Faults in our Formal Benchmarks

Pawan Sasanka Ammanamanchi Siddharth Bhat
Eleuther Al Cambridge
pawansasanka@gmail.com siddharth.bhat@cl.cam.ac.uk
Abstract

Recent focus in LLM-assisted theorem proving has seen the rapid introduction of
several benchmarks. Benchmarks in Lean are considered highly reliable because
of the nature of proof assistants & formal languages. However, we question the
quality of popular datasets and find that multiple popular benchmarks contain
material defects. We discuss common issues that persist across datasets, such as
omitted side conditions, misformalization, and incorrect/incomplete translations,
through examples. We aim to establish that such defects occur across all datasets
we examined, despite their prevalent use. Bad datasets pose a threat to the quality
of evaluations in the field, and we propose some better dataset standards for such
releases.

1 Introduction

Formal mathematics has experienced a meteoric rise in deep learning, particularly in the context of
automated theorem proving, where models are trained to write proofs in systems like Lean. Recent
models such as DeepSeek-Prover V2 [8]], Goedel Prover 2 [, and Kimina Prover [10] rely on
benchmarks like miniF2F and ProofNet to demonstrate progress. Yet, benchmarks require constant
attention. LLM benchmarks have been plagued by issues such as mislabeling, data contamination,
and noisy data that obscure their true capabilities.

Benchmarking in Lean is considered reliable because it leverages formal verification; every claimed
property must be accompanied by a machine-checked proof, eliminating the logical errors and hidden
assumptions that plague traditional benchmarks. Although these provide mathematical certainty
through formal verification, their reliability is ultimately limited by the accuracy of the specifications
and the translational correctness from natural language. Crucially, theorem provers certify a given
formalization, not that it faithfully captures the intended problem.

In this paper, we sample problems from widely used datasets and identify issues in all of them. We
document these recurring issues that plague these datasets and propose dataset standards to establish
more reliable evaluation in formal mathematics.

2 Popular Formal Math datasets

1. miniF2F [13]: 488 Olympiad-level problems (244 validation, 244 test), originally released
in Lean 3.

2. ProofNet [[1]: 371 undergraduate-level problems from textbooks (analysis, algebra, topol-
ogy), released in Lean 3 with paired natural-language statements and proofs.

3. FormalMath [12]]: 5,560 Lean 4 problems spanning fromOlympiad challenges to
undergraduate-level theorems across algebra, applied mathematics, calculus, number theory,
and discrete mathematics. They also release FormalMath Lite, a carefully selected subset of
425 problems (comprising 359 high school-level and 66 undergraduate-level problems).

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Sth Workshop on
Mathematical Reasoning and Al

Dataset #Problems Lean (orig.) Some Issues

miniF2F 488 Lean 3 Multiple forks/ports; Version proliferation, Incom-
plete formalization, Type errors, Incomplete spec-
ification.

ProofNet 371 Lean 3 Version proliferation, underspecification and in-
complete formalization.

FormalMath 5,560 Lean 4 Arithmetic errors

CombiBench 100 Lean 4 Incomplete specification and Incorrect Transla-
tion.

ProverBench 325 Lean 4 Wrong Problems, Incomplete Specification, Incor-

rect Translation
Table 1: Benchmarks referenced in this study (details deferred to §3).

4. CombiBench [6]: A benchmark comprising 100 combinatorial problems, each formalized
in Lean 4 and paired with its corresponding informal statement.

5. ProverBench [8]: A benchmark dataset comprising 325 problems. 15 are formalized from
AIME 24 and 25. The remaining 310 problems are drawn from curated textbook examples
and educational tutorials.

We don’t perform an exhaustive study of all the issues in these datasets. Our observations are based
on compiling and reading the public releases/forks cited for each benchmark.

3 What Goes Wrong

Recurring issues in Formal math benchmarks face distinct challenges that go beyond the typical
issues affecting NLP benchmarks. While traditional benchmarks grapple with annotation quality and
label noise, formal mathematics introduces layers of complexity unique to the intersection of natural
language, formal logic, and evolving proof assistants.

Version Drift & Dataset Maintenance Lean is a rapidly evolving language with years of
development still ahead. miniF2F was originally released in Lean 3, which is obsolete today and not
in use. While changes in Lean 3 to Lean 4 might look subtle, given its evolving codebase, ways of
expressing some mathematical objects has become easier or has changed over time. For example, in
[Tl When ProofNet was originally released, Perfect wasn’t available so the authors used a subpar and
incorrect approximation, but it was solved later in ProofNet#.

Problem Statement

Rudin Exercise 2.28: Prove that every closed set in a separable metric space is the union of a (possibly
empty) perfect set and a set which is at most countable.

ProofNet (Incomplete & Incorrect)

theorem exercise_2_28 (X : Typex*)

[metric_space X] [separable_space X] theorem exercise_2_28 (X : Typex)

(A : Set X) (hA : is_closed A) : [MetricSpace X] [SeparableSpace X]
3Py Py : set X, A =Py UPy A (A : Set X) (hA : IsClosed A) :
is_closed P; A P; = {x | cluster_pt x JP; Py : set X, A=P; UPy A

(P P1)} A set.countable Py := sorry Perfect Py A Set.Countable Py := sorry

Figure 1: Example of evolving formalization: The original version only requires P; to be closed,
while the correct formalization explicitly requires it to be perfect (closed with no isolated points).

Benchmarks are released for a specific Lean/mathlib snapshot, but Lean is a relatively new and
evolving system. As APIs and tactics change, previously valid files break; quick “fixes” can also
introduce subtle semantic changes. This points to the need for dataset maintenance in a world of

evolving languages, which rarely happens if not at all in the world of deep learning. This also leads
to issues like version proliferation which we discuss next.

Proliferation of Incompatible Versions. This version drift creates a cascade effect. Over time,
multiple versions of miniF2F have been created, some of which are ports from Lean3 while others
claim to fix errors. The original version released on github []_1 another one introduced in Draft Sketch
Prove[4]] El, a port in Lean4 maintained by Kaiyu Yang El, another version introduced in Kimina prover
which fixes some errors [10] E]and a version introduced by Harmonic [3ﬂ Many of these versions
are one-off releases, and some issues persist across versions and persist into downstream forks. The
Harmonic version is the best because of extensive corrections, but is not used by anyone because
of its improper splits. Papers rarely specify which version of the dataset was used hence comparing
across models is difficult.

A similar issue also arose with ProofNet, the original version was released on github [1]], a port to
Lean4 [9], a version introduced in DeepseekProver 1.5 [[11] and an update version with corrections
(in 118 problems out of 371) released as ProofNet# in [7]].

Misformalization. The ways in which misformalizations happen are as follows:

1. Incomplete Specification: When translating from natural language to Lean, forgetting
some properties of mathematical objects can lead to trivial or vacuous or even wrong
questions. This also extends to missing conditions. For example in [2| the formalization
is missing the properties of V where it should be finite dimensional. The existence of
complements/kernel intersections depends on finite-dimensionality; otherwise U NkerT = 0
with rangeT = T'(U) need not hold.

ProofNet - Axler Exercise 3.8

Problem Statement:

Suppose that V' is finite dimensional and that 7' € £(V,W). Prove that there
exists a subspace U of V such that U Nnull 7' = {0} andrange 7' = {Tu : u €

Lean Formalization:

I theorem exercise_3_8 {F V W : Typex*} [add_comm_group V]
[add_comm_group W] [field F] [module F V] [module F W]
@L:V—=[FlWw

4 U : submodule F V, U L.ker = L A
linear_map.range L = range (dom_restrict L U):=

[T TN}

. J

Figure 2: Axler Exercise 3.8: Missing finite dimension hypothesis in formalization

2. Incorrect Translation: When translating from natural language to lean not all mathematical
arguments might naturally translate, and this will lead to errors.

3. Incomplete Translation: When translating from natural language to lean, you need to
translate every part of the question and its conditions for correctness. In[3] while the original
inequality is correctly translated, the equality determination is absent from the formalization,
silently dropping half the problem.

4. Wrong Specification: When translating from natural language to lean, translating conditions,
and variables in domains should be done accurately. For example, if a question says For
every positive natural number A, the correct lean translation would be a : N+, or
(a : N) (ha: a > 0). Wrong or weaker specifications can have various problems.

'https://github.com/openai/miniF2F
"https://github.com/facebookresearch/miniF2F
*https://github.com/yangkyl1l/miniF2F-1lean4/tree/main
*https://huggingface.co/datasets/AI-M0/miniF2F_test
https://github.com/Harmonic-ai/datasets

https://github.com/openai/miniF2F
https://github.com/facebookresearch/miniF2F
https://github.com/yangky11/miniF2F-lean4/tree/main
https://huggingface.co/datasets/AI-MO/miniF2F_test
https://github.com/Harmonic-ai/datasets

miniF2F - IMO1983 Problem 6

Problem: Let a, b and c be the lengths of the sides of a triangle. Prove that
a’b(a — b) + b?c(b — ¢) + c?a(c — a) > 0. Determine when equality occurs.

| theorem imo_1983_p6 (a b ¢ : R)

2 (hg : 0<aAO0O<bAOKC)
(hy : c<a+b) (hp : b<a+c) (g :a<b+c):
0< a2x*xbx*x(a-b)+b2x*xcx*x(b-oc)+

5 c™2 * a * (c - a) := begin sorry end

Figure 3: IMO 1983 P6: Missing equality condition in formalization

This is not an exhaustive list of such errors but provides a decent understanding of how they may
look. We document several such errors across datasets in the [A. 1l Each misformalization doesn’t
just add noise, it fundamentally changes what we’re asking models to prove. It can turn stronger
problems to weaker ones, and sometimes missing the domains of variables can lead to arithmetic
errors like truncated substraction, division by zero etc.

Absence of Verified Solutions. The best way to find misformalizations and wrong questions is to
formalize the answer to questions, but while solutions enables verification they also risk contamination.
So benchmarks release theorem statements without proofs, hoping they’re correct. In practice this
prevents validation and can mask unsatisfiable statements or vacuous truths.

4 Lessons Learnt: Towards Standard Practices

Turn off auto-implicit Most benchmarks are created by auto-formalizing natural language with
LLMs. When the LLM mistypes a variable name or forgets to define a type parameter, Lean’s
auto-implicit feature silently "fixes" it by adding implicit parameters. Lean’s default autoImplicit
automatically inserts hidden type parameters and universe levels for undeclared symbols, which is
ergonomic for humans but risky for NL—Lean pipelines. The file type-checks, so nobody notices. The
error will only surface later when someone tries to prove it and finds it’s either trivial or impossible.
Adding ‘set_option autoImplicit false‘ makes these errors fail at formalization time instead of hiding
them. This forces errors at formalization time and the file won’t compile until you explicitly declare
the intended domains and binders.

Basic Checkers: Be disciplined about types and common arithmetic traps Natural number
subtraction in Lean truncates: ‘2 - 3 =0°, not ‘-1°. This silently changes problems. Division by zero
returns a default value. In fields/division rings as modeled in mathlib, inv 0 = 0 and thus /0 = 0.
This totalization can silently trivialize goals unless the denominator is guarded by i : b # 0. A
minimal checker pass should flag Nat subtraction, unguarded division, and unintended real coercions.

Avoid using Axioms Benchmarks must not introduce axioms or constants to stand in for problem
statements. In Lean, writing axiom h : ¢ (or constant h : ¢) asserts a proof of ¢ exists; any solver
can then “solve” the item by citing h, which collapses evaluation and obscures whether the statement
is even satisfiable. We should therefore adopt a no-axioms rule for dataset files: problem statements
are encoded as definitions of propositions, never as axioms.

Dataset Maintenance and Pinning When datasets are released, the lean version they are intended
for should also be made clear, so it serves as a reference when being solved by a model in more recent
lean versions. Regardless of if the dataset is autoformalized or human written, there isn’t always
a mathematical equivalent in Lean and it is an evolving language so some definitions and ease of
translation will change over time.

Capture all requirements, not just the main claim. While human verification is the gold standard
for identifying errors in formalization, it is costly and time consuming. LL.M-as-a-judge could be
explored to identify if a problem is capturing all the requirements in a given statement vs just the
main claim.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]
[10]

[11]

[12]

[13]

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radeyv,
and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level
mathematics, 2023.

Leonardo Mendonga de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob
von Raumer. The lean theorem prover (system description). In CADE, 2015.

harmonic Community. Harmonic minif2f performance. https://harmonic.fun/news#
blog-post-2.

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik,
Timothée Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding
formal theorem provers with informal proofs. In Submitted to The Eleventh International
Conference on Learning Representations, 2022.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang,
Hongzhou Lin, Yejin Choi, Danqgi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling
formal theorem proving with scaffolded data synthesis and self-correction, 2025.

Junqgi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman
Soletskyi, Haiming Wang, Yunzhou Xie, Beibei Xiong, Zhengfeng Yang, Jujian Zhang, Lihong
Zhi, Jia Li, and Zhengying Liu. Combibench: Benchmarking llm capability for combinatorial
mathematics, 2025.

Auguste Poiroux, Gail Weiss, Viktor Kun¢ak, and Antoine Bosselut. Improving autoformaliza-
tion using type checking, 2025.

Z.Z.Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue
Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang,
Yuxuan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing formal
mathematical reasoning via reinforcement learning for subgoal decomposition, 2025.

Rahul Vishwakarma. Proofnet lean4. https://github.com/rahul3613/ProofNet-1leand!

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Jungi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jiangiao Lu, Hugues de Saxcé, Bolton Bailey,
Chendong Song, Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Jiawei
Liu, Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall, Luigi
Pagani, Moreira Machado, Pauline Bourigault, Ran Wang, Stanislas Polu, Thibaut Barroyer,
Wen-Ding Li, Yazhe Niu, Yann Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang, Zhilin
Yang, Zhengying Liu, and Jia Li. Kimina-prover preview: Towards large formal reasoning
models with reinforcement learning, 2025.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F.
Wu, Fuli Luo, and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search, 2024.

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan
Zhang, Yuan Zheng, Huajian Xin, Wenhao Huang, Yandong Wen, and Weiyang Liu. Formal-
math: Benchmarking formal mathematical reasoning of large language models. arXiv preprint
arXiv:2505.02735, 2025.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for
formal olympiad-level mathematics. In International Conference on Learning Representations,
2022.

https://harmonic.fun/news#blog-post-2
https://harmonic.fun/news#blog-post-2
https://github.com/rahul3613/ProofNet-lean4

A Issues in Formal Mathematics Datasets

This appendix has examples of various formalization issues found across major formal mathematics
benchmarks. We present side-by-side comparisons of problematic formalizations, and describe the
error and either point out which version is correct or provide the correction. This section is meant to
familiarize the reader with the kinds of pitfalls we observe in datasets. This is not a complete list of
all errors in datasets like miniF2F, ProofNet, FormalMath, Proverbench which would span 100s of
problems if not 1000s.

A.1 Issue 1: Incomplete Formalization

Many problems in formal benchmarks only formalize part of the original problem, often missing
crucial constraints or conditions.

A.1.1 IMO 1983 Problem 6 - miniF2F

In this problem, the solution must first prove the inequality and then determine when equality occurs.

Problem Statement

Let a, b and c be the lengths of the sides of a triangle. Prove that
a®b(a — b) + b*c(b — ¢) + c*a(c —a) > 0.

Determine when equality occurs.

J

DSP/OpenAl/Numina Version Harmonic Version (Correct)

I theorem imo_1983_p6 | theorem formal_1647

2 (abc: R) 2 (abcd: R

3 (hg : 0<aAO0O<DbAOKGC) 3 (hg : 0<aAO0O<DbAOKGC)

4 (hy : c <a+b) 4 (hy : c<a+b)

5 (hy : b < a+c) 5 (hy : b<a+c)

6 (hs : a<b+c): 6 (hs : a<b+c)

7 0<a2x*bx* (a-Db) + 7 (hy : d=a2*b * (a-Db) +
b"2 * ¢c x (b - ¢) + 8 b"2 * ¢ x (b - ¢) +

9 c™2 *x a * (c - a) := 9 c™2 *x a *x (c - a)) :

10 begin 0w 0<dA@=0++ (a=bAb-=

11 sorry c)) := by

12 end 11 sorry

| J | J

A.1.2 IMO 1981 Problem 6 - miniF2F

The problem asks to "Determine f(4,1981)" - a specific computational problem requiring finding
an actual value. While the formalization asks for a recurrence relation f(4,y + 1) = 2/(4¥)+3 _ 3,
While it might be the case that the recurrence relation might be used to solve the computational
problem, this is not an exact formalization. Proving the recurrence is necessary but not sufficient for
computing the numerical value.

Problem Statement

The function f(x, y) satisfies:
L. f(0,y)=y+1,
2. flx+1,0) = f(z,1),
3. flz+1ly+1) = f(z, f(z+ 1Ly)),
for all non-negative integers x, y. Determine f(4, 1981).

-

I theorem imo_1981_p6 I theorem imo_1981_p6
5 (f : N> N — N) armonic version 3 (f : N> N — N)

5 (o : Vy, £f0y= | theorem formal_ 1514 5 (o : Vy, £f0y=
y + 1) > (f:N->N=N) y + 1D
4 (h; : Vx, £ (x+1) 3 (ho : Vy, £0y= 4 (h; : Vx, £f(x+1)
0=1fx1) y + 1) 0=1Ffx1)
5 (thy : Vxy, £ (x+ 4 (hy : Vx, £fx+1) 5 (thy : Vxy, £ (x+
1) (y +1) = 0=f£fzx1) 1) (y +1) =
6 fx (f (x+ 1) 5 (thy : Vxy, £ (x+ 6 fx (f (x+ 1)
) 1) (y +1) = y))
7 Vy, f4(y+1) = 6 fx (f (x+ 1) 7 Vy, f4(y+1) =
g 2°(f4y+3) -3) e g 2°(f4y+3) -3
1= 7 Vy, f4(y+1) = 1=
9 begin g8 2°(f4y+3) -3 9 begin
10 sorry := by 10 sorry
11 end 9 sorry 11 end

A.2 Issue: Missing Specification
A.2.1 IMO 1962 Problem 2 - miniF2F
The DSP/numina version doesn’t specify that /3 — x — /& + 1 > 0, and while it might be perhaps

immaterial while solving the problem, it is a case of missing specification and leaving nothing to
ambiguity.

Problem Statement

Show that if the real number z satisfies the inequality \/ V3i—-z—+vr+1< % then —1 <

V127

Harmonic version

TRy e
2 x : R)

| theorem imo_1962_p2 3 (hy : x < 3)

2 (x : R) 4 (h; : -1 < x)

3 (hy : 0 <3 -x) 5 (hg : 0 < Real.sqrt (3 - x) -

4 (h; : 0 <x+ 1) 6 Real.sqrt (x + 1))

5 (h2 : 1/ 2 < real.sqrt (3 - x) - 7 (hs : Real.sqrt (Real.sqrt (3 - x
6 real.sqrt (x + 1)) :) -

7 -1 < xAx<1- 8 Real.sqrt (x + 1)) > 1/ 2)
8§ real.sqrt 31 / 8 := :

9 begin 9 -1 <xAx<1-

10 sorry 10 Real.sqrt 127 / 32 := by

11 end 11 sorry

A.2.2 APMO 1991 Problem 2 - CombiBench

In this problem originally, the points were not assumed to be distinct, so it was trivially false. It was
fixed in the second version.

Problem Statement

Suppose there are 997 points given in a plane. If every two points are joined by a line segment
with its midpoint coloured in red, show that there are at least 1991 red points in the plane.

3 noncomputable def red_points {k}
| import Mathlib 4 (points : Fin k — R x R)
2 5 Finset (R x R) :=
3 noncomputable def red_points {k} 6 (((Finset.univ (« := Fin k X Fin
4 (points : Fin k - R x R) : k)) \ (Finset.univ).image (
5 Finset (R x R) := fun i => (i, 1))).image
6 ((Finset.univ (o := Fin k X Fin 7 (fun x => midpoint R (points
k)) .image (fun x => midpoint x.1) (points x.2)))
R (points x.1) (points x.2)) 8
) 9 theorem apmo_1991_p2 (points : Fin
7 997 — R x R)
8 theorem apmo_1991_p2 (points : Fin 10 (hpoints : Function.Injective
997 - R x R) : points)
9 (red_points points).card > 1991 11 (red_points points).card > 1991
:= by sorry := by sorry
& J . J

A.3 Issue: Incorrect Translation

Some formalizations fundamentally misrepresent the original problem, leading to different mathemat-
ical statements.

A.3.1 MATHD Algebra 15 - miniF2F

In this case, Harmonic version doesn’t capture the general operation definition from the problem
statement instead it directly introduces the substituted weaker version of the problem to solve. DSP
and OpenAl versions define a general operation s while Harmonic directly computes the specific
case.

Problem Statement

Ifa b= ab+ b®, for all positive integer values of a and b, show that 2 x 6 = 100

DSP Version OpenAl Version

I theorem | theorem
mathd_algebra_15 mathd_algebra_15

2 (s : N—- N—=N) 2 (s : N—- N—=N)

3 (hg : Vab, 0<a 3 (hg : Vab, 0<a
AO0<b — ANO0O<b —
b~ (a:N)) Harmonic Version b~ (a:N))

5 s 26 =100 := 5 s 26 =100 :=

6 begin | theorem formal_2895 : 6 begin

7 rw hg, 7 rw hg,

8 refl, 2 26 +6 " 2= 8 refl,

9 norm_num, 100 := by 9 norm_num,

10 end 3 sorry 10 end

. J \\ J & J

A.3.2 Number Theory Problem 16 - ProverBench

In this, problem u is a free variable and the specification that u is a substitute for y — 2x is missing.
Not only that, upon further look there might be an error in the problem, where x + u+/3 does not
solve the question, and the actual problem should have u + zv/3.

Problem Statement

For the equation 22 + y? — 1 = 4ay its general solution in the integers is given by x + u/3 =
(2+ \/3)", where u is the substitute for y — 2.

ProverBench Formalization (Incorrect)

| import Mathlib

5
2

3 theorem general_solution_quadratic_equation (x y :

4+ 72) (w:Z) (m: N)

5 xX2+y2-1=4%xx*xy — x+ux* Real.sqrt 3 =
6 (2 + Real.sqrt 3)"mn :=

7 sorry

A.4 Issue: Wrong Specification
A4.1 quantitative_reasoning_zh_blue_41 - FormalMath Problem 5164

In this problem, truncated subtraction occurs due to natural numbers, and this is incorrect typecasting.

Problem Statement

Given M = {z | x = a®>+ 1,a € N*}, N = {z | « = b2 — 4b + 5,b € N*}, then
the relationship between M and N is Proof: The answer is M C N. From a2+1 =
(a +2)? — 4a + 5, we can see that M C N. However, 1 € N and 1 ¢ M.

FormalMath 5164

import Mathlib

1
3 open Set Real

4 open scoped BigOperators
5

6 theorem quantitative_reasoning_zh_blue_41 :

7 {x: N|J]JdJa:N,0<aAx=2a2+1} C {x: N |
g8 db: N, 0<bAx=b"2-4%b+ 5} :=by

9 sorry

.

&

A.4.2 Problem 48 - FormalMath

This does not avoid the case that n can take the value 0.

Problem Statement

If the sequence {a, } satisfies that for any n € N*, 3~ aq = 2", prove that n | a,.

Lean Formalization:
theorem algebra_56552 (a : N — N) (ha : Vn, > din

1
> n.divisors, ad = 2 ~ n)
3 Vn,n|an :=by

4 sorry

r

	Introduction
	Popular Formal Math datasets
	What Goes Wrong
	Lessons Learnt: Towards Standard Practices
	Issues in Formal Mathematics Datasets
	Issue 1: Incomplete Formalization
	IMO 1983 Problem 6 - miniF2F
	IMO 1981 Problem 6 - miniF2F

	Issue: Missing Specification
	IMO 1962 Problem 2 - miniF2F
	APMO 1991 Problem 2 - CombiBench

	Issue: Incorrect Translation
	MATHD Algebra 15 - miniF2F
	Number Theory Problem 16 - ProverBench

	Issue: Wrong Specification
	quantitative_reasoning_zh_blue_41 - FormalMath Problem 5164
	Problem 48 - FormalMath

