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ABSTRACT

The maximum likelihood principle advocates parameter estimation via optimization
of the data likelihood function. Models estimated in this way can exhibit a variety of
generalization characteristics dictated by engineering choices such as architecture,
parameterization, and optimization bias. This work addresses model learning
in a setting where, in addition to the training dataset, there further exists side-
information in the form of an oracle that can label samples as being outside the
support of the true data generating distribution. Specifically we develop a new
denoising diffusion probabilistic modeling methodology, Gen-neG, that leverages
this additional side-information. Gen-neG builds on classifier guidance in diffusion
models to guide the generation process towards the positive support region indicated
by the oracle. We empirically establish the utility of Gen-neG in applications
including collision avoidance in self-driving simulators and safety-guarded human
motion generation.

1 INTRODUCTION

What should we do when we train a generative model that produces samples that we know are
“bad” or “not allowed?” For instance, when generating traffic scenes, the condition of road users
overlapping one another is considered unacceptable. Likewise, in robotics, numerous physics-based
constraints must be upheld in the motion and configuration of the robot. Typically, generative models
are trained only on a set of “good” training data samples by maximizing their likelihood under the
learned model. Nevertheless, when sampling from a fully trained, highly expressive model, some
fraction of generated samples fall into the category of “bad” samples. Here we consider the problem
of generative modeling when, in addition to the typical training dataset of “good” samples, we are
also given access to constraints in the form of an oracle that asserts whether a sample is “bad.” Such
oracles are ubiquitous in practice and are often a simple function implemented by a domain expert.

The most natural way to use an oracle is to deploy the model in a rejection sampling loop in which
the oracle is used to decide whether to reject a sample or not. Depending on circumstances this may
be an acceptable final “generative model”, but it may come at an unacceptable computational cost. A
more effective approach to the problem is to directly minimize the rate of bad samples generated,
by restricting the generative model to only place mass on the positive support region allowed by the
oracle.

Modern highly expressive deep generative models are sufficiently parameterized and easy to optimize
so that they can effectively be trained to result in the de facto non-parametric optimal maximum
likelihood solution of placing a mixture of Dirac measures directly on the training data. Transformer-
based (Vaswani et al., 2017) denoising diffusion process models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) are one-such model class. Such models must be either trained on tremendously large amounts
of data (Rombach et al., 2022) or otherwise “de-tuned” (smaller architecture, fewer integration steps,
etc.) to ensure that they generalize rather than memorize (Zhang et al., 2021; Arpit et al., 2017).
In this paper we are agnostic to this point and assume that we are operating in a realistic modeling
regime where the model generalizes. Our work can be seen as a way to control the specific kind of
generalization that the model exhibits.

We focus specifically on enabling learning with constraints in score-based models. What we dis-
covered, and report in this work, is a simple rule for classifier guidance that has been seemingly, to
the best of our knowledge, surprisingly overlooked. Drawing inspiration from results in the very
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Figure 1: Gen-neG applied to a diffusion model of non-infracting static vehicle placements (i.e. dif-
fusing in the space of a set of oriented rectangles) for the efficient initialization of autonomous
vehicle planning simulators (see Zwartsenberg et al. (2023) for a similar model and full problem
description). The top row show samples (green “cars”) that are not colliding (non-overlapping)
and not off-road (stay within the unshaded area of road surfaces) from a baseline diffusion model
improved by Gen-neG. The second row shows the kind of infractions our oracle identifies as not
being in the support of the true distribution; (e): a collision (yellow overlapping “cars”), (f): (yellow
off-road “car”). (g) and (h) graphically illustrate the reduction in infractions per unit area before and
after Gen-neG is applied to the baseline model (both plots are normalized to the same maximum
value). Quantitative results corresponding to this plot appear later in Table 1.

recent work on discriminator guidance in diffusion processes (Kim et al., 2022), we establish a new
methodology for classifier guidance that learns and uses a sequence of differentiable classifiers fit to
synthetic samples labelled by the oracle drawn from a sequence of classifier guided diffusion models.
The resulting sequence of multiply classifier guided diffusion models (or the end of a sequence
of distilled models; details to follow) monotonically decreases the rejection rate while empirically
maintaining a competitive probability mass assigned to validation samples. The key insight and
technical contribution boils down to carefully choosing the ratio of “good” and “bad” synthetic
samples to use when training each of the sequence of guidance classifiers.

We demonstrate our methodology, which we call Generative modeling with neGative examples
(Gen-neG) on several problems, including modeling motion capture sequence data in a way that
eliminates ground plane violations and static traffic scene vehicle arrangements that avoid collisions
and off-road placements.

2 BACKGROUND

2.1 SCORE-BASED DIFFUSION MODELS

Score-based diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020;
Song et al., 2021), also referred to as diffusion models (DMs) are a class of generative models
that are defined through a stochastic process which gradually adds noise to samples from a data
distribution q0(x0), such that when simulated forward from t = 0 the marginal distribution at time
T is qT (xT ) ≈ π(xT ) for some known π(xT ) typically equal to N (0, I). This is known as the
“forward process” and is formulated as an SDE

dxt = f(xt, t)dt+ g(t)dw, x0 ∼ q0(x0), (1)

where f and g are predefined drift and diffusion coefficients of xt and w is the standard Wiener
process. DMs generate data by learning the inverse of this process, which is known as the “reverse
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process” and defined as

dxt = [f(xt, t)− g(t)2sθ(xt; t)]dt̄+ g(t)dw̄, xT ∼ π(xT ), (2)

where t̄ and w̄ are the infinitesimal reverse time and reverse Wiener process, respectively. If sθ is
equal to the score function of the marginals of the forward process, the terminal distribution of the
reverse process coincides with q0(x0) (Anderson, 1982). Formally,

sθ(xt; t) = ∇xt
log qt(xt)⇒ pθ(x0; 0) = q0(x0), (3)

where pθ(xt; t) is the marginal distribution of the approximate reverse process.

In order to approximate the score function ∇xt
log qt(xt), DMs minimize the following score

matching objective function (Hyvärinen & Dayan, 2005; Vincent, 2011; Song & Ermon, 2019):

LDM
θ = Et,x0,xt

[
γt ∥sθ(xt; t)−∇xt log q(xt|x0)∥2

]
, (4)

where x0 ∼ q(x0), xt ∼ q(xt|x0), t is sampled from a distribution over [0, T ], and γt is a positive
weighting term. Importantly, the Wiener process in Eq. (1) allows direct sampling from the marginals
of the forward distributions (Song et al., 2021), i.e. q(xt|x0) = N (αtx0, σt), with αt and σt
determined by the drift and diffusion coefficients in Eq. (1). This formulation moreover allows the
evaluation of the conditional score function (∇xt log q(xt|x0)) in closed form.

Many of the DMs reported in the literature operate on discrete time steps (Ho et al., 2020; Song et al.,
2020; Nichol & Dhariwal, 2021), and can be considered as particular discretizations of the presented
framework. Various parameterizations of the score function have been also explored in the literature
(Karras et al., 2022).

In the remainder of this paper we use q to denote the forward process, sθ for the score function of
the reverse process and pθ as the distribution generated by running Eq. (2) backward in time. This
applies to the marginals, conditionals, and posteriors as well. Furthermore, to avoid unnecessary
notation clutter throughout the rest of the paper, we omit the explicit mention of θ and ϕ and t when
their meaning is evident from the context.

2.2 CLASSIFIER GUIDANCE

A distinctive and remarkable property of DMs is the ability to train an unconditional version and
sample from its class-conditional distributions at inference time without requiring re-training or
fine-tuning (Dhariwal & Nichol, 2021; Song et al., 2021). However, it requires a time-dependent
classifier q(y|xt) =

∫
q(y|x0)q(x0|xt) dx0. Here, q(y|x0) is a traditional classifier, that predicts the

class probabilities for each y given a datum x0 from the dataset. While q(y|xt) classifies a noisy
datum xt sampled from qt(xt) =

∫
q(xt|x0)q(x0) dx0.

Classifier guidance follows from the identity∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt). If

sθ(xt; t) is the score function of the DM, then the score function of the class-conditional DM is

sθ(xt|y; t) = sθ(xt; t) +∇xt log q(y|xt). (5)

Binary classification A special case of the above classifier guidance that we use in this paper is
when there are only two classes. We provide here a brief overview of such a binary classification task
and the notation associated with it. Let q(x|y = 1) and q(x|y = 0) be the distribution of positive
and negative examples. Let α and 1 − α be the prior probabilities q(y) of positive and negative
examples. We then have q(x) = q(y = 1)q(x|y = 1) + q(y = 0)q(xt|y = 0) = αq(xt|y =
1) + (1 − α)q(xt|y = 0). A binary classifier Cϕ : X , [0, T ] → [0, 1], can then be trained to
approximate q(y = 1|xt) by minimizing the expected cross-entropy loss

LCE
ϕ = −Et

[
Eq(xt) [q(y = 1|xt) logCϕ(xt; t) + q(y = 0|xt) log(1− Cϕ(xt; t))]

]
. (6)

Minimizing the cross-entropy loss between the classifier output and the true label is equivalent to
minimizing the KL divergence between the classifier output and the Bayes optimal classifier (see
Appendix A.3). The minimizer of this loss is then

Cϕ∗(xt; t) =
αq(xt|y = 1)

αq(xt|y = 1) + (1− α)q(xt|y = 0)
. (7)
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3 METHODOLOGY

In this section, we describe Generative modelling with neGative examples (Gen-neG). Gen-neG
makes use of an oracle that can distinguish samples that are outside of the support for the problem. In
a nutshell, Gen-neG consists of first training a DM on given training data as usual, (we refer to the
resulting DM as the “baseline DM” throughout). Then we draw samples from this baseline DM, label
them using the oracle, then train a classifier (for guidance) using those samples, critically, as we will
demonstrate, ensuring that the correct ratio of positive and negative examples are used in training. We
then combine this classifier and the baseline model in the typical classifier guidance way. Gen-neG
establishes this classifier guided DM as a new baseline DM (either fixing and ultimately “stacking”
classifiers or optionally distilling the classifier guided DM into a DM with a single score function
estimator) and then repeats this process of generating samples from this new baseline, labelling
them with the oracle, training a classifier with the carefully chosen label ratio, employing classifier
guidance, stacking or distilling, then repeating. Throughout we will refer to the resulting DM as
stacked or distilled depending on whether or not distillation into a unified score function is employed.

3.1 PROBLEM FORMULATION AND NOTATION

Let D = {xi}Ni=1 ∼ q(x) be a dataset of i.i.d. samples from an unknown data distribution q.
Furthermore, let O : X → {0, 1} be an oracle function that assigns each point in the data space X a
binary label. In other words, this oracle partitions the data space into two disjoint sets X = Ω ∪ Ω∁

such that O(x) = 1Ω(x). Our objective is to learn a score-based diffusion model that (1) maximizes
the likelihood of D and (2) avoids allocating probability to Ω∁.

In the first stage of Gen-neG we train a DM, pθ(x), following standard DM training procedures (e.g.
Section 2.1) without utilizing the oracle. In the second stage, we leverage the oracle to train a binary
classifier that guides the generation process of DM to avoid Ω∁. We explain this second stage in the
rest of this section.

3.2 BAYES OPTIMAL CLASSIFIER GUIDANCE FOR DIFFUSION MODELS

The core component of Gen-neG is a classifier that discriminates between positive and negative
samples respectively in Ω and Ω∁, which is used to guide the baseline DM. There are two main
insights required for Gen-neG that our work provides, the first of which is how to obtain the correct
distribution of training data for such a classifier and the second is how to train a classifier which does
not shift the sampling distribution.

Oracle-assisted classifier guidance Classifier guidance in score-based models is typically used to
generate samples from a specific pre-defined class on the training dataset. For instance, a classifier
trained on an image classification dataset can be utilized to guide an unconditional diffusion model that
has been trained on the same dataset. Unlike traditional approaches that rely on explicit, predefined,
labelled datasets, our framework operates based on the oracle function O(x), which determines the
validity of samples.

Gen-neG instead builds a binary classification task using the fully-synthetic data generated by the
baseline DM i.e. the data is distributed as pθ(x) and the labels are y = O(x). A time-dependent
binary classifier Cϕ is then trained on this dataset. Finally the classifier is incorporated into the
baseline DM by

sθ,ϕ(xt; t) = sθ(xt; t) +∇xt
logCϕ(xt; t). (8)

Equivalently, we denote the marginal distributions generated by the oracle-assisted DM as p̃θ,ϕ(xt; t).
In the rest of this section we show why the classifier guidance in s̃θ,ϕ helps to enhance the model and
reduce the amount of mass on Ω∁, i.e.

∫
x∈Ω∁ pθ,ϕ∗(x).

Theorem 1. Let pθ(x) be the distribution learned by a baseline DM with marginal distributions
denoted by pθ(xt; t) and let pθ(y = 1|x0) = O(x0). Further, let Cϕ∗ : X , [0, T ] → [0, 1] be
the Bayes-optimal time-dependent binary classifier arising from perfectly optimizing the following
cross-entropy objective

LCE
ϕ = −Et

[
Epθ(x0,xt) [O(x0) logCϕ(xt; t) + (1−O(x0)) log(1− Cϕ(xt; t))]

]
(9)
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Algorithm 1 Gen-neG
1: Input: dataset D, oracle O, balanced synthetic dataset size N
2: i← 0
3: θi ← argminθ LDM

θ ▷ train baseline DM, Eq. (4)
4: si ← sθi(xt; t)
5: while not done do
6: D+

i ,D−
i ← generate samples from DM with score function si and label with O

7: while min(|D+
i |, |D−

i |) < N do
8: D+,D− ← generate more samples from DM with score function si and label with O
9: D+

i ← D+
i ∪ D+, D−

i ← D−
i ∪ D−

10: end while
11: αi ← |D+

i |/(|D+
i |+ |D−

i |) ▷ Estimate class prior probabilities for Bayes optimal classifier
12: D+

i ← select(N,D+
i ),D−

i ← select(N,D−
i ) ▷ balance dataset for IS classifier training

13: ϕi ← argminϕ L̂cls
ϕ (αi,D+

i ,D−
i ) ▷ train guidance classifier, Eq. (12)

14: i← i+ 1
15: if distill then
16: ψ ← argminψ Ldtl

ψ ▷ distill into single DM, Eq. (13)
17: si ← sψ(xt; t)
18: else ▷ “stack” guidance classifiers
19: si ← si−1 +∇xt

logCϕi
(xt; t) ▷ See Eq. (8)

20: end if
21: end while
22: return DM score function si

then
∇xt

log pθ(xt; t) +∇xt
logCϕ∗(xt; t) = ∇xt

log pθ(xt|y = 1; t). (10)

In other words, by using a Bayes-optimal binary classifier for guidance, we target exactly the score
function of positive (oracle-approved) examples.

Corollary 1.1. For an optimal classifier Cϕ∗ ,

1. pθ,ϕ∗(x) = pθ(x|y = 1),

2. There is no mass on Ω∁, i.e.
∫
x∈Ω∁ pθ,ϕ∗(x) = 0,

3. For any dataset D ⊆ Ω, pθ,ϕ∗(D) ≥ pθ(D).

Corollary 1.1 suggests the guidance our Gen-neG methodology can improve the baseline DM in
terms of both infraction rate and test dataset likelihood.

See the proofs for the Theorem 1 and Corollary 1.1 in Appendices A.1 and A.2.

Training the classifier Training the classifier in our approach presents a noteworthy challenge due
to the major label imbalance within the synthetic dataset D generated by the model. This imbalance
emerges because the baseline is already close to the target distribution, resulting in a scarcity of
negative examples. However, these negative examples play a crucial role in guiding the model at the
boundary between positive and negative examples, where the model requires the most guidance.

Gen-neG addresses this challenge by sampling a balanced dataset D from the model, ensuring the
same number of positive and negative examples. However, Gen-neG crucially employs importance
sampling in the classifier’s training objective to rectify the bias introduced by having to balance the
dataset to achieve high classifier accuracy in training. Theorem 1 suggests that a classifier trained on
dataset whose marginal distribution over labels differs from the true marginal distribution over labels
will target the wrong cross-entropy and arrive at a classifier guided DM that does not necessarily
target the distribution of interest. We show evidence of this happening in Fig. 2.

Finally, in order to avoid the computational cost of sampling from the baseline DM to compute the
classifier objective in Eq. (9), we approximate the p(x0,xt) = p(x0)p(xt|x0) ≈ p(x0)q(xt|x0).

5



This is similar to the approximation in Kim et al. (2022). In particular, the classifier’s objective in
Gen-neG is

Lcls
ϕ (α) :=αEpθ(x0|y=1)

[
Eq(xt|x0) [− logCϕ(xt; t)]

]
+(1− α)Epθ(x0|y=0)

[
Eq(xt|x0) [− log(1− Cϕ(xt; t))]

]
. (11)

Given the balanced dataset D = D+ ∪ D− where D+ ∼ p(x0|y = 1), D− ∼ p(x0|y = 0), and
N = |D+| = |D−|,

L̂cls
ϕ (α,D+,D−) :=

1

N

∑
x0∈D+

αEq(xt|x0) [− logCϕ(xt; t)]

+
1

N

∑
x0∈D−

(1− α)Eq(xt|x0) [− log(1− Cϕ(xt; t))] , (12)

is an importance sampling estimator of the objective function in Eq. (11); proof in Appendix A.5.

Iterative Training by Stacking Classifiers If the classifier is perfect, we know that the DM with
score function sθ,ϕ will have improved likelihood and zero infraction (see Corollary 1.1). However,
in practice the trained classifier is only an estimate and infractions may not be entirely eliminated.

To alleviate this problem, we note that once the classifier is trained the guided score function sθ,ϕ(x)
itself defines a new diffusion model. Consequently, we can employ a similar procedure to train a
new classifier on sθ,ϕ, aiming to further lower its infraction rate. This iterative approach involves
training successive classifiers and incorporating them into the model, progressively enhancing its
performance and reducing the infraction rate.

Distillation Adding a stack of classifiers to the model linearly increases its computational cost,
since each new classifier requires a forward and backward pass each time the score function is
evaluated. To avoid this, we propose to distill the classifiers into the baseline model.

Let sθ,Φ be a “teacher model” consisting of a baseline model sθ and a stack of classifiers {Cϕ}ϕ∈Φ.
We distill sθ,Φ into a new “student model” sdtl

ψ , possibly with the same architecture as the baseline
model, by minimizing the following distillation loss

Ldtl
ψ = Ex0∼q(x0),t

[
γt
∥∥sθ,Φ(xt; t)− sdtl

ψ (xt; t)
∥∥2] , (13)

where γt is the weight term, similar to the training objective of diffusion models. Here, Ldtl makes
the outputs of the student model match that of the teacher. Algorithm 1 summarises Gen-neG.

4 EXPERIMENTS

We demonstrate Gen-neG on three datasets: a 2D checkerboard, collision avoidance in traffic
scenario generation for and safety-guarded human motion generation. In each experiment we report a
likelihood-based metric on a held out dataset to measure distributional shifts and a kind of infraction
metric to measure faithfulness to the oracle.

4.1 TOY EXPERIMENT

We first demonstrate Gen-neG on a simple dataset of 2-dimensional points uniformly distributed on a
checkerboard grid as shown in Fig. 2. We apply EDM (Karras et al., 2022), a continuous-time DM,
to this problem. A baseline DM trained for long enough on this dataset can easily achieve negligible
infraction rate. However, because our dataset (see the first panel of Fig. 2) only contains 1000 points
the model is prone to over-fitting (see Appendix C.6 for overfitting results). We therefore stop training
of the baseline DM before it starts overfitting measured by the evidence lower bound (ELBO) on a
held-out validation set. The second panel of Fig. 2 shows samples drawn from the baseline DM and
the third panel shows the improved results after one iteration of Gen-neG. We further report in Fig. 3
the rate of oracle violation

∫
x∈Ω∁ pθ,ϕ∗ , which we will refer to as the infraction rate, and an ELBO

estimate by the trained model after each iteration for up to 5 iterations. It demonstrates each iteration
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Figure 2: Samples from the toy experiment. Samples with infraction (i.e. O(x) = 0) are shown in
brown. Fig. 2(a): The true dataset; Fig. 2(b): baseline DM; Fig. 2(c): first iteration of Gen-neG using
a label distribution of equal proportions in guidance classifier training; Fig. 2(d): using the wrong
distribution to train classifier guidance results in suboptimal density estimation. Here we see that
samples are suboptimally pushed inwards from the boundaries. We also have observed that validation
ELBOs in these kinds of cases are significantly worse.
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Figure 3: Infraction and ELBO estimations from different iterations of Gen-neG. The infraction rate
keeps decreasing, and ELBO remains comparable for the first few iterations. Orange stars show
the performance of the model after distillation. We only observe a minor loss of performance in
the distilled models. In comparison, without applying importance sampling (the rightmost panel of
Fig. 2) reaches an infraction of 0.03% but ELBO of −1.42.

of Gen-neG, improves the infraction rate with a comparable ELBO, at least for the first few iterations.
Fig. 3 also shows that distillation does not lead to a significant drop in performance.

We also report results for an experiment of one iteration of classifier guidance without the application
of proper importance sampling (IS) weights. In this case, the classifier is trained on a synthetic
dataset with a uniform class distribution. The last panel of Fig. 2 visualizes samples from this model.
While method produces an excellent infraction rate of about 0.03%, the classifier severely modifies
the shape of the distribution, an undesirable side effect. In particular, we can see the areas close to
the boundary have strongly reduced density. In quantitative terms, we find that the ELBO of this
imbalanced classifier approach is −1.42, a significantly worse result.

4.2 INFRACTIONS IN TRAFFIC SCENE GENERATION

We consider the task of traffic scene generation where vehicles of varying sizes are placed on a
two-dimensional map with corresponding orientations. Traditionally implemented by as rule based
systems (Yang & Koutsopoulos, 1996; Lopez et al., 2018), this task has recently been approached
using generative modeling techniques (Tan et al., 2021; Zwartsenberg et al., 2023). In both these
bodies of prior work, the common approach has been to discard any samples that violate predefined
rules, such as a vehicle being outside the designated driving area (“offroad”) or overlapping with
another vehicle (“collision”). Rejecting such samples, while effective, can be computationally
wasteful, particularly when rule violations occur frequently. Hence, in this context, we employ the
Gen-neG to enhance performance. The specific task we consider is to generate N = 12 vehicles in
a given scene, conditioned on a rendered representation of the drivable area. For each vehicle, the
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Table 1: Results for traffic scene generation, in terms of collision, offroad, and overall infractions as
well as ELBO. Two varieties (“by-scene” and “by-agent”) for the classifier are presented, as well as
results with (Gen-neG) and without importance sampling. The final two rows provide the results of
distilling the models labelled with † and *.

Method Collision (%) ↓ Offroad (%) ↓ Infraction (%) ↓ r-ELBO (×102) ↑
baseline DM 28.3± 0.70 1.3± 0.14 29.3± 0.64 −27.5± 0.01

by-scene w/o IS 20.5± 1.21 0.9± 0.17 21.9± 1.14 −27.7± 0.01
by-scene 23.3± 0.7 1.0± 0.28 24.1± 0.67 −27.6± 0.01

by-agent w/o IS 14.6± 0.49 0.8± 0.13 15.2± 0.50 −28.0± 0.01
by-agent† 16.4± 0.5 0.9± 0.12 17.2± 0.44 −27.7± 0.01
by-agent stacked∗ 11.6± 0.65 0.6± 0.10 12.2± 0.60 −28.0± 0.01

Distillation of (†) 12.2± 0.42 0.8± 0.06 12.9± 0.36 −26.8± 0.01
Distillation of (*) 5.1± 0.24 0.5± 0.0.09 5.6± 0.20 −27.0± 0.01

position, length, width, orientation and velocity are predicted for a total of 7 dimensions per vehicle.
Vehicles are sampled jointly, meaning that the overall distribution pθ(x) in on x ∈ RN×7. We train
the baseline employing the formalism in DDPM (Ho et al., 2020) with a transformer-based denoising
network (Vaswani et al., 2017) on a private dataset. Our architecture consists of self-attention
layers and map-conditional cross-attention layers in an alternating order. We use relative positional
encodings (RPEs) (Shaw et al., 2018; Wu et al., 2021), which makes use of the vehicles relative
positions. Relevant samples (including infracting, and non-infracting ones) and road geometry can be
seen in Fig. 1. For our experiments, the oracle function either assigns each scene a collective label, or
for each vehicle an individual label. This label is based on the occurrence of collisions or offroad
infractions. We then use these results to construct “by-scene” and “by-agent” classifiers.

Table 1 presents the results of our experiments. We provide results for both the “by-agent” and
“by-scene” experiments, both showing significant improvement over the baseline result. We moreover
show ablations for both settings, where we drop the importance sampling (“w/o IS”), which results in
improved infraction rates, but a decreased ELBO. We also provide results for a multi-round approach
in the “by-agent” setting, which shows even better results. Finally, we demonstrate that our approach
of distilling the resulting models back into a single one works well here too, albeit at a slight drop
in performance on ELBO. The presence of lower ELBO can be justified by the classifiers are not
trained to optimality and this causes the to deviate from the theory to some extent. On the other
hand, training the baseline DM is the only stage where we explicitly maximize the ELBO. Classifiers
trained on all the other iterations only implicitly improve ELBO through guiding the model to not
allocate probability mass on the invalid region. Overall we find that Gen-neG works as expected, and
provides a competitive infraction rate boost over our baseline model, without sacrificing likelihood
performance.

4.3 MOTION DIFFUSION

Our final experiment is a text-conditional motion generation task on the HumanML3D dataset (Guo
et al., 2022). The dataset contains 14,616 human motions annotated by 44,970 textual descriptions. It
includes motions between 2 and 10 seconds in length and their total length amounts to 28.59 hours.
Each motion is between is between 36 and 196 steps, with the majority of them comprising 196
steps. Each step is represented by a 263-dimensional feature vector, resulting in a dimensionality
of over 51, 000 for the largest motions. For our baseline DM, we use the pre-trained checkpoints
provided by Human Motion Diffusion (MDM) (Tevet et al., 2023). MDM employs DDPM to
learn a transformer-based architecture (Vaswani et al., 2017) with a pre-trained CLIP embedding
module (Radford et al., 2021) to facilitate conditioning on the descriptions. It has been shown that,
despite its high quality generated motion, under more detailed inspection, MDM and other DMs
often lack physical plausibility (Yuan et al., 2022). For example, ground penetration often exists
in the generated examples. Such imperfections can cause issues if the model were to be used in
downstream applications. To address this issue, we implement an oracle that labels motions with
ground penetration at any point in their duration as negative. We then train our classifier with an
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Table 2: Results of the Motion Diffusion experiment. “Inf. per step” is the average rate of generated
motion frames with infraction while “infraction” is the average rate of generated motions that at
least including one infracting frame. r-ELBO is a reweighted ELBO with the same weighting as in
diffusion loss.

Method Infraction (%) ↓ Inf. per step (%) ↓ r-ELBO (×102) ↑ FID ↓
MDM 18.92± 0.58 4.55± 0.03 −6.03± 0.04 0.783
MDM + classifier 15.35± 0.53 3.15± 0.02 −7.25± 0.11 0.822
MDM + classifier w/o IS 13.38± 0.50 2.40± 0.02 −9.19± 0.30 1.040

architecture that matches that of the original diffusion model with the CLIP encoder removed, because
the classifier is not conditioned on the text. We evaluate performance in terms of infraction rate, and
the reweighted ELBO, the reweighting referring to a uniform schedule of γt in Eq. (4).

Table 2 summarizes our results of one iteration of Gen-neG on this dataset. Gen-neG improves both
the per-step and overall infraction rate with a small performance drop in terms of the reweighted
ELBO and FID. While guiding using a classifier trained without IS weighting produces lower
infraction rates, the reweighted ELBO and FID in that case drops even further. Hence, Gen-neG
provides a significant improvement of the infraction rates, with a lower cost in terms of model
likelihood or sample quality.

5 RELATED WORK

Liu et al. (2023) employs diffusion bridges to define a family of diffusion models that are guaranteed
to be bound to a constrained set Ω by construction. Their approach, however, is limited to constraints
that admit tractable expectations, rendering it impractical for any but the simplest constraints such
as product of intervals in Rd. Kong & Chaudhuri (2023) solves a similar problem dubbed “data
redaction.” They consider multiple settings, one of which, validity-based approach is the most related
to our oracle-assisted guidance, but in the GAN literature. They implicitly perform data redaction by
incorporating them into the discriminator and fine-tune the generator. Ansari et al. (2020) utilizes the
adept discriminator within the GAN framework, which steers the sampling process through injecting
the gradient flow of the f -divergence between the real and generated data distributions. However,
our particular methodology provides a more comprehensive framework, allowing us to modify the
distribution by removing mass from some externally defined negative region. Last, Kim et al. (2022)
incorporates a binary classifier in the form of GAN discriminators to refine the learned distribution
of DMs, further improving its sample quality. While they utilize a set of tools similar to ours, the
problems we tackle are different.

6 CONCLUSION

We have proposed a framework to incorporate constraints into diffusion models. These constraints
are defined through an oracle function that categorizes samples as either good or bad. Importantly,
such a flexibility allows for simple integration with human feedback. We have demonstrated our
model on different modalities demonstrating how it can benefit safety constraints.

The current limitations we recognize, and the possible future directions for this work are (1) incor-
porating the true training dataset into the later iterations of the method, as the training dataset only
affects the baseline DM. The next stages solely use synthetic data. Although we show theoretically
that our guidance only improves the model, this lack of revisiting the true dataset in presence of
practical errors and approximations poses challenges for large-scale adoption of our method. Our
preliminary experiments of visiting the true dataset at the distillation time have not been successful yet.
(2) Avoiding stacking of classifiers, instead directly learning an artifact that can replace the previous
classifier in our method, similar to (De Bortoli et al., 2021), is vital to the computational complexity
of the method as the current computational cost scales linearly with the number of classifiers. (3)
Bridging the gap the diffusion bridge-based approaches and our work which is practically applicable
to a larger set of applications is another avenue for future developments.
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