). We are concerned with the following notion of mixed
multiplicative and additive error for continual estimation of stream statistics.

Definition 1.1 (Multiplicative and Additive Error for Continual Estimation). Let Yt ∈ R be a func-
tion of the prefix of a stream (a1, s1), . . . , (at, st). A streaming algorithm for the continual esti-
mation problem outputs an estimate Ŷt after receiving the tth stream update for all t ∈ [T ]. For
parameters α ≥ 1, β ≥ 0, we say the algorithm solves the problem with (α, β) error if there exist
parameters p, q ≥ 1 with pq = α and r, s ≥ 0 with r + s = β such that, for all t ∈ [T ],

Yt/p− r ≤ Ŷt ≤ qYt + s.

For a randomized algorithm, we say the algorithm has error (α, β) with probability 1 − γ if the
error bounds hold across all timesteps with probability at least 1 − γ over the randomness of the
algorithm.

If an algorithm satisfies (1, β) error, we say it has purely additive error. If an algorithm satisfies
(α, 0) error, we say it has purely multiplicative error.

Remark 1.1 (Interpretation of (α, β) error). One interpretation of (α, β) error is that we get an α
multiplicative approximation to the statistic Yt as long as Yt ≫ β. Below this noise floor, we are
guaranteed that Ŷt ≤ αYt + β.

Distinct Elements When the statistic of interest is the number of distinct (non-zero frequency)
elements, we show that we can skirt the lower bound of Ω(T 1/4) from Jain et al. (2023a) if we also
allow multiplicative error in our estimates. Our main result is an algorithm that solves the distinct
elements problem with only polylogarithmic additive and multiplicative error.

Theorem 1.1 (Informal version of Theorem 3.1). Let ε, δ < 1. There exists an (ε, δ)-DP algorithm
for the continual distinct elements problem that with probability 1− 1/polylog(T ), for all points in
time t ∈ [T ] outputs an estimate D̃t of the number of distinct elements Dt with error (α, β) where
α, β = O( polylog(T,1/δ)

ε ). The space usage of the algorithm is polylog(n, T ).

3The F2 value of a stream is defined as the sum of squares of frequencies of items in the stream; see
Section 1.1.
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Source Error Space Privacy Notes

Jain et al. (2023b) (1, Õ(T 1/3)) poly(T ) Item-level Recomputation

Jain et al. (2023b) (1 + η, Õ(T 1/3)) Oη(log log T ) Item-level Via Kane et al. (2010)

Jain et al. (2023a) (1, Ω̃(T 1/4)) —– Event-level Lower bound

Epasto et al. (2023) (1 + η,Oη(log
2(T ))) polylog(T ) Event-level Insertion-only

Theorem 3.1 (O(log2(T )), O(log2(T ))) O(log3(T )) Event-level Strict turnstile

Theorem 4.1 (O(log10(T )), O(log10(T ))) poly(T ) Event-level —–

Table 1: Multiplicative and additive error bounds for (ε, δ)-DP algorithms for the Continual Distinct
Elements Problem. We ignore dependencies on the privacy parameters. Unless otherwise stated,
upper bounds hold for general turnstile streams and lower bounds hold for strict turnstile streams.
We present results which hold for worst-case streams of length T . See Appendix A for numerous
prior works which give instance-specific bounds depending on stream statistics.

We present two different approaches to continual distinct elements estimation via two different al-
gorithms that both rely on differentially private continual counting. The first algorithm (which leads
to the above theorem) is inspired by the classic idea of using the minimum hash value of keys in
a set A to estimate the size of A and appears in Section 3. Under privacy constraints, we cannot
compute the minimum hash value exactly. Instead, we create buckets based on the least significant
non-zero bit of hashes of keys such that the expected number of keys hashing to the buckets increase
geometrically. We can then use private continual counting in each bucket to approximately deter-
mine the min hash. The second algorithm is based on performing a domain reduction (also via a
hash function) to a domain sufficiently small, that sufficiently many elements collide that this can be
detected by a private continual counting algorithm. We can then use the size of the reduced domain
as an estimate for the number of distinct elements. This algorithm is presented in Section 4.

The minimum hash algorithm is limited to strict turnstile streams but achieves better error and less
space usage than the domain reduction algorithm which applies to general turnstile streams. In
Section 4, we also show a path towards achieving arbitrarily good multiplicative error. Using the
same tools as the domain reduction algorithm, we show a reduction using a (hypothetical) algorithm
achieving purely additive error sublinear in the domain size n to design an algorithm achieving
(1 + η, polylog(T )) error.

Frequency Moments In addition to the distinct elements problem, we also consider the F2 esti-
mation problem, where we are interested in approximating the second moment of the frequencies
of elements in the stream at any point of time. Specifically, if each update (at, st) satisfies at ∈ [n]
and st ∈ {−1, 0, 1}, we may define xt[j] =

∑
i≤t:ai=j sj , and we are interested in approximating

F2 =
∑

j∈[n] xt[j]
2 for any t. It is easy to see that any algorithm with only purely additive error

(α, β) = (1, β), must have β = Ω(T ), simply because the sensitivity of the second moment is
Ω(T ). Surprisingly, we show that allowing a small constant multiplicative error, the additive error
can be made to polylogarithmic. Furthermore, our algorithm quantitatively improves upon the prior
work of Epasto et al. (2023) which only applies in the insertion-only model.

Theorem 1.2 (Informal version of Theorem 5.1). Let ε, δ, η < 1. There exists an (ε, δ)-DP algo-
rithm for the F2 estimation problem that with probability 1 − 1/polylog(T ), for all points in time
t ∈ [T ] outputs an estimate of F̃2 of F2 with error (1 + η, β) where β = polylog(T, η, δ)/(ε2η3).
The space usage of the algorithm is polylog(T )/η2.

Again, this result relies on continual counting. We use the Johnson-Lindenstrauss reduction to map
the n-dimensional frequency vector to a small domain, and use continual counting to estimate the
coordinates in the reduced domain.

See Appendix A for a detailed discussion of prior works on these problems.
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Source Error Space Privacy Notes

Epasto et al. (2023) (1 + η, Õη(log
7(T ))) Oη(log

2(T )) Event-level Insertion-only

Lemma 5.1 (1,Ω(T )) —– Event-level Lower bound

Theorem 5.1 (1 + η, Õη(log
4(T ))) Oη(log

2(T )) Event-level —–

Table 2: Multiplicative and additive error bounds for (ε, δ)-DP algorithms for the Continual F2

Problem. We ignore dependencies on the privacy parameters. Unless otherwise stated, upper bounds
hold for general turnstile streams and lower bounds hold for strict turnstile streams.

1.2 OPEN PROBLEMS

We discuss several open problems exploring the trade-offs between multiplicative and additive errors
in private continual estimation settings.

Better dependence on n and T for counting distinct elements. Perhaps the main open question
of our paper is whether one can obtain better bounds for counting distinct elements under differ-
ential privacy with purely additive error. Without any assumptions on the input stream, there is a
polynomial gap between the upper bound of Õ(T 1/3) and the lower bound of Ω(T 1/4). Moreover,
the lower bound holds only with some restrictions on the values of n and T , namely under the as-
sumption that T ≤ n2. For general values of n and T , the lower bound is min(T 1/4, n1/2) which
is always at most n1/2. Note that when counting distinct elements over a domain of size n, it is
trivial to obtain error n. An interesting question towards resolving the optimal dependence on the
parameters in the additive error is whether there exists an algorithm with error o(n) when T is a
large polynomial in n. This is especially interesting in light of our following result.

Theorem 1.3 (Informal version of Theorem 4.2). Any (ε, δ)-DP algorithm for the number of
distinct elements in the continual release setting with additive error n0.99 in the domain size
n can be converted to another differentially private algorithm with (1 + η)-multiplicative and
polylog(T, 1/η, ε, δ) additive error for any constant η > 0.

Constant multiplicative approximation to distinct elements with small additive error. Our
results show that we can avoid the large additive error of the lower bounds, if we allow for a multi-
plicative error of polylog(T ) for counting distinct. It is an interesting question whether there exists
an algorithm with constant multiplicative error and small polylogarithmic additive error. Our tech-
niques based on continual counting seems to reach a natural barrier here, which arises from the fact
that the counters cannot distinguish between whether the count of a bucket comes from a single
highly frequent element, or from many infrequent elements, each having frequency 1, say.

Tradeoff between multiplicative and additive error. Taking a step further, what is the correct
tradeoff between multiplicative and additive error for counting distinct elements? While we don’t
know of an algorithm with (1 + η) multiplicative approximation and small additive error for count-
ing distinct elements, it seems likely that such an algorithm should exist. If it exists, what is the
dependence on η in the additive error? A similar question can be asked for F2 estimation, where
our current algorithm has (1 + η) multiplicative approximation and Õ(1/η3) additive error. More
broadly, it is interesting to explore tradeoffs between multiplicative and additive error in other set-
tings for private continual estimation.

Triangle Counting. Recently, Raskhodnikova & Steiner (2024) considered differentially private
triangle counting in dynamic graphs. Their paper contains several results, but most relevant to our
setting is an algorithm for counting triangles in a graph with bounded additive error depending on T
and the number of vertices of the graph. The algorithm and analysis of this problem mirror continual
distinct elements estimation, and it is interesting to see whether we can obtain better additive error
guarantees if we are allowed a small multiplicative error.
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2 PRELIMINARIES AND NOTATION

Throughout the paper, poly(T ) refers to a polynomial of arbitrarily large constant degree. We con-
sider the base 2 logarithm by default: log(·) = log2(·).

2.1 DATA STREAMS

Let (a1, s1), . . . , (aT , sT ) denote the data stream where ai ∈ [n] is an element identifier and si ∈
{−1, 0, 1} is the increment amount. Let xt ∈ Rn denote the frequency vector at time step t. For
i ∈ [n], xt[i] is the sum of increments to item i across all timesteps up to t. In the strict turnstile
model, we have xt[i] ≥ 0 for all i ∈ [n], t ∈ [T ], and the number of distinct elements at time t
is defined as Dt = |i ∈ [n] : xt[i] > 0|. In the general turnstile model, the true frequency vector
xt is allowed to have negative entries and the number of distinct elements is simply the number of
non-zero coordinates. We interchangeably denote the number of distinct elements as ∥xt∥0.

In this work, we assume that the universe size n and stream length T are known up to constant
factors to the streaming algorithm a priori for simplicity. Without loss of generality, we will consider
n = O(poly(T )) by standard hashing tricks.

A streaming algorithm processes each update one at a time while maintaining only a bounded mem-
ory. In this work, we measure space in terms of words of size at least Ω(log T ) bits. This is a
standard measurement, assuming that the length of the stream and the universe size can be stored
in a constant number of words. We also assume access to an oracle which can produce a sample
of one-dimensional Gaussian noise N (0, σ2) which can be stored in constant words. See Canonne
et al. (2022) for background on sampling Gaussian noise for differential privacy.

We consider randomized streaming algorithms with non-adaptive adversaries. The stream is chosen
independent of the randomness of the algorithm. While some private algorithms can succeed against
adaptive adversaries Jain et al. (2023b), the best (even non-private) streaming algorithms for many
fundamental problems including distinct elements require space polynomial in the stream length
(Attias et al., 2024).

2.2 DIFFERENTIAL PRIVACY

Definition 2.1 (Event-Level Neighboring Datasets). Let X = (a1, s1), . . . , (aT , sT ) and X ′ =
(a′1, s

′
1), . . . (a

′
T , s

′
T ) be two strict turnstile data streams. These streams are neighboring if there

exists an index i ∈ [T ] such that (ai, si) ̸= (a′i, s
′
i), and for all j ̸= i, (aj , sj) = (a′j , s

′
j).

A different notion of item-level privacy is also studied where all updates which touch a given ele-
ment a ∈ [n] may change between neighboring dataset. In this work, we focus on the event-level
definition.
Definition 2.2 (Differential Privacy (Dwork et al., 2006)). Let A : X → Y be a randomized
algorithm. For parameters ε, δ ≥ 0, A satisfies (ε, δ)-DP if, for any two neighboring datasets
X,X ′ ∈ X and measurable subset of outputs O ⊆ Y ,

Pr[A(X) ∈ O] ≤ eεPr[A(X ′) ∈ O] + δ.

We will also make use of a similar form of differential privacy called zero-concentrated differential
privacy, ρ-zCDP, introduced by Bun & Steinke (2016). ρ-zCDP implies (ε, δ)-DP and benefits from
tighter and simpler composition of multiple private mechanisms.
Definition 2.3 (Rényi Divergence (Rényi, 1961)). Given two distributions P,Q over Y and a pa-
rameter ζ ∈ (1,∞), we define the Rényi Divergence as

Dζ(P∥Q) =
1

ζ − 1
log

(
Ez∼P

[(
P (z)

Q(z)

)ζ−1
])

.

Definition 2.4 (Zero-Concentrated Differential Privacy (zCDP) (Bun & Steinke, 2016)). Let A :
X → Y be a randomized algorithm. For parameter ρ ≥ 0, A satisfies ρ-zCDP if, for any two
neighboring datasets X,X ′ ∈ X and ζ ∈ (1,∞),

Dζ(A(X)∥A(X ′)) ≤ ρζ.
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Lemma 2.1 (zCDP Composition (Bun & Steinke, 2016)). Let A : X → Y and B : X × Y → Z
be algorithms satisfying ρ1-zCDP and ρ2-zCDP, respectively. Then, the algorithm which, given an
input X ∈ X , outputs (A(X),B(X,A(X))) satisfies (ρ1 + ρ2)-zCDP.

Lemma 2.2 (zCDP Translation (Bun & Steinke, 2016)). Any algorithm satisfying ρ-zCDP also
satisfies (ρ+ 2

√
ρ log(1/δ), δ)-DP for any δ > 0.

Therefore, an algorithm satisfying ρ-zCDP also satisfies (ε, δ)-DP if ρ = O(ε2/ log(1/δ)).

The simpler problem of DP Continual Counting was introduced in Dwork et al. (2010); Chan et al.
(2011). In this setting, the stream is comprised of a sequence of updates in {−1, 0, 1} to an un-
derlying count and the goal is to maintain a running approximation to the prefix sum of updates at
every timestep with small additive error. The problem is normally defined over a stream of bits with
bi ∈ {0, 1}. Allowing decrements as well can be achieved with the same asymptotic additive error
by using two counters to separately count increments and decrements. We present the following
result based on Jain et al. (2023b) which uses the binary tree mechanism of Dwork et al. (2010);
Chan et al. (2011) while leveraging Gaussian noise and zCDP. The result presented here is a special
case of Theorem 5.4 of their work with d = 1.

Theorem 2.1 (Gaussian Binary Tree Mechanism). Let ρ > 0 be the privacy parameter. Con-
sider a stream of updates b1, . . . , bT where bi ∈ {−1, 0, 1}. There exists a randomized algorithm
A(b1, . . . , bT ) which outputs estimates ŷi1, . . . , ŷ

i
T with the following guarantees:

• Let two inputs b1, . . . , bT and b′1, . . . , b
′
T be neighboring if and only if there exists a j ∈ [T ] such

that bj ̸= b′j and bt = b′t for all t ̸= j. Under this neighboring definition, A preserves ρ-zCDP.

• For t ∈ [T ], let yt =
∑t

i=1 bt. Then, with probability 1− 1/poly(T ),

max
t∈[T ]
|yt − ŷt| ≤ O

(
log1.5(T )/

√
ρ
)
.

• A can be implemented as a streaming algorithm using O(log(T )) words of space.

2.3 OTHER PRELIMINARIES

Given an integer a ∈ [n], lsb(a) ∈ {0, . . . , ⌊log n⌋} is the (zero-indexed) index of the least signif-
icant non-zero bit of a in its standard binary representation. For example, lsb(4) = 2.

We use the Johnson-Lindenstrauss lemma with Rademacher random variables.

Lemma 2.3 (Johnson-Lindenstrauss, (Achlioptas, 2003)). Let x ∈ Rn and let A be an m ×
n matrix with i.i.d. random entries ai,j with Pr[ai,j = −1/

√
m] = Pr[ai,j = 1/

√
m] =

1/2. Assume that m ≥ C log(1/δ)/α2 for a sufficiently large constant C. Then
Pr
[
(1− α)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + α)∥x∥22

]
≥ 1− δ.

3 CONTINUAL DISTINCT ELEMENTS VIA MINHASH

Without loss of generality, assume that n is a power of two with n = 2K for K ∈ N (we can always
artificially increase the universe size to achieve this). Consider a hash function h : [n] → [n].
Consider the (K + 1)-dimensional, 0-indexed vector ft where, for any k ∈ {0, . . . ,K},

ft[k] =

t∑
i=1

1[lsb(h(ai)) = k] · si.

This quantity ft[k] is the number of distinct elements at time t in the stream whose hash value lies
in [2k, 2k+1). For each k, we will maintain an estimate f̂t[k] over all times t ∈ [T ] via (K + 1) DP
Continual Counters C[0], . . . C[K] (Theorem 2.1).

A classic estimator for distinct elements is to consider the index of the largest non-zero bit. The
non-private template is to identify the largest ℓ ∈ {0, ...,K} such that ft[ℓ] > 0 and report D̂ = 2ℓ.
The probability that a given element a has lsb(a) = k is equal to 2−k+1, so among D elements,

6
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we roughly expect to see at least one element with lsb ≈ log(D) and no elements with lsb >>
log(D).

The challenge with implementing this estimator with differential privacy is that a single change to the
stream can possibly change the identity of the largest non-empty entry in ft for many timesteps t. By
using continual counters, we can only guarantee that f̂t[k] is approximated up to τ = polylog(T )
additive error. So, instead of identifying the largest non-empty entry of ft, we try to identify the
largest entry of ft which exceeds this noise threshold τ . If stream elements were bounded to have at
most constant frequency, this would immediately yield an algorithm with error (O(1), τ).4 However,
stream elements could have frequencies larger than τ . Therefore, we do not know if the bucket we
find has count ft[ℓ] > τ because (a) ℓ ≈ log(Dt/τ) and approximately τ elements of constant
frequency have lsb = ℓ or (b) ℓ ≈ log(D) and a single element of frequency more than τ has
lsb = ℓ. This is the source of the O(τ) multiplicative error.

Algorithm 1: MinHash Subroutine

Input: Privacy parameter ρ, stream length T , domain size n = 2K < poly(T ).
1. Initialize ρ′′ = ρ/2.
2. Initialize a random hash function h : [n]→ [n].
3. For k ∈ {0, . . . ,K}, initialize a DP Continual Counter (Theorem 2.1) C[k] with

privacy parameter ρ′′. Let τ = Θ(log1.5(T )/
√
ρ) be an upper bound on the (1 −

1/poly(T )) quantile of the maximum additive error of a counter over all timesteps
t ∈ [T ].

4. When a stream update (at, st) arrives,
(a) k ← lsb(h(at)).
(b) Update C[k] with update st. Update all other counters C[k′] for k′ ̸= k with

update 0.
(c) Let f̂t[k′] be the current estimate of C[k′] for all k′ ∈ {0, . . . ,K}. Let ℓ be

the largest index such that f̂t[ℓ] > τ . If no such index exists, let ℓ← 0.
(d) Output: D̂t ← 2ℓ.

Algorithm 2: MinHash Estimator

Input: Privacy parameter ρ, stream length T , domain size n = 2K < poly(T ).
1. Let m = Θ(log T )

2. Initialize ρ′ = ρ/m.
3. Run m copies of Algorithm 1 in parallel with privacy parameter ρ′.
4. For each timestep t ∈ [T ],

(a) For j ∈ [m], let D̂j
t be the estimate of the jth subroutine at time t.

(b) Report estimate median
(
D̂1

t , . . . , D̂
m
t

)
.

Theorem 3.1. Algorithm 2 is ρ-zCDP and uses space O(log n · log2(T )). On strict turn-
stile streams, if ρ < O(log4 T ), Algorithm 2 solves continual distinct elements estimation with
(O
(
log2(T )/

√
ρ
)
, O
(
log2(T )/

√
ρ
)
) error with probability 1− 1/poly(T ).

Note that the condition on ρ not being too large relative to T is mild as the privacy parameter is often
chosen to be a small constant. The proof of this theorem is given in Appendix B.

4Under this promise, the algorithm would also succeed with high probability via a Chernoff bound without
the need for independent repetitions.
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4 CONTINUAL DISTINCT ELEMENTS VIA DOMAIN REDUCTION

We now present another algorithmic technique which guarantees a polylog(T ) multiplicative ap-
proximation to the number of distinct elements in a private turnstile stream (see Section 2). The
main theorem of this section is Theorem 4.1. While the bounds of Theorem 4.1 are quantitatively
worse than of our main theorem, Theorem 3.1, this section serves to demonstrate new ideas for the
private continual estimation setting, which may be of independent interest. Additionally, they apply
to the general turnstile model.

Algorithm 3: Domain Reduction Estimator

Input: Privacy parameter ρ, stream length T

1. Let C,C ′ ≥ 1 be sufficiently large constants.

2. Set ρ′ = ρ/(C log2 T ).
3. 1 ≤ i ≤ log T and 1 ≤ j ≤ C log T , construct independent functions f i

gj ,hj
:

[T ]→ [2i] as in Lemma C.1.
4. For all i, j and all time steps t ∈ [T ], compute a coordinate-wise frequency estimate

f̃ i
gj ,hj

(xt) of f i
gj ,hj

(xt) in the streaming continual release model, each of which

are ρ′-zCDP. ▷ This guarantees ∥f i
gj ,hj

(xt)− f̃ i
gj ,hj

(xt)∥∞ ≤ τ for all i, j, t with
failure probability β where τ = O(log1.5(T )/

√
ρ′) via Theorem 2.1.

5. For all i and all time steps t ∈ [T ], let F̂ i(t) ∈ R2i denote the (coordinate-wise)
median of f̃ i

g1,h1
(xt), . . . , f̃

i
g100 log T ,h100 log T

(xt). ▷ Note i is fixed.

6. For every time step t ∈ [T ], let i∗(t) be the largest value such that all ∥F̂ i∗(t)∥∞ ≥
C ′τ .

7. Return: 2i
∗(t) as an estimate of ∥xt∥0 at time t ∈ [T ].

Theorem 4.1. Algorithm 3 satisfies ρ-zCDP. It solves the continual distinct elements estimation
with

(
O(log10(T )/ρ2), O(log10(T )/ρ2)

)
error with probability 1−1/poly(T ). The algorithm uses

polynomial in T space and works in the general turnstile model.

The same techniques allow us to show a reduction from multiplicative error to additive error (in the
domain size), showing that an existence of an algorithm (for our distinct elements problem) with
sublinear additive error in the domain size implies an algorithm which guarantees multiplicative
approximations arbitrarily close to 1. In the theorem below, recall that n is the size of the universe.
We also restrict polylog(T ) ≥ ρ ≥ 0 in the theorem statement below, since we will use the algorithm
of Theorem 3.1.

Theorem 4.2. Suppose there exists a constant 1 > c1 ≥ 0 such that there is a ρ-zCDP algorithm A
for the continual distinct elements problem which has additive error nc1/poly(ρ) and is correct with
probability 1 − 1/poly(T ) for all time steps. Then for any η ∈ (0, 1), there exists another ρ-zCDP
algorithm A′ (for the continual distinct elements problem) which achieves a multiplicative error
1 + η, additive error poly(log(T ), 1/η, 1/ρ) and is also correct with probability 1− 1/poly(T ).

The proofs for this section can be found in Appendix C.

5 CONTINUAL F2 ESTIMATION

We next consider the problem of F2 estimation. To recap, the stream consists of T stream elements
S = (at, st)t∈[T ] where at ∈ [n] and st ∈ {−1, 0, 1}. For t ∈ [T ] and j ∈ [n], we define
xt[j] =

∑
i≤t:ai=j si. We assume the strict turnstile model where xt[j] ≥ 0 always. Define x(t)

to be the n-dimensional vector (xt[j])j∈[n]. In this section our interest is to estimate the second
moment F (t)(S) =

∑
j∈[n](xt[j])

2 = ∥x(t)∥22 at any point of time t.

8
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We first prove a simple lower bound using standard techniques based on the sensitivity of the second
moment when a single stream element is changed. Note, that the lower bound works even against
non-streaming algorithms that see the entire stream up-front.
Lemma 5.1. Let S be the set of all streams S = (ai, si)i∈[T ]. LetM : S → R be an (ϵ, δ)-DP
protocol. Then there exists some S0 ∈ S such that

Pr
[
|M(S0)− F

(T )
2 (S0)| ≥ T − 1

]
≥ 1− δ

eε + 1
.

Thus, the additive error incurred by any DP F2 estimation algorithm is Ω(T ).

Notice that the lower bound instance used to prove the above lemma has a single element i ∈ [n]
with frequency Ω(T ). However, for such an input S, the value F2(S) is of the order Ω(T 2) which
is much larger than the additive error. Motivated by this observation, we ask if it possible to obtain
better additive error of our estimates if we allow a small multiplicative error of (1 + α). In this
section, we show that for any small constant α, it is possible to obtain additive error polylog(T ).
Note that Epasto et al. (2023) obtain a qualitatively similar bound, but in the restricted setting of
insertion-only streams.

At a high-level, our algorithm is inspired by the classic AMS sketch for F2 estimation in standard
streaming (Alon et al., 1996), and uses the classic Johnson-Lindenstrauss (JL) lemma Lemma 2.3
to reduce the domain size from [n] to polylog(T ). By using a JL construction which utilizes
Rademacher random variables, we are able to approximately (and privately) track the frequencies of
the domain elements after applying the JL lemma via continual counting (see Theorem 2.1). Com-
position (Lemma 2.1) allows us to simultaneously release the frequencies in the reduced domain
with a low-additive error overhead since the size of the domain has reduced significantly. Alto-
gether, we show that the frequencies in the reduced domain can all be simultaneously estimated up
to polylog(T ) additive error, which implies our desired error bound. The 1 + α multiplicative error
is incurred by the JL step itself.

Algorithm 4: F2 Estimator

Input: Privacy parameter ρ, stream length T , domain size n, approximation parameter α >
0.

1. Let α0 = α/5.
2. Let m = C1(log T )/α

2
0 with C1 sufficiently large according to Lemma 2.3.

3. Initialize random m×n matrix A where the Aij are i.i.d with Pr[Aij = 1/
√
m] =

Pr[Aij = −1/
√
m] = 1/2.

4. For i ∈ {1, . . . ,m}, initialize a DP Continual Counter (Theorem 2.1) C[i] with
privacy parameter ρ′ = ρ/m.

5. When a stream element (at, st) arrives,
(a) Let j = at ∈ [n].
(b) For each i ∈ [m], update C[i] with

√
mAijsj ∈ {−1, 0, 1}.

6. For each timestep t ∈ [T ],
(a) Report estimate 1

m

∑m
i=1 C[i]2.

Theorem 5.1. Let 0 < α < 1 and privacy parameter ρ > 0. There exists an ρ-zCDP algorithm
which for all t ∈ [T ] provides an estimate F̂

(t)
2 of ∥x(t)∥22 such that with high probability in T ,

|F̂ (t)
2 − ∥x(t)∥22| ≤ α∥x(t)∥22 +O

(
(log T )4

α3ρ

)
,

Moreover, the algorithm can be implemented in the streaming model where it uses O((log T )2/α2)
words of memory.

Note again that to obtain an algorithm which satisfies (ε, δ)-DP, it suffices to pick ρ =
O(ε2/ log(1/δ)). The algorithm for behind this result is Algorithm 4. The proof for that it sat-
isfies the desired properties can be found in Appendix D.
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A PRIOR WORK

In this section, we describe existing results on (ε, δ)-DP continual distinct elements and F2 esti-
mation. For simplicity, we ignore dependencies on the privacy parameters in the error bounds in
following presentation.

Item-Level Privacy The recomputation technique of Jain et al. (2023b) can be used to get an
algorithm for turnstile streams which achieves error (1, Õ(T 1/3)) by recomputing a private estimate
of the number of distinct elements every T 1/3 timesteps and outputting the most recent estimate at
every t ∈ [T ]. We observe that this algorithm can be implemented in small space at the cost of a
(1+ η) multiplicative factor using a standard streaming algorithm for distinct elements (e.g., the L0

estimation algorithm of Kane et al. (2010)).

Jain et al. (2023a) initiated the specific study of the turnstile continual distinct elements problem.
This and several follow-up works do not generally improve upon T 1/3 additive error but introduce
error bounds parameterized by statistics of the stream instance. Therefore, for certain instances,
these bounds may improve upon the worst-case. This work gives an algorithm achieving additive er-
ror Õ(

√
w) where w is the flippancy of the stream: the maximum number of times any one element

switches between zero frequency and positive frequency. This algorithm requires O(T ) space in
order to estimate the flippancy. The authors show that Ω̃(max

{√
w, T 1/3

}
) purely additive error is

required. Henzinger et al. (2024a) consider a quantity K which is the total flippancy: the total num-
ber of times any element switches between zero and positive frequency. They show that Θ̃(K1/3)
purely additive error is achievable and required.

Event-Level Privacy Event-level privacy is strictly weaker than item-level privacy. Therefore,
algorithms for item-level privacy also apply to event-level privacy, while lower bounds for event-
level privacy imply lower bounds for item-level privacy.

Jain et al. (2023a) show that for event-level privacy, a weaker lower bound Ω̃(max
{√

w, T 1/4
}
)

purely additive error is required. This leaves open an interesting gap between the upper bound
of T 1/3 (which is achievable with item-level privacy) and lower bound of T 1/4. Henzinger et al.
(2024a) show that even for event-level privacy, Θ̃(K1/3) is the best possible dependence on the
total flippancy for purely additive error. Cummings et al. (2025) give an algorithm achieving(
(1 + η, Õη(

√
v)
)

error where v is the occurrency: the maximum number of times an element

is updated in the stream. While v < w, their algorithm has the benefit of using space Oη(T
1/3).

While this work allows for multiplicative error, their goal was simply to achieve the existing bound
of T 1/3 with low space (which necessitates some multiplicative error). In this work, we show that
allowing (more) multiplicative error allows for significantly better additive error.

To our knowledge, there has been no prior work specifically studying continual estimation of other
frequency moments in turnstile streams.

Insertion-Only Streams and the “Likes” Model When deletions are not allowed (or limited),
the problem of continual distinct elements becomes significantly easier.

Epasto et al. (2023) study the problem of continual release of frequency moments (including the
number of distinct elements, which is equivalent to the zeroth frequency moment) in the insertion-
only model where stream updates must be increments with st = 1. They give an (ε, 0)-DP algorithm
achieving

(
(1 + η,Oε,η(log

2(T )))
)

error algorithm using space poly(log T, 1/η, 1/ε). The authors

also study F2 estimation in insertion-only streams. They achieve
(
1 + η, Õη(log

7(T ))
)

error using

space O(log2(T )/η2).

Henzinger et al. (2024a) consider the “likes” model in which elements may only switch from having
frequency zero or one. This is an intermediate model between insertion-only and strict turnstile
streams. In this setting, polylog(T ) additive error is necessary and achievable.
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B PROOFS FOR SECTION 3

We first prove intermediate lemmas about the error and privacy of Algorithm 1.

Lemma B.1. Given privacy parameter ρ as input, Algorithm 1 preserves ρ-zCDP.

Proof. Consider the algorithm A which, at every timestep t, reports the K + 1 dimensional vector
f̂t. Note that Algorithm 1 is simply a post-processing of this hypothetical algorithm. So, it suffices
to consider the privacy of A. Consider two neighboring data streams X = (a1, s1), . . . , (aT , sT )
and X ′ = (a′1, s

′
1), . . . , (a

′
T , s

′
T ) which are the same for all timesteps except for some i ∈ [T ] where

(ai, si) ̸= (a′i, s
′
i).

Note that the randomness of h is independent of the randomness used for privacy of all coun-
ters C[k]. Fix h and let k1 = lsb(h(ai)) and k2 = lsb(h(a′i)). The distribution over
(f̂t[k])t∈[T ],k∈{0,...,K}\{k1,k2} is the same for A run on X and X ′. We will proceed by cases

Consider the case where k1 ̸= k2, and consider the counters C[k1] and C[k2]. The updates are
the same to these counters under X and X ′ at all timesteps other than time i. At time i, under
X , C[k1] receives update si and C[k2] receives update 0 while under X ′, C[k1] receives update
0 and C[k2] receives update s′i. This exactly corresponds to the neighboring datasets relation for
DP Continual Counting in Theorem 2.1. As C[k1] and C[k2] are ρ′′-cZDP with ρ′′ = ρ/2, by
composition (Lemma 2.1), A is ρ-zCDP.

Consider the case where k = k1 = k2. The updates to C[k] are the same for all timesteps except at
the ith timestep where the update is si under X and s′i under X ′. By the privacy of C[k] given in
Theorem 2.1, A satisfies (ρ/2)-zCDP.

Lemma B.2. Consider any fixed timestep t ∈ [T ]. If ρ = O(log3 T ) and the stream is in the strict
turnstile model, then the output of Algorithm 1 satisfies

Dt/6τ ≤ D̂t ≤ 4Dt + 1

with probability 2/3.

Proof. By the definition of τ , with probability 1/poly(T ),

τ ≥ max
t∈[T ],k∈{0,...,K}

∣∣∣ft[k]− f̂t[k]
∣∣∣.

For the rest of the analysis, assume that this upper bound holds.

Consider any i ∈ {0, . . . ,K}. For a given element a ∈ [n], Prh[lsb(a) = i] = 2−(i+1) and
Prh[lsb(a) ≥ i] = 2−i.

We will first show that the estimate D̂t cannot be too small. It is always the case that ℓ ≥ 0, so
D̂t ≥ 1. Note that if Dt ≤ 6τ , then D̂t ≥ Dt/6τ by default.

Consider the case that Dt > 6τ , and let i = ⌊log(Dt/6τ)⌋. Let Zi be a random variable for the
number of elements in St with least significant bits at least i. Zi is distributed as Bin(Dt, 2

−i).
Then, µ = E[Zi] ∈ [3τ, 6τ ] and Var[Zi] ≤ µ. By Chebyshev’s inequality,

Prh[Zi ≤ 2τ ] ≤ Pr[|Zi − µ| ≤ µ− 2τ ] ≤ Var[Zi]

(µ− 2τ)2
≤ 6

τ
.

This quantity is upper bounded by 1/100 as long as τ = Ω(1) which is implied by ρ = O(log3(T )).

With probability at least 99/100, there exists an index i ≥
⌊
log
(
Dt

6τ

)⌋
such that Zi > 2τ . As all

elements in St have frequency at least 1 (this is where we use the strict turnstile model) and by the
additive error given by Theorem 2.1, f̂t[i] > τ . As this is a valid choice for ℓ, ℓ ≥

⌊
log
(
Dt

6τ

)⌋
, so

D̂t = 2ℓ ≥ Dt

6τ .
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Next we will show that ℓ cannot be too large. Any empty bucket with Zi = 0 will have f̂t[i] ≤ τ .
Consider the case where Dt > 0 and let j = ⌈log(4Dt)⌉. Then,

Prh

 K∑
i=j

Zi = 0

 =
(
1− 2−j

)Dt ≥ 1− 2−jDt ≥ 3/4.

Under this event, ℓ < j, so D̂t ≤ 4Dt. Note that if Dt = 0, then
∑K

j=0 Zi = 0 and D̂t = 1.

Union bounding over all events, with probability 1− 1/poly(T )− 1/100− 1/100− 1/4 ≥ 2/3, the
following holds:

Dt/6τ ≤ D̂t ≤ 4Dt + 1.

Proof of Theorem 3.1. We will separately prove that the subroutine is private, accurate, and has
bounded space.

Privacy Algorithm 2 is a post-processing of the m copies of the subroutine Algorithm 1. By
the privacy of the subroutine (Lemma B.1) and composition (Lemma 2.1), Algorithm 2 satisfies
mρ′ = ρ-zCDP.

Error Lemma B.2 bounds the error, for each timestep t, of each estimator D̂j
t by

Dt/6τ ≤ D̂t ≤ 4Dt + 1

where τ = Θ
(
log1.5(T )/

√
ρ′
)
= Θ

(
log2(T )/

√
ρ
)
. This error bound holds with probability 2/3

under the condition that ρ′ = O(log3(T )) which is equivalent to ρ = O(log4(T )).

By a standard argument, the median estimator will violate this error bound with probability
exp(−Ω(m)) = 1/poly(T ) via a Hoeffding bound. The result follows by union bounding over
all T timesteps.5

Space Each subroutine Algorithm 1 maintains K + 1 = O(log n) DP Continual Counters which
each require O(log T ) space due to Theorem 2.1. In the error analysis of Lemma B.2, we require
that the hash function h : [n] → [n] satisfies certain pseudorandomness conditions. Specifically,
we use the first and second moments of the random variables Zi under full randomness, which is
guaranteed by a pairwise independent hash family. Such a hash function can be stored in O(1) words
of space (Carter & Wegman, 1979). So, a single subroutine uses O(log n · log T ) words of space.
The overall algorithm with m copies of the subroutine uses space O(log n · log2(T )).

5Technically, we prove the stronger result that the algorithm satisfies (O
(
log2(T )/

√
ρ
)
, 1) error. We choose

to present the result as (O
(
log2(T )/

√
ρ
)
, O

(
log2(T )/

√
ρ
)
) as we only get non-trivial multiplicative approxi-

mation of the number of distinct elements when it exceeds O
(
log2(T )/

√
ρ
)
.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C PROOFS FOR SECTION 4

Both of the results of this section are based on a series of domain reduction lemmas, which allow us
to reduce the size of the universe, while approximately preserving the number of distinct elements of
the stream. The first lemma, Lemma C.1, gives anti-concentration bounds for the frequency of items
when we randomly hash the domain to a smaller universe. It shows that if the reduced domain size is
smaller than the number of non-zero entries of the frequency vector by polylogarithmic factors, then
all the non-zero frequencies in the reduced domain are “sufficiently large.” Conversely, Lemma C.2
shows that if the reduced domain is sufficiently larger than the number of non-zero entries, then any
single coordinate in the reduce domain is likely to be zero.

These two lemmas for the foundation of the proof of Theorem 4.1. At a high level, we can reduce
estimating the number of distinct elements to frequency estimation, which can be tracked up to
polylogarithmic error via Theorem 2.1. To summarize, this is because if we reduce the domain to
the ”right size” (comparable to ∥xt∥0 up to polylogarithmic factors), all domain elements will have
large frequencies, and hence can be detected via Theorem 2.1.

Finally, the third domain reduction lemma, Lemma C.3, shows that the ℓ0 norm of a vector is pre-
served very precisely, if we again map the domain to a suitably larger domain. This is the main
technical tool in Theorem 4.2.
Lemma C.1 (Domain Reduction Lemma 1). Suppose n is sufficiently large. Let h : [n]→ [m] and
g : [n]→ {±1} be random functions. For a vector x ∈ Zn, define the mapping fg,h(x) ∈ Zm as

∀i ∈ [m], fh,g(x)i =

∣∣∣∣∣∣
∑

j∈[n],h(j)=i

g(j) · xj

∣∣∣∣∣∣ ,
with an empty sum denoting 0. If 1 ≤ m ≤ ∥x∥0

ℓ for some ℓ ≥ 100 log(n), then for every fixed
i ∈ [m], we have

Prh,g

[
fh,g(x)i ≥

√
ℓ

105

]
≥ 0.99.

Proof. Fix an i ∈ [m]. Let Si = {j ∈ [n] | j ∈ supp(x), h(j) = i} denote the elements in
the support of x that hash to the ith coordinate. Note that |Si| ∼ Bin

(
∥x∥0, 1

m

)
. Noting that

Eh[|Si|] ≥ ℓ ≥ 100 log(n), we have that |Si| ≥ ℓ/2 with probability at lest 0.999.

Now conditioned on |Si| ≥ ℓ/2, we now that∑
j∈Si

g(j) · xj

is a sum of weighted Radamacher random variables, where each |xj | ≥ 1. Since g is a random
function, we can assume without loss of generality that xj ≥ 1. Thus, the Erdos-Littlewood-Offord
bound (Erdős, 1945), again conditioned on |Si| ≥ ℓ/2, implies that

sup
|I|≤1

Prg

∑
j∈Si

g(j) · xj ∈ I

 ≤ 50√
ℓ
,

for any interval I of length at most 1. Thus,

Prg

∑
j∈Si

g(j) · xj ∈

[
−
√
ℓ

1000
,

√
ℓ

1000

]
| |Si| ≥ ℓ/2

 ≤ √
ℓ

5 · 104
· 50√

ℓ
≤ 1

1000
.

Therefore, we have

Prh,g

[
fh,g(x)i ≥

√
ℓ

1000

]
≥ Prg

∑
j∈Si

g(j) · xj ̸∈

[
−
√
ℓ

1000
,

√
ℓ

1000

]
| |Si| ≥ ℓ/2

 ·Prh[|Si| ≥ ℓ/2]

≥ 0.9992 ≥ 0.99,

as desired.
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Lemma C.2 (Domain Reduction Lemma 2). Consider the same setting as Lemma C.1 but suppose
m ≥ ℓ∥x∥0. Then for every fixed i ∈ [m], we have

Prh,g[fh,g(x)i ̸= 0] ≤ 0.01.

Proof. We know |Si| ∼ Bin(∥x∥0, 1
m ), so Eh[|Si|] ≤ 1

ℓ . Thus, the probability that |Si| ≠ 0 is at
most 1/ℓ ≤ 0.01 by Markov’s inequality. In the case that Si = ∅, it is clear that fh,g(x)i = 0, as
desired.

Lemma C.3 (Domain Reduction Lemma 3). Suppose n is sufficiently larger and let h : [n] → [m]
be a random function as in Lemma C.1. For a vector x ∈ Rn, define the mapping fn(x) ∈ Rm as

∀i ∈ [m], fh(x)i =
∑

j∈[n],h(j)=i

xj ,

with an empty sum denoting 0. If m ≥ ∥x∥0 · ℓ · ℓ′ for some ℓ, ℓ′ ≥ 1, then

Prh

[
∥x∥0 ≥ ∥fh(x)∥0 ≥

(
1− 1

ℓ

)
∥x∥0

]
≥ 1− 1

ℓ′
.

Proof. It is clear that ∥x∥0 ≥ ∥fh(x)∥0 holds deterministically, as fh may have collisions. For the
other direction, for j ∈ supp(x), let Xj denote the indicator variable that no other j′ ∈ supp(x)
satisfies h(j′) = h(j). We have

Prh[Xj = 1] =

(
1− 1

m

)∥x∥0−1

≥ 1− 1

ℓ · ℓ′
.

Thus,

Eh

 ∑
j∈supp(x)

Xj

 ≥ (1− 1

ℓ · ℓ′

)
∥x∥0,

so by Markov’s inequality, we have

Prh

∥x∥0 − ∑
j∈supp(x)

Xj

 ≥ 1

ℓ

 ≤ 1

ℓ′
,

as desired.

C.1 DOMAIN REDUCTION ESTIMATOR PROOF

Proof of Theorem 4.1. First we prove privacy. Consider just one fixed function f i
gj ,hj

for a fixed
i and j in Algorithm 3. For simplicity, we just denote this as f . Let (a1, s1) . . . , (aT , sT )
and (a′1, s

′
1), . . . , (a

′
T , s

′
T ) be two neighboring streams for either event level privacy. Then

(f(a1), s1) . . . , (f(aT ), sT ) and (f(a′1), s
′
1), . . . , (f(a

′
T ), s

′
T ) are also neighboring streams (for the

same privacy model). This is because if a single event changes in the stream from say (ai, si) to
(a′i, s

′
i), then this also induces at most a single event change in the stream after mapping under f

(note it could also induce no change if the domain elements ai and a′i already collide under f and
si = s′i).

Thus, Algorithm 3 keeps track of O(log2 T ) different frequency estimations, each of which are ρ′-
zCDP where ρ′ is an appropriate scaling of ρ. Then by composition via Lemma 2.1, outputting all
the frequency estimates f̃ under all functions f that we considered is ρ-zCDP, as desired. Note the
rest of the algorithm proceeds by post-processing which is also private.

Now we argue for the approximation factor. Fix a timestep t. Assume for now that ∥xt∥0 ≥
Ω(log5(T )/ρ). The other case will be handled shortly. Now also consider one of our mappings f to
[2i]. Lemma C.1 tells us that if 2i ≤ ∥xt∥0/ℓ for ℓ ≥ 100 log(T ), then for any fixed coordinate of the
mapping f , that coordinate is larger than Ω(

√
ℓ) in absolute value with probability at least 99%. In

particular, if we pick the largest i such that 2i ≤ O(∥xt∥0/ log(T )), then the coordinate wise median
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of f i
g1,h1

(xt), . . . , f
i
gO(log T ),hO(log T )

(xt) satisfies that all of its coordinates are larger than Ω(
√
ℓ) in

absolute value with probability 1 − 1/poly(T ). In particular, this is still true if we consider the
coordinates of F̂ i and set ℓ = Θ(log3(T )/ρ′), since we have additive error τ = O(log1.5(T )/

√
ρ′)

on every coordinate of f i
gj ,hj

(xt).

Conversely, now consider the case where 2i ≥ ℓ∥xt∥0 for the same choice of ℓ as above. Then the
coordinate wise median of f i

g1,h1
(xt), . . . , f

i
gO(log T ),hO(log T )

(xt) satisfies that all of its coordinates

are 0 with probability 1− 1/poly(T ), and so ∥F̂ i(t)∥∞ < C ′τ by picking C ′ sufficiently large.

To summarize, plugging in our value of ρ′ and a union bound, we have that any i where 2i ≤
O(∥xt∥0ρ/ log5(T )) satisfies ∥F̂ i(t)∥∞ ≥ C ′τ . Conversely, any i where 2i ≥ Ω(log5(T )∥xt∥0/ρ)
satisfies ∥F̂ i(t)∥∞ < C ′τ . Thus, our choice of i∗(t) is a multiplicative O(log10(T )/ρ2) approxi-
mation to ∥xt∥0 with probability 1− 1/poly(T ).

Now we handle the case where ∥xt∥0 ≤ O(log5(T )/ρ). Here, the above paragraph implies that we
won’t return anything larger than 2i where 2i ≥ ℓ∥xt∥0 which is O(log10(T )/ρ2), which is can be
subsumed into our additive error. This completes the proof.

C.2 REDUCTION PROOF

Proof of Theorem 4.2. For each mi = 2i, we consider O(log T ) maps hi
1, . . . , h

i
O(log T ) mapping

[n] → [mi] as in Lemma C.3. Each such map defines a new stream in the reduced domain [mi].
Now for each map, we would like to run algorithm A. First, we need to check that our definition of
neighboring streams is still valid under a mapping. The proof of this is the same as in Theorem 4.1.
To summarize, the mapping will never add any new differences between neighboring streams (but it
may actually reduce the number of differences if a collision occurs).

Thus, we run O(log2(T )) many copies ofA across all functions hi
j . Naturally we must scale ρ down

by O(log2(T )) so that our output remain private via composition of Lemma 2.1. In parallel, we also
run another private algorithm B with O(log2(T )/

√
ρ) multiplicative and 1 additive error (e.g. our

algorithm from Theorem 3.1). Note that this also further requires scaling ρ down by constant factors.
We also assume B is correct throughout all steps T , which happens with probability 1− 1/poly(T ).

Now the purported algorithm A′ operates by post-processing the outputs of the two algorithms A
and B (and thus satisfies the desired privacy guarantees). A′ does the following: at every time step t,
it first uses B to compute the smallest power of 2, denoted as mt, which satisfies O(∥xt∥0) ≥ mt ≥
Ω(∥xt∥0 ·

√
ρ/ log2(T )). Then it outputs the median of the answers released by A, but only on the

maps corresponding to the next power of 2, denoted as m′
t, which is larger than O

(
mt log

2(T )√
ρη

)
(so

that m′
t satisfies the hypothesis of Lemma C.3 as we shall see shortly).

For correctness, fix a time step t. Lemma C.3 implies that as long as m′
t ≥ Ω(∥xt∥0/η),

which is true by our choice, then the number of distinct elements under a map h : [n] → [m′
t]

as in Lemma C.3 satisfies that ∥fh(x)∥0 is a 1 + η approximation to ∥xt∥0 with probabil-
ity 99%. In which case, the median answer across O(log T ) independent copies of h is thus a
1 + η approximation with probability 1 − 1/poly(T ). However, each of our calls of A gives

additive error
(

∥xt∥0

η

)c1
· poly(log(T ), 1/ρ), so our median output is a 1 + η multiplicative and(

∥xt∥0

η

)c1
· poly(log(T ), 1/ρ) additive error estimate. Since c1 < 1, ∥xt∥c10 can be absorbed into

the multiplicative error, if ∥xt∥0 is sufficiently larger than poly(log(T ), 1/η, 1/ρ). This completes
the proof.
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D PROOFS FOR SECTION 5

D.1 LOWER BOUND

Proof of Lemma 5.1. Let S be the stream where all stream elements are (ai, s) = (1, 1) and
then S′ be the neighboring stream which is identical to S except that (aT , sT ) = (2, 1). Then,
F

(T )
2 (S) = T 2 and F

(T )
2 (S′) = (T − 1)2 + 12 so that, F (T )

2 (S) − F
(T )
2 (S′) = 2T − 2. Define

λ =
F

(T )
2 (S)+F

(T )
2 (S′)

2 and p = 1−δ
eε+1 . If Pr[M(S) ≤ λ] ≥ p, the result follows with S0 = S, so

assume that Pr[M(S) ≤ λ] < p. Then, by differential privacy,

Pr[M(S′) > λ] ≥ Pr[M(S) > λ]− δ

eε
>

1− p− δ

eε
= p,

so the result follows with S0 = S′.

D.2 F2 ESTIMATION ALGORITHM

Proof of Theorem 5.1. The algorithm appears as Algorithm 4. Let α0 > 0 to be fixed later and let
A be the random matrix of the Johnson-Lindenstrauss Lemma 2.3 with m ≥ C1(log T )/α

2
0 with

C1 sufficiently large such that with high probability in T , it holds for all t ∈ [T ] simultaneously
that if y(t) = Ax(t), then

∣∣∥y(t)∥22 − ∥x(t)∥22
∣∣ ≤ α0∥x(t)∥22 . Our algorithm uses a DP-algorithm for

continual counting to estimate each entry of y(t). To see why this is possible, fix i and denote by Ai

the ith row of A. Then

(Ax(t))i = Aix
(t) =

n∑
j=1

Aijxt[j].

Since the entries of A are ±1/
√
m, it follows that changing a single xt[j] by ±1 will change the

count (Ax(t))i by at most O(1/
√
m). To be precise, define b1, . . . , bT by

bt =

n∑
j=1

Aijxt[j]−
n∑

j=1

Aijxt−1[j] =

n∑
j=1

Aij(xt[j]− xt−1[j]) ∈ {−1/
√
m, 0, 1/

√
m},

so that yit :=
∑t

s=1 bs =
∑n

j=1 Aijxt[j]. Then, if an adjacent dataset is obtained by replacing a
single input (at0 , st0) with (a′t0 , s

′
t0), then defining the b′t analogously for the neighboring dataset,

it is easy to check that bt = b′t for t ̸= t0. For some choice of privacy parameter ρ0, we may
thus apply Theorem 2.1 (appropriately rescaled by 1/

√
m), to obtain estimates ŷit of yit, such that

maxt∈[T ] |yit−ŷit| = O( (log T )1.5√
ρ0m

) with high probability in T and such that outputting these estimates
is ρ0-zCDP.

We are not quite done as we want to release estimates of
∑t

s=1 bt =
∑n

j=1 Aijxt[j] for each fixed
i ∈ [m]. For this, we use the analysis above with the privacy parameter ρ0 chosen such that when
employing advanced composition over all m releases, the final algorithm is ρ-zCDP. By Lemma 2.1,
it follows that we can put ρ0 = ρ/m to achieve that over the m releases, the final algorithm is
ρ-zCDP. The maximum final error of a single estimate is thus O( (log T )1.5√

ρ ). Denote by λ this upper
bound on the maximum error.

Now since the above algorithm for releasing all estimates ŷit is ρ-DP, by post-processing, we may
release any function of these estimates without violating privacy. Our final estimate of ∥x(t)∥22 is
simply

∑
i∈[m](ŷ

i
t)

2. Below, we analyze the accuracy of this estimator.

Accuracy Using that (ŷit)
2 − (yit)

2 = (ŷit − yit)(ŷ
i
t + yit), and our bound |ŷit − yit| ≤ λ, we have

that ∣∣∣∣∣∣
∑
i∈[m]

(ŷit)
2 −

∑
i∈[m]

(yit)
2

∣∣∣∣∣∣ ≤ λ
∑
i∈[m]

|ŷit + yit|
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Let S1 = {i ∈ [m] : |yit| ≤ λ/α0} and S2 = [m] \ S1. Note that |yit| ≤ λ/α0 implies that
|yit + ŷit| ≤ λ(1 + 1/α0) ≤ 2λ/α0. Thus,∑

i∈S1

|ŷit + yit| ≤
2|S1|λ
α0

.

Moreover, |yit| > λ/α0 implies that |ŷit + yit| ≤ 2|yit|+ λ ≤ 2α0

λ (yit)
2 + λ, and so,∑

i∈S2

|ŷit + yit| ≤
2α0

λ
∥yt∥22 + λ|S2|.

Combining these bounds, we get that∣∣∣∣∣∣
∑
i∈[m]

(ŷit)
2 −

∑
i∈[m]

(yit)
2

∣∣∣∣∣∣ ≤ 2α0∥yt∥22 +
2λ2m

α0
.

It thus follows from the high probability guarantee of the JL map and the triangle inequality that,∣∣∣∣∣∣
∑
i∈[m]

(ŷit)
2 − ∥x(t)∥22

∣∣∣∣∣∣ ≤ 2α0∥yt∥22+
2λ2m

α0
+α0∥x(t)∥22 ≤ (2α0(1 + α0) + α0) ∥x(t)∥22+

2λ2m

α0
.

Picking α0 = α/5, the above bound is at most α∥x(t)∥22 + 10λ2m
α . Plugging in the values of m and

λ gives the desired result.

Space Usage It is well known that the dimensionality reduction matrix A satisfies the guarantee
of Lemma 2.3 even if the entries are only O(log T ) independent (Clarkson & Woodruff, 2009). To
populate the entries of A, we can for example use k-independent hashing (Wegman & Carter, 1981)
which when implemented as polynomials of degree k = O(log T ), requires O(log T ) words of
memory. We additionally, need to store the m counters for continual counting. By Theorem 2.1, this
can be achieved with O(m log T ) = O((log T )2/α2) words of memory.
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