SKIRTING ADDITIVE ERROR BARRIERS FOR PRIVATE TURNSTILE STREAMS

Anonymous authors

Paper under double-blind review

ABSTRACT

We study differentially private continual release of the number of distinct items in a stream, where items may be both inserted and deleted. In this turnstile setting, a recent work of Jain, Kalemaj, Raskhodnikova, Sivakumar, and Smith (NeurIPS '23) showed that for streams of length T, polynomial additive error of $\Omega(T^{1/4})$ is necessary, even without any space restrictions. We show that this additive error lower bound can be circumvented if the algorithm is allowed to output estimates with $\operatorname{multiplicative}$ error. We give an algorithm for the continual release of the number of distinct elements with $\operatorname{polylog}(T)$ multiplicative and $\operatorname{polylog}(T)$ additive error. We also show a qualitatively similar phenomenon for estimating the F_2 moment of a turnstile stream, where we can obtain 1+o(1) multiplicative and $\operatorname{polylog}(T)$ additive error. Both results can be achieved by $\operatorname{polylogarithmic}$ space streaming algorithms where some multiplicative error is necessary even without privacy. Lastly, we raise questions aimed at better understanding trade-offs between multiplicative and additive error in private continual estimation problems.

1 Introduction

Differential privacy (DP) under continual release captures the setting where private data is updated over time. The data arrives one at a time in a stream, and an algorithm must privately release an underlying statistic of interest as the data changes. The continual release model goes back to the early days of DP and has been extensively studied for counting the number of events in a binary stream, also called continual counting (Dwork et al., 2010; Chan et al., 2011; Honaker, 2015; Andersson & Pagh, 2023; Fichtenberger et al., 2023; Henzinger et al., 2023; Andersson et al., 2024; Henzinger et al., 2024b; Dvijotham et al., 2024; Henzinger & Upadhyay, 2025), private machine learning applications (via DP-SGD and DP-FTRL) (Kairouz et al., 2021; Denissov et al., 2022; McMahan & Thakurta, 2022; Choquette-Choo et al., 2023a;b; 2024) (also see the survey of Pillutla et al. (2025)), and graph algorithms (Song et al., 2018; Fichtenberger et al., 2021; Jain et al., 2024; Raskhodnikova & Steiner, 2024). In our setting, the stream is modeled as items from a known universe [n] of T updates and we consider the turnstile model where items may be both inserted and deleted.

Continual release is algorithmically interesting since it combines challenges of both differential privacy and streaming algorithms, and there is a recent line of work aiming to nail down the optimal privacy-utility trade-offs for continual release of some of the most basic and well-studied statistics in a stream, including estimating the number of distinct elements and the F_2 -moment of the stream (Epasto et al., 2023; Jain et al., 2023b;a; Henzinger et al., 2024a; Cummings et al., 2025) (Epasto et al., 2023; Jain et al., 2023b;a; Henzinger et al., 2024a; Cummings et al., 2025). These two problems are the main focus of our paper.

However, there remain substantial gaps in our understanding of these fundamental streaming problems when privacy is a concern. Even ignoring space considerations, which make the aforementioned problems trivial in the standard streaming setting without privacy, there exist polynomial gaps (in the stream length T) between known upper and lower bounds in turnstile streams. For example, for estimating the number of distinct elements in the stream, the best known algorithms achieve a $\tilde{O}(T^{1/3})$ additive error bound (Jain et al., 2023a; Cummings et al., 2025). On the flip

¹The number of elements with non-zero frequency; see Section 2.1.

²We use $\tilde{O}(f)$ to denote $O(f \cdot \text{polylog}(f))$.

side, it is known that any private algorithm *must* incur $\Omega(T^{1/4})$ additive error (Jain et al., 2023a), and closing this gap is a challenging open problem. Furthermore, just from sensitivity considerations, it is easy to see that any algorithm for private F_2 estimation must incur $\Omega(T)$ additive error.

We are motivated by the fact that (low-space) streaming algorithms for both distinct elements and F_2 estimation³ must incur *multiplicative* error (Jayram & Woodruff, 2013), and thus it is natural to ask if one can go beyond the existing additive error lower bounds for continual release in turnstile streams if the algorithm is allowed to output estimates with both *multiplicative* and additive error. Indeed, some evidence of why this is possible is already present in the prior work of Epasto et al. (2023) which obtains polylogarithmic additive error along with small multiplicative error for F_p moment estimation, including distinct elements, albeit in the significantly easier setting of insertion-only streams where items are never deleted. Furthermore, it can be checked that the lower bound instances for $\Omega(T^{1/4})$ additive error for distinct elements (Jain et al., 2023a) and $\Omega(T)$ additive error for F_p estimation both occur when the true underlying value is itself much larger than the additive error, meaning they do not imply any hardness for obtaining constant multiplicative error.

Thus, the main conceptual message of our paper is that polynomial additive errors for fundamental streaming problems can be replaced with *polylogarithmic* additive errors, at the cost of some multiplicative error. Furthermore this can often be achieved while simultaneously using small *space*.

1.1 OUR RESULTS

We are focused on computation over data streams of length T from a universe of size n. We use $(a_1, s_1), \ldots, (a_T, s_T)$ to denote a general turnstile data stream where $a_i \in [n]$ is an element identifier and $s_i \in \{-1, 0, 1\}$ is the increment amount. We call an update an insertion if $s_i = 1$ and a deletion if $s_i = -1$. In insertion-only streams, $s_i = 1$ and in strict turnstile streams, at any point in time, the number of deletions to any given element can never exceed the insertions to that element (the element's frequency cannot be negative). We are concerned with the following notion of mixed multiplicative and additive error for continual estimation of stream statistics.

Definition 1.1 (Multiplicative and Additive Error for Continual Estimation). Let $Y_t \in \mathbb{R}$ be a function of the prefix of a stream $(a_1, s_1), \ldots, (a_t, s_t)$. A streaming algorithm for the continual estimation problem outputs an estimate \hat{Y}_t after receiving the tth stream update for all $t \in [T]$. For parameters $\alpha \geq 1, \beta \geq 0$, we say the algorithm solves the problem with (α, β) error if there exist parameters $p, q \geq 1$ with $pq = \alpha$ and polynomial representation of the problem of the stream update <math>polynomial representation of the problem of the probl

$$Y_t/p - r \le \hat{Y}_t \le qY_t + s.$$

For a randomized algorithm, we say the algorithm has error (α, β) with probability $1 - \gamma$ if the error bounds hold across all timesteps with probability at least $1 - \gamma$ over the randomness of the algorithm.

If an algorithm satisfies $(1, \beta)$ error, we say it has purely additive error. If an algorithm satisfies $(\alpha, 0)$ error, we say it has purely multiplicative error.

Remark 1.1 (Interpretation of (α, β) error). One interpretation of (α, β) error is that we get an α multiplicative approximation to the statistic Y_t as long as $Y_t \gg \beta$. Below this noise floor, we are guaranteed that $\hat{Y}_t \leq \alpha Y_t + \beta$.

Distinct Elements When the statistic of interest is the number of distinct (non-zero frequency) elements, we show that we can skirt the lower bound of $\Omega(T^{1/4})$ from Jain et al. (2023a) if we also allow multiplicative error in our estimates. Our main result is an algorithm that solves the distinct elements problem with only polylogarithmic additive and multiplicative error.

Theorem 1.1 (Informal version of Theorem 3.1). Let $\varepsilon, \delta < 1$. There exists an (ε, δ) -DP algorithm for the continual distinct elements problem that with probability 1 - 1/polylog(T), for all points in time $t \in [T]$ outputs an estimate \tilde{D}_t of the number of distinct elements D_t with error (α, β) where $\alpha, \beta = O(\frac{\text{polylog}(T, 1/\delta)}{\varepsilon})$. The space usage of the algorithm is polylog(n, T).

 $^{^{3}}$ The F_{2} value of a stream is defined as the sum of squares of frequencies of items in the stream; see Section 1.1.

Source	Error	Space	Privacy	Notes
Jain et al. (2023b)	$(1, \tilde{O}(T^{1/3}))$	poly(T)	Item-level	Recomputation
Jain et al. (2023b)	$(1+\eta, \tilde{O}(T^{1/3}))$	$O_{\eta}(\log \log T)$	Item-level	Via Kane et al. (2010)
Jain et al. (2023a)	$(1,\tilde{\Omega}(T^{1/4}))$		Event-level	Lower bound
Epasto et al. (2023)	$(1+\eta, O_{\eta}(\log^2(T)))$	$\operatorname{polylog}(T)$	Event-level	Insertion-only
Theorem 3.1	$(O(\log^2(T)), O(\log^2(T)))$	$O(\log^3(T))$	Event-level	Strict turnstile
Theorem 4.1	$(O(\log^{10}(T)), O(\log^{10}(T)))$	poly(T)	Event-level	

Table 1: Multiplicative and additive error bounds for (ε, δ) -DP algorithms for the Continual Distinct Elements Problem. We ignore dependencies on the privacy parameters. Unless otherwise stated, upper bounds hold for general turnstile streams and lower bounds hold for strict turnstile streams. We present results which hold for worst-case streams of length T. See Appendix A for numerous prior works which give instance-specific bounds depending on stream statistics.

We present two different approaches to continual distinct elements estimation via two different algorithms that both rely on differentially private continual counting. The first algorithm (which leads to the above theorem) is inspired by the classic idea of using the minimum hash value of keys in a set A to estimate the size of A and appears in Section 3. Under privacy constraints, we cannot compute the minimum hash value exactly. Instead, we create buckets based on the least significant non-zero bit of hashes of keys such that the expected number of keys hashing to the buckets increase geometrically. We can then use private continual counting in each bucket to approximately determine the min hash. The second algorithm is based on performing a domain reduction (also via a hash function) to a domain sufficiently small, that sufficiently many elements collide that this can be detected by a private continual counting algorithm. We can then use the size of the reduced domain as an estimate for the number of distinct elements. This algorithm is presented in Section 4.

The minimum hash algorithm is limited to strict turnstile streams but achieves better error and less space usage than the domain reduction algorithm which applies to general turnstile streams. In Section 4, we also show a path towards achieving arbitrarily good multiplicative error. Using the same tools as the domain reduction algorithm, we show a reduction using a (hypothetical) algorithm achieving purely additive error sublinear in the domain size n to design an algorithm achieving $(1 + \eta, \operatorname{polylog}(T))$ error.

Frequency Moments In addition to the distinct elements problem, we also consider the F_2 estimation problem, where we are interested in approximating the second moment of the frequencies of elements in the stream at any point of time. Specifically, if each update (a_t, s_t) satisfies $a_t \in [n]$ and $s_t \in \{-1,0,1\}$, we may define $x_t[j] = \sum_{i \leq t: a_i = j} s_j$, and we are interested in approximating $F_2 = \sum_{j \in [n]} x_t[j]^2$ for any t. It is easy to see that any algorithm with only purely additive error $(\alpha,\beta) = (1,\beta)$, must have $\beta = \Omega(T)$, simply because the sensitivity of the second moment is $\Omega(T)$. Surprisingly, we show that allowing a small constant multiplicative error, the additive error can be made to polylogarithmic. Furthermore, our algorithm quantitatively improves upon the prior work of Epasto et al. (2023) which only applies in the insertion-only model.

Theorem 1.2 (Informal version of Theorem 5.1). Let $\varepsilon, \delta, \eta < 1$. There exists an (ε, δ) -DP algorithm for the F_2 estimation problem that with probability 1 - 1/polylog(T), for all points in time $t \in [T]$ outputs an estimate of \tilde{F}_2 of F_2 with error $(1 + \eta, \beta)$ where $\beta = \text{polylog}(T, \eta, \delta)/(\varepsilon^2 \eta^3)$. The space usage of the algorithm is $\text{polylog}(T)/\eta^2$.

Again, this result relies on continual counting. We use the Johnson-Lindenstrauss reduction to map the n-dimensional frequency vector to a small domain, and use continual counting to estimate the coordinates in the reduced domain.

See Appendix A for a detailed discussion of prior works on these problems.

Source	Error	Space	Privacy	Notes
Epasto et al. (2023)	$(1+\eta, \tilde{O}_{\eta}(\log^{7}(T)))$	$O_{\eta}(\log^2(T))$	Event-level	Insertion-only
Lemma 5.1	$(1,\Omega(T))$		Event-level	Lower bound
Theorem 5.1	$(1+\eta, \tilde{O}_{\eta}(\log^4(T)))$	$O_{\eta}(\log^2(T))$	Event-level	

Table 2: Multiplicative and additive error bounds for (ε, δ) -DP algorithms for the Continual F_2 Problem. We ignore dependencies on the privacy parameters. Unless otherwise stated, upper bounds hold for general turnstile streams and lower bounds hold for strict turnstile streams.

1.2 OPEN PROBLEMS

We discuss several open problems exploring the trade-offs between multiplicative and additive errors in private continual estimation settings.

Better dependence on n and T for counting distinct elements. Perhaps the main open question of our paper is whether one can obtain better bounds for counting distinct elements under differential privacy with purely additive error. Without any assumptions on the input stream, there is a polynomial gap between the upper bound of $\tilde{O}(T^{1/3})$ and the lower bound of $\Omega(T^{1/4})$. Moreover, the lower bound holds only with some restrictions on the values of n and T, namely under the assumption that $T \leq n^2$. For general values of n and T, the lower bound is $\min(T^{1/4}, n^{1/2})$ which is always at most $n^{1/2}$. Note that when counting distinct elements over a domain of size n, it is trivial to obtain error n. An interesting question towards resolving the optimal dependence on the parameters in the additive error is whether there exists an algorithm with error o(n) when T is a large polynomial in n. This is especially interesting in light of our following result.

Theorem 1.3 (Informal version of Theorem 4.2). Any (ε, δ) -DP algorithm for the number of distinct elements in the continual release setting with additive error $n^{0.99}$ in the domain size n can be converted to another differentially private algorithm with $(1 + \eta)$ -multiplicative and $polylog(T, 1/\eta, \varepsilon, \delta)$ additive error for any constant $\eta > 0$.

Constant multiplicative approximation to distinct elements with small additive error. Our results show that we can avoid the large additive error of the lower bounds, if we allow for a multiplicative error of $\operatorname{polylog}(T)$ for counting distinct. It is an interesting question whether there exists an algorithm with $\operatorname{constant}$ multiplicative error and small polylogarithmic additive error. Our techniques based on continual counting seems to reach a natural barrier here, which arises from the fact that the counters cannot distinguish between whether the count of a bucket comes from a single highly frequent element, or from many infrequent elements, each having frequency 1, say.

Tradeoff between multiplicative and additive error. Taking a step further, what is the correct tradeoff between multiplicative and additive error for counting distinct elements? While we don't know of an algorithm with $(1+\eta)$ multiplicative approximation and small additive error for counting distinct elements, it seems likely that such an algorithm should exist. If it exists, what is the dependence on η in the additive error? A similar question can be asked for F_2 estimation, where our current algorithm has $(1+\eta)$ multiplicative approximation and $\tilde{O}(1/\eta^3)$ additive error. More broadly, it is interesting to explore tradeoffs between multiplicative and additive error in other settings for private continual estimation.

Triangle Counting. Recently, Raskhodnikova & Steiner (2024) considered differentially private triangle counting in dynamic graphs. Their paper contains several results, but most relevant to our setting is an algorithm for counting triangles in a graph with bounded additive error depending on T and the number of vertices of the graph. The algorithm and analysis of this problem mirror continual distinct elements estimation, and it is interesting to see whether we can obtain better additive error guarantees if we are allowed a small multiplicative error.

2 Preliminaries and Notation

Throughout the paper, poly(T) refers to a polynomial of arbitrarily large constant degree. We consider the base 2 logarithm by default: $log(\cdot) = log_2(\cdot)$.

2.1 Data Streams

Let $(a_1,s_1),\ldots,(a_T,s_T)$ denote the data stream where $a_i\in [n]$ is an element identifier and $s_i\in \{-1,0,1\}$ is the increment amount. Let $x_t\in \mathbb{R}^n$ denote the frequency vector at time step t. For $i\in [n], x_t[i]$ is the sum of increments to item i across all timesteps up to t. In the *strict turnstile* model, we have $x_t[i]\geq 0$ for all $i\in [n], t\in [T]$, and the number of distinct elements at time t is defined as $D_t=|i\in [n]:x_t[i]>0|$. In the *general turnstile* model, the true frequency vector x_t is allowed to have negative entries and the number of distinct elements is simply the number of non-zero coordinates. We interchangeably denote the number of distinct elements as $||x_t||_0$.

In this work, we assume that the universe size n and stream length T are known up to constant factors to the streaming algorithm a priori for simplicity. Without loss of generality, we will consider n = O(poly(T)) by standard hashing tricks.

A streaming algorithm processes each update one at a time while maintaining only a bounded memory. In this work, we measure space in terms of words of size at least $\Omega(\log T)$ bits. This is a standard measurement, assuming that the length of the stream and the universe size can be stored in a constant number of words. We also assume access to an oracle which can produce a sample of one-dimensional Gaussian noise $\mathcal{N}(0,\sigma^2)$ which can be stored in constant words. See Canonne et al. (2022) for background on sampling Gaussian noise for differential privacy.

We consider randomized streaming algorithms with non-adaptive adversaries. The stream is chosen independent of the randomness of the algorithm. While some private algorithms can succeed against adaptive adversaries Jain et al. (2023b), the best (even non-private) streaming algorithms for many fundamental problems including distinct elements require space polynomial in the stream length (Attias et al., 2024).

2.2 DIFFERENTIAL PRIVACY

Definition 2.1 (Event-Level Neighboring Datasets). Let $X = (a_1, s_1), \ldots, (a_T, s_T)$ and $X' = (a'_1, s'_1), \ldots (a'_T, s'_T)$ be two strict turnstile data streams. These streams are neighboring if there exists an index $i \in [T]$ such that $(a_i, s_i) \neq (a'_i, s'_i)$, and for all $j \neq i$, $(a_j, s_j) = (a'_j, s'_j)$.

A different notion of item-level privacy is also studied where all updates which touch a given element $a \in [n]$ may change between neighboring dataset. In this work, we focus on the event-level definition.

Definition 2.2 (Differential Privacy (Dwork et al., 2006)). Let $\mathcal{A}: \mathcal{X} \to \mathcal{Y}$ be a randomized algorithm. For parameters $\varepsilon, \delta \geq 0$, \mathcal{A} satisfies (ε, δ) -DP if, for any two neighboring datasets $X, X' \in \mathcal{X}$ and measurable subset of outputs $O \subseteq \mathcal{Y}$,

$$\mathbf{Pr}[\mathcal{A}(X) \in O] \le e^{\varepsilon} \mathbf{Pr}[\mathcal{A}(X') \in O] + \delta.$$

We will also make use of a similar form of differential privacy called zero-concentrated differential privacy, ρ -zCDP, introduced by Bun & Steinke (2016). ρ -zCDP implies (ε , δ)-DP and benefits from tighter and simpler composition of multiple private mechanisms.

Definition 2.3 (Rényi Divergence (Rényi, 1961)). Given two distributions P, Q over \mathcal{Y} and a parameter $\zeta \in (1, \infty)$, we define the Rényi Divergence as

$$D_{\zeta}(P||Q) = \frac{1}{\zeta - 1} \log \left(\mathbf{E}_{z \sim P} \left[\left(\frac{P(z)}{Q(z)} \right)^{\zeta - 1} \right] \right).$$

Definition 2.4 (Zero-Concentrated Differential Privacy (zCDP) (Bun & Steinke, 2016)). Let $\mathcal{A}: \mathcal{X} \to \mathcal{Y}$ be a randomized algorithm. For parameter $\rho \geq 0$, \mathcal{A} satisfies ρ -zCDP if, for any two neighboring datasets $X, X' \in \mathcal{X}$ and $\zeta \in (1, \infty)$,

$$D_{\zeta}(\mathcal{A}(X)||\mathcal{A}(X')) \leq \rho \zeta.$$

Lemma 2.1 (zCDP Composition (Bun & Steinke, 2016)). Let $\mathcal{A}: \mathcal{X} \to \mathcal{Y}$ and $\mathcal{B}: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ be algorithms satisfying ρ_1 -zCDP and ρ_2 -zCDP, respectively. Then, the algorithm which, given an input $X \in \mathcal{X}$, outputs $(\mathcal{A}(X), \mathcal{B}(X, \mathcal{A}(X)))$ satisfies $(\rho_1 + \rho_2)$ -zCDP.

Lemma 2.2 (zCDP Translation (Bun & Steinke, 2016)). Any algorithm satisfying ρ -zCDP also satisfies $(\rho + 2\sqrt{\rho \log(1/\delta)}, \delta)$ -DP for any $\delta > 0$.

Therefore, an algorithm satisfying ρ -zCDP also satisfies (ε, δ) -DP if $\rho = O(\varepsilon^2/\log(1/\delta))$.

The simpler problem of DP Continual Counting was introduced in Dwork et al. (2010); Chan et al. (2011). In this setting, the stream is comprised of a sequence of updates in $\{-1,0,1\}$ to an underlying count and the goal is to maintain a running approximation to the prefix sum of updates at every timestep with small additive error. The problem is normally defined over a stream of bits with $b_i \in \{0,1\}$. Allowing decrements as well can be achieved with the same asymptotic additive error by using two counters to separately count increments and decrements. We present the following result based on Jain et al. (2023b) which uses the binary tree mechanism of Dwork et al. (2010); Chan et al. (2011) while leveraging Gaussian noise and zCDP. The result presented here is a special case of Theorem 5.4 of their work with d=1.

Theorem 2.1 (Gaussian Binary Tree Mechanism). Let $\rho > 0$ be the privacy parameter. Consider a stream of updates b_1, \ldots, b_T where $b_i \in \{-1, 0, 1\}$. There exists a randomized algorithm $\mathcal{A}(b_1, \ldots, b_T)$ which outputs estimates $\hat{y}_1^i, \ldots, \hat{y}_T^i$ with the following guarantees:

- Let two inputs b_1, \ldots, b_T and b'_1, \ldots, b'_T be neighboring if and only if there exists a $j \in [T]$ such that $b_j \neq b'_j$ and $b_t = b'_t$ for all $t \neq j$. Under this neighboring definition, A preserves ρ -zCDP.
- For $t \in [T]$, let $y_t = \sum_{i=1}^t b_t$. Then, with probability 1 1/poly(T),

$$\max_{t \in [T]} |y_t - \hat{y}_t| \le O(\log^{1.5}(T)/\sqrt{\rho}).$$

• A can be implemented as a streaming algorithm using $O(\log(T))$ words of space.

2.3 OTHER PRELIMINARIES

Given an integer $a \in [n]$, $lsb(a) \in \{0, ..., \lfloor \log n \rfloor\}$ is the (zero-indexed) index of the least significant non-zero bit of a in its standard binary representation. For example, lsb(4) = 2.

We use the Johnson-Lindenstrauss lemma with Rademacher random variables.

Lemma 2.3 (Johnson-Lindenstrauss, (Achlioptas, 2003)). Let $x \in \mathbb{R}^n$ and let A be an $m \times n$ matrix with i.i.d. random entries $a_{i,j}$ with $\Pr[a_{i,j} = -1/\sqrt{m}] = \Pr[a_{i,j} = 1/\sqrt{m}] = 1/2$. Assume that $m \geq C \log(1/\delta)/\alpha^2$ for a sufficiently large constant C. Then $\Pr[(1-\alpha)||x||_2^2 \leq ||Ax||_2^2 \leq (1+\alpha)||x||_2^2] \geq 1-\delta$.

3 CONTINUAL DISTINCT ELEMENTS VIA MINHASH

Without loss of generality, assume that n is a power of two with $n=2^K$ for $K \in \mathbb{N}$ (we can always artificially increase the universe size to achieve this). Consider a hash function $h:[n] \to [n]$. Consider the (K+1)-dimensional, 0-indexed vector f_t where, for any $k \in \{0, \ldots, K\}$,

$$f_t[k] = \sum_{i=1}^t \mathbb{1}[1 \text{sb}(h(a_i)) = k] \cdot s_i.$$

This quantity $f_t[k]$ is the number of distinct elements at time t in the stream whose hash value lies in $[2^k, 2^{k+1})$. For each k, we will maintain an estimate $\hat{f}_t[k]$ over all times $t \in [T]$ via (K+1) DP Continual Counters $C[0], \ldots C[K]$ (Theorem 2.1).

A classic estimator for distinct elements is to consider the index of the largest non-zero bit. The non-private template is to identify the largest $\ell \in \{0,...,K\}$ such that $f_t[\ell] > 0$ and report $\hat{D} = 2^\ell$. The probability that a given element a has lsb(a) = k is equal to 2^{-k+1} , so among D elements,

we roughly expect to see at least one element with 1sb $\approx \log(D)$ and no elements with 1sb $>> \log(D)$.

The challenge with implementing this estimator with differential privacy is that a single change to the stream can possibly change the identity of the largest non-empty entry in f_t for many timesteps t. By using continual counters, we can only guarantee that $\hat{f}_t[k]$ is approximated up to $\tau = \operatorname{polylog}(T)$ additive error. So, instead of identifying the largest non-empty entry of f_t , we try to identify the largest entry of f_t which exceeds this noise threshold τ . If stream elements were bounded to have at most constant frequency, this would immediately yield an algorithm with error $(O(1),\tau)$. However, stream elements could have frequencies larger than τ . Therefore, we do not know if the bucket we find has count $f_t[\ell] > \tau$ because (a) $\ell \approx \log(D_t/\tau)$ and approximately τ elements of constant frequency have lsb = ℓ or (b) $\ell \approx \log(D)$ and a single element of frequency more than τ has lsb = ℓ . This is the source of the $O(\tau)$ multiplicative error.

Algorithm 1: MinHash Subroutine

Input: Privacy parameter ρ , stream length T, domain size $n = 2^K < \text{poly}(T)$.

- 1. Initialize $\rho'' = \rho/2$.
- 2. Initialize a random hash function $h:[n] \to [n]$.
- 3. For $k \in \{0, \dots, K\}$, initialize a DP Continual Counter (Theorem 2.1) C[k] with privacy parameter ρ'' . Let $\tau = \Theta(\log^{1.5}(T)/\sqrt{\rho})$ be an upper bound on the (1-1/poly(T)) quantile of the maximum additive error of a counter over all timesteps $t \in [T]$.
- 4. When a stream update (a_t, s_t) arrives,
 - (a) $k \leftarrow lsb(h(a_t))$.
 - (b) Update C[k] with update s_t . Update all other counters C[k'] for $k' \neq k$ with update 0.
 - (c) Let $\hat{f}_t[k']$ be the current estimate of C[k'] for all $k' \in \{0, ..., K\}$. Let ℓ be the largest index such that $\hat{f}_t[\ell] > \tau$. If no such index exists, let $\ell \leftarrow 0$.
 - (d) Output: $\hat{D}_t \leftarrow 2^{\ell}$.

Algorithm 2: MinHash Estimator

Input: Privacy parameter ρ , stream length T, domain size $n = 2^K < \text{poly}(T)$.

- 1. Let $m = \Theta(\log T)$
- 2. Initialize $\rho' = \rho/m$.
- 3. Run m copies of Algorithm 1 in parallel with privacy parameter ρ' .
- 4. For each timestep $t \in [T]$,
 - (a) For $j \in [m]$, let \hat{D}_t^j be the estimate of the jth subroutine at time t.
 - (b) Report estimate $\operatorname{median} \left(\hat{D}_t^1, \dots, \hat{D}_t^m \right)$.

Theorem 3.1. Algorithm 2 is ρ -zCDP and uses space $O(\log n \cdot \log^2(T))$. On strict turnstile streams, if $\rho < O(\log^4 T)$, Algorithm 2 solves continual distinct elements estimation with $(O(\log^2(T)/\sqrt{\rho}), O(\log^2(T)/\sqrt{\rho}))$ error with probability 1 - 1/poly(T).

Note that the condition on ρ not being too large relative to T is mild as the privacy parameter is often chosen to be a small constant. The proof of this theorem is given in Appendix B.

⁴Under this promise, the algorithm would also succeed with high probability via a Chernoff bound without the need for independent repetitions.

4 CONTINUAL DISTINCT ELEMENTS VIA DOMAIN REDUCTION

We now present another algorithmic technique which guarantees a polylog(T) multiplicative approximation to the number of distinct elements in a private turnstile stream (see Section 2). The main theorem of this section is Theorem 4.1. While the bounds of Theorem 4.1 are quantitatively worse than of our main theorem, Theorem 3.1, this section serves to demonstrate new ideas for the private continual estimation setting, which may be of independent interest. Additionally, they apply to the general turnstile model.

Algorithm 3: Domain Reduction Estimator

Input: Privacy parameter ρ , stream length T

- 1. Let $C, C' \ge 1$ be sufficiently large constants.
- 2. Set $\rho' = \rho/(C \log^2 T)$.
- 3. $1 \leq i \leq \log T$ and $1 \leq j \leq C \log T$, construct independent functions $f^i_{g_j,h_j}: [T] \to [2^i]$ as in Lemma C.1.
- 4. For all i,j and all time steps $t \in [T]$, compute a coordinate-wise frequency estimate $\tilde{f}^i_{g_j,h_j}(x_t)$ of $f^i_{g_j,h_j}(x_t)$ in the streaming continual release model, each of which are ρ' -zCDP. \triangleright This guarantees $\|f^i_{g_j,h_j}(x_t) \tilde{f}^i_{g_j,h_j}(x_t)\|_{\infty} \leq \tau$ for all i,j,t with failure probability β where $\tau = O(\log^{1.5}(T)/\sqrt{\rho'})$ via Theorem 2.1.
- 5. For all i and all time steps $t \in [T]$, let $\hat{F}^i(t) \in \mathbb{R}^{2^i}$ denote the (coordinate-wise) median of $\tilde{f}^i_{g_1,h_1}(x_t),\ldots,\tilde{f}^i_{g_{100\log T},h_{100\log T}}(x_t)$. \triangleright *Note* i *is fixed*.
- 6. For every time step $t \in [T]$, let $i^*(t)$ be the largest value such that all $\|\hat{F}^{i^*}(t)\|_{\infty} \geq C'\tau$.
- 7. **Return:** $2^{i^*(t)}$ as an estimate of $||x_t||_0$ at time $t \in [T]$.

Theorem 4.1. Algorithm 3 satisfies ρ -zCDP. It solves the continual distinct elements estimation with $\left(O(\log^{10}(T)/\rho^2), O(\log^{10}(T)/\rho^2)\right)$ error with probability 1 - 1/poly(T). The algorithm uses polynomial in T space and works in the general turnstile model.

The same techniques allow us to show a reduction from multiplicative error to additive error (in the domain size), showing that an existence of an algorithm (for our distinct elements problem) with *sublinear* additive error in the domain size implies an algorithm which guarantees *multiplicative* approximations arbitrarily close to 1. In the theorem below, recall that n is the size of the universe. We also restrict $\operatorname{polylog}(T) \geq \rho \geq 0$ in the theorem statement below, since we will use the algorithm of Theorem 3.1.

Theorem 4.2. Suppose there exists a constant $1 > c_1 \ge 0$ such that there is a ρ -zCDP algorithm \mathcal{A} for the continual distinct elements problem which has additive error $n^{c_1}/\text{poly}(\rho)$ and is correct with probability 1 - 1/poly(T) for all time steps. Then for any $\eta \in (0,1)$, there exists another ρ -zCDP algorithm \mathcal{A}' (for the continual distinct elements problem) which achieves a multiplicative error $1 + \eta$, additive error $poly(\log(T), 1/\eta, 1/\rho)$ and is also correct with probability 1 - 1/poly(T).

The proofs for this section can be found in Appendix C.

5 CONTINUAL F_2 ESTIMATION

We next consider the problem of F_2 estimation. To recap, the stream consists of T stream elements $S=(a_t,s_t)_{t\in[T]}$ where $a_t\in[n]$ and $s_t\in\{-1,0,1\}$. For $t\in[T]$ and $j\in[n]$, we define $x_t[j]=\sum_{i\leq t:a_i=j}s_i$. We assume the strict turnstile model where $x_t[j]\geq 0$ always. Define $x^{(t)}$ to be the n-dimensional vector $(x_t[j])_{j\in[n]}$. In this section our interest is to estimate the second moment $F^{(t)}(S)=\sum_{j\in[n]}(x_t[j])^2=\|x^{(t)}\|_2^2$ at any point of time t.

We first prove a simple lower bound using standard techniques based on the sensitivity of the second moment when a single stream element is changed. Note, that the lower bound works even against non-streaming algorithms that see the entire stream up-front.

Lemma 5.1. Let S be the set of all streams $S = (a_i, s_i)_{i \in [T]}$. Let $M : S \to R$ be an (ϵ, δ) -DP protocol. Then there exists some $S_0 \in S$ such that

$$\mathbf{Pr}\Big[|\mathcal{M}(S_0) - F_2^{(T)}(S_0)| \ge T - 1\Big] \ge \frac{1 - \delta}{e^{\varepsilon} + 1}.$$

Thus, the additive error incurred by any DP F_2 estimation algorithm is $\Omega(T)$.

Notice that the lower bound instance used to prove the above lemma has a single element $i \in [n]$ with frequency $\Omega(T)$. However, for such an input S, the value $F_2(S)$ is of the order $\Omega(T^2)$ which is much larger than the additive error. Motivated by this observation, we ask if it possible to obtain better additive error of our estimates if we allow a small *multiplicative* error of $(1 + \alpha)$. In this section, we show that for any small constant α , it is possible to obtain additive error polylog(T). Note that Epasto et al. (2023) obtain a qualitatively similar bound, but in the restricted setting of insertion-only streams.

At a high-level, our algorithm is inspired by the classic AMS sketch for F_2 estimation in standard streaming (Alon et al., 1996), and uses the classic Johnson-Lindenstrauss (JL) lemma Lemma 2.3 to reduce the domain size from [n] to $\operatorname{polylog}(T)$. By using a JL construction which utilizes Rademacher random variables, we are able to approximately (and privately) track the frequencies of the domain elements after applying the JL lemma via continual counting (see Theorem 2.1). Composition (Lemma 2.1) allows us to simultaneously release the frequencies in the reduced domain with a low-additive error overhead since the size of the domain has reduced significantly. Altogether, we show that the frequencies in the reduced domain can all be simultaneously estimated up to $\operatorname{polylog}(T)$ additive error, which implies our desired error bound. The $1+\alpha$ multiplicative error is incurred by the JL step itself.

Algorithm 4: F_2 **Estimator**

Input: Privacy parameter ρ , stream length T, domain size n, approximation parameter $\alpha > 0$

- 1. Let $\alpha_0 = \alpha/5$.
- 2. Let $m = C_1(\log T)/\alpha_0^2$ with C_1 sufficiently large according to Lemma 2.3.
- 3. Initialize random $m \times n$ matrix A where the A_{ij} are i.i.d with $\mathbf{Pr}[A_{ij} = 1/\sqrt{m}] = \mathbf{Pr}[A_{ij} = -1/\sqrt{m}] = 1/2$.
- 4. For $i \in \{1, ..., m\}$, initialize a DP Continual Counter (Theorem 2.1) C[i] with privacy parameter $\rho' = \rho/m$.
- 5. When a stream element (a_t, s_t) arrives,
 - (a) Let $j = a_t \in [n]$.
 - (b) For each $i \in [m]$, update C[i] with $\sqrt{m}A_{ij}s_i \in \{-1, 0, 1\}$.
- 6. For each timestep $t \in [T]$,
 - (a) Report estimate $\frac{1}{m} \sum_{i=1}^{m} C[i]^2$.

Theorem 5.1. Let $0 < \alpha < 1$ and privacy parameter $\rho > 0$. There exists an ρ -zCDP algorithm which for all $t \in [T]$ provides an estimate $\hat{F}_2^{(t)}$ of $\|x^{(t)}\|_2^2$ such that with high probability in T,

$$|\hat{F}_2^{(t)} - \|x^{(t)}\|_2^2| \le \alpha \|x^{(t)}\|_2^2 + O\left(\frac{(\log T)^4}{\alpha^3 \rho}\right),$$

Moreover, the algorithm can be implemented in the streaming model where it uses $O((\log T)^2/\alpha^2)$ words of memory.

Note again that to obtain an algorithm which satisfies (ε, δ) -DP, it suffices to pick $\rho = O(\varepsilon^2/\log(1/\delta))$. The algorithm for behind this result is Algorithm 4. The proof for that it satisfies the desired properties can be found in Appendix D.

REFERENCES

- Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. *Journal of computer and System Sciences*, 66(4):671–687, 2003. †6
- Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. In *Proceedings of the twenty-eighth annual ACM symposium on Theory of computing*, pp. 20–29, 1996. †9
- Joel Daniel Andersson and Rasmus Pagh. A smooth binary mechanism for efficient private continual observation. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc. ↑1
- Joel Daniel Andersson, Monika Henzinger, Rasmus Pagh, Teresa Anna Steiner, and Jalaj Upadhyay. Continual counting with gradual privacy expiration. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=V6qdb1AgsM. \frac{1}{1}
- Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A framework for adversarial streaming via differential privacy and difference estimators. *Algorithmica*, 86(11):3339–3394, August 2024. ISSN 0178-4617. doi: 10.1007/s00453-024-01259-8. URL https://doi.org/10.1007/s00453-024-01259-8. ↑5
- Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and lower bounds. In *Proceedings, Part I, of the 14th International Conference on The-ory of Cryptography Volume 9985*, pp. 635–658, Berlin, Heidelberg, 2016. Springer-Verlag. ISBN 9783662536407. doi: 10.1007/978-3-662-53641-4_24. URL https://doi.org/10.1007/978-3-662-53641-4_24. ↑5, ↑6
- Clement Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for differential privacy. *Journal of Privacy and Confidentiality*, 12(1), Jul. 2022. †5
- J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. *Journal of Computer and System Sciences*, 18(2):143–154, 1979. ^{↑15}
- T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. *ACM Trans. Inf. Syst. Secur.*, 14(3), November 2011. ISSN 1094-9224. ↑1, ↑6
- Christopher A. Choquette-Choo, Arun Ganesh, Ryan McKenna, Hugh Brendan McMahan, J Keith Rush, Abhradeep Guha Thakurta, and Zheng Xu. (amplified) banded matrix factorization: A unified approach to private training. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a. URL https://openreview.net/forum?id=zEm6hF97Pz. \dagger1
- Christopher A. Choquette-Choo, H. Brendan McMahan, Keith Rush, and Abhradeep Thakurta. Multi-epoch matrix factorization mechanisms for private machine learning. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023b. †1
- Christopher A. Choquette-Choo, Krishnamurthy Dj Dvijotham, Krishna Pillutla, Arun Ganesh, Thomas Steinke, and Abhradeep Guha Thakurta. Correlated noise provably beats independent noise for differentially private learning. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=xHmCdSAruC. 1
- Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the streaming model. In *Proceedings of the forty-first annual ACM symposium on Theory of computing*, pp. 205–214, 2009. ↑20
- Rachel Cummings, Alessandro Epasto, Jieming Mao, Tamalika Mukherjee, Tingting Ou, and Peilin Zhong. Differentially private space-efficient algorithms for counting distinct elements in the turnstile model. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=037Pg2cm7y. 1, 13

```
Serguei Denissov, Hugh Brendan McMahan, J Keith Rush, Adam Smith, and Abhradeep Guha Thakurta. Improved differential privacy for SGD via optimal private linear operators on adaptive streams. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=i9XrHJoyLqJ. 1
```

- Krishnamurthy Dj Dvijotham, H Brendan McMahan, Krishna Pillutla, Thomas Steinke, and Abhradeep Thakurta. Efficient and near-optimal noise generation for streaming differential privacy. In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS), pp. 2306–2317. IEEE, 2024. ↑1
- Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In *Theory of cryptography conference*, pp. 265–284. Springer, 2006. †5
- Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy under continual observation. In *Proceedings of the forty-second ACM symposium on Theory of computing*, pp. 715–724, 2010. †1, †6
- Alessandro Epasto, Jieming Mao, Andres Munoz Medina, Vahab Mirrokni, Sergei Vassilvitskii, and Peilin Zhong. Differentially Private Continual Releases of Streaming Frequency Moment Estimations. In Yael Tauman Kalai (ed.), 14th Innovations in Theoretical Computer Science Conference (ITCS 2023), volume 251 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 48:1–48:24, Dagstuhl, Germany, 2023. Schloss Dagstuhl Leibniz-Zentrum für Informatik. ISBN 978-3-95977-263-1. URL https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.48. †1, †2, †3, †4, †9, †13
- P. Erdős. On a lemma of littlewood and offord. *Bulletin of the American Mathematical Society*, 51(12):898–902, December 1945. doi: 10.1090/S0002-9904-1945-08454-7. URL https://doi.org/10.1090/S0002-9904-1945-08454-7. 16
- Hendrik Fichtenberger, Monika Henzinger, and Lara Ost. Differentially Private Algorithms for Graphs Under Continual Observation. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman (eds.), 29th Annual European Symposium on Algorithms (ESA 2021), volume 204 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 42:1-42:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl Leibniz-Zentrum für Informatik. ISBN 978-3-95977-204-4. doi: 10.4230/LIPIcs.ESA.2021.42. URL https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.42. ↑1
- Hendrik Fichtenberger, Monika Henzinger, and Jalaj Upadhyay. Constant matters: fine-grained error bound on differentially private continual observation. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023. †1
- Monika Henzinger and Jalaj Upadhyay. Improved differentially private continual observation using group algebra. In *Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 2951–2970, 2025. doi: 10.1137/1.9781611978322.95. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611978322.95. †1
- Monika Henzinger, Jalaj Upadhyay, and Sarvagya Upadhyay. Almost tight error bounds on differentially private continual counting. In *Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 5003–5039, 2023. doi: 10.1137/1.9781611977554.ch183. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611977554.ch183. ↑1
- Monika Henzinger, A. R. Sricharan, and Teresa Anna Steiner. Private Counting of Distinct Elements in the Turnstile Model and Extensions. In Amit Kumar and Noga Ron-Zewi (eds.), Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024), volume 317 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 40:1–40:21, Dagstuhl, Germany, 2024a. Schloss Dagstuhl Leibniz-Zentrum für Informatik. ISBN 978-3-95977-348-5. doi: 10.4230/LIPIcs.APPROX/RANDOM. 2024.40. URL https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.40. 1, 13

```
Monika Henzinger, Jalaj Upadhyay, and Sarvagya Upadhyay. A unifying framework for differentially private sums under continual observation. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 995–1018, 2024b. doi: 10. 1137/1.9781611977912.38. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.38. ↑1
```

- James Honaker. Efficient use of differentially private binary trees. In *Theory and Practice of Differential Privacy (TPDP 2015), London, UK*, 2015. ↑1
- Palak Jain, Iden Kalemaj, Sofya Raskhodnikova, Satchit Sivakumar, and Adam Smith. Counting distinct elements in the turnstile model with differential privacy under continual observation. *Advances in Neural Information Processing Systems*, 36:4610–4623, 2023a. †1, †2, †3, †13
- Palak Jain, Adam Smith, and Connor Wagaman. Time-Aware Projections: Truly Node-Private Graph Statistics under Continual Observation*. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 127–145, Los Alamitos, CA, USA, May 2024. IEEE Computer Society. doi: 10.1109/SP54263.2024.00196. URL https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00196. ↑1
- Thathachar S Jayram and David P Woodruff. Optimal bounds for johnson-lindenstrauss transforms and streaming problems with subconstant error. *ACM Transactions on Algorithms (TALG)*, 9(3): 1–17, 2013. ↑2
- Peter Kairouz, Brendan Mcmahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng Xu. Practical and private (deep) learning without sampling or shuffling. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 5213–5225. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/kairouz21b.html. 1
- Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct elements problem. In *Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems*, PODS '10, pp. 41–52, New York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781450300339. doi: 10.1145/1807085.1807094. URL https://doi.org/10.1145/1807085.1807094. †3, †13
- Brendan McMahan and Abhradeep Thakurta. Federated learning with formal differential privacy guarantees. In *Google Research Blog*, 2022. †1
- Krishna Pillutla, Jalaj Upadhyay, Christopher A Choquette-Choo, Krishnamurthy Dvijotham, Arun Ganesh, Monika Henzinger, Jonathan Katz, Ryan McKenna, H Brendan McMahan, Keith Rush, et al. Correlated noise mechanisms for differentially private learning. *arXiv preprint* arXiv:2506.08201, 2025. ↑1
- Sofya Raskhodnikova and Teresa Anna Steiner. Fully dynamic graph algorithms with edge differential privacy. arXiv preprint arXiv:2409.17623, 2024. †1, †4
- Alfréd Rényi. On measures of entropy and information. In Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, 1961. URL https://api.semanticscholar.org/CorpusID:123056571. ↑5
- Shuang Song, Susan Little, Sanjay Mehta, Staal Amund Vinterbo, and Kamalika Chaudhuri. Differentially private continual release of graph statistics. *ArXiv*, abs/1809.02575, 2018. URL https://api.semanticscholar.org/CorpusID:52175677. 1
- Mark N Wegman and J Lawrence Carter. New hash functions and their use in authentication and set equality. *Journal of Computer and System Sciences*, 22(3):265–279, 1981. †20

A PRIOR WORK

In this section, we describe existing results on (ε, δ) -DP continual distinct elements and F_2 estimation. For simplicity, we ignore dependencies on the privacy parameters in the error bounds in following presentation.

Item-Level Privacy The recomputation technique of Jain et al. (2023b) can be used to get an algorithm for turnstile streams which achieves error $(1, \tilde{O}(T^{1/3}))$ by recomputing a private estimate of the number of distinct elements every $T^{1/3}$ timesteps and outputting the most recent estimate at every $t \in [T]$. We observe that this algorithm can be implemented in small space at the cost of a $(1+\eta)$ multiplicative factor using a standard streaming algorithm for distinct elements (e.g., the L_0 estimation algorithm of Kane et al. (2010)).

Jain et al. (2023a) initiated the specific study of the turnstile continual distinct elements problem. This and several follow-up works do not generally improve upon $T^{1/3}$ additive error but introduce error bounds parameterized by statistics of the stream instance. Therefore, for certain instances, these bounds may improve upon the worst-case. This work gives an algorithm achieving additive error $\tilde{O}(\sqrt{w})$ where w is the *flippancy* of the stream: the maximum number of times any one element switches between zero frequency and positive frequency. This algorithm requires O(T) space in order to estimate the flippancy. The authors show that $\tilde{\Omega}(\max\{\sqrt{w},T^{1/3}\})$ purely additive error is required. Henzinger et al. (2024a) consider a quantity K which is the *total flippancy*: the total number of times any element switches between zero and positive frequency. They show that $\tilde{\Theta}(K^{1/3})$ purely additive error is achievable and required.

Event-Level Privacy Event-level privacy is strictly weaker than item-level privacy. Therefore, algorithms for item-level privacy also apply to event-level privacy, while lower bounds for event-level privacy imply lower bounds for item-level privacy.

Jain et al. (2023a) show that for event-level privacy, a weaker lower bound $\tilde{\Omega}(\max\{\sqrt{w},T^{1/4}\})$ purely additive error is required. This leaves open an interesting gap between the upper bound of $T^{1/3}$ (which is achievable with item-level privacy) and lower bound of $T^{1/4}$. Henzinger et al. (2024a) show that even for event-level privacy, $\tilde{\Theta}(K^{1/3})$ is the best possible dependence on the total flippancy for purely additive error. Cummings et al. (2025) give an algorithm achieving $\left((1+\eta,\tilde{O}_{\eta}(\sqrt{v})\right)$ error where v is the occurrency: the maximum number of times an element is updated in the stream. While v < w, their algorithm has the benefit of using space $O_{\eta}(T^{1/3})$. While this work allows for multiplicative error, their goal was simply to achieve the existing bound of $T^{1/3}$ with low space (which necessitates some multiplicative error). In this work, we show that allowing (more) multiplicative error allows for significantly better additive error.

To our knowledge, there has been no prior work specifically studying continual estimation of other frequency moments in turnstile streams.

Insertion-Only Streams and the "Likes" Model When deletions are not allowed (or limited), the problem of continual distinct elements becomes significantly easier.

Epasto et al. (2023) study the problem of continual release of frequency moments (including the number of distinct elements, which is equivalent to the zeroth frequency moment) in the *insertion-only* model where stream updates must be increments with $s_t = 1$. They give an $(\varepsilon, 0)$ -DP algorithm achieving $((1 + \eta, O_{\varepsilon, \eta}(\log^2(T))))$ error algorithm using space poly $(\log T, 1/\eta, 1/\varepsilon)$. The authors also study F_2 estimation in insertion-only streams. They achieve $(1 + \eta, \tilde{O}_{\eta}(\log^7(T)))$ error using space $O(\log^2(T)/\eta^2)$.

Henzinger et al. (2024a) consider the "likes" model in which elements may only switch from having frequency zero or one. This is an intermediate model between insertion-only and strict turnstile streams. In this setting, polylog(T) additive error is necessary and achievable.

B PROOFS FOR SECTION 3

We first prove intermediate lemmas about the error and privacy of Algorithm 1.

Lemma B.1. Given privacy parameter ρ as input, Algorithm 1 preserves ρ -zCDP.

Proof. Consider the algorithm \mathcal{A} which, at every timestep t, reports the K+1 dimensional vector \hat{f}_t . Note that Algorithm 1 is simply a post-processing of this hypothetical algorithm. So, it suffices to consider the privacy of \mathcal{A} . Consider two neighboring data streams $X=(a_1,s_1),\ldots,(a_T,s_T)$ and $X'=(a'_1,s'_1),\ldots,(a'_T,s'_T)$ which are the same for all timesteps except for some $i\in[T]$ where $(a_i,s_i)\neq(a'_i,s'_i)$.

Note that the randomness of h is independent of the randomness used for privacy of all counters C[k]. Fix h and let $k_1 = \mathtt{lsb}(h(a_i))$ and $k_2 = \mathtt{lsb}(h(a_i'))$. The distribution over $(\hat{f}_t[k])_{t \in [T], k \in \{0, \dots, K\} \setminus \{k_1, k_2\}}$ is the same for \mathcal{A} run on X and X'. We will proceed by cases

Consider the case where $k_1 \neq k_2$, and consider the counters $C[k_1]$ and $C[k_2]$. The updates are the same to these counters under X and X' at all timesteps other than time i. At time i, under X, $C[k_1]$ receives update s_i and $C[k_2]$ receives update 0 while under X', $C[k_1]$ receives update 0 and 0 and 0 are considered as 0 and 0 and 0 and 0 are considered as 0 and 0 and 0 are considered as 0 and 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 and 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 and 0 are 0 and 0 are 0 and 0 are 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 are 0 and 0 are 0 are 0 are 0 are 0 are 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 are 0 are 0 are 0 and 0 are 0 are 0 are 0 are 0 and 0 are 0 are 0 are 0 are 0 and 0 are 0 ar

Consider the case where $k=k_1=k_2$. The updates to C[k] are the same for all timesteps except at the *i*th timestep where the update is s_i under X and s_i' under X'. By the privacy of C[k] given in Theorem 2.1, A satisfies $(\rho/2)$ -zCDP.

Lemma B.2. Consider any fixed timestep $t \in [T]$. If $\rho = O(\log^3 T)$ and the stream is in the strict turnstile model, then the output of Algorithm 1 satisfies

$$D_t/6\tau < \hat{D}_t < 4D_t + 1$$

with probability 2/3.

Proof. By the definition of τ , with probability 1/poly(T),

$$\tau \geq \max_{t \in [T], k \in \{0, \dots, K\}} \left| f_t[k] - \hat{f}_t[k] \right|.$$

For the rest of the analysis, assume that this upper bound holds.

Consider any $i \in \{0, \dots, K\}$. For a given element $a \in [n]$, $\mathbf{Pr}_h[\mathtt{lsb}(a) = i] = 2^{-(i+1)}$ and $\mathbf{Pr}_h[\mathtt{lsb}(a) \geq i] = 2^{-i}$.

We will first show that the estimate \hat{D}_t cannot be too small. It is always the case that $\ell \geq 0$, so $\hat{D}_t \geq 1$. Note that if $D_t \leq 6\tau$, then $\hat{D}_t \geq D_t/6\tau$ by default.

Consider the case that $D_t > 6\tau$, and let $i = \lfloor \log(D_t/6\tau) \rfloor$. Let Z_i be a random variable for the number of elements in S_t with least significant bits at least i. Z_i is distributed as $\text{Bin}(D_t, 2^{-i})$. Then, $\mu = \mathbf{E}[Z_i] \in [3\tau, 6\tau]$ and $\mathbf{Var}[Z_i] \leq \mu$. By Chebyshev's inequality,

$$\mathbf{Pr}_h[Z_i \le 2\tau] \le \mathbf{Pr}[|Z_i - \mu| \le \mu - 2\tau] \le \frac{\mathbf{Var}[Z_i]}{(\mu - 2\tau)^2} \le \frac{6}{\tau}.$$

This quantity is upper bounded by 1/100 as long as $\tau = \Omega(1)$ which is implied by $\rho = O(\log^3(T))$.

With probability at least 99/100, there exists an index $i \geq \lfloor \log(\frac{D_t}{6\tau}) \rfloor$ such that $Z_i > 2\tau$. As all elements in S_t have frequency at least 1 (this is where we use the strict turnstile model) and by the additive error given by Theorem 2.1, $\hat{f}_t[i] > \tau$. As this is a valid choice for ℓ , $\ell \geq \lfloor \log(\frac{D_t}{6\tau}) \rfloor$, so $\hat{D}_t = 2^\ell \geq \frac{D_t}{6\tau}$.

Next we will show that ℓ cannot be too large. Any empty bucket with $Z_i = 0$ will have $\hat{f}_t[i] \leq \tau$. Consider the case where $D_t > 0$ and let $j = \lceil \log(4D_t) \rceil$. Then,

$$\mathbf{Pr}_h \left[\sum_{i=j}^K Z_i = 0 \right] = \left(1 - 2^{-j} \right)^{D_t} \ge 1 - 2^{-j} D_t \ge 3/4.$$

Under this event, $\ell < j$, so $\hat{D}_t \le 4D_t$. Note that if $D_t = 0$, then $\sum_{i=0}^K Z_i = 0$ and $\hat{D}_t = 1$.

Union bounding over all events, with probability $1-1/\text{poly}(T)-1/100-1/100-1/4 \geq 2/3$, the following holds:

$$D_t/6\tau \le \hat{D}_t \le 4D_t + 1.$$

Proof of Theorem 3.1. We will separately prove that the subroutine is private, accurate, and has bounded space.

Privacy Algorithm 2 is a post-processing of the m copies of the subroutine Algorithm 1. By the privacy of the subroutine (Lemma B.1) and composition (Lemma 2.1), Algorithm 2 satisfies $m\rho' = \rho$ -zCDP.

Error Lemma B.2 bounds the error, for each timestep t, of each estimator \hat{D}_t^j by

$$D_t/6\tau \le \hat{D}_t \le 4D_t + 1$$

where $\tau = \Theta(\log^{1.5}(T)/\sqrt{\rho'}) = \Theta(\log^2(T)/\sqrt{\rho})$. This error bound holds with probability 2/3 under the condition that $\rho' = O(\log^3(T))$ which is equivalent to $\rho = O(\log^4(T))$.

By a standard argument, the median estimator will violate this error bound with probability $\exp(-\Omega(m)) = 1/\text{poly}(T)$ via a Hoeffding bound. The result follows by union bounding over all T timesteps.⁵

Space Each subroutine Algorithm 1 maintains $K+1=O(\log n)$ DP Continual Counters which each require $O(\log T)$ space due to Theorem 2.1. In the error analysis of Lemma B.2, we require that the hash function $h:[n]\to [n]$ satisfies certain pseudorandomness conditions. Specifically, we use the first and second moments of the random variables Z_i under full randomness, which is guaranteed by a pairwise independent hash family. Such a hash function can be stored in O(1) words of space (Carter & Wegman, 1979). So, a single subroutine uses $O(\log n \cdot \log T)$ words of space. The overall algorithm with m copies of the subroutine uses space $O(\log n \cdot \log^2(T))$.

⁵Technically, we prove the stronger result that the algorithm satisfies $(O(\log^2(T)/\sqrt{\rho}), 1)$ error. We choose to present the result as $(O(\log^2(T)/\sqrt{\rho}), O(\log^2(T)/\sqrt{\rho}))$ as we only get non-trivial multiplicative approximation of the number of distinct elements when it exceeds $O(\log^2(T)/\sqrt{\rho})$.

C PROOFS FOR SECTION 4

Both of the results of this section are based on a series of *domain reduction* lemmas, which allow us to reduce the size of the universe, while approximately preserving the number of distinct elements of the stream. The first lemma, Lemma C.1, gives anti-concentration bounds for the frequency of items when we randomly hash the domain to a smaller universe. It shows that if the reduced domain size is smaller than the number of non-zero entries of the frequency vector by polylogarithmic factors, then all the non-zero frequencies in the reduced domain are "sufficiently large." Conversely, Lemma C.2 shows that if the reduced domain is sufficiently larger than the number of non-zero entries, then any single coordinate in the reduced domain is likely to be zero.

These two lemmas for the foundation of the proof of Theorem 4.1. At a high level, we can reduce estimating the number of distinct elements to frequency estimation, which can be tracked up to polylogarithmic error via Theorem 2.1. To summarize, this is because if we reduce the domain to the "right size" (comparable to $||x_t||_0$ up to polylogarithmic factors), all domain elements will have large frequencies, and hence can be detected via Theorem 2.1.

Finally, the third domain reduction lemma, Lemma C.3, shows that the ℓ_0 norm of a vector is preserved very precisely, if we again map the domain to a suitably larger domain. This is the main technical tool in Theorem 4.2.

Lemma C.1 (Domain Reduction Lemma 1). Suppose n is sufficiently large. Let $h:[n] \to [m]$ and $g:[n] \to \{\pm 1\}$ be random functions. For a vector $x \in \mathbb{Z}^n$, define the mapping $f_{g,h}(x) \in \mathbb{Z}^m$ as

$$\forall i \in [m], \quad f_{h,g}(x)_i = \left| \sum_{j \in [n], h(j) = i} g(j) \cdot x_j \right|,$$

with an empty sum denoting 0. If $1 \le m \le \frac{\|x\|_0}{\ell}$ for some $\ell \ge 100 \log(n)$, then for every fixed $i \in [m]$, we have

$$\mathbf{Pr}_{h,g} \left[f_{h,g}(x)_i \ge \frac{\sqrt{\ell}}{10^5} \right] \ge 0.99.$$

Proof. Fix an $i \in [m]$. Let $S_i = \{j \in [n] \mid j \in \operatorname{supp}(x), h(j) = i\}$ denote the elements in the support of x that hash to the ith coordinate. Note that $|S_i| \sim \operatorname{Bin}\left(\|x\|_0, \frac{1}{m}\right)$. Noting that $\mathbf{E}_h[|S_i|] \geq \ell \geq 100 \log(n)$, we have that $|S_i| \geq \ell/2$ with probability at lest 0.999.

Now conditioned on $|S_i| \ge \ell/2$, we now that

$$\sum_{j \in S_i} g(j) \cdot x_j$$

is a sum of weighted Radamacher random variables, where each $|x_j| \ge 1$. Since g is a random function, we can assume without loss of generality that $x_j \ge 1$. Thus, the Erdos-Littlewood-Offord bound (Erdős, 1945), again conditioned on $|S_i| \ge \ell/2$, implies that

$$\sup_{|I| \le 1} \mathbf{Pr}_g \left[\sum_{j \in S_i} g(j) \cdot x_j \in I \right] \le \frac{50}{\sqrt{\ell}},$$

for any interval I of length at most 1. Thus,

$$\mathbf{Pr}_g \left[\sum_{j \in S_i} g(j) \cdot x_j \in \left[-\frac{\sqrt{\ell}}{1000}, \frac{\sqrt{\ell}}{1000} \right] \mid |S_i| \ge \ell/2 \right] \le \frac{\sqrt{\ell}}{5 \cdot 10^4} \cdot \frac{50}{\sqrt{\ell}} \le \frac{1}{1000}.$$

Therefore, we have

$$\mathbf{Pr}_{h,g} \left[f_{h,g}(x)_i \ge \frac{\sqrt{\ell}}{1000} \right] \ge \mathbf{Pr}_g \left[\sum_{j \in S_i} g(j) \cdot x_j \notin \left[-\frac{\sqrt{\ell}}{1000}, \frac{\sqrt{\ell}}{1000} \right] \mid |S_i| \ge \ell/2 \right] \cdot \mathbf{Pr}_h[|S_i| \ge \ell/2]$$

$$> 0.999^2 > 0.99,$$

as desired. \Box

Lemma C.2 (Domain Reduction Lemma 2). *Consider the same setting as* Lemma C.1 but suppose $m \ge \ell ||x||_0$. Then for every fixed $i \in [m]$, we have

$$\mathbf{Pr}_{h,g}[f_{h,g}(x)_i \neq 0] \leq 0.01.$$

Proof. We know $|S_i| \sim \text{Bin}(\|x\|_0, \frac{1}{m})$, so $\mathbf{E}_h[|S_i|] \leq \frac{1}{\ell}$. Thus, the probability that $|S_i| \neq 0$ is at most $1/\ell \leq 0.01$ by Markov's inequality. In the case that $S_i = \emptyset$, it is clear that $f_{h,g}(x)_i = 0$, as desired.

Lemma C.3 (Domain Reduction Lemma 3). Suppose n is sufficiently larger and let $h:[n] \to [m]$ be a random function as in Lemma C.1. For a vector $x \in \mathbb{R}^n$, define the mapping $f_n(x) \in \mathbb{R}^m$ as

$$\forall i \in [m], \quad f_h(x)_i = \sum_{j \in [n], h(j) = i} x_j,$$

with an empty sum denoting 0. If $m \ge ||x||_0 \cdot \ell \cdot \ell'$ for some $\ell, \ell' \ge 1$, then

$$\mathbf{Pr}_h \left[\|x\|_0 \ge \|f_h(x)\|_0 \ge \left(1 - \frac{1}{\ell}\right) \|x\|_0 \right] \ge 1 - \frac{1}{\ell'}.$$

Proof. It is clear that $||x||_0 \ge ||f_h(x)||_0$ holds deterministically, as f_h may have collisions. For the other direction, for $j \in \text{supp}(x)$, let X_j denote the indicator variable that no other $j' \in \text{supp}(x)$ satisfies h(j') = h(j). We have

$$\mathbf{Pr}_h[X_j = 1] = \left(1 - \frac{1}{m}\right)^{\|x\|_0 - 1} \ge 1 - \frac{1}{\ell \cdot \ell'}.$$

Thus,

$$\mathbf{E}_h \left[\sum_{j \in \operatorname{supp}(x)} X_j \right] \ge \left(1 - \frac{1}{\ell \cdot \ell'} \right) \|x\|_0,$$

so by Markov's inequality, we have

$$\mathbf{Pr}_h \left[\left(\|x\|_0 - \sum_{j \in \text{supp}(x)} X_j \right) \ge \frac{1}{\ell} \right] \le \frac{1}{\ell'},$$

as desired.

C.1 Domain Reduction Estimator Proof

Proof of Theorem 4.1. First we prove privacy. Consider just one fixed function f_{g_j,h_j}^i for a fixed i and j in Algorithm 3. For simplicity, we just denote this as f. Let $(a_1,s_1),\ldots,(a_T,s_T)$ and $(a'_1,s'_1),\ldots,(a'_T,s'_T)$ be two neighboring streams for either event level privacy. Then $(f(a_1),s_1),\ldots,(f(a_T),s_T)$ and $(f(a'_1),s'_1),\ldots,(f(a'_T),s'_T)$ are also neighboring streams (for the same privacy model). This is because if a single event changes in the stream from say (a_i,s_i) to (a'_i,s'_i) , then this also induces at most a single event change in the stream after mapping under f (note it could also induce no change if the domain elements a_i and a'_i already collide under f and $s_i = s'_i$).

Thus, Algorithm 3 keeps track of $O(\log^2 T)$ different frequency estimations, each of which are ρ' -zCDP where ρ' is an appropriate scaling of ρ . Then by composition via Lemma 2.1, outputting all the frequency estimates \tilde{f} under all functions f that we considered is ρ -zCDP, as desired. Note the rest of the algorithm proceeds by post-processing which is also private.

Now we argue for the approximation factor. Fix a timestep t. Assume for now that $\|x_t\|_0 \ge \Omega(\log^5(T)/\rho)$. The other case will be handled shortly. Now also consider one of our mappings f to $[2^i]$. Lemma C.1 tells us that if $2^i \le \|x_t\|_0/\ell$ for $\ell \ge 100\log(T)$, then for any fixed coordinate of the mapping f, that coordinate is larger than $\Omega(\sqrt{\ell})$ in absolute value with probability at least 99%. In particular, if we pick the largest i such that $2^i \le O(\|x_t\|_0/\log(T))$, then the coordinate wise median

of $f^i_{g_1,h_1}(x_t),\ldots,f^i_{g_{O(\log T)},h_{O(\log T)}}(x_t)$ satisfies that all of its coordinates are larger than $\Omega(\sqrt{\ell})$ in absolute value with probability 1-1/poly(T). In particular, this is still true if we consider the coordinates of \hat{F}^i and set $\ell=\Theta(\log^3(T)/\rho')$, since we have additive error $\tau=O(\log^{1.5}(T)/\sqrt{\rho'})$ on every coordinate of $f^i_{g_i,h_i}(x_t)$.

Conversely, now consider the case where $2^i \geq \ell \|x_t\|_0$ for the same choice of ℓ as above. Then the coordinate wise median of $f^i_{g_1,h_1}(x_t),\ldots,f^i_{g_{O(\log T)},h_{O(\log T)}}(x_t)$ satisfies that all of its coordinates are 0 with probability 1-1/poly(T), and so $\|\hat{F}^i(t)\|_{\infty} < C'\tau$ by picking C' sufficiently large.

To summarize, plugging in our value of ρ' and a union bound, we have that any i where $2^i \leq O(\|x_t\|_0 \rho/\log^5(T))$ satisfies $\|\hat{F}^i(t)\|_\infty \geq C'\tau$. Conversely, any i where $2^i \geq \Omega(\log^5(T)\|x_t\|_0/\rho)$ satisfies $\|\hat{F}^i(t)\|_\infty < C'\tau$. Thus, our choice of $i^*(t)$ is a multiplicative $O(\log^{10}(T)/\rho^2)$ approximation to $\|x_t\|_0$ with probability 1 - 1/poly(T).

Now we handle the case where $||x_t||_0 \le O(\log^5(T)/\rho)$. Here, the above paragraph implies that we won't return anything larger than 2^i where $2^i \ge \ell ||x_t||_0$ which is $O(\log^{10}(T)/\rho^2)$, which is can be subsumed into our additive error. This completes the proof.

C.2 REDUCTION PROOF

Proof of Theorem 4.2. For each $m_i=2^i$, we consider $O(\log T)$ maps $h_1^i,\ldots,h_{O(\log T)}^i$ mapping $[n]\to[m_i]$ as in Lemma C.3. Each such map defines a new stream in the reduced domain $[m_i]$. Now for each map, we would like to run algorithm $\mathcal A$. First, we need to check that our definition of neighboring streams is still valid under a mapping. The proof of this is the same as in Theorem 4.1. To summarize, the mapping will never add any new differences between neighboring streams (but it may actually reduce the number of differences if a collision occurs).

Thus, we run $O(\log^2(T))$ many copies of \mathcal{A} across all functions h_j^i . Naturally we must scale ρ down by $O(\log^2(T))$ so that our output remain private via composition of Lemma 2.1. In parallel, we also run another private algorithm \mathcal{B} with $O(\log^2(T)/\sqrt{\rho})$ multiplicative and 1 additive error (e.g. our algorithm from Theorem 3.1). Note that this also further requires scaling ρ down by constant factors. We also assume \mathcal{B} is correct throughout all steps T, which happens with probability 1 - 1/poly(T).

Now the purported algorithm \mathcal{A}' operates by post-processing the outputs of the two algorithms \mathcal{A} and \mathcal{B} (and thus satisfies the desired privacy guarantees). \mathcal{A}' does the following: at every time step t, it first uses \mathcal{B} to compute the smallest power of 2, denoted as m_t , which satisfies $O(\|x_t\|_0) \geq m_t \geq \Omega(\|x_t\|_0 \cdot \sqrt{\rho}/\log^2(T))$. Then it outputs the median of the answers released by \mathcal{A} , but only on the maps corresponding to the next power of 2, denoted as m_t' , which is larger than $O\left(\frac{m_t \log^2(T)}{\sqrt{\rho}\eta}\right)$ (so that m_t' satisfies the hypothesis of Lemma C.3 as we shall see shortly).

For correctness, fix a time step t. Lemma C.3 implies that as long as $m_t' \geq \Omega(\|x_t\|_0/\eta)$, which is true by our choice, then the number of distinct elements under a map $h: [n] \to [m_t']$ as in Lemma C.3 satisfies that $\|f_h(x)\|_0$ is a $1+\eta$ approximation to $\|x_t\|_0$ with probability 99%. In which case, the median answer across $O(\log T)$ independent copies of h is thus a $1+\eta$ approximation with probability 1-1/poly(T). However, each of our calls of $\mathcal A$ gives additive error $\left(\frac{\|x_t\|_0}{\eta}\right)^{c_1} \cdot \text{poly}(\log(T), 1/\rho)$, so our median output is a $1+\eta$ multiplicative and $\left(\frac{\|x_t\|_0}{\eta}\right)^{c_1} \cdot \text{poly}(\log(T), 1/\rho)$ additive error estimate. Since $c_1 < 1$, $\|x_t\|_0^{c_1}$ can be absorbed into the multiplicative error, if $\|x_t\|_0$ is sufficiently larger than $\text{poly}(\log(T), 1/\eta, 1/\rho)$. This completes the proof.

D Proofs for Section 5

D.1 LOWER BOUND

Proof of Lemma 5.1. Let S be the stream where all stream elements are $(a_i,s)=(1,1)$ and then S' be the neighboring stream which is identical to S except that $(a_T,s_T)=(2,1)$. Then, $F_2^{(T)}(S)=T^2$ and $F_2^{(T)}(S')=(T-1)^2+1^2$ so that, $F_2^{(T)}(S)-F_2^{(T)}(S')=2T-2$. Define $\lambda=\frac{F_2^{(T)}(S)+F_2^{(T)}(S')}{2}$ and $p=\frac{1-\delta}{e^\varepsilon+1}$. If $\mathbf{Pr}[\mathcal{M}(S)\leq\lambda]\geq p$, the result follows with $S_0=S$, so assume that $\mathbf{Pr}[\mathcal{M}(S)\leq\lambda]< p$. Then, by differential privacy,

$$\mathbf{Pr}[\mathcal{M}(S') > \lambda] \ge \frac{\mathbf{Pr}[\mathcal{M}(S) > \lambda] - \delta}{e^{\varepsilon}} > \frac{1 - p - \delta}{e^{\varepsilon}} = p,$$

so the result follows with $S_0 = S'$.

D.2 F_2 ESTIMATION ALGORITHM

Proof of Theorem 5.1. The algorithm appears as Algorithm 4. Let $\alpha_0>0$ to be fixed later and let A be the random matrix of the Johnson-Lindenstrauss Lemma 2.3 with $m\geq C_1(\log T)/\alpha_0^2$ with C_1 sufficiently large such that with high probability in T, it holds for all $t\in [T]$ simultaneously that if $y^{(t)}=Ax^{(t)}$, then $\left|\|y^{(t)}\|_2^2-\|x^{(t)}\|_2^2\right|\leq \alpha_0\|x^{(t)}\|_2^2$. Our algorithm uses a DP-algorithm for continual counting to estimate each entry of $y^{(t)}$. To see why this is possible, fix i and denote by A_i the ith row of A. Then

$$(Ax^{(t)})_i = A_i x^{(t)} = \sum_{j=1}^n A_{ij} x_t[j].$$

Since the entries of A are $\pm 1/\sqrt{m}$, it follows that changing a single $x_t[j]$ by ± 1 will change the count $(Ax^{(t)})_i$ by at most $O(1/\sqrt{m})$. To be precise, define b_1, \ldots, b_T by

$$b_t = \sum_{j=1}^n A_{ij} x_t[j] - \sum_{j=1}^n A_{ij} x_{t-1}[j] = \sum_{j=1}^n A_{ij} (x_t[j] - x_{t-1}[j]) \in \{-1/\sqrt{m}, 0, 1/\sqrt{m}\},\$$

so that $y_t^i := \sum_{s=1}^t b_s = \sum_{j=1}^n A_{ij} x_t[j]$. Then, if an adjacent dataset is obtained by replacing a single input (a_{t_0}, s_{t_0}) with (a_{t_0}', s_{t_0}') , then defining the b_t' analogously for the neighboring dataset, it is easy to check that $b_t = b_t'$ for $t \neq t_0$. For some choice of privacy parameter ρ_0 , we may thus apply Theorem 2.1 (appropriately rescaled by $1/\sqrt{m}$), to obtain estimates \hat{y}_t^i of y_t^i , such that $\max_{t \in [T]} |y_t^i - \hat{y}_t^i| = O(\frac{(\log T)^{1.5}}{\sqrt{\rho_0 m}})$ with high probability in T and such that outputting these estimates is ρ_0 -zCDP.

We are not quite done as we want to release estimates of $\sum_{s=1}^t b_t = \sum_{j=1}^n A_{ij} x_t[j]$ for each fixed $i \in [m]$. For this, we use the analysis above with the privacy parameter ρ_0 chosen such that when employing advanced composition over all m releases, the final algorithm is ρ -zCDP. By Lemma 2.1, it follows that we can put $\rho_0 = \rho/m$ to achieve that over the m releases, the final algorithm is ρ -zCDP. The maximum final error of a single estimate is thus $O(\frac{(\log T)^{1.5}}{\sqrt{\rho}})$. Denote by λ this upper bound on the maximum error.

Now since the above algorithm for releasing all estimates \hat{y}_t^i is ρ -DP, by post-processing, we may release any function of these estimates without violating privacy. Our final estimate of $\|x^{(t)}\|_2^2$ is simply $\sum_{i \in [m]} (\hat{y}_t^i)^2$. Below, we analyze the accuracy of this estimator.

Accuracy Using that $(\hat{y}_t^i)^2 - (y_t^i)^2 = (\hat{y}_t^i - y_t^i)(\hat{y}_t^i + y_t^i)$, and our bound $|\hat{y}_t^i - y_t^i| \le \lambda$, we have that

$$\left| \sum_{i \in [m]} (\hat{y}_t^i)^2 - \sum_{i \in [m]} (y_t^i)^2 \right| \le \lambda \sum_{i \in [m]} |\hat{y}_t^i + y_t^i|$$

Let $S_1=\{i\in[m]:|y_t^i|\leq \lambda/\alpha_0\}$ and $S_2=[m]\setminus S_1$. Note that $|y_t^i|\leq \lambda/\alpha_0$ implies that $|y_t^i+\hat{y}_t^i|\leq \lambda(1+1/\alpha_0)\leq 2\lambda/\alpha_0$. Thus,

$$\sum_{i \in S_1} |\hat{y}_t^i + y_t^i| \le \frac{2|S_1|\lambda}{\alpha_0}.$$

Moreover, $|y_t^i| > \lambda/\alpha_0$ implies that $|\hat{y}_t^i + y_t^i| \le 2|y_t^i| + \lambda \le 2\frac{\alpha_0}{\lambda}(y_t^i)^2 + \lambda$, and so,

$$\sum_{i \in S_2} |\hat{y}_t^i + y_t^i| \le \frac{2\alpha_0}{\lambda} ||y_t||_2^2 + \lambda |S_2|.$$

Combining these bounds, we get that

$$\left| \sum_{i \in [m]} (\hat{y}_t^i)^2 - \sum_{i \in [m]} (y_t^i)^2 \right| \le 2\alpha_0 ||y_t||_2^2 + \frac{2\lambda^2 m}{\alpha_0}.$$

It thus follows from the high probability guarantee of the JL map and the triangle inequality that,

$$\left| \sum_{i \in [m]} (\hat{y}_t^i)^2 - \|x^{(t)}\|_2^2 \right| \le 2\alpha_0 \|y_t\|_2^2 + \frac{2\lambda^2 m}{\alpha_0} + \alpha_0 \|x^{(t)}\|_2^2 \le (2\alpha_0 (1 + \alpha_0) + \alpha_0) \|x^{(t)}\|_2^2 + \frac{2\lambda^2 m}{\alpha_0}.$$

Picking $\alpha_0 = \alpha/5$, the above bound is at most $\alpha \|x^{(t)}\|_2^2 + \frac{10\lambda^2 m}{\alpha}$. Plugging in the values of m and λ gives the desired result.

Space Usage It is well known that the dimensionality reduction matrix A satisfies the guarantee of Lemma 2.3 even if the entries are only $O(\log T)$ independent (Clarkson & Woodruff, 2009). To populate the entries of A, we can for example use k-independent hashing (Wegman & Carter, 1981) which when implemented as polynomials of degree $k = O(\log T)$, requires $O(\log T)$ words of memory. We additionally, need to store the m counters for continual counting. By Theorem 2.1, this can be achieved with $O(m \log T) = O((\log T)^2/\alpha^2)$ words of memory.