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Abstract

Temporal Video Grounding (TVG), the task of locating specific video segments
based on language queries, is a core challenge in long-form video understanding.
While recent Large Vision-Language Models (LVLMs) have shown early promise
in tackling TVG through supervised fine-tuning (SFT), their ability to generalize
remains limited. To address this, we propose a novel post-training framework
that enhances the generalization capabilities of LVLMs via reinforcement learning
(RL). Specifically, our contributions span three key directions: (1) Time-R1:
we introduce a reasoning-guided post-training framework via RL with verifiable
reward to enhance capabilities of LVLMs on the TVG task. (2) TimeRFT: we
explore post-training strategies on our curated RL-friendly dataset, which trains
the model to progressively comprehend more difficult samples, leading to better
generalization. (3) TVGBench: we carefully construct a small but comprehensive
and balanced benchmark suitable for LVLM evaluation, which is sourced from
available public benchmarks. Extensive experiments demonstrate that Time-R1
achieves state-of-the-art performance across multiple downstream datasets using
significantly less training data than prior LVLM approaches, while improving its
general video understanding capabilities.

1 Introduction

Understanding long-form videos has long been a core ambition in computer vision [14, 25, 9]. A
critical step toward this goal is Temporal Video Grounding (TVG) [15, 66], which enables models to
localize video segments corresponding to natural language queries (e.g., “Find the segment where
a person walks into the living room."). Such capability is fundamental for real-world applications,
including smart home assistants [60, 16, 49] and video retrieval systems on online platforms [5, 3].

Traditional TVG approaches adopt a feature-based paradigm, where pretrained models (e.g.,
CLIP [45], I3D [6]) extract text and video features, followed by task-specific grounding mod-
els [31, 23, 30]. However, these methods suffer from error accumulation due to imperfect pretrained
features. To overcome these limitations, recent efforts have shifted toward end-to-end Large Vision-
Language Models (LVLMs) [47, 65], which directly process long-form videos and text queries.
Despite being pretrained on datasets 100× larger than domain-specific benchmarks [49], LVLMs
(with 7B+ parameters) often underperform compared to much smaller feature-based models (e.g.,
9M parameters [23]). This raises a critical question: Why do LVLMs, despite their vast pretrained
knowledge, fail to excel on TVG?
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Improved Short Video QA (video length: 25s)

Question: What letter is likely to be shown next?

(A) Y   (B) H   (C) Z

Base model thinking:
… Given this sequence, the next logical letter would be the next letter in the 
alphabet after ‘F’, which is ‘G’. The letters ‘D’, ‘E’, ‘F’, and ‘G’ are now on the table, 
forming the sequence ‘DEFG’.  Therefore, the next letter to be shown is likely to 
be ‘G’. 
Time-R1 thinking (ours) :
The sequence of letters shown in the video is “D”, “E”, “F", and “G".  This suggests 
a pattern of showing the next letter in the alphabet.  The letters are being placed 
in a specific order, and the next logical letter after "G" would be "H".

Improved Long Video QA (video length: 59m)

Question: What do the expanding red lines on the map 

in the first few minutes of the video stand for?

(A) The Yellow River           (B) The Silk Road 

(C) Du Fu's route to Xi’an          (D) The Yangtze River

Base model thinking:

... The map is used to illustrate the historical journey of Du Fu, a famous Chinese 
poet, as indicated by the text "Du Fu's route to Xi'an" and the historical context 
provided by the narrator. Given this analysis, the expanding red lines on the map 
in the first few minutes of the video stand for Du Fu's route to Xi’an....

Time-R1 thinking (ours) :

… 2. The map is shown with red lines expanding from a central point, which is 
likely Xi'an, a major city on the Silk Road. 3. The map is labeled with "Silk Road" 
and "The Great Silk Road," confirming that the red lines represent the Silk 
Road. …

Improved Temporal Video Grounding (video length: 148s) 

Question: Where is the event ”He took out cutting board”. 

Time-R1 thinking (ours): The event "He took out cutting board" occurs between 13.40 and 18.20 seconds. This is when the person is 

seen placing the cutting board on the counter.

Ground Truth 13.5s 18.1s

Gemini-2.5-Pro 15.0s 16.0s

VideoChat-Flash 16.4s 19.2s

Trace 15.0s 20.0s

23.0sTime-R1 (ours) 13.4s 18.2s

20.0s 23.0sTimeSuite

video 
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Figure 1: Our contributions include a novel post-training framework for LVLMs via reinforcement
learning, Time-R1; an RL fine-tuning strategy along with its associated training dataset, TimeRFT;
and a new benchmark, TVGBench, for evaluating LVLMs on the TVG task. Our Time-R1 model not
only achieves SoTA TVG performance, but also enhances performance on both short- and long-form
multi-choice video question answering tasks.

We attribute the suboptimal performance of LVLMs to over-penalization of false negatives during
supervised fine-tuning (SFT). For instance, when the ground truth timestamp is [2s, 4s], even when
the model makes a reasonable prediction of timestamp [1.9s, 3.9s], the autoregressive loss would still
be undesirably high. Such disproportionate penalties on reasonable predictions result in overfitting
and poor generalization. While previous solutions have attempted to address this by introducing
new timestamp tokens into the vocabulary [19, 17, 58] or by appending a regression head to predict
timestamps [70], they often sacrifice the pretrained language capabilities of LLMs.

Inspired by recent success in reinforcement learning (RL) for post-training LLMs [41, 1] with
chain-of-thought (CoT) prompting, especially in domains with deterministic answers, such as code
generation and mathematical reasoning, we explore whether RL can serve as an effective alternative
for TVG. Unlike SFT, RL allows direct optimization of task-specific metrics (e.g., IoU), thereby
reducing rigid penalties of autoregressive losses and encouraging plausible timestamp predictions. In
this work, we present an RL-based framework Time-R1 that effectively post-trains LVLMs for TVG
and pushes the performance frontier. Our contributions include:

• RL-based framework for temporal video grounding. We introduce Time-R1, a reasoning-
enhanced post-training framework via RL with verifiable rewards, where the LVLM first generates
chain-of-thought descriptions and then predicts timestamps. The post-training process is optimized
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Figure 2: Comparison of different approaches for the TVG task, including feature-based video-
language pretraining (VLP) [39, 23], supervised fine-tuning (SFT) [44, 65], and RL (ours).

using Generalized Reinforcement Policy Optimization (GRPO) with a novel reward function, incor-
porating both a structured template reward and a timestamp-aware tIoU reward.
• Time-aware reinforcement fine-tuning. We propose TimeRFT, a reinforcement fine-tuning

strategy with dynamic hard sampling, which mines hard samples on a curated dataset and progres-
sively selects low-IoU samples for multi-epoch training. To ensure stable reasoning and reduce
hallucinations, we adopt a cold-start approach to generate CoT with video captions. To support
RL-friendly training, we curate an RFT dataset with difficulty annotations on the TVG task.
• Comprehensive benchmark for LVLMs on TVG. Existing TVG benchmarks are designed

for the large-scale evaluation of small models. Considering the inference speed bottlenecks and
general-purpose role of LVLMs, we construct TVGBench, a compact yet comprehensive benchmark
for TVG. We carefully balance the video distribution, query distribution, and design specific query
semantics to ensure that the benchmark is well-suited for evaluating LVLMs.
• State-of-the-Art results and generalization. Compared with 7B LVLMs on the temporal

video grounding task, our method outperforms all prior SFT-based methods. After fine-tuning
on downstream benchmarks, it surpasses many previous feature-based approaches. Furthermore,
Time-R1 also improves the model’s general video understanding on video QA benchmarks.

2 Related Works

Temporal video grounding. The TVG task [15, 3] aims to localize temporal segments in untrimmed
long videos given natural language queries. Previous works can be broadly categorized into feature-
based video-language pretraining and frame-based LVLM methods, as shown in Figure 2. Feature-
based methods first extract video and language features using pre-trained encoders (e.g., I3D [6],
EgoVLP [30], CLIP [45], BERT [12] etc.), then build timestamp prediction modules based on
multimodal fused features. Existing methods differ mainly in their design of the multimodal fusion
module and timestamp prediction module. For example, SnAG [39] adopts a late fusion strategy
and regresses timestamps directly in a single forward pass without proposal generation. While
effective, these approaches are fundamentally limited by the quality of the pretrained features. Recent
efforts have shifted toward end-to-end frame-based methods by fine-tuning LVLMs using SFT with
autoregressive losses [28, 47, 65, 20, 55, 19, 26]. For instance, TRACE [19] treats each event as
a combination of timestamp, saliency score, and caption, and fine-tunes the LVLM to generate
event sequences autoregressively. However, such methods still underperform on even simple TVG
benchmarks like Charades [49], often lagging behind feature-based approaches. In this work, we
propose a novel RL-based post-training framework that establishes new state-of-the-art performance
for LVLMs on TVG tasks, even surpassing many feature-based methods.

RL in LLMs and LVLMs. RL is a foundational machine learning paradigm applied in diverse
domains such as game playing [50], robotics [36], and increasingly, language and vision-language
models [41]. RL updates models by interacting with environments and maximizing reward signals.
In recent years, RL has profoundly affected the field of LLM and LVLM post-training which falls
into two main categories: Reinforcement Learning with Human Feedback (RLHF) [42, 62] and
Reinforcement Learning with Verifiable Reward (RLVR) [1, 41, 7]. Early works find that RLHF
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can align LLM to generate human preference data, which primarily reduces the safety risks in
LLM and hallucination problems in LVLM. For example, RLHF-V [62] collects fine-grained pairs
of incorrect and corrected captions and leverages direct preference optimization to optimize the
model to generate correct captions, thus mitigating hallucinations. More recent works have explored
RLVR in tasks with deterministic answers, which not only benefits mathematical problem solving
and code generations in LLMs (e.g. DeepSeek-R1 [1]), but also enhances the generalization of
LVLMs across a range of applications, such as visual grounding [34] and visual reasoning [51].
As a pioneer among open-source LLMs, DeepSeek-R1 [1] adopts GRPO to enhance reasoning
capabilities by designing rule-based rewards that incorporate both reasoning templates and final
answers. In the context of LVLMs, MM-Eureka [37] investigates multimodal image reasoning using
GRPO, introducing an online filtering mechanism and a two-stage training strategy to stabilize the
optimization process. However, existing approaches remain confined to language [1, 61], image
understanding [7, 51, 34, 37], and short video understanding [69, 29]. It remains unclear whether
and how reinforcement learning impacts long-form video understanding. To bridge this gap, we take
a first step by introducing RLVR into LVLMs for the temporal video grounding task.

3 Method

The TVG task aims to temporally localize video segments within long-form videos based on natural
language queries. Given a video of duration t seconds, which is represented as a sequence of T
frames {x1, . . . , xT }, and a language query q, the goal is to identify the temporal boundaries [ts, te]
of the segment that best corresponds to q, where ts, te ∈ R+. In this work, we introduce Time-R1, a
framework designed to unleash the potential of LVLMs for the TVG task using RL. We first provide
background on RL-based training for LLMs in Section 3.1, then detail the training procedure of Time-
R1 in Section 3.2. Next, we describe specific training techniques used in TimeRFT in Section 3.3,
and finally, we present the construction of our evaluation benchmark TVGBench in Section 3.4.

3.1 Background of GRPO: RL for LLM

As a pioneer among open-sourced R1-style LLMs, Deepseek-R1 [1] leverages GRPO to train the
policy model πθ (i.e., the LLM) to think before answering, making it particularly well-suited for
tasks with well-defined answers, such as mathematical reasoning. In the GRPO framework, given an
input question p, the LLM samples G candidate responses o = {o1, . . . , oG}, and a reward function
r(·) assigns a reward score to each response, yielding {r(o1), . . . , r(oG)}. GRPO encourages the
LLM to generate responses that maximize a weighted sum reward R(o), defined by:

R(o) =

G∑
i=1

πθ(oi)

πθold(oi)
· r(oi)−mean({r(oi)}Gi=1)

std({r(oi)}Gi=1)
(1)

where πθ(o) denotes the probability of LLM generating the response o, and πθold represents the LLM
parameters from a recently optimized state. To ensure training stability and avoid large deviations
from the original language model behavior, the final training objective incorporates a KL-divergence
regularization term [1], penalizing divergence between πθ and πref :

max
πθ

Eo∼πθold
(p)[R(o)− βDKL(πθ∥πref)] (2)

where β is a scaling coefficient that balances reward maximization and policy stability. We omit the
clipping operation for simplicity.

3.2 Time-R1: RL for Temporal Video Grounding

Since the TVG task has defined answers and well-established evaluation metrics, RL can optimize
LVLMs for task-specific performance through tailored reward design. To enhance interpretability
and align with human-like reasoning, we additionally incorporate an explicit “thinking process”
prior to timestamp prediction. This process encourages the model to produce contextualized video
descriptions that support its final decision. We detail our reward modeling and training process below.

Reward modeling. The reward ri plays a crucial role in guiding the model’s learning objective. To
encourage effective temporal grounding with an explicit reasoning process, we design a composite
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reward function comprising two components: the timestamp-aware Intersection over Union (IoU)
rtIoU and the reasoning template reward rform.

• Timestamp-aware IoU reward rtIoU(·). The TVG task primarily uses IoU [63] to evaluate the
quality of predicted segments against the ground-truth [t′s, t

′
e], computed as:

IoU =
[ts, te] ∩ [t′s, t

′
e]

[ts, te] ∪ [t′s, t
′
e]

(3)

where A ∩ B and A ∪ B denote the union and intersection between sets A and B, respectively.
Optimizing for the IoU inherently encourages the LVLM to produce predictions that fall within a
permissible range of variation ϵ, such that t′s or e − ϵ ≤ ts or e ≤ t′s or e + ϵ still yields high IoUs.
This encourages the LVLM to focus more on the semantic understanding of the event within possible
temporal boundaries, rather than rigidly requiring exact temporal alignment like SFT. However,
standard IoU may fail to accurately reflect the quality of temporal alignment in certain scenarios. For
example, when the ground truth span is [0, 30] (i.e., the full video), any prediction covering more
than 30% of the video would result in an IoU greater than 0.3. A prediction like [10, 25] would yield
an IoU of 0.5, which overestimates its quality despite incorrect timestamps. To address this issue, we
introduce the timestamp-aware IoU (tIoU) as a corrective measure. tIoU augments the standard IoU
with penalties on timestamp deviations, defined as:

rtIoU(o) = IoU · (1− |ts − t′s|
t

) · (1− |te − t′e|
t

) (4)

This modification penalizes predictions that deviate from the reference timestamps relative to the
video duration t. In the earlier example, the reward value changes from 0.5 (IoU) to 0.28 (tIoU),
providing a more realistic signal for learning. Overall, tIoU acts as a stricter and more informative
reward signal, encouraging the LVLM to develop a deeper temporal understanding of events, rather
than relying on superficial shortcuts.
• Reasoning template reward rform(·). In TVG, the video segments relevant to a textual query
typically comprise only a small portion of the entire long video. For LVLMs, it is therefore suboptimal
to directly predict timestamps without first engaging in a reasoning process to identify the relevant
content. Instead, the model should allocate its computational capacity toward reasoning over visual
and linguistic cues to better understand the temporal context before making predictions. For instance,
given the query “the man washes dishes”, reasoning that the person is likely in a kitchen can improve
temporal localization. Such context-aware inference supports more accurate and semantically aligned
predictions. To encourage this behavior, we introduce a template-based reasoning reward, which
incentivizes the model to generate intermediate reasoning steps (structured in a predefined format)
prior to timestamp localization. The reasoning template reward requires the LVLM to structure its
response like “<think>· · ·</think> <answer><ts to te></answer>”, formulated as:

rform(o) =

{
0, if o has wrong fromat

1, if o has correct fromat
(5)

The overall reward is the sum of the two:

r(o) = rtIoU(o) + rform(o) (6)

GRPO training. The LVLM F(·) takes the video frames x1, . . . , xt and the language query q
as input and generates G candidate responses o1, . . . , oG, where each response is computed as
oi = F(x1, . . . , xt; q). The reward for each response is calculated using Equation 1, and the model is
optimized with the GRPO objective in Equation 2. To focus learning on the reasoning and localization
capabilities, we freeze the visual encoder and update only the parameters of the LLM during training.

3.3 TimeRFT: Time-Aware RL-Friendly Fine-Tuning

Due to the high computational cost associated with RL training, we explore data-efficient strategies
to reduce sample requirements. To this end, we propose TimeRFT, which incorporates time-aware,
RL-friendly dataset curation and fine-tuning techniques aimed at enhancing generalization while
minimizing training overhead.

RL-friendly dataset curation. We construct the TimeRFT dataset by leveraging only TVG samples,
and assign a difficulty score to each sample based on the base model’s performance. A small subset
is then selected for subsequent RL training.
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Figure 3: Statistics of TVGBench. TVGBench comprises 11 types of queries covering aspects related
to humans, objects, and environments. As illustrated in the figure on the right, the distributions
of query center, video length, and dataset source are designed to be as balanced as possible. This
balanced construction allows for a comprehensive evaluation of model performance across different
dimensions, enabling fine-grained analysis along each axis during benchmarking.

• Source data collection. Our training videos are sourced from Internet video datasets including
YT-Temporal [59], DiDeMo [3], QuerYD [40], InternVid [52], and HowTo100M [38]. We obtain
grounding data with annotations from VTG-IT [17], TimeIT [47], TimePro [65], HTStep [2], and
LongVid [28]. This process yields 339K temporal grounding samples.
• RFT data filtering. We propose a data selection strategy based on training difficulty to significantly
reduce training costs while preserving strong generalization performance. Models trained only on
easy samples (e.g., IoU ≥ 0.7) tend to overfit, whereas training on overly difficult samples (e.g.,
IoU = 0) often suffers from sparse reward signals, making it hard for the model to receive positive
feedback. To strike a balance, we select samples of moderate difficulty that are more conducive to
generalization during reinforcement fine-tuning. We first estimate a difficulty score for each sample
based on the performance of the base model. For grounding tasks, difficulty is quantified using the
IoU between the predicted and ground-truth temporal regions. We then filter out samples that are
either too easy or too hard. Specifically, we sample a subset of data from a Gaussian distribution over
the IoU axis centered at 0.3, resulting in a set of 2.5K moderately difficult samples for RL training.

RFT training strategy. For selected difficult samples, the model may struggle to learn them in a
single pass. However, we argue that effectively mastering these challenging cases is essential for
improving overall model performance. To this end, we employ a multi-epoch training approach
combined with per-epoch sample filtering, allowing the model to repeatedly focus on harder samples
and gradually improve its understanding.

• Dynamic hard sampling. We adopt a multi-epoch training strategy coupled with per-epoch sample
filtering to enhance learning from difficult examples. The model is trained over multiple epochs, and
after each epoch, we exclude easy samples with an IoU greater than 0.7 that have become easy. This
dynamic curriculum discourages overfitting on easy instances while ensuring consistent exposure to
harder samples, ultimately promoting stronger generalization.
• Cold start fine-tuning with few CoT data. For smaller models (e.g., 3B parameters), we observe
that directly training with RL to generate CoT responses often results in reasoning steps that are either
unintelligible or hallucinated, which impairs answer quality. Additionally, the length of generated
reasoning during early training stages is difficult to control, leading to an unstable training process. To
address these issues, we introduce a cold-start fine-tuning strategy using a small set of CoT-formatted
examples that encourage grounded reasoning aligned with video content. Specifically, we guide the
model to produce structured sequential captions with associated timestamps. The SFT template is
defined as:

< think >< ts1 to te1 : C1; ts2 to te2 : C2 >< /think >< answer > ts to te < /answer > (7)

where Ci represent captions corresponding to video segments [tsi , tei ], respectively.
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3.4 TVGBench: Evaluation Benchmark for LVLM on Temporal Video Grounding

Existing benchmarks for temporal video grounding either focus on large-scale datasets tailored for
smaller models within specific domains (e.g., human activities in ActivityNet) or consist of small,
limited test sets (e.g., the 2K home activity samples in Charades) typically used for LVLM evaluation
due to their slower inference speed. However, these benchmarks fall short in capturing the evaluation
needs of LVLMs, which, despite slower inference, exhibit strong generalization capabilities. To
bridge this gap, we introduce TVGBench, a lightweight yet comprehensive evaluation benchmark
specifically designed for assessing the performance of LVLMs on temporal video grounding tasks.

Data sources. To ensure a comprehensive evaluation, we construct our TVGBench with curating
samples from five public benchmarks with a balanced distribution of data source: Charades-STA [49],
ActivityNet-Captions [5], HiREST [64], EgoNLQ [16], and TaCoS [46].

Benchmark statistics. We carefully balance the video duration, video domain, query center and
construct query semantics in TVGBench to construct 800 instances, as shown in Figure 3.

• Distribution statistics. Video durations in the dataset have a balanced range from short clips up to
3 minutes long. To ensure temporal diversity, the center timestamps of queries are designed to be
approximately uniformly distributed across the entire span of each video.
• Query semantics. Since the original datasets do not provide semantic labels for queries, we
manually define 11 semantic categories grouped under three major types: human, object, and
environment. We leverage DeepSeek-V3 [11] to annotate the semantic type of each query and ensure
approximate balance across these categories. While most categories are evenly represented, the
Human Action Simple (HAS) category is slightly overrepresented due to inherent dataset bias (simple
indoor actions are more common). In such cases, we prioritize achieving a balance across datasets
from different domains while maintaining semantic diversity, accepting a skew in HAS.

4 Experiments

We first present our experimental setup in Section 4.1. Then, we evaluate our model from three key
perspectives: (1) Comparison with state-of-the-art methods in Section 4.2: We evaluate our model
across multiple TVG benchmarks to assess its performance against existing approaches; (2) Ablation
studies and analyses in Section 4.3: We examine the individual contributions of each component in
our framework to better understand their roles in overall performance. We also compare RL and SFT
strategies across TVG, short video QA, and long video QA tasks.

4.1 Experimental Setup

Benchmarks. We evaluate our model on a wide range of benchmarks covering both temporal
video grounding and general video understanding tasks, including: (1) Charades-STA [49] contains
6,672 long videos capturing indoor human activities. The official split for the TVG task includes
12,408 clip-query pairs for training and 3,720 for testing. (2) ActivityNet [5] comprises 20K long
videos with an average of 3.65 clip-query pairs per video. Following previous work in fine-tuning
setting [67, 23] for the TVG task, we use the standard dataset splits with 37,421 training, 17,505
validation, and 17,031 test samples. (3) MVBench [27] is a short video QA benchmark focused
on temporal reasoning. It includes 4K QA pairs for 20 types of tasks. (4) TempCompass [33]
assesses fine-grained temporal understanding with 410 short videos. We use all multi-choice QA
tasks except for the video captioning task. (5) EgoSchema [35] features 5K egocentric video clips,
each approximately 3 minutes long, with temporally demanding QA pairs. (6) VideoMME [13] is a
general video QA benchmark covering diverse domains. It contains 2.7K QA samples over videos of
varied lengths, ranging from 11 seconds to 1 hour. We use the long video split for evaluation.

Implementation details. Unless otherwise specified, we use Qwen2.5-VL-7B [4] as the base model.
To strike a balance between training efficiency and memory consumption, we sample video frames
at 2 FPS and adaptively resize each video input to contain approximately 2.8 million pixels. For
instance, a 50-second video yields 100 frames, each with a resolution of roughly 96×96×3. During
the reinforcement fine-tuning phase, we train for 5 epochs using a batch size of 8 and select the final
checkpoint for evaluation. For fine-tuning on downstream benchmarks, we train for 2 epochs. More
implementation details are provided in Appendix B.
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Table 1: Performance of temporal video grounding on Charades-STA, ActivityNet, and TVGBench.
The methods marked in gray∗ represent fine-tuning on corresponding benchmarks, while those in
black indicate zero-shot settings. We compare our Time-R1 against existing 7B open-source LVLMs,
as well as state-of-the-art VLP models.

Type Method Charades-STA ActivityNet TVGBench
R1@0.3 R1@0.5 R1@0.7 R1@0.3 R1@0.5 R1@0.7 R1@0.3 R1@0.5 R1@0.7

VLP

2D-TAN∗ [68] 57.3 45.8 27.9 60.4 43.4 25.0 - - -
UniVTG∗ [31] 72.6 60.2 38.6 56.1 43.4 24.3 - - -
SSRN∗ [71] - 65.5 42.6 - 54.5 33.2 - - -
SnAG∗ [39] - 64.6 46.2 - 48.6 30.6 - - -
EaTR∗ [23] - 68.4 44.9 - 58.2 37.6 - - -

Gemini-2.5-Pro [10] - - - - - - 39.1 24.4 12.8

SFT

Momentor [43] 42.6 26.6 11.6 42.9 23.0 12.4 - - -
ChatVTG [44] 52.7 33.0 15.9 40.7 22.5 9.4 - - -
TimeChat [47] - 32.2 13.4 36.2 20.2 9.5 22.4 11.9 5.3
VTG-LLM [18] - 33.8 15.7 - - - - - -
HawkEye [53] 50.6 31.4 14.5 49.1 29.3 10.7 - - -
VTimeLLM [22] 51.0 27.5 11.4 44.0 27.8 14.3 - - -
VideoChat-TPO [57] 58.3 40.2 18.4 - - - - - -
VideoExpert [70] 61.5 40.3 20.9 - - - - - -
TimeSuite [65] 69.9 48.7 24.0 - - - 31.1 18.0 8.9
VideoMind [32] 73.5 59.1 31.2 48.4 30.3 15.7 - - -
VideoChat-Flash [28] 74.5 53.1 27.6 - - - 32.8 19.8 10.4
TRACE [19] - 40.3 19.4 - 37.7 24.0 37.0 25.5 14.6
HawkEye∗ [53] 72.5 58.3 28.8 55.9 34.7 17.9 - - -
TimeSuite∗ [65] 79.4 67.1 43.0 - - - - - -
VideoChat-TPO∗ [57] 77.0 65.0 40.7 - - - - - -
VideoExpert∗ [70] 74.3 60.8 36.5 - - - - - -

RL Time-R1 (ours) 78.1 60.8 35.3 58.6 39.0 21.4 41.8 29.4 16.4
Time-R1 (ours)∗ 82.8 72.2 50.1 73.3 55.6 34.0 - - -

TVG short video QA long video QA

Figure 4: Comparison between post-training paradigms across various tasks, including short video
QA, long video QA and temporal video grounding. Both “SFT” and “RL” full-finetune the LLM,
while “SFT-LoRA” denotes finetuning the LLM with LoRA [21]. The “Base” is Qwen2.5-VL-7B.

Evaluation metrics. For TVG, following [47, 65], we adopt the “R1@m” evaluation protocol to
compare with state-of-the-art models, which computes the percentage of samples where the top-1
predicted segment has an IoU greater than a threshold m, with m ∈ {0.3, 0.5, 0.7}. For brevity, we
also adopt mIoU, which calculates the average IoU on all testing data as an alternative metric. For
video QA, we report accuracy as the evaluation metric.

4.2 Comparison with State-of-the-Art

We compare Time-R1 with state-of-the-art TVG methods, including both traditional video-language
pre-training models (VLP) and recent large video-language models fine-tuned via SFT.

Time-R1 surpasses SFT-based models in zero-shot settings. As shown in Table 1, in the zero-shot
setting, Time-R1 demonstrates strong performance, outperforming SFT-based models that rely on
large-scale supervision. Despite using only 2.5K samples for RL, Time-R1 achieves leading results
across multiple benchmarks. On Charades-STA, Time-R1 attains an R1@0.3 score of 78.1, surpassing
a range of strong SFT models such as VideoChat-Flash (74.5), VideoMind (73.5), and TimeSuite
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(69.9). On ActivityNet, its R1@0.3 score reaches 58.6, which is also superior to other leading
methods like VideoMind (48.4) and HawkEye (49.1). On our proposed TVGBench, its R1@0.3 score
of 41.8 significantly exceeds all baselines, including TRACE (37.0) and the powerful closed-source
model Gemini-2.5-Pro (39.1). These results highlight the data efficiency and strong generalization
capabilities of our RL-based post-training approach.

Time-R1∗ outperforms all SFT-based LVLMs and many traditional VLP-based models. When
fine-tuned on downstream benchmarks, Time-R1∗ consistently outperforms both traditional VLP-
based and SFT-based models on the TVG task. On the Charades-STA dataset, its R1@0.7 score
reaches 50.1 and its R1@0.5 score reaches 72.2, comprehensively outperforming all other methods,
including highly competitive models like VideoChat-TPO∗ (40.7, 65.0) and TimeSuite∗ (43.0, 67.1).
Notably, this superior performance is achieved using far fewer samples than the 349K SFT examples
used by TimeSuite∗. On the more challenging ActivityNet dataset, Time-R1∗ also achieves state-of-
the-art results, with an R1@0.5 score of 55.6 that is superior to fine-tuned SFT models like TRACE
(37.7) and classic VLP models like SSRN∗ (54.5). This indicates that our framework not only
generalizes well but also achieves exceptional performance through task-specific adaptation.

4.3 Ablation Study

Table 2: Ablation of Time-R1-7B trainning. GF,
ME, SF refers to Gaussian Filtering, Multi-Epoch,
and Sample Filtering per epoch, respectively.

tIoU GF ME SF TVGBench
R1@0.3 R1@0.5 R1@0.7

1 ✗ ✗ ✗ ✗ 38.0 24.8 13.2
2 ✓ ✗ ✗ ✗ 36.0 23.6 12.9
3 ✗ ✓ ✗ ✗ 37.2 25.0 13.4
4 ✗ ✗ ✓ ✗ 39.9 26.0 14.2
5 ✓ ✓ ✗ ✗ 38.4 25.6 14.1
6 ✓ ✗ ✓ ✗ 39.4 26.5 16.4
7 ✓ ✓ ✓ ✗ 41.6 28.5 15.6
8 ✓ ✓ ✓ ✓ 41.8 29.4 16.4

We conduct a series of ablation studies to val-
idate our key design choices. We first analyze
our training strategies and the framework’s gen-
erality, and conclude with an analysis of our
reward design. More extensive experiments and
detailed results are available in Appendix D.

Utility of TimeRFT and Time-R1 compo-
nents. As shown in Table 2, we analyze the con-
tributions of various training components within
our framework. We observe that both Gaus-
sian Filtering (GF) and Multi-Epoch training
(ME) individually improve performance com-
pared to the baseline (Row 1). Multi-Epoch
training (Row 4) provides a particularly substan-
tial gain, lifting the R1@0.7 score from 13.2 to 14.2. Notably, the value of tIoU supervision becomes
most prominent when combined with multi-epoch training. This combination (Row 6) leads to a
significant leap across all metrics. It boosts the R1@0.7 performance substantially to 16.4. The
progressive integration of these strategies culminates in our full model. The final addition of Sample
Filtering (SF) in Row 8 further refines the results. This achieves our best performance with an
R1@0.5 of 29.4 and an R1@0.7 of 16.4.

Figure 5: Impact of SFT-based cold start
on IoU performance and thinking token
count, with token counts marked by ⋆ on
dashed lines.

Generalization of RL vs. SFT. As shown in Figure 4,
full fine-tuning with SFT on a small dataset significantly
degrades generalization across all tasks, whereas RL con-
sistently preserves it. While LoRA-based fine-tuning (SFT-
LoRA) alleviates this issue, RL still demonstrates stronger
overall performance and generalization. This advantage
is particularly evident in data efficiency. Our RL model
trained on only 2.5K samples consistently outperforms an
SFT-LoRA model trained on a massive 339K dataset, as
detailed in our appendix. For example, on ActivityNet, RL
improves the mIoU from 16.3 to 29.2, while SFT-LoRA
with the small dataset only reaches 25.9. Furthermore, RL
also boosts performance on video QA benchmarks. On
VideoMME, it increases performance from 53.0 to 54.2,
while SFT-LoRA causes a decline to 51.7.

Impact of cold start. As shown in Figure 5, the impact
of a cold start is particularly pronounced for the smaller
3B model, significantly boosting its mIoU performance
from 18.0 to 20.3. While the larger 7B model shows only
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a marginal improvement in mIoU, the cold start provides a notable efficiency benefit for both models.
It reduces the thinking token length of the 3B model from 88.7 to 68.4 and the 7B model from 84.5 to
62.6. We attribute these effects to the cold start’s function in suppressing hallucinations, a tendency
more prevalent in weaker models.

Table 3: Ablation on TVGBench across different
base models and sizes.

Model Type R1@0.3 R1@0.5 R1@0.7

Qwen-2.5-VL-3B [4] Base 11.5 6.5 3.8
Time-R1 33.5 21.0 10.5

Qwen-2.5-VL-7B [4] Base 24.9 16.0 8.0
Time-R1 41.6 28.5 15.6

MiMo-VL-7B [56] Base 22.4 12.6 6.6
Time-R1 41.2 27.8 15.1

InternVL3-2B [72] Base 16.3 6.3 2.3
Time-R1 21.8 9.5 4.1

InternVL3-8B [72] Base 17.4 8.3 3.4
Time-R1 38.0 22.5 9.2

Effectiveness of the Time-R1 framework on
different base models. To demonstrate that
our framework is broadly effective and not lim-
ited to a specific base model, we apply Time-
R1 post-training to a diverse set of LVLMs, in-
cluding the Qwen-2.5-VL [4], MiMo-VL [56],
and InternVL3 [72]. As shown in Table 3, our
approach consistently yields substantial perfor-
mance gains across various model architectures
and sizes on TVGBench. The improvements
are particularly striking for models like MiMo-
VL-7B, where the R1@0.7 score is more than
doubled from 6.6 to 15.1. Similar significant
boosts are observed for both smaller and larger
models, with Qwen-2.5-VL-3B improving from
3.8 to 10.5 and InternVL3-8B from 3.4 to 9.2. This consistent effectiveness across different model
families and sizes demonstrates the versatility and general applicability of our RL-based paradigm.

Table 4: Ablation on different reward designs on
TVGBench.

Reward Design R1@0.3 R1@0.5 R1@0.7

rtIoU + rformat (Ours) 41.8 29.4 16.4
rformat only 27.1 18.0 10.1
rtIoU (w/o format) 40.5 27.6 15.4

rIoU + rformat 41.4 28.0 15.8
rem + rformat 26.5 16.8 9.1
rabs + rformat 39.1 27.8 14.8
rrmse + rformat 38.9 27.0 15.8
rcenter + rformat 37.6 25.9 15.0

Ablation on reward designs. As shown in Ta-
ble 4, we compare the timestamp-aware IoU
reward (rtIoU) with several alternatives, includ-
ing standard IoU (rIoU), sparse exact-match re-
ward (rem), distance-based metrics (absolute er-
ror rabs and RMSE rrmse), and a variant using
only the center-alignment term (the second term)
of the tIoU (rcenter). The results indicate that
strong, fine-grained localization signals are nec-
essary, as sparse rewards (e.g., rem) or format-
only constraints (rformat only) are insufficient.
While distance-based metrics perform reason-
ably, IoU-based designs provide more stable and
informative learning signals for temporal localization. Among these, our rtIoU outperforms rIoU
across all metrics. When combine with the rformat, the full reward (rtIoU + rformat) achieves the
best overall performance, reaching 16.4 R1@0.7, surpassing the rIoU + rformat baseline (15.8) and
all other alternatives. This confirms the superiority of our final reward design in precise temporal
alignment and structured reasoning guidance.

5 Conclusion

In this work, we present Time-R1, a reinforcement learning based post-training framework that
significantly improves the generalization of Large Vision-Language Models for Temporal Video
Grounding. Unlike prior methods that rely on large-scale supervised fine-tuning, Time-R1 leverages
a verifiable reward signal to unlock strong temporal reasoning from pretrained models using limited
data. Our contributions include: (1) Time-R1, a reasoning-guided post-training framework that
enhances TVG via RL; (2) TimeRFT, a curated dataset and training strategy that fosters temporal
grounding; (3) TVGBench, a small yet comprehensive benchmark for evaluating LVLMs on TVG.
Extensive experiments show that Time-R1 achieves SoTA performance across TVG benchmarks in
both zero-shot and fine-tuned settings, surpassing prior LVLMs and traditional VLP-based models,
while also improving general video understanding. We hope this work inspires future directions in
data-efficient and generalizable video-language understanding via reinforcement learning.

Limitations. Our Time-R1 framework currently struggles to process ultra-long videos. We plan to
address this long-horizon context challenge in future work.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Contributions and scope are explained in the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in the Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

16



Justification: Our research doesn’t involve theory assumptions or proofs.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explain how to reproduce our results in Section 3, Section 4 and Appendix.
Code and data will be released to reproducing or verifying the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our experimental setting is located in Section 4 and Appendix. Code and data
will be released to reproducing or verifying the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: To ensure fairness, all settings are kept the same from run to run.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research aims to promote the development of related fields. At present,
we are unable to predict the impact this research will have on society in the future.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: We employed open-source models and open-source datasets. It is hard for us
to ensure their safety.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited,
and the license and terms of use are explicitly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The documentation will be provided alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

Despite achieving notable improvements on the TVG task, our approach still has several limitations.
First, Time-R1 suffers from slower training and inference speeds, primarily due to its large model
size and reliance on autoregressive text generation. Second, to manage GPU memory consumption,
we use a relatively low frame sampling rate, which may result in the loss of fine-grained motion
information across frames. Finally, Time-R1 currently cannot handle ultra-long videos, limiting its
applicability in scenarios such as full-length movie understanding.

B Implementation Details

Details of Time-R1 framework. Inspired by DAPO [61], we adopt its token-level loss for training,
rather than the sample-level loss used in GRPO. Apart from minor changes to the loss, all setting is
identical to GRPO. Besides, we find that other techniques introduced in DAPO do not benefit the
TVG task, thus aborting other techniques. We full-finetune the LLM parameters at every step, thus
πθ(oi)

πθold
(oi)

= 1. The sample number G is set to 8. The coefficient β is set to 0.04.

Details of TimeRFT training. For RFT data filtering, we use a Gaussian distribution with a fixed
variance of 0.2, while varying the mean to control sample selection. In our cold start phase, we
construct 150 samples from our training data sources (e.g., YT-Temporal [59]) to fine-tune the LLM
using LoRA [21], with a LoRA rank of 64 and a LoRA alpha of 128. All of our results are reported
based on the final training epoch. For RL, we use a learning rate of 1e-6 with the AdamW optimizer
with β1=0.9, β2 = 0.999, and a linear scheduler to decay the learning rate from 1e-6 to 0. We use a
batch size of 8 with gradient accumulation set to 2.

Details of our evaluation prompts. As shown in Figure 11, for temporal video grounding, the
prompts used for training and testing are designed to encourage the model to reason before responding,
following a template-based answer format. For VideoQA, we have two versions of prompts: one with
CoT and one without CoT.

Details of TVG baseline methods and implementations. We evaluate the baselines on TVGBench
using their original best-performing setting, focusing primarily on video input and prompt design.

• TimeChat [47] is built upon the InstructBLIP [8] architecture and introduces a video Q-former to
encode video tokens. It operates at a resolution of 224 and samples 96 frames.
• TRACE [19] treats each combination of timestamp, saliency score, and caption as a discrete event
and enables the LVLM to autoregressively generate event sequences. It operates at a higher resolution
of 336 and samples 128 frames.
• TimeSuite [65] introduces a token shuffling strategy to compress long video token sequences and
incorporates positional encoding to enhance visual understanding. It adopts a resolution of 224 and
samples 128 frames.
• VideoChat-Flash [28] proposes a progressive visual token dropping mechanism within intermediate
LLM layers to compress video inputs and extend the effective context length. It uses a resolution of
448 and samples video at 1 fps, with a maximum of 512 frames.
• Gemini-2.5-Pro [10]: Gemini-2.5-Pro is state-of-the-art video understanding model capable of
reasoning over videos exceeding one hour in length. It supports video question answering and
temporal localization tasks.
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Table 5: Comparison of different approaches on TVGBench for all types. We use mIoU as metric.

Method EC ES HAC HAP HAS HP OA OC OEC OES OT

TimeChat [47] 22.3 32.8 16.6 9.8 14.6 35.1 15.0 9.2 2.4 18.0 10.2
TimeSuite [65] 27.3 39.6 14.2 12.8 24.9 39.6 14.6 13.9 6.7 32.6 14.3
TRACE [19] 57.1 66.8 25.9 17.5 26.5 45.1 17.8 22.1 12.5 36.8 24.9
VideoChat-Flash [28] 38.3 47.2 12.9 13.9 27.1 39.4 14.9 12.7 6.5 24.3 12.9
Gemini-2.5-Pro [10] 46.7 45.3 21.1 27.6 30.9 39.9 23.0 31.1 14.1 35.9 17.8

Time-R1 (ours) 49.3 65.3 28.3 24.3 39.3 56.2 26.3 21.8 9.0 32.7 21.8

Details of our implemented SFT baselines. We implemented two versions of SFT fine-tuning: one
is full-parameter fine-tuning of the LLM (SFT), and the other is LoRA-based fine-tuning of the LLM
(SFT-LoRA). For SFT-LoRA, the LoRA rank is set to 64, and the LoRA alpha is set to 128. Both
configurations use the following settings: a learning rate of 2e-5, the AdamW optimizer with β1=0.9,
β2 = 0.999, a weight decay of 0, the batch size of 8, and accumulation steps of 2. We fine-tune for 5
epochs on our 2.5K data, and use a linear scheduler to gradually decay the learning rate to 0.

C Additional Analyses

In-depth comparisons of different approaches on TVGBench by semantic type. Table 5 provides
a detailed performance comparison of various methods on the TVGBench across different semantic
categories. Specifically, the abbreviations represent: EC (Environment Change), ES (Environment
State), HAC (Human Action – Complex), HAP (Human Action – Procedural), HAS (Human Action
– Simple), HP (Human Pose), OA (Object Attribute), OC (Object Counting), OEC (Object Existence
– Complex), OES (Object Existence – Simple), and OT (Object Transition). Detailed definition and
construction process can be found in Figure 15.

Time-R1 demonstrates strong competitiveness across multiple semantic categories. First, particularly
in the four tasks of HAC, HAS, HP and OA, Time-R1 achieved the highest scores among all
compared methods, showcasing its excellent ability in understanding the details of human actions
and identifying object features. For example, Time-R1 achieves an mIoU of 56.2 on HP, which is
11.1 points higher than the second-best method, TRACE with mIoU of 45.1. On HAS, Time-R1
reaches 39.3, outperforming Gemini-2.5-Pro’s 30.9 by 8.4 points. Second, in the three tasks of
ES, EC and OT, Time-R1 demonstrates strong performance comparable to the top model TRACE,
with its performance being very close or immediately following. In the HAP task, Time-R1 also
performs excellently, with its performance being in the same tier as Gemini-2.5-Pro. Last, all models
still show a noticeable gap compared to Gemini in understanding complex instructions such as in
HAP, OC, and OEC. For example, in HAP, which involves procedural activity localization, Gemini
achieves 27.6, while our model ranks second with a score of 24.3. In object counting, Gemini
attains 31.1, substantially outperforming our model’s 21.8. In summary, Time-R1 performs well
on both non-human simple instructions and human-related instructions, but there is still room for
improvement in complex instruction grounding and object-related grounding.

Table 6: Inference speed comparison between HuggingFace Transformers and vLLM libraries.
Speeds are reported as (with CoT / without CoT) with 8 GPUs.

TVGBench Charades ActivityNet

Domain Mixed Indoor Human Activity
Sample Count 800 3,720 17,031
vLLM Speed 8.3 / 6.9 min 11.7 / 11.2 min 36.1 / 33.2 min
Transformers Speed 42.0 / 27.3 min 3.3 / 1.2 hour 15.0 / 7.5 hour

Comparison of speed and accuracy between inference library transformers and vLLM. We
observe that the inference speed of the implementation in the transformers [54] library is very slow.
To address this, we implemented an accelerated inference version using vLLM [24] for all related
7 downstream benchmarks. As detailed in Table 6, vLLM delivers substantial performance gains
across all datasets. For example, on the TVGBench benchmark, inference time with CoT is reduced
from 42 minutes to just 8.3 minutes, achieving over a 5× speedup.
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Table 7: Ablation of data filtering strategies.

Method R1@0.3 R1@0.5 R1@0.7 mIoU

random 39.4 26.5 16.4 27.4
gaussian (0.3) 41.6 28.5 15.6 28.6
gaussian (0.5) 40.6 28.2 16.0 28.3
gaussian (0.7) 37.2 26.9 15.5 26.5

uniform 40.4 28.5 15.9 28.3

Table 8: Ablation of KL and CoT in GRPO.

KL CoT R1@0.3 R1@0.5 R1@0.7 mIoU

✗ ✗ 40.4 29.1 14.9 28.1
✓ ✗ 40.8 27.4 15.0 27.7
✗ ✓ 42.9 29.5 15.0 29.1
✓ ✓ 41.6 28.5 15.6 28.6

Table 9: Comparison of the token-level loss design used by DAPO [61] and the sample-level loss
design used by GRPO [48].

Loss Charades-STA ActivityNet TVGBench
R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU

GRPO 76.7 59.8 34.4 57.0 55.9 37.1 20.3 37.8 40.8 28.0 16.5 28.4
DAPO 77.4 60.0 34.1 57.2 56.2 37.4 20.4 38.0 41.6 28.5 15.6 28.6

D Ablation Studies

Ablation of different RFT data filtering strategies. As shown in Table 7, different data filtering
strategy in the initial round affects model’s performance. First, appropriate Gaussian filtering outper-
forms both uniform and random filtering methods. Among the Gaussian filtering settings, a standard
deviation of 0.3 yields the best results, followed by 0.5 and then 0.7. These findings suggest that
incorporating moderately challenging samples during RFT helps improve the model’s generalization
capability more effectively than using either overly easy or extremely difficult examples.

Ablation of KL and CoT during GRPO training. As shown in Table 8, incorporating CoT reasoning
during training leads to improved performance compared to the No-CoT setting, suggesting that
CoT enhances the model’s temporal video grounding capabilities. When KL divergence is omitted
(No-KL), performance slightly decreases under the No-CoT setting but unexpectedly improves when
CoT is present. However, we find that in the No-KL+CoT setting, the model often fails to produce
thinking process, directly jumping to answers. In contrast, using KL divergence helps maintain more
logical reasoning that is easier to follow. To balance performance and interpretability, we adopt a
training setup that includes both KL and CoT.

Comparison of tIoU and IoU during multi-epoch training. As shown in Figure 6, tIoU consistently
outperforms standard IoU during both the early and late stages of training over the first 5 epochs.
Notably, while tIoU steadily improves as training progresses, IoU shows a decline in performance by
the fifth epoch. This highlights the advantage of using tIoU as a more stable and reliable reward for
temporal video grounding.

Ablation of sample filtering in multi-epoch training. As shown in Figure 7, applying sample
filtering (SF) to remove simpler training samples yields consistent performance improvements across
epochs. This suggests that easy samples with high-IoU may introduce noise or reduce the effectiveness
of learning, and filtering them helps focus the model on more informative and challenging instances.

Ablation of DAPO & GRPO. The sample-level loss used by GRPO computes the loss by averaging
over each individual sample. This approach leads to unequal loss contributions for tokens when
dealing with CoTs of varying lengths. DAPO addresses this issue by employing a token-level loss.
The underlying principle is that the token-level loss can effectively guide the model in the process of
CoT generation, allowing it to learn useful patterns from CoTs of different lengths sampled during
training. In Table 9, we compare these two loss designs. We empirically find that DAPO outperforms
GRPO on the majority of metrics, thus we adopt DAPO’s loss design.

Table 10: Performance comparison between the base model, RL, and different SFT settings.

Method TVGBench Charades ActivityNet
R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU

Base Model 24.9 16.0 8.0 16.3 58.7 38.3 16.6 37.9 34.3 21.6 12.9 22.9
SFT-2.5K 25.9 14.4 5.8 15.4 49.5 31.3 12.7 31.2 27.7 13.6 5.8 15.7
SFT-LoRA-2.5K 38.6 24.5 14.6 25.9 74.0 55.7 29.9 53.2 52.3 34.3 18.8 35.1
SFT-LoRA-339K 38.9 28.2 15.2 27.4 72.4 54.7 26.9 51.7 45.7 29.3 16.4 30.5
Time-R1-2.5K 41.8 29.4 16.4 29.2 78.1 60.8 35.3 58.1 58.1 39.0 21.4 40.5
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Table 11: Ablation study on SFT-LoRA hyperparameters (rank/alpha).

LoRA rank / alpha TVGBench Charades ActivityNet
R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU

16 / 32 31.4 22.0 11.5 21.8 58.7 44.9 25.6 40.4 - - - -
32 / 64 35.0 24.2 14.4 24.8 72.4 54.0 29.4 48.8 - - - -
64 / 128 38.5 24.5 14.6 26.2 74.0 55.7 29.9 49.9 52.3 34.3 18.8 36.5
128 / 256 38.4 25.4 14.2 26.4 76.5 58.3 32.9 52.2 - - - -
256 / 512 39.1 27.1 15.1 26.9 75.9 57.4 32.7 51.6 - - - -

Time-R1-7B 41.6 28.5 15.6 28.6 77.4 60.0 34.1 57.2 58.1 39.0 21.4 40.5

Table 12: Ablation study on the number of training epochs for SFT-LoRA.

LoRA rank / alpha Epochs TVGBench Charades ActivityNet
R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU

64 / 128
1 38.0 25.1 14.1 26.6 73.5 57.3 33.3 50.5 54.8 37.1 21.7 39.0
2 36.9 24.6 14.1 25.9 73.5 56.2 31.1 50.3 52.4 35.7 20.5 37.4
5 38.5 24.5 14.6 26.2 74.0 55.7 29.9 49.9 52.3 34.3 18.8 36.5

128 / 256
1 27.4 18.1 8.9 18.3 47.8 33.4 16.7 31.7 - - - -
2 37.9 26.2 14.4 26.2 76.4 57.0 30.7 51.3 - - - -
5 38.4 25.4 14.2 26.4 76.5 58.3 32.9 52.2 - - - -

Comparison between RL and SFT. We conduct a comprehensive comparison between our Rein-
forcement Learning (RL) approach and various Supervised Fine-Tuning (SFT) settings. As shown
in Table 10, full-parameter SFT on our curated 2.5K dataset leads to severe overfitting and a signifi-
cant performance drop compared to the base model. Using LoRA for parameter-efficient fine-tuning
(SFT-LoRA) mitigates this issue and improves performance, but it still falls short of the results
achieved with our RL method. To further demonstrate the data efficiency of our RL paradigm, we
train an SFT-LoRA model on the full 339K TVG dataset. Even with access to over 100 times more
data, the SFT-LoRA model underperforms our RL model, which is trained on only 2.5K samples.
This highlights the superior generalization ability and data efficiency of the proposed RL framework.

Further ablation studies on SFT-LoRA are presented in Table 11 and Table 12. We find that while
tuning hyperparameters like LoRA rank / alpha and the number of training epochs can lead to better
SFT results, none of the tested configurations match the performance of our RL approach. These
extensive comparisons firmly establish the advantages of our RL-based post-training framework over
SFT for the TVG task.

Ablation of cold-start strategy. We investigate the effect of using a cold-start strategy, where
we initialize the model with SFT on dense video captioning data before starting RL training. This
approach is motivated by our empirical observation that the model naturally generates reasoning
similar to video descriptions. The cold-start strategy helps accelerate convergence towards the desired
response format and provides a better initialization for the RL policy. As shown in Table 13, this
initialization provides a significant performance boost, particularly for smaller models like the 3B
variant, improving its ability to learn effectively during the subsequent RL phase.

Effectiveness of the Time-R1 framework on different base models. To demonstrate the effec-
tiveness of our Time-R1 framework, we apply it to a diverse set of Large Vision-Language Models
with varying architectures and sizes. As shown in Table 14, our RL-based post-training consistently
yields substantial performance improvements across all tested models, including Qwen-VL (3B,
7B), MiMo-VL-7B, and InternVL (2B, 8B). The results confirm that our method is not limited to
a specific backbone and can effectively enhance the temporal grounding capabilities of different
LVLMs. We also observe that larger models generally achieve better performance both before
and after post-training, supporting the idea that scaling model capacity is beneficial for TVG tasks.
The Time-R1∗ results indicate further fine-tuning on downstream datasets, which yields additional
performance gains.

Ablation of different reward designs. We perform a comprehensive ablation study to validate our
choice of the reward function. As shown in Table 15, We compare the timestamp-aware IoU (rtIoU)
combined with the reasoning format reward against several alternatives. For clarity, we first define
each reward component used in our experiments.

• Reasoning format reward rformat(·). A binary reward that is 1 if the model’s output adheres to the
required reasoning template format, and 0 otherwise. This reward encourages the model to generate
responses in the correct structure.
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Table 13: Performance of the 3B model with and without the SFT-based cold-start strategy.

Method TVGBench Charades ActivityNet
R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU

w/o Cold-Start 29.0 17.1 8.0 18.0 67.0 44.9 21.5 44.4 36.6 18.8 7.8 21.1
w/ Cold-Start 33.5 21.0 10.5 21.7 74.6 53.1 26.0 51.2 40.0 21.0 8.7 23.2

Table 14: Performance comparison across different base models and sizes.

Model Method Charades ActivityNet TVGBench
R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU

Qwen-2.5-VL-3B
Base 24.2 15.5 8.1 16.3 13.0 7.1 3.3 9.8 11.5 6.5 3.8 8.3
Time-R1 74.6 53.1 26.0 51.2 40.0 21.0 8.7 23.2 33.5 21.0 10.5 21.7
Time-R1* 78.7 64.1 36.9 59.9 66.8 46.8 24.7 46.1 - - - -

Qwen-2.5-VL-7B
Base 58.7 38.3 16.6 37.9 34.3 21.6 12.9 22.9 24.9 16.0 8.0 16.3
Time-R1 78.1 60.8 35.5 58.1 58.1 39.0 21.4 40.5 41.8 29.4 16.4 29.2
Time-R1* 82.8 72.2 50.1 60.9 73.3 55.6 34.0 52.1 - - - -

MiMo-VL-7B Base 48.5 27.0 12.1 31.7 31.3 19.7 12.1 24.2 22.4 12.6 6.6 15.7
Time-R1 79.9 63.9 33.4 53.9 45.6 27.2 14.2 31.9 41.2 27.8 15.1 27.4

InternVL-2B Base 20.9 7.8 1.9 15.4 18.6 8.5 3.1 14.2 16.3 6.3 2.3 11.7
Time-R1 24.0 11.5 3.5 15.7 20.6 9.5 3.9 14.2 21.8 9.5 4.1 14.8

InternVL-8B Base 27.8 11.9 3.7 20.6 33.1 18.4 10.3 24.0 17.4 8.3 3.4 11.8
Time-R1 70.0 45.1 18.3 44.1 46.8 25.9 11.7 31.1 38.0 22.5 9.2 24.2

• Standard IoU reward rIoU(·). The standard Intersection over Union between the predicted segment
[ts, te] and the ground-truth segment [t′s, t

′
e], computed as:

rIoU =
max(0,min(te, t

′
e)−max(ts, t

′
s))

max(te, t′e)−min(ts, t′s)
(8)

• Timestamp-aware IoU reward rtIoU(·). The timestamp-aware IoU reward augments the standard
IoU with a center alignment term that penalizes discrepancies between the centers of the predicted
and ground-truth segments:

rtIoU = rIoU + rcenter, where rcenter = 1− |(ts + te)/2− (t′s + t′e)/2|
t′e − t′s

(9)

This modification provides a more fine-grained grounding signal by encouraging both boundary
alignment and temporal center consistency.
• Exact matching reward rem(·). A sparse binary reward that is 1 only if the predicted timestamps
exactly match the ground truth, and 0 otherwise:

rem = I(ts = t′s ∧ te = t′e) (10)

• Absolute error reward rabs(·). The negative L1 distance between the predicted and ground-truth
boundaries:

rabs = −(|ts − t′s|+ |te − t′e|) (11)
• RMSE reward rrmse(·). The negative Root Mean Square Error, which penalizes larger boundary
errors more heavily:

rrmse = −
√

(ts − t′s)
2 + (te − t′e)

2

2
(12)

The results in Table 15 clearly demonstrate the necessity of a strong, fine-grained grounding signal
combined with a structural incentive. Using the reasoning format reward alone (rformat only) or
sparse rewards like rem is insufficient for effective learning. The comparison between rtIoU (without
format) and our full approach (rtIoU + rformat) shows that the format reward consistently improves
performance by guiding the model’s generation structure. While distance-based metrics perform
reasonably well, IoU-based approaches provide a more informative and stable learning signal. Among
these, our proposed rtIoU consistently outperforms the standard rIoU, validating the superiority of
our final reward design. The combination of a precise grounding signal and a structured reasoning
incentive yields the best temporal grounding performance.

E Qualitative Result

Case study of temporal video grounding on Charades and ActivityNet. As shown in Figure 8, in
the example above, given a relatively complex language instruction, Time-R1 demonstrates more
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Table 15: Ablation study on different reward functions and their combinations across three datasets.

Reward Design TVGBench Charades ActivityNet
R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU

rtIoU + rformat (Ours) 41.8 29.4 16.4 29.2 78.1 60.8 35.3 58.1 58.1 39.0 21.4 40.5

rformat only 27.1 18.0 10.1 18.8 60.4 39.2 17.4 39.3 35.1 22.2 13.1 26.0
rtIoU (w/o format) 40.5 27.6 15.4 28.0 78.4 61.6 36.1 54.0 55.2 36.8 20.2 38.4

rIoU + rformat 41.4 28.0 15.8 28.4 77.6 58.9 32.7 56.4 58.8 38.8 20.7 39.4
rcenter + rformat 37.6 25.9 15.0 26.3 75.6 57.7 31.9 51.3 52.5 34.1 18.5 36.6
rem + rformat 26.5 16.8 9.1 18.3 61.6 40.3 18.7 40.4 35.9 22.5 13.3 26.4
rabs + rformat 39.1 27.8 14.8 27.4 76.2 59.5 33.9 52.3 51.4 32.9 17.8 35.7
rrmse + rformat 38.9 27.0 15.8 27.2 75.4 58.6 33.1 51.5 51.2 32.7 17.8 35.5

Figure 6: Performance comparison of tIoU and
IoU in multi-epoch training.

Figure 7: Ablation of sample filtering in multi-
epoch training.

accurate localization than all baselines, successfully capturing the initial event “goes back to the pink
bucket” within the timestamp, while other SoTA models like Gemini-2.5-Pro fail. In the example
below, the model accurately localizes the event, excluding “a person is lying on the couch” and
correctly distinguishing between sitting and lying, unlike other models which either localize only a
small segment (TimeSuite and VideoChat-Flash) or the entire segment (TRACE and Gemini-2.5-Pro).

Case study of short video QA on VideoMME and TempCompass. As shown in Figures 9 and 10,
Time-R1 demonstrates improved performance over the base model in tasks requiring positional
judgment, scene storyline reasoning, and visual reasoning. For example, in Figure 9, Time-R1
correctly identifies that a car in the video is missing its right-front wheel, a detail that the base model
fails to recognize. This reflects that Time-R1 likely possesses stronger video localization capabilities,
which in turn enhance its visual reasoning ability. In Figure 12, we output a CoT when answering
the QA task, providing some interpretability. This example shows that Time-R1’s reasoning process
is more concise, whereas the base model often reasons correctly but arrives at the wrong answer.
This suggests that Time-R1’s reasoning may be more effective in guiding the final answer, possibly
benefiting from the outcome-driven RL of GRPO.

Case study of long video QA on EgoSchema and VideoMME. Figure 13 presents a long egocentric
video QA example focused on summarizing task steps. In the "Hanging the Dress" case, the base
model fails to identify all key steps, while our Time-R1 model correctly selects the answer by
generating a more accurate chain-of-thought (CoT). In Figure 14, the task involves identifying the
primary tools and ingredients used in the video and understanding their respective contributions.
An additional example in Figure 9 involves animated scene reasoning, where Time-R1 correctly
infers—based on elements like the presence of a guitar—that the heroes defeated the enemies using
the power of music, whereas the base model misinterprets the cause. Across these complex reasoning
tasks involving long videos, Time-R1 consistently demonstrates superior performance compared to
the base model.

Illustration of our prompt at training and inference time. Figure 11 presents the prompts used
for the temporal video grounding and video QA tasks at both training and inference time.

Illustration of our prompt to annotate query semantics on TVGBench. Figure 15 presents the
prompt used to annotate query semantics in the TVGBench dataset. The prompt is designed to guide
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the DeepSeek LLM in classifying each input query into one of 11 predefined semantic categories.
To improve annotation quality, we refer to the construction of existing benchmarks and carefully
select both positive and negative examples for each semantic type. These examples are chosen to
include queries that are either easy or difficult for the model to answer, helping to refine the model’s
understanding and improve labeling accuracy.
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(video length: 74s)

Question: Where is the event ”The man goes back to the pink bucket to wash another dark item clothing, he wrings it out in the 

pink bucket, throws it in the yellow bucket, then wrings his hands together a few times while staring at the camera”?

Time-R1 thinking (ours): The event "The man goes back to the pink bucket to wash another dark item clothing, he wrings it out in the pink 

bucket, throws it in the yellow bucket, then wrings his hands together a few times while staring at the camera." occurs between 35.00 and 

75.00 seconds in the video.

Ground Truth 33.1s 73.5s

Gemini-2.5-Pro 57.0s 73.0s

VideoChat-Flash 0.0s 17.2s

Trace 54.9s 74.1s

23.0sTime-R1 (ours) 35.0s 75.0s

20.0s 30.0sTimeSuite

(video length: 31s)Question: Where is the event ”a person is seen sitting on a couch”?

Time-R1 thinking (ours): The event "a person is seen sitting on a couch" occurs at the beginning of the video. The person is seated on a 

couch, holding a phone, and appears to be engaged with it. This aligns with the initial frames of the video.

Ground Truth 0.0s 12.8s

Gemini-2.5-Pro 0.0s 30.0s

VideoChat-Flash 0.0s 5.0s

Trace 0.0s 31.6s

23.0sTime-R1 (ours) 0.0s 10.0s

0.0s 5.0sTimeSuite

Figure 8: Temporal video grounding cases from Charades and ActivityNet benchmark. Time-R1
outperforms other SoTA models.

(video length: 38m) Question: What do heroes of legend use to defeat the enemy based on the video? 
(A) Their wisdom           (B) A big robot 
(C) Their superpower         (D) Power of music

(video length: 17s) Question: What's wrong with this car? 
(A) It doesn't have a left rear wheel.       (B) It doesn't have a right front wheel.
(C) Its headlamp is broken.           (D) Its right door is broken. 

Figure 9: Case study on VideoMME (w/o CoT), demonstrating that Time-R1 achieves better perfor-
mance than the base model.
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(video length: 10s)Question: Which sentence better captures the essence of the video? 

(A) First, two hand are holding the clay pot and then three hands are holding it.

(B) In the video, three hands are holding the clay pot, then two hands are holding the clay pot. 

(video length: 14s)Question: What is the sequence of actions performed by the girl?

(A) Putting on clothes, jumping into water, taking off clothes 

(B) Jumping into water, putting on clothes, taking off clothes

(C) Taking off clothes, putting on clothes, jumping into water 

Figure 10: Case study on TempCompass (w/o CoT), demonstrating that Time-R1 achieves better
performance than the base model.

System Prompt
You are a video analysis expert.
Input Prompt
To accurately pinpoint the event "[EVENT]" in the video, determine the precise time period of the event. Output 
your thought process within the <think> </think> tags, including analysis with either specific time ranges (xx.xx 
to xx.xx) in <timestep> </timestep> tags. Then, provide the start and end times (in seconds, precise to two 
decimal places) in the format "start time to end time" within the <answer> </answer> tags. For example: "12.54 
to 17.83".""" 

Temporal Video Grounding

System Prompt
You are a video analysis expert.
Input Prompt (w/o CoT)
Carefully watch the video and pay attention to the cause and sequence of events, the detail and movement of 
objects and the action and pose of persons. Based on your observations, select the best option that accurately 
addresses the question. Provide the letter of the best option wrapped in parentheses within the <answer> 
</answer> tags. Question: {} {}""",
Input Prompt (w/ CoT)
Carefully watch the video and pay attention to the cause and sequence of events, the detail and movement of objects 
and the action and pose of persons. Based on your observations, select the best option that accurately addresses the 
question. Output your thought process within the <think> </think> tags, including analysis with either specific 
timestamps (xx.xx) or time ranges (xx.xx to xx.xx) in <timestep> </timestep> tags. Then, provide the letter of the best 
option wrapped in parentheses within the <answer> </answer> tags. Question: {} {}

Video QA

Figure 11: Illustration of prompts at both training and inference time.
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(video length: 9s) Question: In which sequence does the man perform the actions?

(A) Gliding on the skateboard and then jumping

(B) Jumping and then tying his shoelaces

(C)  Tying his shoelaces and then gliding on the skateboard

(D) Gliding on the skateboard and then tying his shoelaces 

Base model thinking:

Let's analyze the sequence of actions performed by the man in the video:

1. The man is initially seen standing on a skateboard.

2. He then proceeds to tie his shoelaces.

3. After tying his shoelaces, he glides on the skateboard.

Given this sequence, the correct answer is: (D) gliding on the skateboard and then tying his shoelaces

Time-R1 thinking (ours) :

The sequence of actions performed by the man in the video is as follows: first, he ties his shoelaces, and then he 

glides on the skateboard. This can be observed from the video where the man is seen tying his shoelaces before 

he starts gliding on the skateboard.

(video length: 8s) Question: Is the pineapple being pushed forward by a person?

(A) Yes         (B) No  

Base model thinking:

To determine if the pineapple is being pushed forward by a person, let's analyze the video:

1. The video shows a pineapple on a pink surface.

2. A hand appears in the frame and interacts with the pineapple.

3. The hand lifts the pineapple, indicating that it is being moved by the person.

Given this analysis, the pineapple is indeed being pushed forward by a person.

Time-R1 thinking (ours) :

The video shows a hand reaching into the frame and grasping the pineapple. The hand then lifts the pineapple, 

indicating that the pineapple is not being pushed forward by a person but rather being moved by the hand.

Figure 12: Case study on TempCompass (w/ CoT), demonstrating that Time-R1 achieves better
performance than the base model.
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(video length: 3m) Question: Summarize the steps taken by c to complete the tasks in 

this video. don't list every action narrated, but rather focus on major components and 

how they're executed.

(A) C folds the dress, places it on the ironing board, and then hangs it up.

(B) C folds the dress, places it on the ironing board, and then packs it.

(C) C folds the dress, places it on the ironing board, and then washes it.

(D) C folds the dress, places it on the ironing board, and then irons it and hangs it up. 

(E) C folds the dress, places it on the ironing board, irons it, and then folds it again. 

Base model thinking:

Let's analyze the video step by step to determine the correct sequence of actions:

1. Folding the Dress: The video starts with C folding a blue dress on the ironing board. This is the 

first major action.

2. Placing the Dress on the Ironing Board: After folding the dress, C places it on the ironing board.

3. Ironing the Dress: C then irons the dress, ensuring it is smooth and free of wrinkles.

4. Hanging the Dress: Finally, C hangs the dress up, completing the task.

Now, let's evaluate the options:

(A) C folds the dress, places it on the ironing board, and then hangs it up.

(B) C folds the dress, places it on the ironing board, and then packs it.

(C) C folds the dress, places it on the ironing board, and then washes it.

(D) C folds the dress, places it on the ironing board, and then irons it and hangs it up.

(E) C folds the dress, places it on the ironing board, irons it, and then folds it again.

The correct sequence of actions matches option (D). 

Time-R1 thinking (ours) :

The video shows C folding a dress, placing it on the ironing board, and then ironing it. The 

sequence of actions is clear and follows a logical order. The dress is folded, placed on the ironing 

board, and then ironed, which is a common sequence for completing a task like ironing a dress.

Figure 13: Case study on EgoSchema (w/ CoT), demonstrating that Time-R1 achieves better perfor-
mance than the base model.
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(video length: 3m) Question: Identify the primary tools and ingredients c used 

throughout the video, and discuss how they contributed to the overall dessert 

preparation process.

(A) The primary tools and ingredients c used throughout the video were a spatula, a strainer, a 

dessert bowl, cocoa powder, and tissue paper. the spatula was used to spread the batter in 

the bowl. the strainer was used to sieve the cocoa powder into the bowl. the dessert bowl was 

used to hold the batter. the cocoa powder was used to add flavor and color to the batter. the 

tissue paper was used to wipe the edges of the bowl. 

(B) The primary tools and ingredients c used throughout the video were a mixing bowl, a whisk, 

a baking dish, flour, sugar, eggs, and butter. the mixing bowl was used to mix the batter. the 

whisk was used to beat the eggs. the baking dish was used to bake the cake. the flour was used 

to add structure to the cake. the sugar was used to add sweetness to the cake. the eggs were 

used to add moisture to the cake. the butter was used to add flavor and richness to the cake. 

(C) The primary tools and ingredients c used throughout the video were a muffin tin, a spoon, 

chocolate chips, flour, sugar, eggs, and butter. the muffin tin was used to bake the muffins. 

the spoon was used to scoop the batter into the muffin tin. the chocolate chips were used to add 

flavor and color to the muffins. the flour was used to add structure to the muffins. the sugar 

was used to add sweetness to the muffins. the eggs were used to add moisture to the muffins. 

the butter was used to add flavor and richness to the muffins.

(D) The primary tools and ingredients c used throughout the video were a cake pan, a spatula, 

chocolate frosting, flour, sugar, eggs, and butter. the cake pan was used to bake the cake. the 

spatula was used to spread the frosting on the cake. the chocolate frosting was used to add 

flavor and color to the cake. the flour was used to add structure to the cake. the sugar was used 

to add sweetness to the cake. the eggs were used to add moisture to the cake. the butter was 

used to add flavor and richness to the cake.

(E) The primary tools and ingredients c used throughout the video were a mixing bowl, a whisk, 

a baking sheet, flour, sugar, eggs, and butter. the mixing bowl was used to mix the batter. the 

whisk was used to beat the eggs. the baking sheet was used to bake the cookies. the flour was 

used to add structure to the cookies. the sugar was used to add sweetness to the cookies. the 

eggs were used to add moisture to the cookies. the butter was used to add flavor and richness 

to the cookies.

Figure 14: Case study on EgoSchema (w/o CoT), demonstrating that Time-R1 achieves better
performance than the base model.
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## Task
 Classify input queries into exactly one of the following categories based on their semantic content:

1. Human Action (Simple)  

- Definition: Singular physical movements or basic interactions.

- Examples:  - person opens a book over their head.  - The person gets out some ginger.  - who did I talk to in the shopping mall?

2. Human Action (Complex)

- Definition: Single continuous event with intricate components or concurrent elements.

- Examples:  - He is talking while several people are using rowing machines.  

    - One man wearing blue shirt wearing a jumping leg extension and another man wearing red pants play on a field.  

    - who did I interact with when I did activity of fixing camping tent?

3. Human Action (procedural)

- Definition: contains multiple sequential events with explicit temporal boundaries. contains multiple actions, each with a clear start and end.

- Examples:   - The person procures a condiment from the pantry, takes a spoon from the drawer which he uses to scoop it into the pan, then 

returns the condiment to the pantry, places the spoon in the sink and again stirs the pan.  

    - The person takes out a spoon from the drawer, scoops some sugar into the glass, stirs it with the juice, and returns the 

package to the pantry.

- Negative Examples: - Then the man juices some lemons in a juicer: only one action  

      - She gets out a cutting board and knife: only one action  

      - He then finishes by doing tricks: only one action  

      - She removes bits of shell until there is a small hole: only one action

4. Human Pose

- Definition: Static body positions or group configurations. Posture descriptors, positional prepositions

- Examples:  - Several other people are in the background working out on the equipment.  

    - A young child is seen standing before a set of monkey bars.

5. Object Existence (Simple)

- Definition: Current location/status queries. Simple location prepositions.

- Examples: - Where is the tap?  

    - where is the chopsticks?  

    - In what location did i see the blue tent?

6. Object Existence (Complex)

- Definition: Queries about historical object positions changed by human actions, requiring temporal-action context (e.g., "after/before 

[action]").

- Examples: - Where was the spatula after I first used it?  

    - Where was the sieve before I picked it?  

    - what bolt did I pick?  

    - What mushroom did i chop

7. Object Attribute  

- Definition: Physical/abstract property inquiries. Property descriptors (color/size/material)

- Examples:  - what material did I pick from the shelf?  

    - what color is the toilet bin?

8. Object Counting

- Definition: Quantitative object presence queries. Numeric quantifiers, plural objects

- Examples:  - how many tissue paper were on the floor?  

    - how many rolls are in the tray

9. Object Transition

- Definition: State/position change confirmation. Transformation verbs, completion checks

- Examples:  - The bulb is broken apart.

    - Did I close fridge?,

10. Environment Change

- Definition: Dynamic scene modifications. Transient elements, overlay content

- Examples:  - video ends with clothes/captions scrolling down

11. Environment State

- Definition: Persistent scene elements. Static overlays, permanent fixtures

- Examples:  - Intro states 'Progression: Lisa's First Season’  

    - 'Trend Routing Technology' logo appears

## Output Format
Return ONLY the exact category name from:[Human Action (Procedural), Human Action (Complex), Human Action (Simple), Human Pose, 

Object Existence (Simple), Object Existence (Complex),Object Attribute, Object Counting, Object Transition, Environment Change, 

Environment State]'‘’ 

INPUT_PROMPT = '''Given the query below, classify it into one of the categories mentioned above.Query: {query}  Your response:

Figure 15: Prompts for LLM used to annotate the semantics of each query on TVGBench.
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