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Foundation models are large, versatile models trained on massive datasets, capable of performing many different tasks without retraining

from scratch. They learn rich, general-purpose representations that can be adapted to specific domains with relatively little additional

training.

A foundation model can be multimodal, meaning it can handle multiple data types as inputs or outputs. For example, ChatGPT can

process text, code, and even images. Some foundation models, however, are single modality — such as text-to-image models — yet are

still called foundation models because of their broad pretraining and general-purpose capabilities.

Take a text-to-image foundation model like Stable Diffusion. Even though it only takes text as input and produces images as output, its

pretrained representations allow it to work across many styles — photorealistic, cartoon, anime, abstract art, etc.

Here’s an example using the Stable Diffusion web demo (https://stablediffusionweb.com/):

These models are not only flexible in style but also highly adaptable. With fine-tuning, they can be specialized for downstream

applications such as domain-specific image generation — even for fields like medical imaging.

Our previous work RL4Med-DDPO, Trajectory Traversal and Pixel Perfect Megamed has shown that by fine-tuning Stable Diffusion on

medical datasets (e.g., chest X-rays, skin lesions), we can produce synthetic medical images of striking quality:

Real image of a patient with Pleural Effusion Synthetic Image of patient with Pleural Effusion

Because these models start with rich pretrained representations, adaptation to new tasks often yields excellent results. However,

foundation models can be very large (Stable Diffusion 1.5 has ~1.03B parameters), and fine-tuning all of them can be computationally

expensive.

If compute resources are limited, parameter-efficient fine-tuning (PEFT) methods allow you to adapt the model by training only a small

subset of parameters. In our recent paper Pixel Perfect Megamed, we systematically explored several fine-tuning strategies for Stable

Diffusion 1.5 in the context of medical image generation, measuring both generation quality and downstream performance.

Fine-Tuning Paradigms for Text-to-Image Medical Image Generation

Stable Diffusion is a latent diffusion model, meaning the diffusion process occurs in a compressed latent space rather than directly in

pixel space — improving efficiency while preserving quality. Here is an illustration of latent diffusion model from the original latent diffusion

paper - High-Resolution Image Synthesis with Latent Diffusion Models. If you are not familiar with diffusion models, and latent diffusion

models, please read this blog post first [A blog post explaining diffusion models and latent diffusion models]

Stable diffusion has three main components:

1. VAE (Variational Autoencoder) – Encodes images into latents and decodes denoised latents back into images.

2. Denoising U-Net – Iteratively denoises the latent representation during generation.

3. Text Encoder (CLIP ViT-L/14 in Stable Diffusion 1.5) – Converts the text prompt into an embedding used to guide image generation

via cross-attention.

When fine-tuning, a natural question arises: Do we need to update all components?

Prompt: Generate a photorealistic image of an old man sitting by

a river.
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When a model has multiple components and a large number of parameters — 1.03 billion in the case of Stable Diffusion 1.5 — fine-

tuning can become challenging. This naturally raises the question: Do we need to fine-tune all components? Or even, do we need to update

every parameter within each component? The answer is no — you don’t need to fine-tune all components. In our case, when adapting

Stable Diffusion 1.5 to chest X-ray images, the pretrained model had no understanding of what a chest X-ray should look like. For example,

before fine-tuning, prompting it with “Chest X-ray of a patient with no significant findings” produced unrealistic and anatomically incorrect

results.

Yet when we encode and decode an actual chest X-ray without fine-tuning, the VAE can still reconstruct the image reasonably well — even

though it never saw chest X-rays during pretraining. This means the VAE’s representation is general enough, and retraining it is

unnecessary.

Similarly, while the CLIP text encoder wasn’t trained specifically on medical terminology, it can still parse prompts like “chest X-ray” well

enough to guide generation. For domain-specific improvements, however, one could replace it with medical variants like BioCLIP or

MedCLIP.

On the other hand, the core generative power of Stable Diffusion comes from the denoising U-Net. This component is responsible for

shaping the image during the iterative denoising process, so if the goal is to generate domain-specific images, the U-Net is the most

critical part to fine-tune. The table below shows the performance of various fine-tuning configurations and their impact on the quality of

the generated images.

Fine-tuning Strategies Summary

#Model VAE Text Encoder U-Net Description / Trainable

A. Full Fine-Tuning Strategies

1 ❌ ❌ ✅ U-Net only

2 ❌ ✅ ❌ Text Encoder only

3 ✅ ❌ ❌ VAE only

4 ❌ ✅ ✅ Text encoder + U-Net

5 ✅ ❌ ✅ VAE + U-Net

6 ✅ ✅ ❌ VAE + Text Encoder

7 ✅ ✅ ✅ U-Net + VAE + Text Encoder

B. Parameter-Efficient Fine-Tuning on U-Net

8 ❌ ❌ ✅ LoRA (Low-Rank Adaptation)

9 ❌ ❌ ✅ DoRA (Weight-Decomposed Low-Rank Adaptation)

10 ❌ ❌ ✅ BitFit: Only bias terms updated

11 ❌ ❌ ✅ DiffFit: Diffusion-specific method

❌  = Frozen (not trainable); ✅  = Trainable

When Compute is Limited: Parameter-Efficient Fine-Tuning

In the previous section, the results show that the best performance is achieved when fine-tuning only the U-Net component. However,

even when focusing solely on the U-Net, we’re still dealing with roughly 860 million parameters — a substantial computational load. So,

what can we do when resources are limited? One solution is to train only a small subset of parameters needed to adapt the model to the

new domain. This method is called Parameter Efficient Fine-Tuning or PEFT.

PEFT methods as an alternative to full module fine-tuning:

Layer selection – Train only certain layers.

Low-rank adaptation – Insert small trainable modules (e.g., LoRA, DoRA) into the network.

Bias-only tuning – Update only bias terms (BitFit).

Diffusion-specific PEFT – Targeted adaptations for diffusion architectures (DiffFit).

Our experiments show that although still full U-Net finetuning offers the best performance but LoRA and DoRA can approach full U-Net

performance with only a fraction of the trainable parameters, making them attractive for low-resource scenarios.

Diffusion Model Fine-tuning Tutorial
A comprehensive guide to fine-tune diffusion models for custom image generation tasks.

This tutorial provides comprehensive guidance for reproducing the experimental results and methodologies presented in our research

paper “Pixels Under Pressure: Exploring Fine-Tuning Paradigms for Foundation Models in High-Resolution Medical Imaging”, which will

be published in the workshop proceedings of ELAMI at MICCAI 2025. The paper systematically investigates various fine-tuning strategies

for adapting Stable Diffusion models to medical image generation tasks, comparing parameter-efficient methods (LoRA, DoRA, BitFit)

against full fine-tuning approaches across different model components (U-Net, VAE, Text Encoder). All the training configurations,

evaluation metrics, and implementation details described in this tutorial directly correspond to the experimental setup used in our

research. For the complete implementation and to access the exact code used in our experiments, please visit the official repository at:

https://github.com/tehraninasab/PixelUPressure.git
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BitFit: Parameter-efficient fine-tuning by only updating bias terms

DoRA: Weight-Decomposed Low-Rank Adaptation

LoRA: Low-Rank Adaptation for efficient fine-tuning

UNet: Full UNet fine-tuning

VAE: Variational Autoencoder fine-tuning

Prerequisites

System Requirements
Python 3.8 or higher

CUDA-compatible GPU with at least 12GB VRAM (recommended)

32GB+ RAM for large datasets

50GB+ available disk space

Required Knowledge
Basic understanding of deep learning concepts

Familiarity with PyTorch

Understanding of diffusion models (DDPM, DDIM)

Installation

Step 1: Clone the Repository

Step 2: Create Virtual Environment

Step 3: Install Dependencies

Step 4: Verify Installation

Dataset Preparation

Step 1: Organize Your Dataset
Create the following directory structure:

Step 2: Prepare Image Captions
Each image should have a corresponding text file with descriptive captions:

Fine-tuning Methods

Method 1: BitFit Fine-tuning
Efficient fine-tuning by only updating bias parameters:

Configuration Options:

Learning rate: 1e-4 to 5e-4

Batch size: 4-8 (depending on GPU memory)

Training steps: 1000-5000

Method 2: DoRA Fine-tuning
Weight-Decomposed Low-Rank Adaptation:

Recommended Settings:

Rank: 16-64

Alpha: 32-128

Dropout: 0.1

Method 3: LoRA Fine-tuning
Low-Rank Adaptation for parameter-efficient training:

git clone https://github.com/tehraninasab/PixelUPressure.git
cd PixelUPressure

python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install diffusers transformers accelerate
pip install pillow opencv-python numpy matplotlib
pip install wandb tensorboard  # For logging
pip install datasets huggingface-hub

python -c "import torch; print(torch.cuda.is_available())"

data/
├── images/
│   ├── image1.jpg
│   ├── image2.jpg
│   └── ...
└── tabular_info/
    ├── tabular_metadata
    └── ...

# Example: image1.txt
Chest x-ray of a patient with Pleural Effusion

chmod +x bitfit.sh
./bitfit.sh

chmod +x dora.sh
./dora.sh

chmod +x lora.sh
./lora.sh
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Key Parameters:

LoRA rank: 4-16 for most tasks

LoRA alpha: 16-32

Target modules: attention layers

Method 4: Full UNet Fine-tuning
Complete UNet model fine-tuning:

Warning: Requires significant GPU memory (16GB+ recommended)

Method 5: VAE Fine-tuning
Fine-tune the Variational Autoencoder component:

Method 6: Combined UNet+VAE Fine-tuning
Fine-tune both UNet and VAE components:

Method 7: Text Encoder Fine-tuning
Fine-tune the text encoder for better prompt understanding:

Training Process

Step 1: Choose Your Fine-tuning Method
Select based on your requirements:

BitFit/LoRA/DoRA: For limited computational resources

Full UNet: For maximum customization with sufficient resources

VAE: For improving image quality and style

Text Encoder: For better prompt understanding

Step 2: Configure Training Parameters
Edit the respective shell script to modify:

Step 3: Start Training

Step 4: Monitor Training
View progress using:

Step 5: Training Checkpoints
Models are automatically saved at regular intervals in:

Evaluation

Step 1: Visual Inspection
Generate sample images:

Step 2: Quality Metrics
The evaluation script computes:

FID Score: Fréchet Inception Distance

CLIP Score: Text-image similarity

chmod +x finetune_unet.sh
./finetune_unet.sh

chmod +x finetune_vae.sh
./finetune_vae.sh

chmod +x finetune_unet+vae+text.sh
./finetune_unet+vae+text.sh

chmod +x finetune_text.sh
./finetune_text.sh

# Common parameters
LEARNING_RATE=5e-6
BATCH_SIZE=4
MAX_TRAIN_STEPS=1000
RESOLUTION=512
GRADIENT_ACCUMULATION_STEPS=4
MIXED_PRECISION="fp16"
CHECKPOINTING_STEPS=500

# Example for LoRA fine-tuning
chmod +x lora.sh
./lora.sh

# TensorBoard
tensorboard --logdir=./logs

# Or Weights & Biases (if configured)
wandb login

outputs/
├── checkpoint-500/
├── checkpoint-1000/
└── final_model/

python evaluate.py --generate-samples --num-samples 10 --prompt "your test prompt"
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Inference

Step 1: Load Fine-tuned Model

Step 2: Generate Images

Step 3: Batch Generation
Use the synthesis scripts for batch generation:

Step 4: Image Synthesis with Custom Settings

Configuration Files

Training Configuration
Key parameters in your training scripts:

Synthesis Configuration
Parameters for image generation:

Using the Synthesize Images Script
The synthesize_images.py  script provides a convenient way to generate images:

from diffusers import StableDiffusionPipeline
import torch

# Load your fine-tuned model
pipeline = StableDiffusionPipeline.from_pretrained(
    "./outputs/final_model",
    torch_dtype=torch.float16
).to("cuda")

# Generate image from text prompt
prompt = "Your custom prompt here"
image = pipeline(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("generated_image.png")

# For different model types
./synthesis_bitfit.sh      # BitFit models
./synthesis_dora.sh        # DoRA models  
./synthesis_lora.sh        # LoRA models
./synthesis_unet.sh        # UNet models
./synthesis_unet+text.sh   # UNet+Text models
./synthesis_unet+vae.sh    # UNet+VAE models

# Advanced inference options
image = pipeline(
    prompt="your prompt",
    negative_prompt="low quality, blurry",
    num_inference_steps=50,
    guidance_scale=7.5,
    height=768,
    width=768,
    num_images_per_prompt=4
).images

# Model settings
MODEL_NAME="runwayml/stable-diffusion-v1-5"
RESOLUTION=512

# Training settings
LEARNING_RATE=5e-6
TRAIN_BATCH_SIZE=4
MAX_TRAIN_STEPS=1000
GRADIENT_ACCUMULATION_STEPS=4

# LoRA specific (if applicable)
LORA_RANK=16
LORA_ALPHA=32

# DoRA specific (if applicable)  
DORA_RANK=32
DORA_ALPHA=64

# Output settings
OUTPUT_DIR="./outputs"
LOGGING_DIR="./logs"
CHECKPOINTING_STEPS=500

# Memory optimization
MIXED_PRECISION="fp16"
GRADIENT_CHECKPOINTING=true
USE_8BIT_ADAM=true

# Generation settings
NUM_INFERENCE_STEPS=50
GUIDANCE_SCALE=7.5
NUM_IMAGES_PER_PROMPT=1
BATCH_SIZE=1

# Image settings
HEIGHT=512
WIDTH=512
SEED=42  # For reproducible results
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Troubleshooting

Common Issues and Solutions

Out of Memory (OOM) Errors

Slow Training

Enable mixed precision: --mixed_precision=fp16
Use gradient checkpointing

Reduce resolution temporarily for testing

Enable xFormers: --enable_xformers_memory_efficient_attention

Poor Quality Results

Increase training steps

Adjust learning rate (try 1e-5 to 1e-4)

Improve dataset quality and captions

Experiment with different guidance scales

Try different fine-tuning methods

Model Not Loading

Check file paths and permissions

Verify model checkpoint integrity

Ensure compatible versions of dependencies

Check disk space availability

Training Stops Unexpectedly

Monitor GPU temperature and memory usage

Check for CUDA errors in logs

Ensure stable power supply

Verify dataset integrity

Performance Optimization

Memory Optimization

Speed Optimization

Best Practices

Dataset Preparation
1. High-quality images: Use images with resolution ≥512px

2. Consistent style: Maintain visual consistency across training data

3. Descriptive captions: Write detailed, accurate descriptions

4. Balanced dataset: Include diverse examples of your target domain

5. Clean data: Remove corrupted or irrelevant images

Training Tips
1. Start small: Begin with a subset of data for initial experiments

2. Monitor metrics: Watch for overfitting via validation loss

3. Regular checkpoints: Save models frequently during training

4. Experiment logs: Keep detailed records of hyperparameters and results

5. Progressive training: Start with lower resolution, then increase

# Basic usage
python synthesize_images.py \
  --model-path ./outputs/final_model \
  --prompts "a beautiful sunset, a mountain landscape" \
  --output-dir ./generated_images

# Advanced usage with custom settings
python synthesize_images.py \
  --model-path ./outputs/lora_model \
  --prompts-file ./prompts.txt \
  --output-dir ./results \
  --num-images 4 \
  --guidance-scale 7.5 \
  --steps 50 \
  --seed 42

# Reduce batch size
TRAIN_BATCH_SIZE=2
# Increase gradient accumulation
GRADIENT_ACCUMULATION_STEPS=8
# Use gradient checkpointing
--gradient_checkpointing
# Enable CPU offloading
--offload_param_device="cpu"

# Use 8-bit Adam optimizer
pip install bitsandbytes
# Add to training script: --use_8bit_adam

# Enable CPU offloading
--offload_param_device="cpu"
--offload_optimizer_device="cpu"

# Reduce precision
--mixed_precision="fp16"  # or "bf16" for newer GPUs

# Use xFormers for attention
pip install xformers
# Add to training script: --enable_xformers_memory_efficient_attention

# Compile model (PyTorch 2.0+)
--torch_compile

# Use faster data loading
--dataloader_num_workers=4
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Model Selection Guide
LoRA: Best balance of efficiency and quality (recommended for beginners)

BitFit: Minimal parameters, good for small datasets and quick experiments

DoRA: Advanced technique, potentially better than LoRA but requires more experimentation

Full UNet: Maximum customization, requires significant computational resources

VAE fine-tuning: Improves image quality and style consistency

Text encoder: Better prompt understanding and following

Hyperparameter Guidelines

Method Learning Rate Batch Size Memory Usage

BitFit 1e-4 to 5e-4 4-8 Low

LoRA 1e-4 to 1e-3 4-8 Low

DoRA 5e-5 to 1e-4 2-4 Medium

UNet 1e-6 to 1e-5 1-4 High

VAE 1e-5 to 5e-5 2-8 Medium

Advanced Usage

Multi-GPU Training

Custom Loss Functions
Modify training scripts to use custom loss functions for specific tasks:

Perceptual loss for style transfer

CLIP loss for better text alignment

Adversarial loss for improved realism

Hyperparameter Sweeps
Use tools like Weights & Biases for automated hyperparameter optimization:

Additional Resources

Documentation
Diffusers Documentation

Transformers Library

Accelerate Documentation

Research Papers
LoRA: Low-Rank Adaptation

DoRA: Weight-Decomposed Low-Rank Adaptation

Stable Diffusion

BitFit: Simple Parameter-efficient Fine-tuning

Community Resources
Hugging Face Community

Diffusion Model Papers

Training Tips and Tricks

Contributing
We welcome contributions! Please follow these steps:

1. Fork the repository

2. Create a feature branch ( git checkout -b feature/amazing-feature )

3. Make your changes

4. Add tests and documentation

5. Commit your changes ( git commit -m 'Add amazing feature' )

6. Push to the branch ( git push origin feature/amazing-feature )

7. Open a Pull Request

Development Setup

License
This project is licensed under the MIT License - see the LICENSE file for details.

Support
For questions and support:

GitHub Issues: Report bugs and request features

Discussions: Ask questions and share experiences

Documentation: Check the troubleshooting section above

# Using accelerate for multi-GPU training
accelerate config
accelerate launch your_training_script.py

wandb sweep sweep_config.yaml
wandb agent <sweep_id>

# Install development dependencies
pip install -r requirements-dev.txt

# Run tests
python -m pytest tests/
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Community: Join our Discord/Slack community

Changelog

Version 1.0.0
Initial release with support for BitFit, LoRA, DoRA, UNet, and VAE fine-tuning

Comprehensive evaluation and synthesis scripts

Multi-GPU training support

Detailed documentation and examples
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