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Abstract

Link prediction—the task of distinguishing ac-
tual hidden edges from random unconnected node
pairs—is a quintessential task in graph machine
learning. Despite being widely accepted as a uni-
versal benchmark and a downstream task for rep-
resentation learning, its validity is seldom ques-
tioned. Here, we show that the common edge
sampling procedure in link prediction introduces
an implicit bias toward high-degree nodes and
produces a skewed evaluation that favors methods
overly reliant on node degree, to the extent that
a “null” method based solely on node degree can
nearly match optimal performance. To address
this, we propose a degree-corrected link predic-
tion task that offers a more accurate assessment
that aligns better with performance in recommen-
dation tasks. Finally, we demonstrate that this
degree-corrected benchmark can more effectively
train graph machine-learning models by reduc-
ing overfitting to node degrees and facilitating the
learning of relevant structures in graphs.

1. Introduction

Standardized benchmarks like ImageNet (Deng et al., 2009;
Krizhevsky et al., 2012) and SQuAD (Rajpurkar et al., 2016;
2018) play a pivotal role in driving progress in machine
learning by fostering competition through setting clear, mea-
surable goals. In graph machine learning, a core benchmark
is link prediction, which involves identifying missing edges
in a graph, with diverse applications including the recom-
mendations of friends and contents (Huang et al., 2005;
Kunegis & Lommatzsch, 2009; Menon & Elkan, 2011;
Wang et al., 2014), knowledge discoveries (Bordes et al.,
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2013; Sun et al., 2019), and drug development (Wang et al.,
2015; Crichton et al., 2018; You et al., 2019; Ali et al.,
2019; Breit et al., 2020; Yue et al., 2020; Abbas et al., 2021).
Link prediction benchmarks have been essential for quanti-
tative evaluations, advancing graph machine learning tech-
niques (Liben-Nowell & Kleinberg, 2003; Narayanan et al.,
2011; Ali et al., 2019; Ghasemian et al., 2020; Mara et al.,
2020; Breit et al., 2020; Yue et al., 2020).

Despite its significant role in graph machine learning, the
link prediction benchmark itself is rarely scrutinized for ef-
fectiveness, reliability, and bias. Typically, it evaluates meth-
ods based on their ability to classify node pairs as connected
or unconnected (Kunegis & Lommatzsch, 2009; Ghasemian
et al., 2020; Mara et al., 2020). Connected pairs (edges) are
randomly sampled from existing edges as the hidden posi-
tive set, while an equal number of unconnected node pairs
are sampled randomly. Criticisms often highlight its discon-
nect from real-world scenarios. For instance, unconnected
pairs vastly outnumber connected ones because of the graph
sparsity (Barabdsi & Pdsfai, 2016; Newman, 2018), leading
to biased performance evaluations (Yang et al., 2015; Wang
et al., 2021; Huang et al., 2023; Li et al., 2024a; Menand
& Seshadhri, 2024). Additionally, the benchmark tests a
predefined set of edges, while real-world tasks involve iden-
tifying potential edges across the entire graph. Despite this
misalignment, high benchmark performance is often seen
as a marker of successful learning in graph machine learn-
ing (Ou et al., 2016; Grover & Leskovec, 2016; Goyal &
Ferrara, 2018; Crichton et al., 2018; Zhang & Chen, 2018;
Ali et al., 2019; Breit et al., 2020; Ghasemian et al., 2020;
Yue et al., 2020; Cai et al., 2021).

Here, we argue that the standard link prediction benchmark
has a fundamental and severe bias favoring methods that
exploit node degree (the number of edges a node has). This
bias arises from the edge sampling process: a node with
k edges is k times more likely to be selected than a node
with a single edge (kK = 1). Meanwhile, the negative set
is randomly sampled from unconnected pairs, without this
degree bias. This creates a distinct feature (degree) that
methods can exploit without understanding any non-trivial
structural features of the graph. We show that this degree
bias is so profound that a “null” method based solely on
node degree can achieve near-optimal performance, ques-
tioning the benchmark’s usefulness as a general objective in
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graph machine learning and highlighting the need for being
more intentional and careful about what the evaluation tasks
themselves actually evaluate.

To address this bias, we propose a degree-corrected link
prediction benchmark that samples unconnected node pairs
with the same degree bias. This benchmark more accurately
reflects the performance of algorithms in recommendation
tasks. Moreover, it trains graph neural networks more ef-
fectively by reducing overfitting to node degrees, thereby
improving the learning of community structure in graphs.

2. Design flaw of the link prediction
benchmark

2.1. Preliminary

We focus on unweighted, undirected graph G = (V,€),
where V is the set of nodes and £ is the set of edges. We
assume that G has no self-loops, no multiple edges, and is
highly sparse (|€] < |V|?), a common characteristic of real-
world graphs (Barabdsi & Pdésfai, 2016; Newman, 2018).
Degree k; of anode ¢ € V is the number of edges connected
to it. We use ~ to denote proportional relationships. Node
attributes, if present, are excluded to maintain consistency
across all link prediction methods.

2.2. Link prediction benchmark

The standard link prediction benchmark procedure is as fol-
lows (Kunegis & Lommatzsch, 2009; Grover & Leskovec,
2016; Ou et al., 2016; Zhang & Chen, 2018; Crichton et al.,
2018; Goyal & Ferrara, 2018; Ali et al., 2019; Breit et al.,
2020; Yue et al., 2020; Cai et al., 2021). First, a fraction 5 of
edges is randomly sampled from the edge set £ as positive
edges. Second, an equal number of unconnected node pairs
is randomly sampled with replacement from the node-set
V as negative edges. Negative edges are resampled if they
form a loop or are already in the positive or test edges. Third,
each node pair (i, j) is scored by a link prediction method,
where a higher score s;; indicates a greater likelihood of
an edge. Fourth, the method’s effectiveness is evaluated
using the Area Under the Receiver Operating Characteristic
Curve (AUC-ROC), which represents the probability that
the method gives a higher score to a positive edge than a
negative edge. While alternative benchmark designs use
different evaluation metrics or sampling strategies for neg-
ative edges (Yang et al., 2015; Wang et al., 2021; Wang &
Derr, 2022; Huang et al., 2023; Russo et al., 2024; He et al.,
2024; Li et al., 2024a; Menand & Seshadhri, 2024) (Sec-
tion 4), this outlined procedure is widely adopted (Kunegis
& Lommatzsch, 2009; Grover & Leskovec, 2016; Ou et al.,
2016; Goyal & Ferrara, 2018; Zhang & Chen, 2018; Crich-
ton et al., 2018; Ali et al., 2019; Breit et al., 2020; Yue et al.,
2020; Ghasemian et al., 2020).

2.3. Sampling bias due to node degree

A well-known, counterintuitive fact about graphs is that
a uniform random sampling of edges introduces a degree
bias in node selection (Feld, 1991; Barthélemy et al., 2004;
Christakis & Fowler, 2010; Kojaku et al., 2021a;b). The
bias arises because a node with k& edges appears k times in
the edge list and thus k times more likely to be chosen than
a node with ¥’ = 1 edge (e.g., node 1 and 4 in Fig. 1A).
Consequently, for a graph with degree distribution p(k), the
nodes in the positive edges have degree distribution ppos (k)
proportional to ~ k - p(k). By normalizing k - p(k), the
degree distribution of the positive edges is given by

Pros(k) = k- p(k) = %

20 tp(0)
where (k) is the average degree. By contrast, nodes in the
negative edges are uniformly sampled from the node-set V,
resulting in a degree distribution pne. (k) identical to p(k)
(i.e., Pneg (k) = p(k)).

We demonstrate the degree bias using the Price graph with
N = 10° nodes and M = 10° edges, which follows a
power-law degree distribution p(k) o k=3 (Fig. 1B). We
uniformly sample 3 = 0.25 of the edges from & as posi-
tive edges, together with an equal number of unconnected
node pairs sampled uniformly from V. The degree distribu-
tions for nodes in the positive and negative edges align with
Ppos (k) and pyeg (k), respectively, confirming the sampling
bias due to node degree. This degree bias is not specific to
the Price graph but occurs in any graph with a non-uniform
degree distribution.

k-p(k), (D)

2.4. Impact of degree bias on the link prediction
benchmark

We demonstrate the impact of degree bias on link prediction
benchmarks (Fig.1D) by evaluating 29 link prediction meth-
ods across 95 graphs from various domains, including so-
cial, technological, informational, biological, and transporta-
tion graphs. These methods include 7 network topology-
based methods (e.g., Common Neighbors (CN) (Liben-
Nowell & Kleinberg, 2003)), 13 graph embedding methods
(e.g., Laplacian FigenMap (EigenMap) (Belkin & Niyogi,
2003)), 2 network models (e.g., Stochastic Block Model
(e.g., SBM) (Fortunato, 2010)), and 4 graph neural networks
(GNNs) (e.g., Graph Convolutional Network (GCN) (Kipf
& Welling, 2017)). Detailed method and graph descriptions
are available in Appendix A. We set the test edge fraction to
B = 0.25 and repeat the experiment 5 times. We quantify
the heterogeneity o of node degree by fitting a log-normal
distribution to p(k) and calculating its variance parameter
0. We will show that o is a reliable indicator of the impact
of degree bias in Section 2.5.

We focus on the Preferential Attachment (PA) link predic-
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Figure 1. Illustration of the degree bias in the link prediction benchmark. A: A node with degree k appears k times in the edge list,
making it k times more likely to be sampled as a positive edge than a node with degree 1. B: The degree distribution of the nodes in
the positive and negative edges sampled from a Price graph of N = 10° nodes and M = 10° edges. The y-axis, “CCDF”, denotes the
complementary cumulative distribution function, representing the probability that a node’s degree is at least k. Dashed lines illustrate the
relationship described by Eq. 1. C: The AUC-ROC score for the Preferential Attachment (PA) method on empirical graphs, with the
dashed line indicating Eq. 4. D: AUC-ROC of 29 methods across 95 graphs. E: AUC-ROC of the same methods for the degree-corrected

benchmark.

tion method, which calculates the prediction score s;; =
kik; using only node degrees. PA is a crude method that
neglects key predictive features like common neighbors and
shortest distance (Li et al., 2024a; Menand & Seshadhri,
2024; Lichtnwalter & Chawla, 2012; Zhang & Chen, 2018;
Mao et al., 2024). However, it still outperforms most ad-
vanced methods with an average AUC-ROC of 0.84 (ranked
13th out of 29 methods; see Fig. 2A). PA performs better
as the heterogeneity of node degrees increases. This out-
performance is due to degree bias, where the positive edges
are more likely to be formed by nodes with high degree
and thereby are easily distinguishable from the negative
edges. Thus, the current benchmark design favors methods
that make predictions based largely on node degrees. This
spurious performance of PA is evident when using Hits@K
(Appendix E.6), indicating that the issue stems from the
benchmark design rather than evaluation metrics. This spu-
rious performance of PA also persists for larger-scale graphs
(Appendix E.4).

2.5. Theoretical analysis

Many empirical graphs exhibit heterogeneous degree distri-
butions, with a few nodes having exceptionally large degrees
and most having small ones. These distributions are of-
ten characterized by power-law degree distribution p(k) o

k~ with « € (2, 3] (i.e., scale-free networks) (Albert &
Barabasi, 2002; Barabasi & Bonabeau, 2003; Holme, 2019;
Voitalov et al., 2019) or log-normal distributions (Broido &
Clauset, 2019; Artico et al., 2020). While the power-law and
log-normal distributions are both continuous, they are often
used to approximate discrete degree distribution (Johnson
et al., 1995; Redner, 2005; Radicchi et al., 2008; Clauset
et al., 2009; Broido & Clauset, 2019; Artico et al., 2020).
We show that the AUC-ROC for PA reaches near-maximum
under log-normal distributions with heterogeneous node
degrees. See Appendix E.3 for the case of power-law distri-
butions.

Let us consider a general degree distribution p(k) without
restricting ourselves to log-normal distributions. The AUC-
ROC has a probabilistic interpretation (Hand, 2009): it is
the probability that the score s™ for positive edges is larger
than the score s~ for negative edges. Recalling that PA
computes s;; = k;k;, the AUC-ROC for PA is given by

AUC'ROC = P(Si—’j— S Si+,j+) = P(kl—k]— S ki+kj+)?
2

where i* and j* represent the nodes of the positive and
negative edges, respectively. We define the degree bias by
Eq 2. The AUC-ROC represents the discrepancy between
the distributions of the prediction scores k;- k;- for nega-
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tive edges and the scores k;+ k;+ for positive edges. If the
positive edges have higher scores than the negative edges,
the AUC-ROC approaches 1, indicating that node degree
alone can effectively predict the positive edges. Conversely,
if the positive and negative edges have similar scores, the
AUC-ROC nears 0.5, indicating node degree alone is insuf-
ficient for the prediction.

Now, let us assume that p(k) follows the log-normal distri-
bution, LogNorm(k | 1, 02), given by (Hand, 2009):

p(k) = LogNorm(k | 1, 0%)

1 o | (Ink — p)?
- 2ok P 202 ’

where 1 and o are the parameters of the log-normal dis-
tribution. The mean of the log-normal degree distribution
is (k) = exp(u + 02/2) (Hand, 2009). By leveraging a
unique characteristic of log-normal distributions, we obtain
the AUC-ROC for PA analytically as follows. The detailed
derivation is provided in Appendix B.

Pns™ <Ins™) = (o).

3

where @ is the cumulative distribution function for the stan-
dard normal distribution. We have assumed no degree as-
sortativity in the graph, where P(k;", k;r) = P(k;)P(k;).
Although empirical graphs often exhibit degree assortativity,
our results indicate that it does not significantly impact the
AUC-ROC (Appendix E.2).

Equation 4 suggests the key behavior of AUC-ROC for
PA. The AUC-ROC for PA is an increasing function of
the parameter o of the log-normal distribution (Fig. 1C).
The parameter o of the log-normal distribution controls
the spread of the distribution, with larger o resulting in a
more fat-tailed distribution. While our assumptions about
the log-normal degree distribution and degree assortativity
may not always align with real-world data, Eq. 4 still ef-
fectively captures the AUC-ROC behavior for PA (Fig. 1C).
Further analysis of power-law distributions is described in
Appendix E.3. We also identified a similar degree bias in a
triplet sampling method (Rendle et al., 2009), which sam-
ples triplets (7, j, j') by sampling an edge (4, j) and then
sampling a node j’ uniformly at random (Appendix C).

This theoretical result highlights the significant issue with
the current link prediction benchmark: a high benchmark
performance can be achieved by only learning node degrees,
posing the question of whether the link prediction bench-
mark is an effective objective of graph machine learning.

3. The degree-corrected link prediction
benchmark

The link prediction benchmark yields biased evaluations
due to mismatched degree distributions between positive

and negative edges, i.e., pneg(k) 7 Ppos(k). To mitigate
the mismatch, we introduce the degree-corrected link pre-
diction benchmark that samples negative edges with the
same degree bias as positive edges (See Algorithm 1 in
Appendix). Specifically, we create a list of nodes where
each node with degree k appears k times. Then, we sample
negative edges by uniformly sampling two nodes from this
list with replacement until the sampled node pairs are not
connected and not in the test edge set. Crucially, nodes
with degree k are k times more likely to be sampled than
nodes with degree 1, mirroring the degree bias of the posi-
tive edges. Consequently, the positive and negative edges in
the degree-corrected benchmark are indistinguishable based
on node degrees. A Python package for the degree-corrected
benchmark will be made available on GitHub.

3.1. Comparison of the benchmark evaluations

We reevaluated the methods using the degree-corrected link
prediction benchmark, maintaining the same parameters
as in the original benchmark. The results show a signif-
icant drop in the performance of PA, with most methods
having AUC-ROC scores close to 0.5 for most networks
(Fig. 1E). We find qualitatively the same results when using
the Hits@K score (Appendix E.6).

We note that our aim is not to completely eliminate degree as
a predictive feature but rather to remove the bias introduced
by negative edge sampling. The degree can remain a mean-
ingful predictor after correction if it genuinely correlates
with the likelihood of edges between nodes. ‘biokg_drug’
marks this point well; it has the strongest rich-club structure
of all graphs (including non-OGB graphs), where 94% of
edges connect the top 10% highest-degree nodes. In other
OGB graphs, this figure is below 27%. Even after correc-
tion, degree remains a meaningful predictor for biokg_drug
(AUC-ROC of 0.9) because high-degree nodes are inher-
ently more likely to be connected in this graph.

The degree-corrected benchmark has some agreement with
the original benchmark in terms of the ranking of the meth-
ods (Fig. 2A). For example, they rank GAT and LRW as top
performers, while NB, SGTAd jNeu, and SGTAdJExp are
consistently ranked lower. On the other hand, the degree-
corrected benchmark ranks PA as the lowest performer, with
its average AUC-ROC dropping from 0.83 to 0.54, placing
it last out of 29 methods. Other methods such as LPI, GIN
also experience a substantial drop in their rankings from 4nd
to 12th and 10th to 21th, respectively (Fig. 2A). On the other
hand, GCN, GraphSAGE, node2vec, DeepWalk, and
EigenMap increase their rankings substantially (Fig. 2A).
(See Appendix E.1 for the ranking of methods by HeaRT
benchmark (Li et al., 2024a).)
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Figure 2. Comparative analysis of link prediction and recommendation benchmarks. A: Ranking changes for link prediction methods
between original and degree-corrected benchmarks. Red and blue lines indicate methods with ranking shifts greater than 8 places. B:
Ranking of methods by the degree-corrected benchmark is more aligned with that of the recommendation task than that of the original
benchmark and the HeaRT benchmark. RBO (rank-biased overlap) measures the similarity between link prediction and recommendation

task rankings.

3.2. The degree-corrected benchmark aligns better with
recommendation tasks

Link prediction serves as a computationally efficient proxy
for evaluating and training recommendation systems (Yang
et al., 2015; Wang et al., 2021; Huang et al., 2023; Li et al.,
2024a; Menand & Seshadhri, 2024). In the recommen-
dation task, directly optimizing recommendation metrics
such as Hits@K requires ranking all possible node pairs
for each node, which is computationally infeasible for large
networks. In contrast, link prediction evaluates on a fixed
set of candidate pairs, making it O(M) (where M is the
number of edges) and thus practical for both evaluation and
training. This computational advantage has made link pre-
diction benchmarks a de facto standard for developing and
training recommendation models. However, this practice
is only valid if link prediction performance correlates with
recommendation performance. It is thus crucial that a link
prediction benchmark accurately mirrors the performance
in recommendation tasks.

Recommendation systems typically involve two steps: re-
trieval and ranking. First, the retriever selects a smaller
candidate set from the entire node set, after which the ranker
orders these candidates. In our experiments, we adopt a
two-stage retrieval pipeline to reflect this practice. Initially,
a retriever selects the top candidate neighbors per node us-
ing its similarity function. Then, a ranking model ranks
these candidates. Both the retriever and the ranker are based
on the same similarity function for the embedding- and
topology-based models, but for pairwise link prediction
models (i.e., BUDDY and MLP), we use the local random
walk (LRW) to retrieve the candidate sets because enumer-

ating all node pairs is computationally challenging. We
chose LRW because it is among the best performing meth-
ods in the retrieval task. The effectiveness of the recom-
mendations is measured using the Normalized Discounted
Cumulative Gain at K (NDCG@K)) (Jarvelin & Kekildinen,
2002). We perform this task five times and average the
NDCG@K scores across different runs. We note that our
results are consistent for different candidate set sizes (refer
to Appendix E.5).

For each graph, we evaluate the alignment between the rank-
ings based on the recommendation task and those based on
the link prediction benchmarks using Rank Biased Overlap
(RBO) (Webber et al., 2010). RBO is a ranking similarity
metric with larger weights on the top performers in the two
rankings. A larger RBO score indicates that the top perform-
ers in the two rankings are more similar. The weights on
the top performer are controlled by the parameter p € (0, 1).
While we set p = 0.5 in our experiment, we confirmed that
our results are robust to the choice of p (Appendix E.5).

Our results from 95 graphs show that the degree-corrected
benchmark achieves higher RBO scores than the original
benchmark. For reference, we also tested the HeaRT bench-
mark (Li et al., 2024a), which is a recent link prediction
benchmark that mitigates the distance-based bias. The re-
sults show that HeaRT achieves substantially lower RBO
scores than both the original and degree-corrected bench-
marks. We find consistent results for different values of K
and parameter p of the RBO (Appendix E.5). These results
indicate that the degree-corrected benchmark more accu-
rately mirrors the performance in recommendation tasks,
providing a more reliable measure of the effectiveness of
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methods in practical applications.

3.3. Degree-corrected benchmark facilitates the
learning of community structure

The link prediction benchmark is a common unsupervised
learning objective for GNNs (Tang et al., 2015; Hamilton
et al., 2017; Kawamoto et al., 2018; Kojaku et al., 2021b).
The degree bias implies that GNNs trained using the original
link prediction benchmark tend to overfit to node degrees
because they can easily differentiate between positive and
negative edges based on node degrees. We show that the
degree-corrected benchmark effectively prevents overfitting
to node degrees and improves the learning of salient graph
structures.

We evaluate GNNs on the common unsupervised task of
community detection in graphs (Fortunato, 2010; Fortunato
& Hric, 2016; Fortunato & Newman, 2022). The com-
munity detection task identifies densely connected groups
(i.e., communities) in a graph. Community detection and
link prediction tasks are intimately related (Clauset et al.,
2008; Peixoto, 2018; Ghasemian et al., 2020). Two nodes
will likely have edges if they belong to the same commu-
nity. By training a graph machine learning model (e.g.,
GNNis) to learn a node embedding to predict links, nodes
in the same community are mapped to be close to each
other in the embedding space (Kojaku et al., 2024). Com-
munities often correspond to functional units (e.g., social
circles with similar opinions and protein complexes) in
the graph, and detecting communities is a crucial task in
many graph applications (Fortunato, 2010; Peixoto, 2013;
Fortunato & Hric, 2016; Peixoto, 2018; Fortunato & New-
man, 2022). Specifically, we test the GNNs by using the
Lancichinetti-Fortunato-Radicchi (LFR) community detec-
tion benchmark (Lancichinetti et al., 2008), a standard
benchmark for community detection (Fortunato, 2010; For-
tunato & Hric, 2016; Tandon et al., 2021; Kojaku et al.,
2024). The LFR benchmark generates synthetic graphs with
predefined communities as follows. Each node 7 is assigned
a degree k; from a power-law distribution p(k) ~ k=,
with maximum degree kp,x. A smaller 77 indicates a higher
likelihood of large degree nodes, which results in a more
heterogeneous degree distribution. Nodes are randomly
grouped into L communities, with community sizes (i.e., the
number of nodes in a community) following another power-
law distribution p(n) ~ n~" bounded between ny;, and
nmax. Edges are then formed such that each node ¢ connects
to a fraction 1 — y of its k; edges within its community and
the remaining fraction x4 to nodes in other communities. We
generate 10 graphs for © € {0.05,0.1,0.15,...,0.95,1}
using the following parameter values: the number of nodes
N = 3,000, the degree exponent 7; € {2.5, 3}, the average
degree (k) = 25, the maximum degree k. = 1000, the
community-size exponent 75 = 3, the minimum and max-

imum community size npi, = 100 and nymx = 1000. We
obtained qualitatively similar results for different values of
the parameters of the LFR benchmark (Appendix E.8).

We train GNNs using either the original or the degree-
corrected link prediction benchmarks to minimize binary
entropy loss in classifying the positive and negative edges.
Using the trained GNNs, we generate node embeddings and
apply the K -means clustering algorithm to detect commu-
nities, where K is set to the number of true communities.
Although the number K of communities is often unknown,
we use the ground-truth number to eliminate noise from
estimating K and to concentrate on evaluating the quality of
the learned node embeddings, a standard practice in bench-
marking node embeddings for the community detection
task (Tandon et al., 2021; Kojaku et al., 2024; Kovics et al.,
2024). We measure the performance of GNNs by compar-
ing the detected communities against the true communities
using the adjusted element-centric similarity (Gates et al.,
2019; Kojaku et al., 2024; Kovdcs et al., 2024), where higher
scores indicate a higher similarity between the node parti-
tions for the true and detected communities. We observe
qualitatively similar results for partition similarities based
on the normalized mutual information (Appendix E.7).

All GNNs, except for GIN, perform well when p < 0.5,
where communities are distinct and easily identifiable, but
their performance declines as p increases (Fig. 3A). Across
a broad range of i, degree-corrected GNNSs, particularly
GIN, GCN, and GraphSAGE, outperform original GNNs
in identifying communities, as shown by the area under
the performance curve (Fig. 3B). The advantage of degree-
corrected benchmarks becomes more evident with a more
heterogeneous degree distribution (Fig. 3C and D). This
indicates that degree correction effectively reduces overfit-
ting to node degrees, enhancing the learning of community
structures in graphs.

4. Discussion

We showed that common link prediction benchmarks are bi-
ased due to node degree in edge sampling, favoring methods
that overfit to node degree. This bias distorts model evalu-
ations and leads to suboptimal node embeddings (Fig. 2B,
Fig. 3B). The degree bias we focused on is artifactual, i.e.,
it is not present in the actual network data but arises in the
set of sampled positive and negative edges due to the biased
sampling algorithm. We have shown that this artifactual
bias significantly distorts the evaluation of link prediction
models (Fig. 2B) and can be leveraged by these models to
optimize their objective functions, leading to suboptimal
learning of node embeddings (Fig. 3B).

To better understand the contribution of degree bias, we de-
composed AUC-ROC scores into contributions from differ-
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Figure 3. The degree-corrected benchmark improves GNNs in learning community structure in the LFR graphs. The graphs consist of
3,000 nodes with an average degree of 25. A: The performance of community detection for the LFR graphs with a power-law degree
distribution with 7; = 3.0 as a function of mixing p. B: The average performance (by the area under the performance curve). C, D: The
same plots for LFR graphs with a fatter power-law degree distribution with 71 = 2.5. The error bars represent the 95% confidence interval

estimated by a bootstrap of 1,000 repetitions.

ent node degree groups (Appendix D). Our analysis revealed
that in networks with high degree heterogeneity (o > 1.3),
a single combination—high-degree positive edges and low-
degree negative edges—dominates the evaluation, account-
ing for over 80% of the overall AUC-ROC score. This
finding explains why even simple degree-based methods
perform well: the benchmark’s evaluation is largely deter-
mined by cases that can be easily classified using degree
alone. Indeed, our logistic regression analysis shows that
in heterogeneous networks, the degree product becomes
overwhelmingly important, with its coefficient more than
twice as large as other structural features (Appendix D).
These results highlight how the sampling procedure inadver-
tently creates a shortcut that allows methods to achieve high
performance without learning meaningful graph structures.

To address the degree bias, we proposed a degree-corrected
benchmark that aligns the degree distributions of sampled
edges. Our benchmark not only provided accurate evalua-
tions but also improved GNN training by reducing overfit-
ting to a degree and enhancing community detection.

While our focus is on degree bias, we acknowledge other bi-
ases identified by previous studies (Lichtnwalter & Chawla,
2012; Zhang & Chen, 2018; Mao et al., 2024; Li et al.,
2024a). We highlight some of these biases to underscore the
uniqueness of degree bias.

(1) Distance bias arises because nodes connected by negative
edges are generally farther apart than those linked by posi-
tive edges (Li et al., 2024a), making them easily distinguish-
able by distance. We observed that correcting for degree
bias consistently reduces distance bias; the degree-corrected
benchmark showed more negative edges connected by paths
of length 2 compared to the standard benchmark across all
networks. While our degree correction naturally mitigates
distance bias, distance debiasing does not address degree
bias. This is evidenced by the strong performance of PA,
a purely degree-based predictor, even after distance-bias
correction (Appendix E.1). This asymmetry likely arises
because node distances are inherently influenced by degree
heterogeneity. In networks with high degree heterogeneity,
high-degree nodes act as hubs, creating short paths between
many node pairs. Correcting for degree bias naturally re-
duces the effect of these hub-mediated short paths. However,
correcting for distance alone does not address the underlying
degree heterogeneity, which continues to influence network
structure and link prediction performance.

(2) Study (Huang et al., 2023) highlighted an issue arising
from the substantial down-sampling of negative edges to
match the number of positive edges. They proposed an “un-
biased testing” approach for link prediction by evaluating
methods on all possible negative pairs rather than just a
sampled subset. However, we note that the concept of “bias”
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in their work differs from the sampling bias we address. The
degree bias we focus on stems from positive edge sampling,
not negative edges. Sampling all negative edges does not
resolve this degree bias at all because the node frequency in
all negative edges still matches that of uniformly sampled
negative edges.

(3) Our degree-corrected sampling may increase the fre-
quency of high-degree nodes, but as these appear in neg-
ative examples, models are penalized for overfitting them.
This encourages learning more nuanced features, improving
the capture of network structures like communities (Fig. 3).
This approach parallels techniques in stock market analy-
sis (MacMahon & Garlaschelli, 2015), community detec-
tion (Newman, 2006), and node embedding (Kojaku et al.,
2021b), where filtering dominant patterns reveals finer struc-
tural relationships.

In summary, our findings add a new direction to the ongoing
examination of the link prediction task by demonstrating
that node degree—a local and notably simpler attribute than
distance—is often sufficient for differentiating the positive
and negative edges. Crucially, the degree bias arises in any
non-regular graph, regardless of the structure of the graph,
because the bias stems not from the graph structure but from
the edge sampling algorithm used in the link prediction
benchmark. More broadly, edge sampling—the source of
the degree bias—is a general technique for evaluating and
training graph machine learning. For instance, mini-batch
training (Hamilton et al., 2017; Hu et al., 2020b), which sam-
ples subsets of edges for efficient GNN training, may also
exhibit bias due to node degrees, leading to skewed training
sets. Given the widespread use of edge sampling across var-
ious graph machine-learning tasks, our findings have broad
implications beyond link prediction benchmarks, extending
to a range of benchmarks and training frameworks.

Our study has several limitations. First, we did not explore
the reasons behind the varying performance of different link
prediction methods. Degree heterogeneity can negatively
impact GNNs (Liu et al., 2021; Kang et al., 2022; Subramo-
nian et al., 2024b; Wang et al., 2024; Liu et al., 2023; Sub-
ramonian et al., 2024a; Arun et al., 2023; Li et al., 2024b).
Small-degree nodes tend to have poor representation quality
due to limited neighborhood information (Liu et al., 2021;
Wang et al., 2024), and large-degree nodes benefit from
reinforced structural inequality (Subramonian et al., 2024b;
Liu et al., 2023; Li et al., 2024b). This—how well a method
represents low-degree nodes—could be one reason for the
differences in performance. It is important to note that there
is no single link prediction method that is universally effec-
tive for all graphs because the performance of link prediction
methods depends on the assumptions on the graph structure
to make the predictions (Ghasemian et al., 2020). Second,
we focus on community structure to test the effectiveness of
the proposed benchmark as a training framework. However,

other non-trivial graph structures, such as centrality, could
be tested through network dismantling benchmarks (Osat
et al., 2023). Third, our degree correction method addresses
one form of bias; it may potentially introduce new biases,
although we could not identify any clear example of such
biases. As a precaution, we investigated whether our debias-
ing method can exacerbate certain other biases identified in
the literature, such as the distance bias Li et al. (2024a), and
found no evidence of this. In fact, we find that our method
mitigates the distance bias and not vice versa. Fourth, our
analysis focuses on the transductive setting, where link pre-
diction occurs between nodes in the training graph. We note
that degree bias likely persists inductively since new nodes
with more connections are still more likely to be selected
in edge sampling, mirroring the bias in the transductive set-
ting. Fourth, our study focuses exclusively on unipartite
networks, and while the findings reveal meaningful insights
about degree bias and benchmarking in this setting, their
applicability to bipartite or heterogeneous graphs remains
unclear and is an important avenue for future investigation.

Despite these limitations, our results suggest that sampling
graph data is a highly non-trivial task more than the com-
monly considered. Because sampling edges from a graph
is integral to evaluating and training graph machine learn-
ing methods, our results underline the importance of careful
sampling to ensure the effectiveness of evaluations and train-
ing of graph machine learning methods.

Software and Data

4.1. Source data and code

The source data, code, and workflow for
our experiments are available on  GitHub
at https://github.com/skojaku/

degree-corrected-link—-prediction—-benchmark.
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effect, where well-connected nodes tend to gain even more
connections. This effect, known as preferential attachment,
is common in various societal contexts. For instance, popu-
lar individuals often gain more friends, widely shared con-
tent spreads further, and frequently cited papers are more
likely to attract additional citations. While preferential at-
tachment can benefit distributing resources and recogni-
tion, it also presents significant disadvantages. For example,
preferential attachment can disproportionately favor well-
connected individuals in professional networks and hinder
scientific progress by undervaluing innovative papers from
less-known researchers (Chu & Evans, 2021). Our analysis
indicates that the recommendation algorithms trained using
the existing benchmark may exacerbate social inequalities
by reinforcing the preferential attachment mechanism. Our
new benchmark directly addresses these concerns by negat-
ing the degree bias, promoting fairer algorithm evaluations,
and supporting the development of fairness-aware machine
learning methods.
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A. Data and link prediction methods
A.1. Network data

The corpus of networks used in this work comprises networks with the number of nodes in the range [102, 10] and edges
in the range [10%,10%]. We also considered networks from the OGB benchmark (Hu et al., 2020a). This includes social,
technological, information, biological, and transportation (spatial) networks. For simplicity in our analysis, we consider
these networks to be unweighted, undirected, and without self-loops, though the message of our work holds without these
constraints. The largest networks in our corpus (number of nodes > 10°) are sourced from Netzschleuder (Peixoto, 2020),
and the remaining networks are obtained from the authors of Ref. (Erkol et al., 2019). See Table 2 for details.

A.2. Link prediction algorithms

We use 29 link prediction algorithms categorized into four groups: topology-based, graph embedding, network model, and
graph neural networks (see Table 1).

A.2.1. TOPOLOGY-BASED PREDICTORS

Topology-based predictors calculate the prediction score s;; using the structural features of two nodes. The topology-based
predictors employed in our study include Preferential Attachment (PA) (Barabasi & Pdsfai, 2016), Common Neighbors
(CN) (Liben-Nowell & Kleinberg, 2003), Adamic-Adar (A2) (Adamic & Adar, 2003), Jaccard Index (JI) (Liben-Nowell &
Kleinberg, 2003), Resource Allocation (R2) (Zhou et al., 2007; 2009), Local Random Walk (LRW) (Liu & Lii, 2010), Local
Path Index (LPI) (Lii et al., 2009). For LRW and LP I, we set the hyperparameter ¢ = 0.001 as per previous studies (Lii
et al., 2009; Liu & Lii, 2010). The other methods do not require hyperparameters.

We implemented two multilayer perceptrons (MLPs) that takes features of two nodes and predict whether they are connected
by an edge or not. The first MLP (MLP-deq) takes only the degree features as input, i.g., degree product k;k;, degree sum
k; + k;, minimum degree min(k;, k;), and maximum degree max(k;, k;). The second MLP (MLP-topo) takes AA, JI,
RA, and LRW as input. The MLP consists of two hidden layers coupled with a LeakyReLU activation function, and we used
held-out validation to tune the number of dimensions in each hidden layer (32, 64) and dropout rate (0.2, 0.5) with the
validation set consisting of 10% of the edges. We used the Adam optimizer at a learning rate of 0.001.

As a simpler baseline, we also implemented a logistic regression model (Linear) that takes the concatenation of the node
features as input and predict whether they are connected by an edge or not. The input features are RA, JI, and LRW, and AA,
and PA. In order to reduce the collinearity between the input features, we performed feature orthogonalization by regressing
RA, JI, and LRW, AA on PA and taking the residuals as new features. This means that after orthogonalization, we input
the residuals of RA, JI, and LRW, AA on PA, as well as the raw PA features to the logistic regression model. To further
reduce the collinearity, we employed the ridge regression implemented in scikit-learn (Pedregosa et al., 2011), with the
regularization parameter set to the default value.

A.2.2. GRAPH EMBEDDINGS

Graph embedding maps a graph into a vector space, with each node 7 represented by a point in this space. The prediction
score s;; is given by the dot product ; i; between any two node vectors. We tested a variety of graph embedding methods
including Laplacian EigenMap (EigenMap) (Belkin & Niyogi, 2003), Spectral Modularity (Mod) (Nadakuditi & Newman,
2012), Non-backtracking Embedding (NB) (Krzakala et al., 2013), FastRP (FastRP) (Chen et al., 2019), Exponential
Kernel on Adjacency Matrix (Exp—2) (Kondor & Lafferty, 2002; Kunegis & Lommatzsch, 2009), Exponential Kernel
on Laplacian (Exp-L) (Kondor & Lafferty, 2002; Kunegis & Lommatzsch, 2009), Exponential Kernel on Normalized
Laplacian (Exp—-NL) (Kondor & Lafferty, 2002; Kunegis & Lommatzsch, 2009), Von Neumann Kernel on Adjacency
Matrix (vN-2) (Ito et al., 2005; Kunegis & Lommatzsch, 2009), Von Neumann Kernel on Laplacian (vN-L) (Ito et al., 2005;
Kunegis & Lommatzsch, 2009), and Von Neumann Kernel on Normalized Laplacian (vN-NL) (Ito et al., 2005; Kunegis &
Lommatzsch, 2009), node2vec (node2vec) (Grover & Leskovec, 2016), DeepWalk (DeepWalk) (Perozzi et al., 2014),
and LINE (LINE) (Tang et al., 2015). We tested a variety of graph embedding methods including Laplacian EigenMap
(EigenMap) (Belkin & Niyogi, 2003), Spectral Modularity (Mod) (Nadakuditi & Newman, 2012), Non-backtracking
Embedding (NB) (Krzakala et al., 2013), FastRP (FastRP) (Chen et al., 2019), Exponential Kernel on Adjacency Matrix
(Exp—2) (Kondor & Lafferty, 2002; Kunegis & Lommatzsch, 2009), Exponential Kernel on Laplacian (Exp-L) (Kondor
& Lafferty, 2002; Kunegis & Lommatzsch, 2009), Exponential Kernel on Normalized Laplacian (Exp—-NL) (Kondor &
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Lafferty, 2002; Kunegis & Lommatzsch, 2009), Von Neumann Kernel on Adjacency Matrix (vN-2) (Ito et al., 2005;
Kunegis & Lommatzsch, 2009), Von Neumann Kernel on Laplacian (vN-L) (Ito et al., 2005; Kunegis & Lommatzsch, 2009),
and Von Neumann Kernel on Normalized Laplacian (vN-NL) (Ito et al., 2005; Kunegis & Lommatzsch, 2009), node2vec
(node2vec) (Grover & Leskovec, 2016), DeepWalk (DeepWalk) (Perozzi et al., 2014), and LINE (LINE) (Tang et al.,
2015). For all methods, we set the number of embedding dimensions to 128. For LINE, node2vec, and DeepWalk, we
set the number of walkers to 40 and the number of the walk length to 80 following Ref. (Kojaku et al., 2024). We used the
default hyperparameters used in the original papers unless otherwise specified.

A.2.3. GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) learn the vector representation, u;, for each node 7 of the network by using neural networks.
The prediction score s;; is given by the dot product i, ii; between any two node vectors. We also explore several graph
neural network (GNN) architectures for link prediction, leveraging the PyTorch Geometric library (Fey & Lenssen, 2019).
The GNN methods we employ include: Graph Convolutional Network (GCN) (Kipf & Welling, 2017), Graph SAGE
(GraphSAGE) (Hamilton et al., 2017), Graph Attention Network (GAT) (Velickovi¢ et al., 2018), and Graph Isomorphism
Network (GIN) (Xu et al., 2019). We used held-out validation to tune the number of hidden layers (1 or 2) and the number
of dimensions in each hidden layer (64, 128, or 256) with the validation set consisting of 10% of the edges. We use ReLu
activation and a dropout rate of 0.2. The node features are the 64 principal eigenvectors of the adjacency matrix, and
we extend the feature vector by adding a 64-dimensional vector with each element being generated from an independent
Gaussian distribution with mean 0 and standard deviation 1 by following Ref. (Sato et al., 2021; Abboud et al., 2020). We
train GNNs on the link prediction task for 250 epochs with a dropout rate of 0.2, using the Adam optimizer at a learning rate
of 0.01. We use the ‘LinkNeighborLoader* from PyTorch Geometric to generate training mini-batches. This loader samples
both positive and negative edges, along with 30 immediate neighbors and 10 secondary neighbors sampled by random walks
for each node involved in these edges (Hamilton et al., 2017). The batch size is set to 5000.

We also tested BUDDY GNN, which achieves a competitive performance on the link prediction task (Chamberlain et al.,
2023). We employed hyperparameter tuning for the number of hidden channels (256 or 1024), and the feature dropout rate
(0.05 or 0.2) with the validation set consisting of 10% of the edges. We set the number of hops to 2 because it consistently
achieved a better performance. For other hyperparameters, we used the default values used in the original implementation.

A.2.4. NEWORK MODELS

We use two stochastic block models (SBM) (Fortunato, 2010; Fortunato & Hric, 2016; Fortunato & Newman, 2022; Peixoto,
2013) and the degree-corrected SBM (Karrer & Newman, 2011; Peixoto, 2013; Gra). These models estimate the probability
P(i, ) that an edge exists between two nodes, which serves as the prediction score s;;. We fit the SBMs using the graph
tool package (Gra). We select the number of blocks that minimize the description length and use default settings for other
parameters.

A.3. Pseudo-code for the degree-corrected link prediction benchmark

The pseudo-code for the degree-corrected link prediction benchmark is shown in Table. 1.

Algorithm 1 Degree-corrected link prediction benchmark

Input: Graph G(V, £), Sampling fraction 8 € [0, 1] for positive edges
Output: Set of negative edges &,,c, and set of positive edges Epos
Generate &5 by randomly sampling a /3 fraction of edges in £
Initialize Epeg 0
Create a node list L where each node ¢ € V with degree k; appears k; times
while |Eeq| < |Epos| do

Randomly select two nodes i, 7 from L with replacement

if (¢,7) ¢ £ and (i, 7) ¢ Eneg and i # j then

Ence + Enei U {(1:7))

end if
end while
return Eyeg, Epos
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Table 1. Link prediction algorithms. “pyg” refers to PyTorch Geometric.
Algorithm Reference Code Notation
Preferential attachment (Barabisi & Pésfai, 2016) ourselves PA
Common neighbors (Liben-Nowell & Kleinberg, 2003) ourselves CN
Topology AdamicAdar (A.damic & Adar, 200_3) ourselves AR
based Jaccard index (Liben-Nowell & Kleinberg, 2003) ourselves JI
Resource allocation (Zhou et al., 2007; 2009) ourselves RA
Local Random Walk (Liu & Lii, 2010) ourselves LRW
Local Path Index (Lii et al., 2009) ourselves LPI
MLP-deg ourselves MLP-deg
MLP-topo ourselves MLP-topo
Linear model ourselves Linear
Laplacian EigenMap (Belkin & Niyogi, 2003) ourselves EigenMap
Spectral modularity (Nadakuditi & Newman, 2012) ourselves Mod
Non-backtracking embedding (Krzakala et al., 2013) ourselves NB
FastRP (Chen et al., 2019) ourselves FastRP
Adjacency matrix (Kondor & Lafferty, 2002), ourselves Exp-A
w/ the exponential kernel (Kunegis & Lommatzsch, 2009)
Laplacian (Kondor & Lafferty, 2002), ourselves Exp-L
Graph w/ the exponential kernel (Kunegis & Lommatzsch, 2009)
embedding  Normalized Laplacian (Kondor & Lafferty, 2002), ourselves Exp-NL
w/ the exponential kernel (Kunegis & Lommatzsch, 2009)
Adjacency matrix (Kondor & Lafferty, 2002), ourselves vN-A
w/ the von Neumann kernel (Kunegis & Lommatzsch, 2009)
Laplacian (Ito et al., 2005), ourselves vN-L
w/ the von Neumann kernel (Kunegis & Lommatzsch, 2009)
Normalized Laplacian w/ the von Neumann kernel ~ (Ito et al., 2005), ourselves vN-NL
w/ the von Neumann kernel (Kunegis & Lommatzsch, 2009)
LINE (Tang et al., 2015) gensim (Rehurek & Sojka, 2011), LINE
(Abraham, 2020)
DeepWalk (Perozzi et al., 2014) gensim (Rehurek & Sojka, 2011), DeepWalk
gensim (Abraham, 2020)
node2vec (Grover & Leskovec, 2016) gensim (Rehurek & Sojka, 2011), node2vec
gensim (Abraham, 2020)
Graph Graph Convolutional Network (Kipf & Welling, 2017) pyg (Fey & Lenssen, 2019) GCN
neural Graph SAGE. (Ha(niltoq etal., 2017) pyg (Fey & Lenssen, 2019) GraphSAGE
networks Graph Attention Network (Velickovi¢ et al., 2018) pyg (Fey & Lenssen, 2019) GAT
GIN (Xuetal., 2019) pyg (Fey & Lenssen, 2019) GIN
BUDDY GNN (Chamberlain et al., 2023) (Chamberlain et al., 2023) BUDDY
Network Stochastic block model (Fortunato, 2010; Fortunato & Hf‘ic, 2016), graph tool (Gra) SBM
model (Fortunato & Newman, 2022; Peixoto, 2013)
Degree-corrected stochastic block model (Karrer & Newman, 2011; Peixoto, 2013; Gra) ~ graph tool (Gra) dcSBM
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A.4. Additional analysis methods

We use the following additional analysis methods in this paper. We fit a log-normal distribution to the degree distribution of
the graphs by using the moment method implemented in the scipy.stats.lognorm package (Virtanen et al., 2020).
We fit a powerlaw distribution to the degree distribution of the graphs by using the maximum likelihood method implemented
in the powerlaw package (Alstott et al., 2014). We compute the RBO score by using the rbo package (rbo).

B. AUC-ROC for the preferential attachment method

Let us first derive the degree distribution of nodes in the positive edges. By substituting Eq. 3 into Eq. 1 in the main text, we
derive the degree distribution of nodes in the positive edges as:

E [(mku)T

pPOS(k) = TN 202

(k) V2mok
) _

1 2 2 2
:makexp 202 ((Ink) —2ulnk+u)+lnk—,u—a/2]
1

1
Xp | ——= ((lnk)2 —2(p+ 0?)Ink 4 p? + 2uc? +04)}

= e —
V2rok | 202
1 [ (lnk—,u—JQ)Q}
= exp |—————— 4
V2nok P L 202 @
This is the probability density function of a log-normal distribution with mean ;. + o and variance o2, i.e.,
Ppos(k) = LogNorm(k | p + o2, 02). Q)

Equation 5 indicates that the degree distribution for nodes in the positive edges also follows a log-normal distribution,
parameterized by 1 + o2 and 0.

We derive the AUC-ROC for PA by leveraging a unique characteristic of log-normal distributions, i.e., the logarithm In k of
log-normally-distributed degree k follows a normal distribution with mean y and variance o2, i.e.,

We assume no degree assortativity in the graph, where P(k;", k;‘) = P(k;)P(k;). Although empirical graphs often exhibit
degree assortativity, our results indicate that it does not significantly impact the AUC-ROC (Appendix E.2). For the negative
edges, the distribution for In s;~ ;- =Ink; +1n k; follows a normal distribution with mean 2y and variance 202, as the
sum of independent normal variables also forms a normal distribution with additive means and variances (Bishop, 2006), i.e.,

P(Ink) = Norm(k | p, 0?), where Norm(k | p,0?) =

Q)

P(Ins;- j-) = Norm (Ins;- ;- | 2u,207). (7

For the positive edges, the degree distribution also follows a log-normal distribution (Eq. 5). Thus, the distribution for
Ins;+ j+ = Ink;” +Ink] is given by

P(lns;+ j+) = Norm (In s;+ j+ | 2u + 20%,207) . 8)
Thus, we have

AUC-ROC = P(Ins~ < Ins™)

— 00 — 00

:/ Norm(z ™~ | 24, 207) [1 —/ Norm(z™" | 2u + 202, 20%)dz™ | dz~

=1 —/ Norm(z ™ | 2,u,202)/ Norm(z ™t | 2u + 202, 20%)dz T d2™ )

— 00 — 00
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We reparameterize Eq. 9 by using 2+ = % Noting that Norm(z~ | 24,20?) - /20 = Norm(z~ | 0,1) and
dz*t = (\/ia)dzi, we have

oo x

Plns™ <Inst) =1 —/ Norm(z ™~ | 2u,202)/ Norm(z ™t | 2u + 202, 202) - detda™

— 00 —00

=1 —/ Norm (2~ | 0,1) / Norm (z+ —V20 |0, 1) dztdz—

—1- /OO Norm(z~ | 0,1)® (z— - \/ia) dz”, 10)

where ®(z7) is the cumulative distribution function for the standard normal distribution, i.e., ®(z7) = fozo_ Norm(y |
0, 1)dy. We recognize that

/Oo Norm(z~ | 0,1)® (z— ~ \/Ea) R [@ (z— - \/ia)} . (11)
—o0
Here, E, - denotes the expectation over normally distributed rndom variable z~. The cumulative distribution function ® can
be expressed using another normally distributed random variable y as:

@(z‘—\@a) =Ply<z —V20 |27 )=Ply—2" >V20|27). (12)
Applying the law of total probability (P(A) = Ex[P(A | X)]), we have:

E,- {q) (z_ - \/50)] =E,- {P(y — 27 >V20 | z_)] =Py -2z~ >V20). (13)

Since y and 2z~ are both normally distributed, their difference y — 2z~ is normally distributed with mean 0 and variance 2.
Thus,

P(yz>\/§0)1¢<\/\/§g>1®(a) (14)

Substituting this into Eq. 10, we have:

P(s= <sT) =®(0). (15)

C. AUC-ROC for asymmetric degree-proportional sampling

We analyze the behavior of AUC-ROC for PA when link prediction is evaluated using an asymmetric negative sampling
scheme. In this set up, a method is evaluated by a set of triplets (i, 51, j~) where (i, j7) is sampled from the observed edges,
and j~ is sampled uniformly at random over nodes. This setup is used in Bayesian Personalized Ranking (BPR), where
training triples are drawn uniformly from the observed interaction set (Rendle et al., 2009). We focus on the performance of
PA under this sampling scheme and prove that, as the degree distribution becomes increasingly skewed, the AUC-ROC of
PA approaches 1, as is the case of the uniform sampling of negative edges.

Let us first recall that the degree of node 5~ in the negative edges follows the original degree distribution p(k) because node
Jj~ is selected uniformly at random from all nodes. Conversely, nodes i and 5 have degrees following pyos (k) (Eq. 1) due
to the friendship paradox (Section 2.3). Specifically, a node with degree k appears k times among observed edges, and as a
result, its degree distribution is proportional to kp(k), and hence aligns with ppes (k).

We are interested in the AUC-ROC of PA for the positive and negative edges as (i, j7) and (i 7, j ), i.e.,

P(s™ < st) = P(logk;- +logk;- <logk;+ + logk;+). (16)
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Figure 4. AUC-ROC for PA under the asymmetric negative sampling.

Assuming that p(k) is a log-normal distribution, the sum log k;~ + log k;- involves two normally distributed random
variables, log k;- and log k-, with means y and p + o2, respectively, and each with variance o2. Consequently, their sum
is also normally distributed with mean 2/ + % and variance 202. Denoting by z& = log k;= + log k;+, we have:

P(s™ < s™) =/

—00

oo x

Norm(z ™~ | 2u + 02, 20?) [1 — / Norm(x™ | 2u + 202,202)dx+] dz~
— 00
x

. _
=1 —/ Norm(z ™ | 2 + 0—2,20—2)/ Norm(z ™" | 2u + 202, 20%)dz T de ™

— 0o — o0
By reparameterizing 2+ by using 2+ = % we have
P(s~ <st)=1- / Norm (2~ | 0,1) / Norm <z+ — % | 0, 1) dztdz~
> o

=1- Norm(z~ | 0,1)® ( 27 — — | dz™ 17
[ v (= 3) .

By taking the same derivation steps as in Egs. 11-15, we have:
P(s~ <st) = (%) . (18)

Since ® is a monotonically increasing function, the AUC-ROC is also an increasing function of o. The rate of increase is
less than the AUC-ROC for the uniform sampling of negative edges (Eq. 15). This can be understood by noting that one
endpoint node 7 of the negative edges in the asymmetric sampling is sampled from the observed edges, which is more likely
to have a higher degree than that of the negative edges sampled uniformly at random.

Empirical validation of Eq. 18 confirmed that the AUC-ROC for PA under the asymmetric negative sampling closely follows
that for empirically measured AUC-ROC (Fig. 4).

D. Decomposition analysis of AUC-ROC scores

A key concern with the standard benchmark is that link prediction methods may overfit to nodes with high degrees. To
investigate this systematically, we developed a decomposition analysis of the AUC-ROC scores that reveals how different
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groups of nodes contribute to the overall performance metrics.

The AUC-ROC score—the probability that a positive sample has a higher score than a negative sample—can be decomposed
into conditional scores by partitioning the evaluation edges into groups. Specifically, if we partition edges into groups g;
and go, the AUC-ROC score can be written as:

2 2
P(st>s7) = Z Z P(s} > s;lie 9, .J€9,)Pli€g)P(€gy) (19)
(=10=1

where s;" and s; are the scores of the positive and negative edges given by a link prediction method, respectively, and
gz’ and g, are the positive and negative edges in the /-th group, respectively. Probability P (5;|r > s li € gZ', JE€gy)
represents the conditional AUC-ROC score for a positive edge sampled from gj and a negative edge sampled from g,, .
Probability P(i € g?')P (j € g, ) represents the probability that a positive edge is sampled from gZ’ and a negative edge is
sampled from g,,. We note that P(i € gZ)P (j € g,/) is determined by the sampling of positive and negative edges and
independent of the link prediction methods.

Based on this decomposition, we investigate the impact of edges of different node degrees on the overall AUC-ROC scores.
Specifically, we partition edges into two equal-sized groups based on the degree product z = k;k; of their endpoint nodes,
with g; having z > median and g2 having z < median. We tested multiple definitions of z including degree sum (k; + k;),
minimum degree (min(k;, k;)), and maximum degree (max(k;, k;)), finding consistent results across all definitions.

To measure how uniformly different groups contribute to the AUC-ROC score, we use normalized entropy:

{=140

2
P(i € gf)P(j € g,)log P(i € g))P(j € g,/)/log4 (20)
=1

The entropy is bounded between 0 and 1, where O indicates that the AUC-ROC score is determined by a single group pair
and 1 indicates that the AUC-ROC score is evenly distributed across all group pairs.

We observe that the standard benchmark exhibits notable disparity compared to HeaRT and degree-corrected benchmark,
indicating that the contribution to the AUC-ROC score in the standard benchmark can be heavily skewed toward certain
combinations of node degrees (Fig. SA). This disparity becomes even more pronounced in networks with high degree
heterogeneity (H < 0.5 and o > 1.5). This disparity is caused by a single group pair—positive edges from high-degree
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Table 2. Mean absolute coefficients from logistic regression analysis across different graphs. Features were orthogonalized to eliminate
collinearity, and coefficients were normalized by the feature L2 norm. Larger coefficients indicate greater importance in link prediction.

Mean Absolute Coefficient

Topological Feature ~ All Graphs Graphs with o > 1  Graphs with o > 1.5

Random walk 11.52 10.68 9.01
Degree product 8.79 17.19 28.00
Resource allocation 2.81 4.53 6.88
Adamic-Adar 1.35 2.35 2.89
Jaccard index 0.89 1.06 0.17

nodes and negative edges from low-degree nodes—with P(i € g{")P(j € g5 ) > 0.7 for & > 1.5 (Fig. 5B). This means
that for highly heterogeneous networks, more than 70% of the AUC-ROC score is determined by cases that can be easily
classified using degree alone. The degree-corrected benchmark achieves high uniformity (H ~ 1) across group pairs
(Fig. 5A), indicating that the contribution to the AUC-ROC score is approximately evenly distributed across different degree
groups.

To validate these findings further, we performed additional experiments using logistic regression to analyze the importance
of features. The model was trained with resource allocation, Jaccard index, Adamic Adar, local random walk, and degree
product. To ensure a fair comparison, we orthogonalized the non-degree features with respect to the degree to eliminate
collinearity effects. Additionally, we use ridge regularization to further mitigate the effect of collinearity. We use the
scikit-learn package (Pedregosa et al., 2011) to perform the logistic regression with the default ridge regularization strength.
To make the regression coefficients comparable, we normalize the features by their L2 norm before training the model.
The results showed that in networks with high degree heterogeneity (o > 1), the degree product emerges as significantly
important, with its coefficient 1.7 3 times as large as the second most important feature (Table. 2).

This dominance of degree-based prediction is particularly concerning because it indicates that learning-based methods
can achieve high benchmark performance by primarily exploiting degree information rather than learning more complex
structural patterns. This “shortcut” is precisely what our degree-corrected benchmark aims to prevent.

These results provide strong quantitative support for our argument that the standard benchmark’s evaluation is dominated by
easily classified degree-based cases, potentially leading to suboptimal model training. The degree-corrected benchmark
successfully addresses this issue by ensuring more uniform contributions from different degree groups, leading to a more
meaningful evaluation of link prediction methods.

E. Robustness analysis
E.1. Method ranking by HeaRT benchmark

The ranking of methods by the HeaRT benchmark is shown in Fig. 6. The results show that PA achieves the highest
AUC-ROC scores among all methods in the HeaRT benchmark, contrasting sharply with its lowest performance in the
degree-corrected benchmark. This indicates that degree bias may not be reduced by HeaRT, which reduces the distance-based
bias.

E.2. Impact of degree assortativity on the AUC-ROC for PA

We have assumed that the graph has no degree assortativity, meaning that P(k;, k;) = P(k;)P(k;). Although this
assumption may not always hold, it provides a good approximation for the AUC-ROC behavior for PA. Although the
assortativity varies across graphs, the AUC-ROC for PA still closely follows Eq. (9) in the main text (Fig. 7).

E.3. AUC-ROC for PA for scale-free networks

We have assumed that the graph exhibits the heterogeneous degree distributions characterized by the log-normal distribution.
An alternative model of the degree distribution is the powerlaw distribution (Barabasi & Bonabeau, 2003). Here, we
show that our results also hold for the powerlaw degree distribution, i.e., the AUC-ROC for P2 increases as the degree
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Figure 6. Comparison of the AUC-ROC scores between the original, degree-corrected, and the HeaRT benchmarks.

heterogeneity increases.

We compute the AUC-ROC for PA for graphs with powerlaw degree distribution. Computing AUC-ROC P(k;-k;- <
k;+k;+) is not trivial because it involves multiplicative convolution of two probability distributions, which are hard to
compute for the power law degree distribution. To circumvent this problem, we consider the lower-bound by focusing on
k;- < k;+ and k;- < k;+, which is the subset of all combinations of (k;-, k;+, k-, k;+) leading to k;- k;— < k;+kj+,
ie.,

P(ki- < ki) Plkj- <kj+ | k- kiv) < Pki-kj- < kirkjr) 21

Assuming that the graph has no degree assortativity (i.e., P(k;, k;) = P(k;)P(k;)), we obtain the lower bound for the
AUC-ROC:

o0 o) 2
P(ki- < ki) > P(ki- <k )? = lz Preg(R) Y ppos(@] . (22)
k=1 =k

Now, let us compute the lower bound by assuming that the degree distribution follows a power-law (Clauset et al., 2009):

1 -« . . — S —a
p(k) = mk . (k> kmin), where (v, kmin) = :Zk e, (23)

£ ‘min

where ( is the Hurwitz zeta function, and k,;, is the minimum degree. By substituting Eq. (1) in the main text into Eq. 23,
we have ppos = k™! /¢(a — 1, kmin). By noting that Y ,=, p(¢) = ((a, k)/¢(, kmin) (Clauset et al., 2009), we have

0o 2
S ECla—1k)| . (24)

k=Kmin

2 _
P(ki- <ki+)” = (e, ki) ¢ (@ — 1, Kmin)

Numerical calculation shows that the lower bound P(k;~ < k;+)? approaches 1 as o — 2 (Fig. 7). Additional validation
using the Price network with N = 10% nodes and M = 10° edges, where p(k) o< k~¢, confirms that PA achieves higher
AUC-ROC than the lower-bound and reaches near-maximal AUC-ROC scores for o = 2.

We can also compute the AUC score using the Mann-Whitney U statistic (Fig. 8). Let us take a graph G with the set of nodes

given by V. We sample nodes i, j with degrees k;", k;’ forming the positive set of edges from p,,, and nodes m, n with
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Figure 7. The AUC-ROC for PA as a function of degree heterogeneity. A: The AUC-ROC for the empirical graphs and that expected by
node degree (Eq. (9) in the main text). The colors represent the degree assortativity. B: Lower bound for the AUC-ROC for the powerlaw
degree distributions. The dashed line represents the lower bound for the AUC-ROC for the powerlaw distribution. The blue line represents
the AUC-ROC for PA for the Price graph with N = 10* nodes and M = 10° edges.

degrees k., k,; forming the negative set of edges from pyc,. Then P(k:f k;r >k k) Vi, j, k,m €V is the AUC score

my 'n my Vn
U

ning
respectively (Mason & Graham, 2002). We sample the random variables k‘j , k‘j using the “Power_Law” function from the
(a—1)

and is given by where U is the Mann-Whitney U statistic and n, ny are sizes of the positive and negative edge sets

powerlaw package (Alstott et al., 2014) with degree exponent o — 1 since ppos(k) ~ k™ . Similarly, we sample k., k.
with degree exponent « since ppcq(k) ~ k=<, Fig. 8 aligns with our findings in Fig. 7B, i.e., PA reaches near maximal

AUC-ROC scores as o« — 2.

E.4. Analysis of large-scale networks

To test whether the degree bias persists in large-scale real-world networks, we analyzed two large-scale citation networks,
i.e., the Science of Science (SciSci) citation network (Lin et al., 2023), which represents citations between more than 95M
publications across all sciences, and the USPTO citation network (Patent & Office, 2023), consisting of more than 7M
patents in the US.

We followed the same procedure as our main analysis to test for degree bias, measuring the AUC-ROC score of the
preferential attachment model. The results strongly supported our theoretical predictions: PA achieved an AUC-ROC score
of 0.9452 for SciSci and 0.881 for USPTO, closely matching our theoretical predictions of 0.9479 and 0.918, respectively.
With the degree-corrected benchmark, the AUC-ROC scores for PA decrease for both graphs, e.g., 0.5018 for SciSci and
0.4818 for the USPTO.

While we do not run other link prediction methods on these networks due to computational constraints, these results
provide strong evidence that our findings about degree bias are not limited to smaller networks but represent a fundamental
characteristic of the standard link prediction benchmark.

E.5. Parameter sensitivity in the analysis of performance alignment with the recommendation task

Normalized Discounted Cumulative Gain (NDCG) is a widely used metric in information retrieval and recommendation
systems that evaluates the quality of ranked lists by considering both the relevance of items and their positions in the ranking.
Unlike metrics such as precision or recall that treat all positions equally, NDCG applies a logarithmic discount factor that
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penalizes relevant items appearing lower in the ranking, reflecting the diminishing probability that users will examine
items further down a list. Formally, for a ranked list of items, NDCG @K is computed by first calculating the Discounted
Cumulative Gain (DCG) up to position K:

Yi;
NDCG@K for node 7 = Z m
2

(25)
where Y;; is the indicator function of node j is connected with i in the test data (Y;; = 1), and otherwise Y;; = 0. This
value is then normalized by dividing by the DCG of the ideal ranking (IDCG), where all relevant items are placed at the top
positions:

DCG@K

NDCG@K = ————. 26

IDCG@K (26)
In our link prediction evaluation, we use NDCG@ 100 to assess how well different methods rank true connections among
their top 100 predictions.

We compute the similarity of two rankings with rank-biased overlap (RBO) (Webber et al., 2010). RBO assesses the
similarity of two rankings by examining the overlap of top-performing methods. Define Uy, ; as the set of methods ranked in
the top k positions in ranking 1, and Uy, o similarly for ranking 2. Then, RBO computes a weighted average of the similarity
of the top k& methods by

- Uk NU
RBO(S, T, p) P> M7 @7
k=1

where p controls the importance of the top performer, with a smaller p value placing more weight on the top performer. We
use p = 0.5 for the results in the main text. We find consistent results across different p values (Fig. 9A and B). Additionally,
we find consistent results for a different number of recommendations K (Fig. 9C and D).

We also compute the vertex-centric max precision recall at K (VCMPR@K) metric (Menand & Seshadhri, 2024) to
evaluate the performance of the link prediction methods. This metric is proposed for evaluating link prediction methods in
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Figure 9. RBO for different p values and different numbers K of recommendations.

recommendation settings. The VCMPR @K for a node % and recommended node set V; is defined as

E:jeviigj

VCMPR @K for node ¢ = ,
max(C, m;)

(28)
where m; is the number of true connections in the test data, i.e., m; = ) j Y;;. We compute the average VCMPR @K for all
nodes as the performance of the link prediction method for the graph. We observed that the degree-corrected benchmark
provides method rankings more similar to those of the recommendation task measured by VCMPR @K than the standard
and HearT benchmarks (Fig. 10).

E.6. Evaluation of the link prediction performance using Hits @K

Hits@K is another common metric used to evaluate link prediction methods alongside AUC-ROC. We investigated whether
degree bias affects Hits@K scores and if our bias correction improves the correlation between Hits@K and actual link
prediction performance. To compute Hits @K, we first ranked all test data edges by their predicted scores in descending
order. We then counted the number of positive edges among the top K edges. This count was normalized by the maximum
possible value (K) to indicate how close the method came to perfect prediction.

Our analysis revealed that the Hits@K scores for PA are consistently high across most networks, with only a few exceptions
in networks with very low degree heterogeneity (Fig. 11A-D). The supriously high performance of PA remains consistent
regardless of the K value used.

When we applied the same analysis to the degree-corrected benchmark, we found that the Hits @K scores for PA span the
range between 0 to 1.0 (Fig. 11E-H). This indicates that the degree correction effectively mitigates spurious results and
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prevents inflation of performance metrics due to degree bias.

We then compared the Hits@K scores with the actual link prediction performance, measured by NDCG@ 100, using RBO
scores. Our results show that the RBO scores for the degree-corrected benchmark tend to be higher than those for the
standard benchmark (Fig. 111-L). This suggests that the degree-corrected benchmark provides a more accurate assessment
of link prediction performance.

In summary, whether using AUC-ROC or ranking-based metrics like Hits @K, the underlying data used for evaluation is
crucial. Our findings reveal a systemic problem: the data itself, when not properly corrected, has a bias that skews results in
a way that is difficult to mitigate through metric selection alone. These results highlight the importance of addressing degree
bias in link prediction evaluations, regardless of the metric used, and emphasize the need for careful evaluation methods in
graph-based recommendation systems to ensure benchmark performance accurately reflects real-world performance.

E.7. Evaluation of the community detection performance using the normalized mutual information

Normalized Mutual Information (NMI) is a standard metric for assessing community detection methods (Lancichinetti
& Fortunato, 2009; Fortunato & Hric, 2016). NMI quantifies the similarity between actual and predicted community
assignments, where a score of zero indicates no similarity. We note that NMI has a bias favoring partitions with small
communities (Gates et al., 2019), and thus, we used the element-centric similarity that does not have this bias in our main
experiment. We note that NMI has a bias favoring partitions with small communities (Gates et al., 2019), and thus, we used
the element-centric similarity that does not have this bias in our main experiment. Nevertheless, we include the results for
NMI in Fig. 12 for comparison. As with the element-centric similarity, our results show that the degree-corrected GNN's
perform on par or better than the original GNNSs.

E.8. Sensitivity to the choice of the LFR benchmark parameters

We tested the robustness of the results by using different parameter values for the LFR benchmark. First, we confirmed the
consistent results when varying the average degree (k) from 25 to 50 (Fig. 13), or the maximum community size and degree
from 1000 to 500 (Fig. 14).

F. GNNs trained with the HeaRT benchmark

We compared our degree-corrected benchmark with the distance-aware HeaRT benchmark (Li et al., 2024a). We trained
the GNNss using the negative samples generated by the HeaRT benchmark. Due to the computational expense of the
negative sampling process of HeaRT, we selectively choose the LFR graphs with a small mixing rate (¢ = 0.1-0.20),
where communities are well-separated. If the benchmark facilitates the GNN’s learning of communities in networks, the
performance of community detection must be at least as high as the original benchmark. Failure to do so indicates that the
benchmark is not effective as a training method for learning community structure.

The results when training GNNs on the HeaRT benchmark showed notably lower performance compared to both the standard
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score for the PA model for the degree-corrected benchmark. I-L. The RBO score between the Hits@XK scores and the the recommendation
performance measured by NDCG@ 100.
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Figure 12. Performance of the GNNs on the LFR benchmark measured by NMI.
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Figure 13. Performance of the GNNs on the LFR benchmark measured by NMI when varying the average degree (k) from 25 to 50.

and degree-corrected benchmarks.

For comparison, the performance of GNNss trained on both the standard and degree-corrected benchmarks exceeded 0.2
within this range of mixing rates.

G. Correlation between AUC-ROC and other network statistics

Figure 15A shows the correlation between AUC-ROC and other network statistics. We observed that the AUC-ROC of PA is
strongly correlated with the degree heterogeneity in terms of the variance of the log-normal distribution of node degrees,
more than other network statistics.

Figure 15B shows the correlation between AUC-ROC and the models that outperform PA on the standard benchmark. We
observed that these models exhibit substantially weaker correlations between their AUC-ROC and degree heterogeneity,
suggesting that their performance is not strongly tied to degree heterogeneity.
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Figure 14. Performance of the GNNs on the LFR benchmark measured by NMI when varying the maximum community size and degree
from 1000 to 500.

Table 3. Performance of GNNss trained using the HeaRT benchmark for networks with different mixing rates .

Mixing rate GAT GCN GIN GraphSAGE
0.10 0.00668 0.04247  0.00603 -0.00063
0.15 0.01600 0.01383 0.02049 -0.00004
0.20 0.00951 0.01670 0.00955 -0.00023
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Figure 15. Correlation between AUC-ROC and other network statistics.
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Table 4. Network data tested in this study. We consider social, technological, information, biological, and transportation (spatial) networks.
For simplicity in our analysis, we consider these networks to be unweighted, undirected, and without self-loops. Variance referes to
the variance of the node degrees. Assortativity refers to the degree assortativity, and Heterogeneity refers to the degree heterogeneity
computed by (Jacob et al., 2017).

Network Nodes Edges Max. Degree Variance Assortativity Heterogeneity
Political books 105 441 25 29.69 -0.128 0.43
College football 115 613 12 0.78 0.162 0.20
High school 2011 126 1709 55 153.71 0.083 0.62
Food web bay wet 128 2075 110 249.17 -0.112 0.62
Food web bay dry 128 2106 110 249.85 -0.104 0.63
Radoslaw email 167 3250 139 993.84 -0.295 0.62
Highschool 2012 180 2220 56 120.37 0.046 0.51
Little Rock Lake 183 2434 105 433.29 -0.266 0.54
Jazz 198 2742 100 303.12 0.020 0.55
C. Elegans 297 2148 134 167.56 -0.163 0.38
Network science 379 914 34 15.42 -0.082 0.23
Dublin social 410 2765 50 70.51 0.226 0.29
Airport 500 2980 145 499.03 -0.268 0.35
Caltech 762 16651 248  1365.76 -0.066 0.42
Reed 962 18812 313 1254.53 0.023 0.38
Political blogs 1222 16714 351  1474.67 -0.221 0.34
Haverford 1446 59589 375  3687.70 0.067 0.41
Simmons 1510 32984 300 1288.53 -0.062 0.32
Swarthmore 1657 61049 577  3472.20 0.061 0.37
Petster 1788 12476 272 440.86 -0.089 0.24
UC Irvine 1893 13835 255 599.57 -0.188 0.24
Yeast 2224 6609 64 63.67 -0.105 0.15
Amberst 2235 90954 467  4007.71 0.058 0.35
Bowdoin 2250 84386 670  3206.35 0.056 0.33
Hamilton 2312 96393 602  3940.69 0.031 0.34
Adolescent health 2539 10455 27 18.59 0.251 0.10
Trinity 2613 111996 404 374249 0.072 0.32
USFCA 2672 65244 405 2041.31 0.092 0.27
Japanese book 2698 7995 725 608.58 -0.259 0.17
Williams 2788 112985 610 3901.94 0.040 0.32
Open flights 2905 15645 242 485.44 0.049 0.21
Oberlin 2920 89912 478  2838.11 0.050 0.28
Wellesley 2970 94899 746 3079.68 0.064 0.29
Smith 2970 97133 349 243251 0.044 0.28
Vassar 3068 119161 482  3453.23 0.101 0.30
Middlebury 3069 124607 473  3865.24 0.078 0.30

33



Implicit Degree Bias in the Link Prediction Task

Table 5. (Continued) Network data tested in this study.

Network Nodes  Edges Max. Degree  Variance Assortativity —Heterogeneity
Pepperdine 3440 152003 674  5695.91 0.055 0.31
Colgate 3482 155043 773 4009.14 0.067 0.29
Santa 3578 151747 1129  4933.35 0.071 0.29
Wesleyan 3591 138034 549 354892 0.095 0.28
Mich 3745 81901 419  1997.51 0.142 0.24
Bitcoin alpha 3775 14120 511 402.89 -0.169 0.17
Bucknell 3824 158863 506  3498.69 0.094 0.27
Brandeis 3887 137561 1972 4646.98 -0.026 0.27
Howard 4047 204850 1215 8506.41 0.058 0.32
Rice 4083 184826 581  5669.22 0.065 0.29
GR-QC 1993-2003 4158 13422 81 7441 0.639 0.12
Tennis 4338 81865 451 457331 0.003 0.26
Rochester 4561 161403 1224 3632.47 0.025 0.25
Lehigh 5073 198346 973  4073.33 0.035 0.24
JohnsHopkins 5157 186572 886  4761.94 0.080 0.25
HTO09 5352 18481 1287  1333.44 -0.431 0.14
Wake 5366 279186 1341 7469.92 0.071 0.27
Hep-Th 1995-99 5835 13815 50 20.77 0.185 0.08
Bitcoin OTC 5875 21489 795 531.22 -0.165 0.15
Reactome 5973 145778 855  4612.48 0.241 0.21
Jung 6120 50290 5655 16029.25 -0.233 0.16
Gnutella Aug 08 2002 6299 20776 97 72.95 0.036 0.11
American 6370 217654 930  3847.11 0.066 0.22
MIT 6402 251230 708  6241.81 0.120 0.24
JDK 6434 53658 5923  16112.86 -0.223 0.16
William 6472 266378 1124 5164.22 0.052 0.23
U Chicago 6561 208088 1624 4093.91 0.018 0.22
Princeton 6575 293307 628  6164.10 0.091 0.24
Carnegie 6621 249959 840  5674.47 0.122 0.24
Tufts 6672 249722 827  4525.50 0.118 0.22
ucC 6810 155320 660  2297.32 0.125 0.19
Wikipedia elections 7066 100736 1065  3332.59 -0.083 0.21
English book 7377 44205 2568  3699.80 -0.237 0.16
Gnutella Aug 09 2002 8104 26008 102 66.74 0.033 0.09
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Table 6. (Continued) Network data tested in this study.

Network Nodes Edges Max. Degree Variance  Assortativity —Heterogeneity
French book 8308 23832 1891 1217.86 -0.233 0.12
Hep-Th 1993-2003 8638 24806 65 41.61 0.239 0.08
Gnutella Aug 06 2002 8717 31525 115 51.87 0.052 0.09
Gnutella Aug 05 2002 8842 31837 88 54.66 0.015 0.09
PGP 10680 24316 205 65.24 0.238 0.09
Gnutella Aug 04 2002 10876 39994 103 48.65 -0.013 0.08
Hep-Ph 1993-2003 11204 117619 491 2307.04 0.630 0.16
Spanish book 1 11558 43050 2986 3353.23 -0.282 0.12
DBLP citations 12495 49563 709 284.34 -0.046 0.10
Spanish book 2 12643 55019 5169 6953.72 -0.290 0.11
Cond-Mat 1995-99 13861 44619 107 45.70 0.157 0.07
Astrophysics 1 14845 119652 360 472.92 0.228 0.11
Astrophysics 2 17903 196972 504 961.58 0.201 0.11
Cond-Mat 1993-2003 21363 91286 279 119.00 0.125 0.07
Gnutella Aug 252002 22663 54693 66 28.58 -0.173 0.04
Internet 22963 48436 2390 1085.20 -0.198 0.08
Thesaurus 23132 297094 1062 1993.31 -0.048 0.12
Cora 23166 89157 377 123.05 -0.055 0.07
AS Caida 26475 53381 2628 1113.83 -0.195 0.08
Gnutella Aug 24 2002 26498 65359 355 35.03 -0.008 0.04
ogbl-collab 232865 961883 382 178.857773 0.269877 1.134311
ogbl-ddi 4267 1067911 2234 176801.815426 0.037832 0.730724
ogbl-biokg-protein 11034 884042 2551  62766.451816 -0.027401 1.112268
ogbl-biokg-drug 7313 137027 652  15456.627212 0.079466 1.577354
ogbl-biokg-function 44635 1180424 17690  61471.922776 -0.128156 1.770447
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