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Abstract

Data-efficiency and generalization are key chal-
lenges in deep learning and deep reinforcement
learning as many models are trained on large-
scale, domain-specific, and expensive-to-label
datasets. Self-supervised models trained on large-
scale uncurated datasets have shown successful
transfer to diverse settings. We investigate us-
ing pretrained image representations and spatio-
temporal attention for state representation learn-
ing in Atari. We also explore fine-tuning pre-
trained representations with self-supervised tech-
niques, i.e., contrastive predictive coding, spatio-
temporal contrastive learning, and augmentations.
Our results show that pretrained representations
are at par with state-of-the-art self-supervised
methods trained on domain-specific data. Pre-
trained representations, thus, yield data and
compute-efficient state representations. https:
//github.com/PAL-ML/PEARL_v1

1. Introduction
Data-efficiency and generalization are key challenges in
deep learning (DL) and deep reinforcement learning (RL),
especially for real-world deployment and scalability. Self-
supervised learning (SSL) has been used in computer vision
and natural language processing (Chen et al., 2020c; Rad-
ford et al., 2021; Henaff, 2020; He et al., 2020; Devlin
et al., 2019; Radford et al.) to learn from large-scale unla-
beled/uncurated data and do a few-shot transfer to labeled
data. Deep RL has also leveraged self-supervised learning
for data-efficiency (Srinivas et al., 2020; Laskin et al., 2020).

RL in pixel space is also sample-inefficient, and state rep-
resentations can help sample-efficient, robust, and gener-
alizable RL (Lake et al., 2016; Kaiser et al., 2019; Tassa
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et al., 2018). Previous work investigated self-supervised
state representation learning in RL, but involved training on
large-scale domain-specific data (Anand et al., 2019).

We investigate how pre-trained models can be leveraged
for state representation learning in Atari. In particular, we
focus on using pretrained image representation learning and
attention models. We also investigate self-supervised fine-
tuning of pretrained representations using state-of-the-art
(SotA) self-supervised methods.

Our results show that our pretrained representations, par-
ticularly ‘zoomed in’ representations, perform as well as
the SotA self-supervised state representation learning mod-
els trained on large domain-specific datasets. Adding pre-
trained temporal attention does not particularly improve per-
formance, possibly because the pretrained image represen-
tations already leverage attention. Adding self-supervised
fine-tuning on domain-specific also does not particularly im-
prove performance, especially in a data-constrained setting.

We make 3 key contributions: i. a new methodology for
using pretrained image representations for sample-efficient
and generalizable state representation learning in RL; ii.
evaluations of using pretrained temporal attention models
with static image representation for temporal data; iii. eval-
uating self-supervised fine-tuning of pretrained representa-
tions using SotA SSL techniques on domain-specific data.

2. Related Work
Our work lies at the intersection of 5 key areas: Self-
Supervised Learning (SSL), Self-Supervised RL, Attention,
Domain generalization, and Pretraining. Unlike previous
work in Self-Supervised RL, Domain generalization, and
Pretraining, we focus on state representation learning in RL,
not on the RL. Unlike previous work in state representation
learning for RL (Anand et al., 2019), we leverage pretrained
models, not trained on domain-specific data, demonstrating
data-efficient and generalizable learning. Finally, like previ-
ous work, we leverage spatial-temporal attention, particu-
larly optical flow (Yuezhang et al., 2018), and also use SotA
SSL, but only for fine-tuning pretrained representations. Our
results show that good pretrained embeddings perform com-
petitively, without necessarily needing augmentations from
spatio-temporal attention or self-supervised fine-tuning.
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Self-Supervised Learning (SSL): SSL has been used in
natural language processing and computer vision (Devlin
et al., 2018; Henaff, 2020; He et al., 2020; Chen et al.,
2020a) using both contrastive ((Oord et al., 2018; Bachman
et al., 2019; He et al., 2020; Chen et al., 2020b; Radford
et al., 2021) and purely predictive methods (Grill et al.,
2020). SSL on large-scale uncurated datasets has shown
promising few-shot transfer to diverse labeled data (Chen
et al., 2020c; Radford et al., 2021). We use pretrained self-
supervised models for sample-efficient state representation
learning in RL. Also, we use self-supervised fine-tuning of
pretrained representations on domain-specific data.

Self-Supervised RL: SSL has been used in model-based
(Kaiser et al., 2019; Ha & Schmidhuber, 2018; Schrittwieser
et al., 2020; Hafner et al., 2019) and model-free RL (Jader-
berg et al., 2016; Shelhamer et al., 2016; Oord et al., 2018).
Learning is either reconstruction-based (Jaderberg et al.,
2016; Higgins et al., 2017; Yarats et al., 2019) or constrastive
(Sermanet et al., 2018; Warde-Farley et al., 2018; Anand
et al., 2019; Oord et al., 2018; Srinivas et al., 2020), and
the predictions are in pixel space (Jaderberg et al., 2016) or
latent space (Oord et al., 2018; Guo et al., 2020). Image aug-
mentations (Srinivas et al., 2020; Laskin et al., 2020), spatio-
temporal structures (Sermanet et al., 2018; Aytar et al., 2018;
Oord et al., 2018; Anand et al., 2019), and scene or object
representations (Burgess et al., 2019; Zhu et al., 2018; Greff
et al., 2019; van Steenkiste et al., 2019) have also been used.
Representation learning has also been decoupled from RL
(Anand et al., 2019; Stooke et al., 2020). We focus on state
representation learning in RL, instead of the RL itself, and
unlike previous work, leverage pretrained self-supervised
representations not trained on domain-specific data.

Attention: Attention has been used in RL (Zhang et al.,
2018; Gregor et al., 2018; Manchin et al., 2019; Salter
et al., 2019), especially to add robustness and interpretability
(Sorokin et al., 2015; Mott et al., 2019). Optical flow-based
attention has also been used in RL (Yuezhang et al., 2018).
We explore spatio-temporal attention, including optical flow,
to improve image representations for temporal data.

Domain generalization: Transfer learning uses representa-
tions from one domain to generalize to different domains
(Rusu et al., 2016; Oquab et al., 2014; Donahue et al.,
2013). Domain adaptation adapts from one domain to an-
other domain using data from the target domain (Bousmalis
et al., 2016; Ganin et al., 2016; Wulfmeier et al., 2017),
whereas domain randomisation covers a distribution of envi-
ronments during training to generalize (Sadeghi & Levine,
2016; Andrychowicz et al., 2020; Viereck et al., 2017; Held
et al., 2017; Tobin et al., 2017; Peng et al., 2018). We use
pretrained models, not trained on Atari-specific data, for
sample-efficient state representation learning in RL.

Pretraining: Unsupervised pretraining has been leveraged

Figure 1. PEARL: Pretrained Encoder & Attention for Representa-
tion Learning.

in RL, e.g., by maximizing diversity of states (Liu & Abbeel,
2021) or skills (Eysenbach et al., 2018; Hansen et al., 2019;
Sharma et al., 2019). Intrinsic rewards for exploration
(Pathak et al., 2016; Sekar et al., 2020), predicting state
dynamics (Anderson et al., 2015), and reward-free represen-
tations (Schwarzer et al.) have also been used. Transferable
skills can also be learned (Campos et al., 2021). We use
pretrained models for state representation learning in RL.

3. Approach
State representation learning in RL: Deep reinforcement
learning has leveraged the expressive power of deep learn-
ing to create end-to-end models for RL in high dimensional
spaces. RL in high dimensional spaces, e.g., pixels spaces,
however, is sample-inefficient (Lake et al., 2016; Kaiser
et al., 2019) and learning policies from state representa-
tions could be more sample-efficient, robust, and gener-
alizable (Tassa et al., 2018; Liu et al., 2021; Eslami et al.,
2018). Thus, we decouple state representation learning
from RL (Stooke et al., 2020) and aimed to investigate state
representation learning in RL (Anand et al., 2019).

Pretrained models with self-supervised fine-tuning: Pre-
trained models have been leveraged for few-shot learning
(Chen et al., 2020c; Henaff, 2020; Radford et al., 2021), but
not for state representation learning in RL. State representa-
tion learning in RL has leveraged SSL (Anand et al., 2019),
but involved domain-specific and data-intensive training.
We aimed to leverage pretrained models for sample-efficient
state representation learning in RL. We decided on 3 key
explorations: i. Pretrained image representations, including
‘zooming in’ via grid-based patches; ii. Spatio-temporal
attention, e.g., using optical flow; iii. Self-supervised fine-
tuning on domain-specific data via constrastive losses.

Our framework, PEARL (Pretrained Encoder and Attention
for Representation Learning), has 3 components (Figure 1).

3.1. Pretrained Image Representations

Recent work compared image representations from different
supervised, self-supervised, and weakly supervised models,
and found that CLIP (Radford et al., 2021), a weakly su-
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pervised image representation learning model, produced
the best representations for few-shot learning (Khan et al.,
2021). Thus, we selected CLIP as our image encoder.

In addition to image representations for full-image, we also
considered ‘zooming in’ via grid-based patches, i.e., equally-
sized non-overlapping patches covering the whole image.

3.2. Spatio-temporal Attention

For spatial attention, we considered a SotA supervised ob-
ject detection model, i.e., EfficientDet (Tan et al., 2019),
and a SotA SSL model, i.e., Dino (Caron et al., 2021).

For temporal attention, we decided to compare optical flow
using RAFT, a SotA pretrained model (Teed & Deng, 2020),
with image difference using structural similarity (Wang
et al., 2004). We used image difference particularly because
objects appear/disappear in video animations and optical
flow may not be able to capture sudden flowless changes.

Finally, we compare two types of attention: i. mask-based
attention, which highlights the relevant regions in the full im-
age; ii. patch-based attention, which crops out the relevant
patches and calculates embeddings for each by zooming in.

3.3. Self-supervised Fine-tuning

We considered 3 SotA methods for self-supervised fine-
tuning of pretrained representations using domain-specific
data: i. Image augmentations (color jitter, random crop,
and gaussian blur) (Chen et al., 2020b); ii. Spatio-temporal
constrastive learning (ST-DIM) (Anand et al., 2019); iii.
Contrastive predictive learning (CPC) (Oord et al., 2018).

4. Experiments
We outline our experiments and findings below. Similar to
the SotA work (Anand et al., 2019), our evaluations use a
linear probe (Alain & Bengio, 2018) with a {70, 10, 20}%
{train, validation, and test}-split with 50k data points and
early stopping. We share the F1 score for each Atari game.

4.1. Pretrained Image Representations

Setup: We tried 3 nxn-grid patch sizes (1x1, 2x2, and 4x4).
Each patch generated a 512-size embedding using CLIP
and we concatenated the embeddings. We tried 6 different
configurations: 1. 1x1, i.e., full image (FI); 2. 2x2; 3.
1x1+2x2; 4. 4x4; 5. 1x1+4x4; 6. 1x1+2x2+4x4. Figure 2
compares the results for our 6 configurations to the SotA
results. SotA refers to the top performance of all the models
in (Anand et al., 2019) – ST-DIM was top in all, except 4
games, CPC was top in 3, and Pixel-Pred was top in 4.

Results: On average, using at least 5 embeddings from 1 full
image and 4 2x2 patches, CLIP’s pretrained embeddings per-

Figure 2. SotA vs pretrained representations for patches (vanilla).

Figure 3. Spatio-temporal attention masks from pretrained models.

form better than SotA. Even our worst configuration (1x1)
is on average better than a VAE trained on domain-specific
data (Anand et al., 2019). With 21 patches (1x+2x+4x),
our model performs better than the SotA in all, except 2
games, and has an average of 5% better performance than
SotA. Overall, the performance improves with increasing
number of patches. Thus, zooming in gives performance
improvements at the cost of bigger embedding sizes.

4.2. Spatial-Temporal Attention

Setup: We compared Optical Flow Mask (FM) with Image
Difference Mask (DM), and also, each mask combined with
full image, i.e., FM+ (FM+FI) and DM+ (DM+FI). We
evaluated patch-wise attention using full image combined
with 4 patches selected from 4x4 and 2x2 patches, weighted
by Optical Flow (FP5) and Image Difference (DP5). Each
image ‘combination’ refers to a concatenation of the image
embeddings. We compared each of our 3 settings with their
equivalent size vanilla embeddings, i.e., embeddings using
just the pretrained encoder (Section 4.1): i. DM and FM
with FI (1x512 embedding); ii. DM+ and FM+ with FI+FI
(2x512 embedding); iii. DP5 and FP5 with FI+2x2 (5x512
embedding). We did not evaluate EfficientDet and Dino as
the attention masks did not look promising (Figure 3).

Results: Our results (Figure 4) show that optical flow masks
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Figure 4. Temporal attention masks and patches vs vanilla results.

(FM) alone are on average better than image difference
(DM) masks. However, image difference masks combined
with the full image (DM+) are better than optical flow masks
combined with the full image (FM+). Also, both FM+ and
DM+ are both slightly better than the two full image embed-
dings concatenated (FI+), and the difference is biggest in
games like Pong and Montezuma’s Revenge. Finally, full
image + 4 non-grid patches from image difference (DP5)
are slightly better than full image + 4 non-grid patches from
optical flow (FP5), but they are both worse than the full im-
age + 4 2x2 grid patches. Thus, n grid-based patches may be
better than n non-grid patches, which may zoom in more but
not cover the full image. Also, temporal masks combined
with full image are slightly better than two copies of the
full image. However, the difference is not significant and
is game-dependent, possibly because our encoder model,
CLIP, already incorporates ‘good enough’ attention (Fig 3).

4.3. Self-supervised Fine-tuning

We evaluated if state-of-the-art self-supervised methods
could be used to fine-tune pretrained embeddings using
domain-specific data. We evaluated three self-supervised
methods: i. Augmentations (random crop, color jitter,
and gaussian blur) with an MLP layer and pairwise con-
trastive loss (Chen et al., 2020c); ii. ST-DIM (Anand et al.,
2019) with separate temporal (T-DIM), spatial (S-DIM),
and spatio-temporal contrast (ST-DIM); iii. CPC, replacing
CPC’s original encoder with our CLIP encoder and then
adding a linear layer followed by a Gated Recurrent Unit.
We compare each of the evaluations with their equivalent
embedding-size baselines from Section 4.1 – FI for Blur, Jit,
Crop, CPC, and T-DIM-1x (T1x); 2x2 for T-DIM 2x2 (T2x)
and S-DIM (s2x); 1x1+2x2 for ST-DIM 1x1+2x2 (ST1,2x).

Our results (Figure 5) show that on average, fine-tuning
with CPC leads to the most improvement (3%), followed
by T-DIM-1x1 and gaussian blur. Color jitter, on average,
makes no change and the rest lead to a 2-4% drop in per-
formance compared to the equivalent vanilla cases (Section

Figure 5. Performance changes using self-supervised fine-tuning

4.1). Maximum improvements are using gaussian blur in
Breakout (15.5%), CPC in Montezuma’s revenge (10.8%),
and T-DIM in Breakout (6.3%), but most improvements are
game and method-dependent. Thus, overall, there are no
significant improvements using self-supervised fine-tuning,
possibly due to data or model constraints and especially
since we are not fine-tuning the pretrained CLIP model.

5. Conclusion
Data-efficiency and generalization are key challenges in
deep learning and deep RL. Most deep RL models are
trained from scratch on domain-specific data, but recent
research shows that self-supervised models trained on large-
scale uncurated data have promising few-shot transfer.

We investigated the use of pretrained models for state repre-
sentation learning in RL. Our results show that pretrained
self-supervised models, not trained on domain-specific
data, give competitive performance compared to SotA self-
supervised models, trained on large-scale domain-specific
data. Thus, pretrained models enable data-efficient and
generalizable state representation learning for RL.

Moreover, our framework, PEARL (Pretrained Encoder and
Attention for Representation Learning), investigates not only
using pretrained image representations but also pretrained
spatio-temporal attention. Our pretrained image represen-
tation model also uses attention and our results show that
attention helps state representation learning.

Finally, even though self-supervised fine-tuning on domain-
specific data did not significantly improve pretrained rep-
resentations, it could be because we froze our pretrained
model and had a few trainable layers with limited data.

State representations are key in RL. We believe that ‘Pre-
trained Encoders are All You Need’ (PEAYN) for data-
efficient and generalizable state representation learning in
RL, and will hopefully be a stepping stone to data-efficient,
generalizable, and interpretable RL. No PEAYN, no gain :)



Pretrained Encoders are All You Need

References
Alain, G. and Bengio, Y. Understanding intermediate layers

using linear classifier probes. arXiv:1610.01644 [cs, stat],
November 2018. URL http://arxiv.org/abs/
1610.01644. arXiv: 1610.01644.

Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.-
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Abbreviation Game Name
As Asteroids
Bz Berzerk
Bw Bowling
Bx Boxing
Br Breakout
Da DemonAttack
Fw Freeway
Fb Frostbite
He Hero
Mr Montezuma’s Revenge
Mp MsPacman
Pf Pitfall
Pg Pong
Pe PrivateEye
Qb Qbert
Rr Riverraid
Sq Seaquest
Si SpaceInvaders
Tn Tennis
Vt Venture
Vp VideoPinball
Yr YarsRevenge
µ Average

Table 1. Caption

A. Atari Game Abbreviations
Table 1 shows the list of all games and their respective
abbreviations used in our paper.


