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ABSTRACT

Hindsight goal relabeling has become a foundational technique for multi-goal
reinforcement learning (RL). The idea is quite simple: any arbitrary trajectory
can be seen as an expert demonstration for reaching the trajectory’s end state.
Intuitively, this procedure trains a goal-conditioned policy to imitate a sub-optimal
expert. However, this connection between imitation and hindsight relabeling is
not well understood. Modern imitation learning algorithms are described in the
language of divergence minimization, and yet it remains an open problem how to
recast hindsight goal relabeling into that framework. In this work, we develop a
unified objective for goal-reaching that explains such a connection, from which we
can derive goal-conditioned supervised learning (GCSL) and the reward function
in hindsight experience replay (HER) from first principles. Experimentally, we find
that despite recent advances in goal-conditioned behaviour cloning (BC), multi-goal
Q-learning can still outperform BC-like methods; moreover, a vanilla combination
of both actually hurts model performance. Under our framework, we study when
BC is expected to help, and empirically validate our findings. Our work further
bridges goal-reaching and generative modeling, illustrating the nuances and new
pathways of extending the success of generative models to RL.

1 INTRODUCTION

Goal reaching is an essential aspect of intelligence in sequential decision making. Unlike the
conventional formulation of reinforcement learning (RL), which aims to encode all desired behaviors
into a single scalar reward function that is amenable to learning (Silver et al., 2021), goal reaching
formulates the problem of RL as applying a sequence of actions to rearrange the environment into a
desired state (Batra et al., 2020). Goal-reaching is a highly flexible formulation. For instance, we
can design the goal-space to capture salient information about specific factors of variations that we
care about (Plappert et al., 2018); we can use natural language instructions to define more abstract
goals (Lynch & Sermanet, 2020; Ahn et al., 2022); we can encourage exploration by prioritizing
previously unseen goals (Pong et al., 2019; Warde-Farley et al., 2018; Pitis et al., 2020); and we
can even use self-supervised procedures to naturally learn goal-reaching policies without reward
engineering (Pong et al., 2018; Nair et al., 2018b; Zhang et al., 2021; OpenAI et al., 2021).

Reward is not enough. Usually, rewards are manually constructed, either through laborious reward
engineering, or from task-specific optimal demonstrations, neither of which is a scalable solution.
How can RL agents learn useful behaviors from unlabeled reward-free trajectories, similar to how
NLP models such as BERT (Devlin et al., 2018) and GPT-3 (Brown et al., 2020) are able to learn
language from unlabeled text corpus? Goal reaching is a promising paradigm for unsupervised
behavior acquisition, but it is unclear how to write down a well-defined objective for goal-conditioned
policies, unlike language models that just predict the next token. This paper aims to define such an
objective that unifies many prior approaches and strengthens the foundation of goal-conditioned RL.

We start from the following observation: hindsight goal relabeling (Andrychowicz et al., 2017) can
turn an arbitrary trajectory into a sub-optimal expert demonstration. Thus, goal-conditioned RL might
be doing a special kind of imitation learning. Currently, divergence minimization is the de facto way
to describe imitation learning methods (Ghasemipour et al., 2020), so we should be able to recast
hindsight goal relabeling into the divergence minimization framework. On top of that, to tackle the
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Figure 1: A unified objective for goal-reaching (see equation equation 14 for more details).

sub-optimality of hindsight-relabeled trajectories, we should explicitly maximize the probability of
reaching the desired goal. Following these intuitions, we derive the reward function used in HER
from first principles, as well as other behaviour cloning (BC) like methods such as GCSL (Ghosh
et al., 2019) and Hindsight BC (HBC) (Ding et al., 2019).

Experimentally, we show that multi-goal Q-learning based on HER-like rewards, when carefully
tuned, can still outperform goal-conditioned BC (such as GCSL / HBC). Moreover, a vanilla com-
bination of multi-goal Q-learning and BC (HER + HBC), supposedly combining the best of both
worlds, in fact hurts performance. We utilize our unified framework to analyze when a BC loss could
help, and propose a modified algorithm named Hindsight Divergence Minimization (HDM) that uses
Q-learning to account for the worst while imitating the best. HDM avoids the pitfalls of HER +
HBC and improves policy success rates on a variety of self-supervised goal-reaching environments.
Additionally, our framework reveals a largely unexplored design space for goal-reaching algorithms
and potential paths of importing generative modeling techniques into multi-goal RL.

2 REINFORCEMENT LEARNING AND GENERATIVE MODELING

2.1 THE REINFORCEMENT LEARNING (RL) PROBLEM

We first review the basics of RL and generative modeling. A Markov Decision Process (MDP)
is typically parameterized by (S, A, ρ0, p, r): a state space S, an action space A, an initial state
distribution ρ0(s), a dynamics function p(s′ | s, a) which defines the transition probability, and a
reward function r(s, a). A policy function µ defines a probability distribution µ : S ×A → R+. For
an infinite-horizon MDP, given the policy µ, and the state distribution at step t (starting from ρ0 at
t = 0), the state distribution at step t+ 1 is given by:

ρt+1
µ (s′) =

∫
S×A

p(s′ | s, a)µ(a | s)ρtµ(s)dsda (1)

The state visitation distribution sums over all timesteps via a geometric distribution Geom(γ):

ρµ(s) = (1− γ) ·
∞∑
t=0

γt · ρtµ(s) (2)

However, the trajectory sampling process does not happen in this discounted manner, so the discount
factor γ ∈ (0, 1) is often absorbed into the cumulative return instead (Silver et al., 2014):

J (µ) =
1

1− γ

∫
S
ρµ(s)

∫
A
µ(a | s)r(s, a)dads = E ρ0(s0)µ(a0|s0)

p(s1|s0,a0)µ(a1|s1)···

[ ∞∑
t=0

γtr(st, at)

]
(3)

From 1 and 2, we also see that the future state distribution p+ of policy µ, defined as a geometrically
discounted sum of state distribution at all future timesteps given current state and action, is given by

2



Deep Reinforcement Learning Workshop, NeurIPS 2022

the following recursive relationship (Eysenbach et al., 2020b; Janner et al., 2020):

p+µ (s
+ | s, a) = (1− γ)p(s+ | s, a) + γ

∫
S×A

p(s′ | s, a)µ(a′ | s′)p+µ (s+ | s′, a′)ds′da′ (4)

In multi-goal RL, an MDP is augmented with a goal space G, and we learn a goal-conditioned policy
π : S × G ×A → R+. Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) gives the
agent a reward of 0 when the goal is reached and −1 otherwise, and uses hindsight goal relabeling to
increase learning efficiency of goal-conditioned Q-learning by replacing the initial behavioral goals
with achieved goals (future states within the same trajectory).

2.2 IMITATION LEARNING (IL) AS DIVERGENCE MINIMIZATION

We first review f -divergence between two probability distributions P and Q and its variational bound:

Df (P ∥ Q) =

∫
X

q(x)f

(
p(x)

q(x)

)
dx ≥ sup

T∈T
Ex∼P [T (x)]− Ex∼Q[f

∗(T (x))] (5)

where f is a convex function such that f(1) = 0, f∗ is the convex conjugate of f , and T is an arbitrary
class of functions T : X → R. This variational bound was originally derived in (Nguyen et al., 2010)
and was popularized by GAN (Goodfellow et al., 2014; Nowozin et al., 2016) and subsequently by
imitation learning (Ho & Ermon, 2016; Fu et al., 2017; Finn et al., 2016; Ghasemipour et al., 2020).
The equality holds true under mild conditions (Nguyen et al., 2010), and the optimal T is given by
T ∗(x) = f ′(p(x)/q(x)). The canonical formulation of imitation learning follows (Ho & Ermon,
2016; Ghasemipour et al., 2020), where ρexp(s, a) is from the expert:

min
µ

Df (ρ
exp(s, a) ∥ ρµ(s, a)) ⇔ min

µ
max
T

Eρexp(s,a)[T (s, a)]− Eρµ(s,a)[f
∗(T (s, a))] (6)

Because of the policy gradient theorem (Sutton et al., 1999), the policy µ needs to optimize the
cumulative return under its own trajectory distribution ρµ(s, a) with the reward being r(s, a) =
f∗(T (s, a)). Under this formulation, Jensen-Shannon divergence leads to GAIL (Ho & Ermon,
2016), reverse KL leads to AIRL (Fu et al., 2017). Note that f can in principle be any convex function
(we can satisfy f(1) = 0 by simply adding a constant).

2.3 ENERGY-BASED MODELS (EBM)

An energy-based model (EBM) is defined by pθ(x) =
exp(−Eθ(x))

Z(θ)
, where Eθ : RD → R is

the energy function and Z(θ) =
∫
X exp(−Eθ(x))dx is the partition function. The gradient of the

log-likelihood log pθ(x) w.r.t. θ (known as contrastive divergence (Hinton, 2002)) can be expressed
as :

∂ log pθ(x)

∂θ
= Epθ(x′)

[
∂Eθ(x

′)

∂θ

]
− ∂Eθ(x)

∂θ
(7)

Sampling from pθ(x) can be difficult, as Langevin dynamics is often required (Welling & Teh, 2011;
Du & Mordatch, 2019; Grathwohl et al., 2019). Alternatively, EBMs can be trained via Noise
Contrastive Estimation (NCE) (Gutmann & Hyvärinen, 2012; Mnih & Kavukcuoglu, 2013; Gao et al.,
2020; Rhodes et al., 2020), which assumes access to a "noise" distribution pn(x) and learns energy
functions through density ratio estimation. Let sθ(x) = −Eθ(x)− logZθ (Mnih & Teh, 2012). NCE
learns a classifier that distinguishes the data distribution p(x) from noise pn(x), where noise samples
are k times more frequent (Mnih & Kavukcuoglu, 2013; Mikolov et al., 2013):

p(D = 1 | x) = pθ(x)/(pθ(x) + k · pn(x)) = σ(sθ(x)− log pn(x)− log k) (8)
To be more concise, we denote ∆θ(x, k) = sθ(x)− log pn(x)− log k. Gradients of the weighted
binary cross entropy loss asymptotically approximate contrastive divergence (7) (Mnih & Teh, 2012):

d

dθ

[
Ep(x)[log σ(∆θ(x, k))] + k · Epn(x)[log(1− σ(∆θ(x, k))]

]
k→∞−−−−→ ∂ log pθ(x)

∂θ
(9)

Closely related to NCE is the more recent InfoNCE loss (Van den Oord et al., 2018) which has gained
popularity in the contrastive learning setting (Chen et al., 2020; He et al., 2020); we can interpret
k in NCE as the batch size of negative samples in InfoNCE. In summary, NCE gives EBM a more
tractable way to maximize data likelihood.
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3 GRAPHICAL MODELS FOR HINDSIGHT GOAL RELABELING

Consider the setting: given an environment ξ = (ρ0(s), p(s′ | s, a), ρ+(g)) where we generate a
dataset of trajectories D = {(s0, a0, s1, a1, · · · )} by sampling from the initial state distribution ρ0(s),
an unobserved actor policy µ(a | s), and the dynamics p(s′ | s, a). We aim to train a goal-conditioned
policy π(a | s, g) from this arbitrary dataset with relabeled future states as the goals. ρ+(g) is the
behavioral goal distribution assumed to be given apriori by the environment. To recast the problem
of goal-reaching as imitation learning equation 6, we need to set up an f -divergence minimization
where we define the target (expert) distribution and the policy distribution we want to match.

s a

s+

ξ

µ

Figure 2: ρµ(s, a)p+µ (s
+ | s, a)

hindsight-relabeled distribution

s a

gπ

ξ

µ

Figure 3: ρ+(g)ρµ(s)π(a | s, g)
(used in HBC / GCSL)

s a

gπ

ξ

µ

Figure 4: ρ+(g)ρπ(s, a | g)
(used in HER / HDM)

The training signal comes from factorizing the joint distribution of state-action-goal differently.
For the relabeled target distribution, we assume an unconditioned actor µ generating a state-action
distribution at first, with the goals coming from the future state distribution equation 4 conditioned
on the given state and action. For the goal-conditioned policy distribution, behavior goals are given
apriori, and the state-action distribution is generated conditioned on the behavioral goals. Thus, the
target distribution (see Figure 2) for states, actions, and hindsight goals is:

pµ(s, a, s
+) = ρµ(s, a)p

+
µ (s

+ | s, a) (10)

Note that p+µ is given by equation equation 4, and ρµ(s, a) is similar to ρexp(s, a) in equation
equation 6. In the fashion of behavioral cloning (BC), if we do not care about matching the states, we
can write the joint distribution we are trying to match as (see Figure 3):

pBC
π (s, a, g) = ρ+(g)ρµ(s)π(a | s, g) (11)

We can recover the objective of Hindsight Behavior Cloning (HBC) (Ding et al., 2019; Eysenbach
et al., 2020a) and Goal-Conditioned Supervised Learning (GCSL) Ghosh et al. (2019) via minimizing
a KL-divergence:

min
π

DKL

(
pµ(s, a, s

+) ∥ pBC
π (s, a, g)

)
⇔ min

π
Eρµ(s,a)p

+
µ (s+|s,a)[− log π(a | s, g)] (12)

In many cases, matching the states is more important than matching state-conditioned actions (Ross
et al., 2011; Ghasemipour et al., 2020). The joint distribution for states, actions, behavioral goals for
π (see Figure 4) is:

pπ(s, a, g) = ρ+(g)ρπ(s, a | g) (13)

Figure 5: the future state distribution
p+π (s

+ | s, a) of a goal-conditioned policy
when starting from a state s visited by µ.

However, it is important to recognize that even after adding
this state-matching part, there is still a missing component
of the objective. Divergence minimization encourages the
agent to stay in the "right" state-action distribution given
the benefit of hindsight, but we still need the policy to
actually hit the goal (see Figure 1). When we condition
the policy on a goal, we should maximize the likelihood of
seeing that goal in the future state distribution (see Figure
5). Together with a maximum entropy regularization on
the policy H(π) (Ho & Ermon, 2016; Schulman et al.,
2017), we propose the following goal-reaching objective:

min
π

Df

(
ρ+f

f
(g)ρπ(s, a|g) ∥ p+µ (s

+|s, a)ρµ(s, a)
)

︸ ︷︷ ︸
(a) f -divergence term

−βE ρ+(g)
ρµ(s)

π(a|s,g)

[log p+π (g|s, a)]

︸ ︷︷ ︸
(b) goal likelihood term

−λf
f
H(π)︸ ︷︷ ︸

(c) entropy

(14)
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Compared to equation 12 and equation 6, the f -divergence term equation 14(a) swaps the order
between the expert and the policy. The coefficient β controls the importance of "hitting the goal".
This incentive is already implicit in hindsight-relabeled data, as in many cases a BC objective alone
can learn to hit the goal as well (Ding et al., 2019; Ghosh et al., 2019; Lynch et al., 2019; Jang et al.,
2021). However, hindsight-relabeled trajectories are often sub-optimal demonstrations: not every
action is acting towards achieving the goal. Thus, maximizing the likelihood of achieving the goal is
crucial, and it plays a key role in deriving the reward function of HER (Andrychowicz et al., 2017).

4 BRIDGING GOAL-REACHING AND GENERATIVE MODELING

In this section, we study how to optimize the proposed unifying objective 14. We show that the
Q-function trained for goal-reaching Qθ(s, a, g) is implicitly doing generative modeling. Its temporal
difference is modeling the density ratio between the hindsight-relabeled distribution and the goal-
conditioned behavioral distribution. It also approximates an energy-based model for future-state
distribution when marginalized over the goal distribution. In section 4.1, we demonstrate how goal-
conditioned Q-learning does divergence minimization (equation 14(a)). In section 4.2, we show
how Q-functions can define an EBM for cumulative future states, which in turn allows the policy
to maximize goal likelihood (equation 14 b+c). In section 4.3, we show that combining the derived
results yields the HER reward. In section 4.4, we study when a BC loss can help by analyzing the
loss terms being left out by the HER reward.

4.1 DIVERGENCE MINIMIZATION WITH GOAL-CONDITIONED Q-LEARNING

This section decomposes equation 14(a). We start with the f -divergence bound from equations
equation 5 and equation 6.

Df (pπ(s, a, g) ∥ pµ(s, a, s
+)) = max

T
E p(g)
ρπ(s,a|g)

[T (s, a, g)]− E ρµ(s,a)

p+
µ (s+|s,a)

[f∗(T (s, a, s+))] (15)

Now we negate T to get r(s, a, g) = −T (s, a, g), and the divergence minimization problem becomes:

max
π

min
r

E ρµ(s,a)

p+
µ (s+|s,a)

[f∗(−r(s, a, s+))] + E p(g)
ρπ(s,a|g)

[r(s, a, g)] (16)

We can interpret r as a GAIL-style (Ho & Ermon, 2016) discriminator or reward. However, we
aim to derive a discriminator-free learning process that directly trains the Q-function corresponding
to this reward Qθ(s, a, g) = r(s, a, g) + γ · PπQ(s, a, g) where Pπ is the transition operator:
PπQ(s, a, g) = Ep(s′|s,a)π(a′|s′,g)[Qθ(s

′, a′, g)]. Re-writing the equation equation 16 w.r.t Q:

min
Q

E ρµ(s,a)

p+
µ (s+|s,a)

[f∗(−(Qθ − γ · PπQ)(s, a, s+))] + E p(g)
ρπ(s,a|g)

[(Qθ − γ · PπQ)(s, a, g)] (17)

A similar change-of-variable has been explored in the context of offline RL (Nachum et al., 2019a;b)
and imitation learning (Kostrikov et al., 2019; Zhu et al., 2020); we may call those methods the
DICE (Nachum & Dai, 2020) family. The major pain point of DICE-like methods is that they require
samples from the initial state distribution ρ0(s) (Garg et al., 2021). Here, the following lemma shows
that in the goal-conditioned case, we can use arbitrary offline trajectories to evaluate the expected
rewards under goal-conditioned online rollouts:
Lemma 4.1 (Online-to-offline transformation for goal reaching). Given a goal-conditioned policy
π(a | s, g), its corresponding Q-function Qπ(s, a, g), and arbitrary state-action visitation distribution
ρµ(s, a) of another policy µ(a | s), the expected temporal difference for online rollouts under π is:

Ep(g)ρπ(s,a|g)[(Q
π − γ · PπQπ)(s, a, g)] = Ep(g)ρµ(s,a)π(ã|s,g)[Q

π(s, ã, g)− γ · PπQπ(s, a, g)]

Using Lemma 4.1, the objective in equation 16 now becomes:

max
π

min
Q

Eρµ(s,a)p
+
µ (s+|s,a)

p(g),π(ã|s,g)

[
f∗(−(Qθ − γPπQ)(s, a, s+)) +Qθ(s, ã, g)− γPπQ(s, a, g)

]
(18)

The function f∗ is the convex conjugate of f in f -divergence. We can pick almost any convex
function as f∗ as long as ((f∗)∗)(1) = 0. For instance, in the tradition of Q-learning, we can use:

f∗(x) = (x+ r)2/2 + c (19)
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where r and c are constants. Its convex conjugate is f(x) = (f∗)∗(x) = x2/2 − rx − c. For any
r, we can always pick a c that will ensure f(1) = (f∗)∗(1) = 0, and c does not affect the learning
process. In summary, we have derived a way to minimize the first term Df (pµ(s, a, s

+) ∥ pπ(s, a, g))
in equation 14 directly using goal-conditioned Q-learning.

4.2 EBM FOR PREDICTING (AND CONTROLLING) THE FUTURE

In this section, we study how to maximize the goal likelihood term equation 14(b) by defining an
energy-based model (EBM) to predict the future-state distribution for a policy, which the policy can
in turn optimize to control the future-state distribution. We start with the Bayes rule:

p+π (s
+ | s, a) = ρ+(s+)ρπ(s, a | s+)

Eρ+(g)[ρπ(s, a | g)]
(20)

This relationship reflects that, if we define an EBM for ρπ(s, a | s+) = exp q(s, a, s+)/Zq(s
+)

where Zq(s
+) =

∫
S×A exp q(s, a, s+)dsda, then we can contrast the dynamics defined in equation 4

with the marginal goal distribution defined in equation 13. In a slightly overloaded notation, we will
now define a Q-function as Qθ(s, a, g) = q(s, a, g)− logZq(g). For now, we shall assume that this
Q-function is separate from the one defined in equation 18. Rearranging equation 20 , and setting
ρ+(g) to be ρ+(s+), we see the density ratio can be expressed as:

p+π (s
+ | s, a)

ρ+(s+)
=

ρπ(s, a | s+)
Eρ+(g)[ρπ(s, a | g)]

=
expQθ(s, a, s

+)

Eρ+(g)[expQθ(s, a, g)]
(21)

Lemma 4.2 (Gradient of the noise-contrastive term in energy-based goal-reaching). Given the
following definition for the logit of a NCE-like binary classifier, with ρ+(g) = ρ+(g):

∆θ(s, a, g, k) = Qθ(s, a, g)− logEρ+(g)[expQθ(s, a, g)]− log k (22)

The gradient of the negative NCE term in the density ratio estimation approaches zero as k → ∞:

d

dθ
Eρµ(s,a)ρ+(g)

[
k · log

(
1− σ(∆θ(s, a, g, k))

)]
k→∞−−−−→ 0

As for the positive classification term in NCE equation 9, we can make a similar argument that
∇θ log(1 + exp∆θ(s, a, s

+, k))
k→∞−−−−→ 0 (see appendix B.2). We have:

argmax
Q

Eρµ(s,a)

[
Ep+

π (s+|s,a)[Qθ(s, a, s
+)]− logEρ+(g)[expQθ(s, a, g)]

]
(23)

To optimize the above objective on arbitrary behaviour data, we have to consider the fact that we
do not have complete access to the distribution of "positive samples" p+π (s

+ | s, a), as sampling
directly from this distribution requires on-policy rollouts. Utilizing importance weights to learn from
off-policy data while accounting for hindsight bias yields the following loss minimization instead:

Eρµ(s,a)

{
−(1− γ) · Ep(s′|s,a)[Qθ(s, a, s

′)]︸ ︷︷ ︸
Learning single-step dynamics in Q

+Eρ+(g)p(s′|s,a)[w(s, a, s
′, g) ·Qθ(s, a, g)]︸ ︷︷ ︸

Learning multi-step dynamics in Q

}
(24)

where w(s, a, s′, g) contrasts the goals that will likely be met by the agent beyond a single step of
dynamics p(s′ | s, a) in the future with other random goals that the agent has seen in the past:

w(s, a, s′, g) =
expQ(s, a, g)

Eρ+(g)[expQ(s, a, g)]︸ ︷︷ ︸
Pushing down the likelihood of the marginal

−γ ·
∑

a expQ(s′, a, g)/|A|
Eρ+(g)[

∑
a expQ(s′, a, g)/|A|]︸ ︷︷ ︸

Pushing up the likelihood of the conditional

(25)

See Appendix B.3 for a full derivation.

4.3 DERIVING HER REWARDS

For a goal-conditioned Q-function Qθ(s, a, g), besides optimizing a Bellman residual as a regular
Q(s, a) function would do, it has an additional degree-of-freedom for the goal g which can be used to
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define an EBM that models the future-state distribution. In such an EBM, the Q-function is used as
the negative energy defined in equation 21. Combining the first term in the f -divergence minimization
part equation 18 and the single-step dynamics loss term in the EBM learning 24 gives us:

argmin
Q

Eρµ(s,a)p(s
′|s,a)p+

µ (s+|s,a)

[
f∗(−(Qθ − γPπQ)(s, a, s+))− β · (1− γ)Qθ(s, a, s

′)
]

(26)

The crucial observation here is, given that f∗ is a quadratic 19, and that there is a stop gradient sign
on PπQ because it uses a target network, the loss above can be re-packaged into a single quadratic
loss of Bellman residuals for a specific reward thanks to the property of the dynamics defined in 4:

argmin
Q

Eρµ(s,a)p(s
′|s,a)p+

µ (s+|s,a)

[1
2

(
r(s, a, s′, s+) + (γPπQ−Qθ)(s, a, s

+)
)2]

(27)

r(s, a, s′, s+) =

{
r + β, s′ = s+

r, s′ ̸= s+
(28)

See Appendix B.4 for a full derivation. Setting r = −1 and β = 1, we have arrived at the reward
function of HER rHER(s, a, s

′, s+). The remaining losses that this reward leaves out are the second
term in f -divergence minimization part equation 18 and the second term in the EBM training
equation 53, which we will analyze in the next section.

4.4 WHEN DOES BEHAVIOUR CLONING (BC) HELP?

We now proceed to answer the following question: when does BC help? Our idea is to identify the
conditions for a BC-like loss to emerge in the remaining losses unaccounted by the HER reward:
a loss term in 18 about pushing Q-values of the current policy down, and the multi-step dynamics
term in EBM 54. We may argue that, by not pushing the Q-values of the current policy down, the
HER agent becomes more exploratory; by not pushing up the Q-values of the discounted future-state
distribution beyond a single step, the HER agent is encouraged to reach a goal sooner rather than
later. Nevertheless, we shall see that combining those two remaining terms produces a BC-like term,
which imitates the best actions based on how much an action moves the agent closer to the goal.

We start with the following property of Boltzmann policies π(a | s, g) ∝ expQ(s, a, g) (Haarnoja
et al., 2017; Schulman et al., 2017) (which we can apply thanks to entropy regularization in 14):

Eπ(a|s,g)[Q(s, a, g)] = log
∑
a

expQ(s, a, g)−H(π) (29)

In equation 25, the Q-value of a particular action a is pushed up under the following condition:

expQ(s, a, g)

Eρ+(g)[expQ(s, a, g)]
< γ ·

∑
a expQ(s′, a, g)/|A|

Eρ+(g)[
∑

a expQ(s′, a, g)/|A|]
(30)

Both denominators on the left and right sides are averaged over all possible behavioral goals, so their
values should be roughly the same. Moreover, we approximate the average-exponential operation by
using the max operation already computed in the backup operator (either exact (Mnih et al., 2015;
Van Hasselt et al., 2016) or approximate (Lillicrap et al., 2015; Haarnoja et al., 2018)) and lower the
threshold γhdm (compared to γ) accordingly. After those changes, the indicator function that decides
whether the value of an action a should be pushed up becomes:

ŵ(s, a, s′, g) = 1(expQ(s, a, g)− γhdm · expmax
a′

Q(s′, a′, g) < 0) (31)

Combining with the first term in 29, we arrive at a BC-like loss 12, but with an indicator weighting:

Lhdm(Q) = Eρµ(s,a)p(s
′|s,a)ρ+(g)[−ŵ(s, a, s′, g) · (Qθ(s, a, g)− log

∑
A

expQθ(s, ·, g))] (32)

Intuitively, this term imitates a particular action when the value functions believe that this action can
move the agent closer to the goal by at least − log γhdm steps. The idea of imitating the best actions
is similar to self-imitation learning (SIL) (Oh et al., 2018; Vinyals et al., 2019), but our algorithm 1
operates in a (reward-free) goal-reaching setting, with the advantage function in SIL being replaced
by the delta of reachability a particular action can produce in getting closer to the goal.
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Algorithm 1 Hindsight Divergence Minimization
Given: Batch of data {(s, a, s′, s+)}, where s+ is sampled via hindsight relabeling.

1: L = MSE(Q(s, a, s+)− γmaxa′ Q̂(s′, a′, s+), r) ▷ r is a constant, default r = −1
2: L = L − β(1− γhdm) ·Q(s, a, s′) ▷ Push up the values for reaching next states
3: LBC = Q(s, a, s+)− log

∑
A expQ(s, ·, s+) ▷ Behaviour Cloning like loss

4: L = L − β · 1(Q(s, a, s+)−maxa′ Q(s′, a′, s+) < log γhdm) · LBC

5: minimize L, update the target network Q̂

5 EXPERIMENTS

Figure 6: Intuitions about when HDM applies BC. From left to right: (a) the Maze environment with a goal
in the upper-left corner; (b) the Q-values learned through the converged policy. Lighter red means higher
Q-value; (c) visualizing the actions (from the replay) that get imitated when conditioning on the goal and setting
γhdm = 0.95, with the background color reflecting how much an action moves the agent closer to the goal based
on the agent’s own estimate; (d) γhdm = 0.85; (e) γhdm = 0.75. As we lower γhdm, the threshold − log γhdm gets
higher and fewer actions get imitated, with the remaining imitated actions more concentrated around the goal.
HDM uses Q-learning to account for the worst while imitating the best during the goal-reaching process.

5.1 SELF-SUPERVISED GOAL-REACHING SETUP

We consider the self-supervised goal-reaching setting for the environments described in GCSL (Ghosh
et al., 2019). While the original HER (Andrychowicz et al., 2017) assumes that the agent has direct
access to the ground truth binary reward metric (which is used when relabeling is performed), we do
not make such an assumption as it can be unrealistic for real-world robot-learning (Lin et al., 2019).
Instead, we simply use next-state relabeling to provide positive rewards. As seen in Eq equation 28,
a positive reward is provided only when the relabeled hindsight goal is the immediate next state.
The benefit of the next-state relabeling reward is that the training procedure is now completely
self-supervised, and therefore provides a fair comparison to GCSL (Ghosh et al., 2019).

Success Rate (%) Four Rooms Lunar Landar Sawyer Push Door Opening Claw Manipulate

GCSL / HBC 78.27 ±4.76 50.00 ±7.77 44.67 ±13.86 19.10 ±5.97 16.80 ±6.55
HER r = (0, 1) 86.60 ±4.22 39.30 ±6.81 57.60 ±6.61 82.50 ±4.87 22.80 ±6.43
HER + SQL 88.50 ±4.56 44.50 ±9.61 57.20 ±6.32 84.70 ±5.33 16.13 ±8.43
HER r = (−1, 0) 86.40 ±5.11 50.80 ±4.66 54.60 ±6.16 83.76 ±6.02 20.20 ±6.23
HER + HBC 82.90 ±6.24 35.33 ±4.57 52.63 ±8.05 76.44 ±5.37 16.93 ±8.03
HDM (ours) 96.27 ±2.56 57.60 ±7.21 66.00 ±5.13 88.60 ±4.63 27.89 ±6.46

Table 1: Benchmark results of test-time success rates in self-supervised goal-reaching. We compare our method
HDM with GCSL (Ghosh et al., 2019), HER (Andrychowicz et al., 2017) with two different types of rewards,
SQL (Schulman et al., 2017) (Soft Q-Learning) + HER, and HER + HBC. We find that HER can still outperforms
GCSL / HBC, and a vanilla combination of HER + HBC actually hurts performance. HDM selectively decides
on what to imitate and outperforms HER and HBC.

5.2 COMPARISONS AND ABLATIONS

As shown in Table 1, we compare HDM to the following baselines in terms of their goal-reaching
abilities: GCSL (Ghosh et al., 2019) / HBC (Ding et al., 2019), HER (Andrychowicz et al., 2017)
with (0, 1) rewards, HER with Soft Q-Learning (SQL) (Schulman et al., 2017), HER with (−1, 0)
rewards, and HER + HBC. HER with (0, 1) reward gives the agent a reward of 1 when the goal is
reached and 0 otherwise; HER with (−1, 0) reward gives a reward of 0 when a goal is reached and −1
otherwise. Those two types of rewards lead to different learning dynamics because the Q-function is
initialized to output values around 0. We also compare against HER + SQL, because soft Q-learning
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Figure 7: Normalized performance gain over GCSL, calculated by normalizing the final performance difference
between an algorithm and GCSL. We see that only HER with (−1, 0) rewards and HDM consistently outperform
GCSL, while HER + HBC performs worse than HER and sometimes GCSL as well.

is known to improve the robustness of learning (Haarnoja et al., 2018). HDM builds on top of HER
with (−1, 0) rewards and adds a BC-like loss with a clipping condition equation 32 such that only
the actions that move an agent closer to the goal get imitated (see Figure 6). Indeed, combining HER
with HBC (which blindly imitates all actions in hindsight) produces worse results than not imitating
at all and only resorting to value learning; HDM allows for better control over what to imitate.

The results in Table 1 and Figure 7 show that HDM achieves the strongest performance on all
environments, while reducing variances in success rates. Interestingly, there is no consensus best
baseline algorithm, with all five algorithms achieving good results in some environments and subpar
performance in others. In Figure 10 of the appendix, we ablate the additional hyper-parameters
introduced by HDM: γhdm in equation 31 and the β term in equation 14. Intuitively, γhdm controls the
threshold that determines when an action is considered good enough for imitation, and β controls the
trade-off between minimizing f -divergence and maximizing future goal likelihood in equation 14.
The ablation shows that HDM outperforms HER and GCSL across a variety of γhdm and β values.

5.3 WHY DOES HINDSIGHT BC SOMETIMES FAIL?

Figure 8: Success rate versus
initial achieved-goal change ratio.

In this section, we aim to better understand whether the (under-
whelming) performance of hindsight BC had anything to do with
our specific setting. We report an interesting metric that correlates
with the performance of GCSL / HBC, which can be measured
prior to training a policy: initial ag (achieved-goal) change ratio.
We define the ag change ratio of π to be: the percentage of tra-
jectories where the achieved goals in initial states s0 are different
from the achieved goals in final states sT under π. Most training
signals are only created from ag changes, because they provide
examples of how to rearrange an environment. We then define
initial ag change ratio to be the ag change ratio of a random-acting
policy π0. Using notation from 28, it can be computed as Es0···sT∼π0

[−rHER(·, ·, s0, sT )].
In Figure 8, we show the relationship between final success rates versus the initial ag (achieved-goal)
change ratio, across all environments. The performance of GCSL seems to be upper-bounded by
a linear relationship between the two. This makes intuitive sense: a BC-style objective starts off
cloning the initially random trajectories, so if initial ag change ratio is low, the policy would not
learn to rearrange ag, compounding to a low final performance. HER and HDM are able to surpass
this upper ceiling likely because of the additional goal-likelihood term equation 14 besides imitation.

This finding suggests that in order to make goal-reaching easier, we should either modify the initial
state distribution ρ0(s) such that ag can be easily changed through random exploration (Florensa et al.,
2017) (if the policy is training from scratch), or initialize BC from some high-quality demonstrations
where ag does change (Ding et al., 2019; Nair et al., 2018a; Lynch et al., 2019).

6 CONCLUSION

This work presents a unified goal-reaching objective that encompasses a family of goal-conditioned
RL algorithms. Our derivation illustrates the connection between hindsight goal relabeling, divergence
minimization, and energy-based models. It reveals that there is a largely unexplored design space:
we could potentially use other convex functions in f -divergence minimization (Nowozin et al., 2016;
Ghasemipour et al., 2020), and improve the optimization of the energy-based model (Du et al., 2020)
by going beyond NCE (Grathwohl et al., 2020). The primary limitation of our framework is that it
does not account for exploration. Eventually, we would like to incorporate empowerment (Klyubin
et al., 2005; Sekar et al., 2020) and input density exploration (Bellemare et al., 2016; Pong et al.,
2019) into the framework.
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A NOTATIONS

ρ0 Initial state distribution

p(s′ | s, a) Environmental dynamics

p+µ (s
+ | s, a) Discounted future state distribution under policy µ

ρµ(s) State distribution (occupancy measure) visited by policy µ

PπQ(s, a, g) Transition operator in (goal-conditioned) Bellman backup.
PπQ(s, a, g) = Ep(s′|s,a)π(a′|s′,g)[Qθ(s

′, a′, g)].

f Convex function in f -divergence Df . Usually f(1) = 0.

f∗ Convex conjugate of function f

f
′
(x) Derivative of function f

ρexp(s, a) State-action visitation distribution of the expert policy

ρµ(s, a) State-action visitation distribution of the policy µ. Note that
ρµ(s, a) = ρµ(s)µ(a | s).

T (x) Function used in the variational bound of f -divergence. Also
appears as T (s, a) or T (s, a, g) in the main text.

ρ+(g) The behaviour goal distribution assumed to be given apriori by
the environment.

ρ+(s+) The marginal hindsight goal distribution of a given dataset /
replay, where ρ+(s+) = Eρµ(s,a)[p

+
µ (s

+ | s, a)]
π̂(a | s) The goal-conditioned policy π marginalized over the behavioral

goal distribution π̂(a | s) = Ep+(g)[π(a | s, g)].
ρπ(s, a | g) The state-action visitation distribution of goal-conditioned policy

π when conditioned on the behavioral goal g

E(x) Energy function of an EBM: pθ(x) = exp(−Eθ(x))/Z(θ).

Z(θ) The partition function in an EBM Z(θ) =
∫
X exp(−Eθ(x))dx.

σ(x) Sigmoid function σ(x) = 1/(1 + exp(−x)).

pn(x) Noise distribution in Noise Contrastive Estimation (NCE)

k The number of times noise samples are sampled more frequently
than true data samples in NCE.

∆θ The logit of the positive sample classification loss in NCE.

q(s, a, s+) A conditional EBM ρπ(s, a | s+) = exp q(s, a, s+)/Zq(s
+).

Zq(s
+) The partition function of a conditional EBM ρπ(s, a | s+):

Zq(s
+) =

∫
S×A exp q(s, a, s+)dsda.

H(π) Entropy of a policy across (replay) states and goals H(π) =
Eρ(s)ρ+(g)π(a|s,g)[− log π(a | s, g)].

r(s, a) The (learned) reward in traditional RL settings without goal-
conditioning.

r(s, a, s+) The (learned) reward in goal-conditioned divergence minimiza-
tion.

r(s, a, s′, s+) The (generalized) reward used in HER-style multi-goal RL.

rHER(s, a, s
′, s+) The reward function used in HER. It equals 0 when s′ = s+ and

−1 when s′ ̸= s+. Also denoted as rHER(·, ·, s′, s+).
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B PROOFS

B.1 MAIN LEMMAS

Lemma B.1 (Online-to-offline transformation for goal reaching). Given a goal-conditioned policy
π(a | s, g), its corresponding Q-function Qπ(s, a, g), and arbitrary state-action visitation distribution
ρµ(s, a) of another policy µ(a | s), the expected temporal difference for online rollouts under π is:

Ep(g)ρπ(s,a|g)[(Q
π − γ · PπQπ)(s, a, g)] = Ep(g)ρµ(s,a)π(ã|s,g)[Q

π(s, ã, g)− γ · PπQπ(s, a, g)]

Proof of Lemma 4.1.

Ep(g)ρπ(s,a|g)[(Q
π − γ · PπQπ)(s, a, g)]

= Ep(g)ρπ(s,a|g)[Q
π(s, a, g)− γEp(s′|s,a),π(a′|s′,g)Q

π(s′, a′, g)]

= (1− γ)

∞∑
t=0

γtEp(g)ρt
π(s|g)

π(a|s,g)

[
Qπ(s, a, g)− γE p(s′|s,a)

π(a′|s′,g)
Qπ(s′, a′, g)

]
= (1− γ)

∞∑
t

{
γtE p(g)

ρt
π(s|g)

π(a|s,g)

[Qπ(s, a, g)]− γt+1E p(g)

ρt+1
π (s|g)
π(a|s,g)

[Qπ(s, a, g)]

}

= (1− γ)Ep(g),ρ0(s),π(a|s,g)[Q
π(s, a, g)]

= (1− γ)

∞∑
t

{
γtE p(g)

ρt
µ(s)

π(a|s,g)

[Qπ(s, a, g)]− γt+1E p(g)

ρt+1
µ (s)

π(a|s,g)

[Qπ(s, a, g)]

}

= (1− γ)

∞∑
t=0

γtEp(g)ρt
µ(s,a)

π(ã|s,g)
[Qπ(s, ã, g)− γE p(s′|s,a)

π(a′|s′,g)
Qπ(s′, a′, g)]

= Ep(g)ρµ(s,a)π(ã|s,g)[Q
π(s, ã, g)− γEp(s′|s,a),π(a′|s′,g)Q

π(s′, a′, g)]

Lemma B.2 (Gradient of the noise-contrastive term in energy-based goal-reaching). Given the
following definition for the logit of a NCE-like binary classifier, with ρ+(g) = ρ+(g):

∆θ(s, a, g, k) = Qθ(s, a, g)− logEρ+(g)[expQθ(s, a, g)]− log k (33)

The gradient of the negative NCE term in the density ratio estimation approaches zero as k → ∞:

d

dθ
Eρµ(s,a)ρ+(g)

[
k · log

(
1− σ(∆θ(s, a, g, k))

)]
k→∞−−−−→ 0

Proof of Lemma B.2. σ is the sigmoid function, and Zθ(s, a) = Eρ+(g)[expQθ(s, a, g)]:

1− σ(∆θ(s, a, g, k)) =
1

1 + exp∆θ(s, a, g, k)
=

1

1 + exp(Qθ(s, a, g)− logZθ(s, a))/k
(34)

Plugging in the above into the loss and taking the gradient:

d

dθ
Eρµ(s,a)

ρ+(g)

[
− k · log

(expQθ(s, a, g)

k · Zθ(s, a)
+ 1

)]
(35)

=
d

dθ
Eρµ(s,a)

ρ+(g)

[
− k · log

(1
k
exp

(
Qθ(s, a, g)− logZθ(s, a)

)
+ 1

)]
(36)

=Eρµ(s,a)

ρ+(g)

[
− expQθ(s, a, g)/Zθ(s, a)

1/k · expQθ(s, a, g)/Zθ(s, a) + 1

d

dθ

(
Qθ(s, a, g)− logZθ(s, a)

)]
(37)

k→∞−−−−→Eρµ(s,a)

ρ+(g)

[
− expQθ(s, a, g)

Eρ+(g)[expQθ(s, a, g)]

d

dθ

(
Qθ(s, a, g)− logEρ+(g)[expQθ(s, a, g)]

)]
(38)
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The first term inside the expectation of ρµ(s, a):

−1

Eρ+(g)[expQθ(s, a, g)]
Eρ+(g)[expQθ(s, a, g)

d

dθ
Qθ(s, a, g)] (39)

The second term:
Eρ+(g)[expQθ(s, a, g)]

Eρ+(g)[expQθ(s, a, g)]

d

dθ
logEρ+(g)[expQθ(s, a, g)] (40)

=
1

Eρ+(g)[expQθ(s, a, g)]

d

dθ
Eρ+(g)[expQθ(s, a, g)] (41)

=
1

Eρ+(g)[expQθ(s, a, g)]
Eρ+(g)[expQθ(s, a, g)

d

dθ
Qθ(s, a, g)] (42)

The two terms cancel out and yield a gradient of 0.

Lemma B.3 (Goal-conditioned Q-functions estimate PMI on given trajectories). Given that we set
apriori the behavioral goal distribution to be ρ+(g) =

∫
S×A pµ(s, a, s

+)dsda. And assuming that
the state-action distribution of π marginalized over behavioral goals Eρ+(g)[ρπ(s, a | g)] is the same
as ρµ(s, a), which means π stays in the same state-action visitation distribution as µ. Then: on
trajectories generated by µ, the point-wise mutual information (PMI) between a state-action pair
(s, a) and a future state g is given by the Q-function at convergence Qπ:

PMI((s, a), g) = Qπ(s, a, g)− logEρ+(g)[expQ
π(s, a, g)]− log(r + (γPπQπ −Qπ)(s, a, g))

Proof of Lemma B.3. We first start with the optimal T ∗ in the f -divergence bound equation 5, applied
to the special case of the function f being a quadratic equation 19:

T ∗(x) = f ′(p(x)/q(x)) (43)

f ′(t) = t− r (44)

Combining the two, we get:

p(x)/q(x)− r = T ∗(x) (45)

Now applying this identity to the f -divergence minimization problem in equation 15 (note that we
have set r(s, a, g) = −T (s, a, g) in our derivation):

pπ(s, a, g)

pµ(s, a, s+)
=

ρ+(g)ρπ(s, a | g)
ρµ(s, a)p

+
µ (g | s, a)

= r̄ − (Qπ − γPπQπ)(s, a, g) (46)

= r̄ + (γPπQπ −Qπ)(s, a, g) (47)

We now take the relationship in equation 21:

ρπ(s, a | g)
ρπ(s, a)

=
expQπ(s, a, s+)

Eρ+(g)[expQπ(s, a, g)]
(48)

Using this substitution, we arrive at:

ρ+(g)ρπ(s, a)

ρµ(s, a)p
+
µ (g | s, a)

expQπ(s, a, s+)

Eρ+(g)[expQπ(s, a, g)]
= r̄ + (γPπQπ −Qπ)(s, a, g) (49)

Swapping the nominator and denominator and applying the assumption that ρπ(s, a) = ρµ(s, a):

ρµ(s, a)p
+
µ (g | s, a)

ρµ(s, a)ρ+(g)

Eρ+(g)[expQ
π(s, a, g)]

expQπ(s, a, g)
=

1

r̄ + (γPπQπ −Qπ)(s, a, g)
(50)

Taking the log on both sides, we get the following expression of PMI((s, a), g):

log
p+µ (g | s, a)

ρ+(g)
= Qπ(s, a, g)− logEρ+(g)[expQ

π(s, a, g)]− log(r̄ + (γPπQπ −Qπ)(s, a, g))
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B.2 NCE LOSSES

We now complete the derivation of the NCE losses in section 4.2, by illustrating that the positive
classification loss of NCE reduces to an InfoNCE (Van den Oord et al., 2018) loss in equation
equation 23 under our definition of the logit equation 22. More specifically, given that we already
have Lemma B.2, we only need to show:

d

dθ
log(1 + exp∆θ(s, a, s

+, k))
k→∞−−−−→ 0

We simply follow the definition of ∆θ in equation equation 22 and take the gradient of the above:

exp∆θ(s, a, s
+, k)

1 + exp∆θ(s, a, s+, k)

d

dθ
∆θ(s, a, s

+, k)

=
1

1 + exp(−∆θ(s, a, s+, k))

(
∇θQθ(s, a, s

+)−
Eρ+(g)[expQθ(s, a, g)∇θQθ(s, a, g)]

Eρ+(g)[expQθ(s, a, g)]

)
=

1

1 + k ·
Eρ+(g)[expQθ(s, a, g)]

expQθ(s, a, s+)

(
∇θQθ(s, a, s

+)−
Eρ+(g)[expQθ(s, a, g)∇θQθ(s, a, g)]

Eρ+(g)[expQθ(s, a, g)]

)

As k → ∞, we see that the gradient approaches 0 because the scalar on the left approaches 0.

Combining the above result about a part of the positive classification loss in NCE with the Lemma in
B.2 which deals with the negative classification loss in NCE, we can arrive at the combined NCE loss
at its limit k → ∞, as pointed out in equation 23 of the main text:

argmax
Q

Eρµ(s,a)

[
Ep+

π (s+|s,a)[Qθ(s, a, s
+)]− logEρ+(g)[expQθ(s, a, g)]

]
As mentioned, this is roughly equivalent to the InfoNCE loss (Van den Oord et al., 2018), further
validating our analysis so far.

B.3 EBM LOSSES

To optimize Eρµ(s,a)[Ep+
π (s+|s,a)[Qθ(s, a, s

+)] − logEρ+(g)[expQθ(s, a, g)]] from an arbitrary
dataset of behaviors ρµ(s, a, s+), we can easily see that the problem lies in accessing p+π (s

+ | s, a):
we do not have complete access to the distribution of "positive samples", as sampling directly from
p+π (s

+ | s, a) requires on-policy rollouts. But this can be resolved by using importance weights and
Equation equation 4 to rewrite Ep+

π (s+|s,a)[Qθ(s, a, s
+)]:

(1− γ) · Ep(s′|s,a)
ρµ(s,a)

[Qθ(s, a, s
′)] + γ · Ep(s′|s,a)π̂(a′|s′)

ρ+(g)ρµ(s,a)

[p+π (g | s′, a′)
ρ+(g)

Qθ(s, a, g)
]

(51)

Above, we have introduced a new notation π̂(a | s) to address the following issue with p+π (s
+|s, a):

while π is a goal-conditioned policy, p+π (s
+|s, a) is not conditioned on a goal apriori. A similar

problem was encountered (but ignored) in C-Learning (Eysenbach et al., 2020b), which simply
assumed that the multi-goal policy was aposteriori conditioned on the same future state that got
sampled from this policy in the first place (a contradiction). To avoid this problem, we define
π̂(a | s) = Ep+(g)[π(a | s, g)] and assume that p+π (s

+|s, a) is sampled under π̂(a | s) beyond a
single step. We package all the EBM training losses into the following:

Eρµ(s,a){−(1− γ) · Ep(s′|s,a)[Qθ(s, a, s
′)]} (52)

Eρµ(s,a)

{
logEρ+(g)[expQθ(s, a, g)]− γE p(s′|s,a)

π(a′|s′,g)
ρ+(g)

[
p+π (g | s′, a′)π̂(a′ | s′)
ρ+(g)π(a′ | s′, g)

Qθ(s, a, g)

]}
(53)

To decompose the importance weight, note that the policy is trying to maximize the Q-values
under the entropy constraint in equation 14, resulting in a Boltzmann policy (Haarnoja et al.,
2017; Schulman et al., 2017; Haarnoja et al., 2018): argmaxπ Eπ(a|s,g)[Q(s, a, g)] − H(π) =
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expQ(s, a, g)/
∑

a expQ(s, a, g). Minimizing equation 53 is equivalent to minimizing the follow-
ing loss, with ⊥ (·) being the stop-gradient sign:

E ρµ(s,a)

ρ+(g)
p(s′|s,a)

{
⊥

( expQ(s, a, g)

Eρ+(g)[expQ(s, a, g)]
− γ ·

∑
a expQ(s′, a, g)/|A|

Eρ+(g)[
∑

a expQ(s′, a, g)/|A|]

)
Qθ(s, a, g)

}
(54)

Proof of equation 54. Let webm(s′, a′, g) denote the importance weight:

webm(s′, a′, g) =
p+π (g | s′, a′)

ρ+(g)

π̂(a′ | s′)
π(a′ | s′, g)

(55)

Firstly, because of the entropy constraint in equation 14, we have a Boltzmann policy defined on the
Q-function: argmaxπ Eπ(a|s,g)[Q(s, a, g)]−H(π) = expQ(s, a, g)/

∑
a expQ(s, a, g):

π(a | s, g) ∝ expQ(s, a, g) (56)

Secondly, we note that the first term in importance ratio can be estimated from equation 21. Thus we
have:

webm(s′, a′, g) =
expQ(s′, a′, g)

Eρ+(g)[expQ(s′, a′, g)]
·

Eρ+(g)[expQ(s′, a′, g)]∑
a Eρ+(g)[expQ(s′, a, g)]

·
∑

a expQ(s′, a, g)

expQ(s′, a′, g)
(57)

=

∑
a expQ(s′, a, g)∑

a Eρ+(g)[expQ(s′, a, g)]
(58)

Taking the gradient of equation equation 53 inside the expectation of Eρµ(s,a)p(s′|s,a)[·]:

Eρ+(g)[expQ(s, a, g)∇θQθ(s, a, g)]

Eρ+(g)[expQ(s, a, g)]
−

γEρ+(g)[
∑

a expQ(s′, a, g)∇θQθ(s, a, g)]∑
a Eρ+(g)[expQ(s′, a, g)]

(59)

Dividing both the nominator and denominator of the right-hand side by 1/|A|, putting the expectation
Eρµ(s,a)p(s′|s,a)[·] back in, and utilizing the stop-gradient sign ⊥ (·), we arrive at the loss:

E ρµ(s,a)

ρ+(g)
p(s′|s,a)

{
⊥

(
expQ(s, a, g)

Eρ+(g)[expQ(s, a, g)]
− γ ·

∑
a expQ(s′, a, g)/|A|

Eρ+(g)[
∑

a expQ(s′, a, g)/|A|]

)
Qθ(s, a, g)

}

B.4 DERIVING HER REWARDS

The purpose of this section is to derive the reward function used in HER from the equation 26:

argmin
Q

Eρµ(s,a)p(s
′|s,a)p+

µ (s+|s,a)

[
f∗(−(Qθ − γPπQ)(s, a, s+))− β · (1− γ)Qθ(s, a, s

′)
]

Recall that we have defined p+µ (s
+ | s, a) in equation 4:

p+µ (s
+ | s, a) = (1− γ)p(s+ | s, a) + γ

∫
S×A

p(s′ | s, a)µ(a′ | s′)p+µ (s+ | s′, a′)ds′da′

And that we have defined a quadratic form of f∗ in equation 19 (with r and c being constants):

f∗(x) = (x+ r)2/2 + c

Using the dynamics to expand the expectation and applying the choice of f∗ being a quadratic, the
loss becomes:

argmin
Q

Eρµ(s,a)p(s
′|s,a)(1− γ) ·

[1
2

(
r + (γPπQ−Qθ)(s, a, s

′)
)2

− β ·Qθ(s, a, s
′)
]

+ Eρµ(s,a)p(s
′|s,a)µ(a′|s′)p+

µ (s+|s′,a′)

[
γ · 1

2

(
r + (γPπQ−Qθ)(s, a, s

+)
)2]
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Assuming that there is a stop gradient sign on PπQ because of the use of a target network, we
can rewrite the above as one single quadratic and see that the gradient of the above loss w.r.t Q is
equivalent to the gradient of the following squared Bellman residual:

argmin
Q

Eρµ(s,a)p(s
′|s,a)p+

µ (s+|s,a)

[1
2

(
r(s, a, s′, s+) + (γPπQ−Qθ)(s, a, s

+)
)2]

where the reward function r(s, a, s′, s+) is:

{
r + β, s′ = s+

r, s′ ̸= s+

C ABLATIONS AND HYPER-PARAMETERS

In this section, we include additional ablations and hyper-parameters. We first describe the goal-
reaching environments in more details in Figure 9. We use the following thresholds (for Euclidean
norms) for determining success: [0.08, 0.08, 0.05, 0.05, 0.1], which are tight thresholds based on our
visualizations of the environments. We use the same network architecture, sampling and optimization
schedules for all the methods, as described in Table 2. As for γHDM, we set it to be 0.85 in Four
Rooms and Lunar Lander, 0.5 in Sawyer Push and Claw Manipulate, and 0.4 for Door Opening.
Ablation on this hyper-parameter can be found in Figure 10. For next state relabeling ratio, we set the
default to be 0.2, increase it to 0.5 in Lunar Lander, and 0.6 in Sawyer Push and Door Opening. For
the soft-Q-learning (Schulman et al., 2017) + HER baseline, we set the temperature parameter to be
0.2, which we have found to empirically perform well.

Figure 9: Goal-reaching environments from GCSL (Ghosh et al., 2019) that we consider in this paper:
reaching a goal location in Four Rooms, landing at a goal location in Lunar Lander, pushing a puck
to a goal location in Sawyer Push, opening the door to a goal angle in Door Open (Nair et al., 2018b),
turning a valve to a goal orientation in Claw Manipulate (Ahn et al., 2020).

Figure 10: Ablation studies on HDM Gamma and Beta. HDM Gamma refers to γhdm in equation 31,
and HDM Beta refers to the β term in equation 14. The orange line and the blue line denote HER and
GCSL baseline performance. See Section 5.2 for further discussion of these results.
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Table 2: Hyper-parameters

Parameters Value

Optimizer Adam (Kingma & Ba, 2014)
Number of hidden layers (all networks) 2
Number of hidden units per layer [400, 300] (Fujimoto et al., 2018)
Non-linearity ReLU
Polyak for target network 0.995
Target update interval 10
Ratio between env vs optimization steps 1
Initial random trajectories 200
Hindsight relabelling ratio 0.85
Update every # of steps in environment 50
Next state relabelling ratio 0.2
Learning rate 5.e-4
Batch size 256
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