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ABSTRACT

Deep learning models often lack shift invariance, making them sensitive to input
shifts that cause changes in output. While recent techniques seek to address this
for images, our findings show that these approaches fail to provide shift-invariance
in time series, where the data generation mechanism is more challenging due to the
interaction of low and high frequencies. Worse, they also decrease performance
across several tasks. In this paper, we propose a differentiable bijective function
that maps samples from their high-dimensional data manifold to another manifold
of the same dimension, without any dimensional reduction. Our approach guaran-
tees that samples—when subjected to random shifts—are mapped to a unique point
in the data manifold while preserving all task-relevant information without loss.
We theoretically and empirically demonstrate that the proposed transformation
guarantees shift-invariance in deep learning models without imposing any limits to
the shift. Our experiments on five time series tasks with state-of-the-art methods
show that our proposed approach consistently improves the performance while en-
abling models to achieve complete shift-invariance without modifying or imposing
restrictions on the model’s topology. Source code: Double blind.

1 INTRODUCTION

Inference on time series is essential for several important applications, such as heart rate (HR)
estimation (Koshy et al., 2018), activity recognition (Saint-Maurice et al., 2020), and cardiovascular
health monitoring (Hannun et al., 2019), which are generally performed using signals that are encoded
as a sequence of discrete values over time. Most of these signals contain features that characterize
the signal independently of their position in time (Waibel et al., 1989; Demirel & Holz, 2023).
In other words, the information content of signals generally remains unchanged under the action
of finite groups such as translations (Mallat, 2012). Therefore, ensuring the ability to accurately
capture these inherent patterns is crucial for the reliability of the deep learning models in such critical
human-involved health-related tasks (Akbar et al., 2019; Cutillo et al., 2020).

Deep learning networks perform downsampling by using strided-convolution and pooling (He et al.,
2015; Krizhevsky et al., 2012), which cause loss of information due to high-frequency components
of the input alias into lower frequencies, i.e., aliasing (Oppenheim et al., 1996). Previous works
have proposed to employ a low-pass filter to prevent the aliasing and mitigate information loss
during downsampling (Zhang, 2019; Mairal et al., 2014). While this additional filtering improved the
robustness, the effect of employed low-pass filters is quite poor compared to the ideal implementation
(See Figure 1 a and b), which still causes high-frequency components to alias into lower ones.

Despite the potential benefits of emphasizing low-frequency components for image recognition, as it
aligns with human perception (Subramanian et al., 2023), the imperfect preservation of frequency
components with each subsampling layer contributes to information loss, leads to performance
degradation, especially in tasks where the significance lies in both low and high-frequency components
with their interactions. A more recent approach to achieve shift-invariant neural networks involves
the use of adaptive subsampling grids (Chaman & Dokmanic, 2021). However, these methods still
fail to guarantee shift-invariancy due to the change in content at the boundary (Rojas-Gomez et al.,
2022) and impose constraints on the shift range to maintain invariance.
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Figure 1: (a) The magnitude response of the ideal low-pass and binomial filter that is employed
in (Zhang, 2019) (b) Time domain representations of the ideal and binomial filters with interpolation
for smoother waves (c) A signal for blood volume changes and its t′ shifted version, obtained
through photoplethysmogram–—a widely utilized signal for heart rate monitoring (Perez et al.,
2019). (d) The heart rate prediction of a trained ResNet with binomial filters. Different amounts
of shifts (t′ ∈ [−4, 4]) change the output drastically from 140 to 60 beats per minute (bpm). (e)
An electrocardiogram signal obtained from a patient with atrial fibrillation (AFIB). (f) The model
confuses the abnormal (AFIB) pattern with healthy sinus rhythm (SR) where the shift changes output
probability completely.

Consequently, the evaluation of these methods is confined to a limited range of shifts while covering
a small subset of the space. Additionally, their reliance on a grid scheme introduces a dependence on
sampling rates, resulting in performance gaps across the entire shift space (Michaeli et al., 2023).

In this work, we propose a differentiable bijective function that maps samples from their high-
dimensional data manifold to another manifold of the same dimension, without any dimensional
reduction. Our method ensures that randomly shifted samples—representing variations of the same
signal—are mapped to the same point in the space, preserving all task-relevant information.

Since our method modifies the data space, it can be integrated into any deep learning architecture,
offering an adaptable and complementary solution for achieving shift-invariancy in time series.
Summarizing our contributions in this paper:

• We introduce a novel diffeomorphism to ensure shift-invariancy in neural networks. Addi-
tionally, we incorporate the proposed diffeomorphism into network architectures using a
novel, tailored loss term to further enhance performance while ensuring invariance.

• We demonstrate both theoretically and empirically that the proposed transformation guaran-
tees shift-invariancy in models without imposing any limits to the range of shifts or changing
model topology, which enable previous methods to be used in conjuction.

• We conduct extensive experiments on five time series tasks with eight datasets. Our ex-
periments show that the proposed approach consistently improves the performance while
decreasing the variance and enabling models to achieve complete shift-invariance.

2 METHOD

2.1 NOTATIONS

We use bold lowercase symbols (x) for time series. The parametric mappings are represented as fθ(.)
where θ is the parameter. The discrete Fourier transformation of a time series is denoted as F(x),
yielding a complex variable |X(ejω)|ejϕ(ω) which contains magnitude and phase information of each
harmonic (sinusoidal). ϕ(ωk) and Tk represent the phase angle and period of the k-th harmonic with
frequency ωk. We mainly used the textbook notations (Oppenheim et al., 1996) throughout the script,
providing a comprehensive list of notations and detailed definitions in Appendix A.1.
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2.2 OBJECTIVE

Given a dataset D = {(x(t)i,yi)}Ki=1 where each x ∈ X consists of uniformly sampled real-valued
values and each y ∈ Y represents the corresponding labels, the objective is to have consistent and
accurate outputs for all variants of a sample that are subjected to shifts1 such that when a parametric
model fθ : X → Y is evaluated on the set Dtest = {(x(t)i,yi)}Li=1, the output will be the same and
true yi for all t′ to be shift-invariant, i.e., yi = fθ(x(t− t′)i),∀t′ ∈ R.

We propose a diffeomorphism that maps randomly shifted time series samples to the same point
in data space, preserving all relevant information to ensure shift-invariance. The motivation and
theoretical derivation of our method are presented in the following steps.
Proposition 2.1 (Time shift as a Group Operation). Shift operation in time domain defines an Abelian
Group of phase angles in the frequency domain for each harmonic with frequency ωk.

(Φk,+ mod 2π), where Φk = {ϕ | ϕ = (ϕ(ωk) + ωkt
′) mod 2π, t′ ∈ R} (1)

Proof. Using F(x(t+ t′)) = |X(ejω)|ejϕ(ω)ejωt′ , and the multiplication of complex numbers

∃t′ ∈ R, ∀ϕ ∈ (−π, π], ϕ = (ϕ(ωk) + ωkt
′) mod 2π (2)

See Appendix A for detailed proof with group axioms.

Time0

Amplitude
1

-1

(a) (b)

Figure 2: (a) Frequency domain representation of a harmonic
at frequency ω0 with different phase angles in unit circle. (b)
Time domain representation of a signal x(t) and its shifted
version x(t − t′). The phase angle of the harmonic can
cover all (i.e., surjective T (x, ϕ)) potential shifts. Moreover,
shifts in the time domain correspond to unique (i.e., injec-
tive T (x, ϕ)) angle rotations in the frequency domain for
the sinusoidal with periodicity T0. Therefore, the proposed
transformation function T (x, ϕ) is bijective.

Proposition 2.1 states that the shift
variants of a sequence define a group
of phase angles, known as circle
group (Fuchs, 1960) T. An impor-
tant observation from Equation 2 is
that different shift values (t′) can map
to the same phase angle (ϕ) due to
modulo operation with 2π.

However, a closer look reveals that
this mapping can be defined uniquely
for specific harmonics using the cir-
cular shift. Specifically, we can rep-
resent every point in the shift space
uniquely with the phase angle of a
harmonic whose period is equal to or
longer than the length of sample, i.e.,
T0 ≤ t. In the remainder of this sec-
tion, we explain how this observation
is framed as a novel diffeomorphism.
We denote the frequency, period, and
phase of this specific harmonic as ω0,
T0, and ϕ(ω0), respectively.

The proposed transformation function, T (x, ϕ), takes a sample x and an angle ϕ ∈ (−π, π]. It then
applies a linear phase shift to each harmonic, mapping the time series to a new variant where the phase
angle of the harmonic with frequency ω0 matches the desired angle ϕ. The proposed transformation,
which converts a time series to another shifted variant, is defined as in Equations 3 and 4.

x(t)
T (x,ϕ)−−−−→ F−1(|X(ejω)|ejϕ(ω)e−jω∆ϕ) where (3)

∆ϕ =

{
(θ−2π)∗T0

2π , if θ > π
θ∗T0

2π , else
and θ = [ϕ(ω0)− ϕ] % 2π (4)

Mainly, the transformation first decomposes a time series to its harmonics, then it calculates the
phase difference, denoted as ∆ϕ, between the harmonic with frequency ω0 and the desired angle

1We represent a time shift (t′) for a sample x as x(t− t′), similar to Oppenheim et al. (1996). All the time
shifts throughout the paper imply circular shift, i.e., (t− t′) = (t− t′)%t where % is the modulus.
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ϕ. Finally, It returns to the time domain by taking the inverse Fourier transform, F−1(.), while
applying a linear phase shift to all harmonics to preserve the waveform morphology. In the end, the
transformation matches the phase angle of the harmonic at frequency ω0 with the desired angle ϕ. We
first demonstrate that the proposed transformation is a bijective function, as shown in Theorem 2.2.
Theorem 2.2 (Covering the Entire Time Space Injectively). Given a sample x, the defined function
T (x, ϕ) : Φ× Rd → Rd ×∆Φ is bijective such that all shift variants of a sample can be covered
with the unique phase angle of a harmonic whose period is longer or equal to the length of x.

∀ϕa, ϕb ∈ Φ, T (x, ϕa) = T (x, ϕb) =⇒ ϕa = ϕb

∀t′ ∈ R, ∃ϕ ∈ Φ, T (x, ϕ) = (x(t− t′), ∆ϕ),

where the first and second equations represent the injection and surjection, respectively.

We provide an intuitive demonstration in Figure 2, with a detailed mathematical proof in Appendix A.
Since each point in the shift space can be uniquely defined by the phase angle of a harmonic with
period T0, we use the angle of this harmonic to define manifolds 2, Mϕ, on which the samples lie.
Specifically, we apply the proposed transformation T (x, ϕ) for each sample to map it to a manifold
which is defined with the angle, i.e., T (x, ϕa) ∈ Mϕa , T (x, ϕb) ∈ Mϕb , and

⋂2π
i=0 M

ϕi = ∅ (See
Appendix A.1.2). We, therefore, can map a sample and its randomly shifted variants to the same
point in the space, which is sufficient for providing shift-invariancy as demonstrated in Theorem 2.3
with a detailed proof in Appendix A.
Theorem 2.3 (Guarantees for Shift-Invariancy). Given x and a randomly shifted variant of it x(t−t′),
if T (x, ϕ) is applied to both samples with the same angle ϕa, the resulting samples will be the same.

T (x(t), ϕa) =
(
x̃(t), ∆ϕx(t)

)
, T (x(t− t′), ϕa) =

(
x̃(t), ∆ϕx(t−t′)

)
Proof.

ϕx(t) = ϕ(ω), ϕx(t−t′) = ϕ(ω)− ωt′, ∆ϕx(t−t′) −∆ϕx(t) = −ω0
T0

2π
t′ (5)

ϕT (x(t−t′),ϕa) − ϕT (x,ϕa) =

[
T0

T
ω0 − ω

]
t′, ϕT (x,ϕa) = ϕT (x(t−t′),ϕa) (6)

Therefore, the output time series samples will be the same after applying the transformation.

The proof concludes by demonstrating that the harmonics retain the same phase and magnitude after
transformation, despite an unknown shift applied to the sample. Moreover, since the transformation
only contains exponentials with Fourier transform, it is fully differentiable, which allows us to

(a) (c) (d)(b)

C1
C2
C3

Cc

Figure 3: (a) An input signal in the time domain and complex plane representation of its decomposed
sinusoidal of frequency ω0 = 2π

T0
with the phase angle ϕ0. (b) Guiding the diffeomorphism to map

samples between manifolds. (c) The obtained waveform with a phase shift applied to all frequencies
linearly, calculated by the angle difference, as in Equation 4, without altering the waveform. (d) The
loss functions for optimizing networks with the cross-entropy and the variance of possible manifolds.

2The manifold is defined as a d -dimensional Euclidean space, matching the data’s dimension, to better explain
the abstract transformation. There is no manifold learning of low-dimensional space in our transformation.
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optimize it with neural networks. Therefore, we use a guidance network fGθ
: Rd → Φ with a shift-

invariant input, absolute Fourier transform of samples, to generate an angle in radians for mapping.
Simultaneously, the main classifier fCθ

: X → Y maps the transformed samples to the label space.
Both networks are optimized with cross-entropy loss. The optimizer for the guidance network (LG)
has an additional loss term to reduce variations in a batch of angles, as given in Equation 7.

LC = −
N∑
i=1

C∑
j=1

yij log fCj (T (xi, ϕi)) LG = LC +
√

Var(fθG(|F(T (x,ϕ))|)) (7)

The guidance network, optimized by the proposed loss, works as an adaptive linear constraint that
limits the regions in the original data space where samples can be found. In other words, if we
conceptualize the data space of samples as expanding with shift variants, as illustrated in Figure 3, the
model learns to reduce the potential points where samples can be found. Additionally, for real-world
samples where optimal phase shift values are unavailable, applying trivial phase shifting may lead
to suboptimal data space representations. To address this, we transform the data space using the
proposed diffeomorphism for the downstream tasks using the guidance network (see Appendix F for a
detailed analysis of the guidance network’s effects on samples). Moreover, unlike traditional manifold
learning approaches (Lin & Zha, 2008; Wang et al., 2004), which reduce data to a lower-dimensional
space, we do not reduce data to a lower dimensional space with our proposed transformation function,
but instead operate within the original data space. In our ablation studies, we thoroughly examine the
impact of loss terms on the classification performance and present the findings.

3 EXPERIMENTS

We evaluate our proposed method against and together with previous techniques designed for shift-
invariant neural networks, including both applying a low-pass filter before downsampling to prevent
aliasing and subsampling from a grid using the max norms of the feature maps.

3.1 DATASETS

We conducted experiments on eight datasets across five tasks, including heart rate (HR) estimation
from photoplethysmography (PPG), step counting and activity recognition using inertial measure-
ments (IMUs), cardiovascular disease classification from electrocardiogram (ECG) and sleep stage
classification from electroencephalography (EEG). We provide short descriptions of each dataset
below, and further details can be found in Appendix C.

Heart rate We used the IEEE Signal Processing Cup in 2015 (IEEE SPC) (Zhang et al., 2015), and
DaLia (Reiss et al., 2019) for PPG-based heart rate prediction. We used the leave-one-session-out
(LOSO) cross-validation, which evaluates models on subjects/sessions that were not used for training.

Activity recognition We used UCIHAR (Anguita et al., 2012), and HHAR (Stisen et al., 2015) for
activity recognition from inertial measurement units from smartphones. We evaluate the cross-person
generalization performance of the models, i.e., the model is evaluated on previously unseen subjects.

Cardiovascular disease (CVD) classification We used Chapman University, Shaoxing People’s
Hospital ECG (Zheng et al., 2020) and PhysioNet 2017 (Clifford et al., 2017; Goldberger et al., 2000)
datasets. We selected the same four leads for the Chapman as in (Alday et al., 2020). We split the
datasets into training, validation, and test sets according to the patient ID (each patient’s recordings
appear in only one set) using a 60, 20, 20 ratio as in Demirel & Holz (2023); Zheng et al. (2020).

Step counting We used the Clemson dataset (Mattfeld et al., 2017), which released for pedometer
evaluation. We conducted experiments using wrist IMUs where labels are available through videos.

Sleep stage classification We used the Sleep-EDF dataset, from PhysioBank (Goldberger et al.,
2000), which includes whole-night PSG sleep recordings, where we used a single EEG channel (i.e.,
Fpz-Cz) with a sampling rate of 100 Hz, following the same setup as in Eldele et al. (2021).

5
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3.2 BASELINES

We compared our method and existing approaches including low-pass filtering (LPF) (Zhang, 2019),
and adaptive subsampling grids (APS) (Chaman & Dokmanic, 2021) in consistency and classification
performance. We also trained a model with shift-based data augmentation (referred to as Aug.) to
investigate the influence of randomly shifted inputs during training. Moreover, since our method can
be integrated with any existing approaches, we investigate the performance of previous techniques for
shift-invariancy when combined with our algorithm. Additional to the techniques for shift-invariancy,
we compared our method with shift equivariant Wavelet Networks (Romero et al., 2024).

3.3 IMPLEMENTATION

We follow a similar implementation setup as previous work on shift-invariancy (Zhang, 2019) in
supervised learning, making architectural adjustments for time series. Specifically, we employed
ResNet (He et al., 2015) with 1D filters and eight blocks designed for time series (Hong et al., 2020),
excluding signals from inertial measurement units. For the latter, we observed a better performance
with fully connected networks (FCN), which aligns with findings from previous studies (Qian et al.,
2022). Therefore, we used a three-layer FCN for IMU-based tasks, i.e., activity recognition and step
counting. Similarly, for guiding the transformation function, we used an FCN with a single output,
which is the angle for the chosen sinusoidal. The downsampling operations, including pooling and
strided convolutions, for architectures are set to two. We set the length of the Fourier transform
to the signal length as it already covers sinusoidal with periods equal to or longer than the signal
length. We use categorical cross-entropy loss, which is optimized using Adam (Kingma & Ba, 2015)
with a learning rate of 0.0005. The learning rate is reduced by half when the validation loss stops
improving for 15 consecutive epochs. The training is terminated when 90 successive epochs show no
validation performance improvements. The best model is chosen as the lowest loss on the validation
set. Detailed hyperparameters and architecture specifications can be found in the Appendix C.4.

3.4 EVALUATION

We evaluate the performance of the models using the common evaluation metrics, i.e., accuracy, F1,
for each task. For shift-invariancy, we used the shift consistency (S-Cons.) metric which measures
how often the network outputs the same classification, given the same time series with two different
shifts, similar to (Zhang, 2019) as in Equation 8. We applied shifts across the entire space in contrast
to previous approaches where the range of shift is heavily limited (Rojas-Gomez et al., 2022).

EX,t1,t21

[
f̂C(x(t− t1)) = f̂C(x(t− t2))

]
, (8)

where f̂C represents the classifier’s output following the arg max operation. t1,2 are uniformly
sampled integers from the interval [1, t], with t denoting the length of the sample.

4 RESULTS AND DISCUSSION

We present the main results of our approach compared to state-of-the-art methods across the five
time series tasks on eight datasets. Overall, our method has demonstrated a substantial performance
improvement, reaching up to 10–15% in some tasks, while increasing the shift consistency up to
50–60% compared to previous techniques.

The experimental results from all the time series tasks are given in Tables 1, 2, 3 and 4. These tables
demonstrate that the previous techniques fail to provide shift-invariant models when applied to time
series without limiting shifts. Additionally, the models exhibit extremely low consistency (as low
as 32%) in HR prediction. More importantly, applying state-of-the-art methods to enhance shift
consistency in deep learning models for predicting the heart rate results in performance degradation.

We believe the main reason for the small improvements in the consistency of previous techniques
is that the research to date has tended to focus on limited shifts rather than considering the whole
shift space as literature is mostly concerned about images. While restricting shifts can be a valid
assumption in computer vision, where the main reasoning is that the object being classified should

6
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Table 1: Performance comparison of our method and other techniques for HR estimation

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 61.99±1.19 18.39±2.96 10.28±1.41 62.64±5.74 32.08±0.22 9.86±0.23 4.40±0.03 86.01±0.51
Aug. 76.48±1.77 18.73±1.15 10.42±0.40 64.06±3.70 52.77±0.39 9.85±0.21 4.47±0.06 85.99±0.49
LPF 76.88±0.73 20.20±1.54 13.44±0.82 65.40±1.92 38.67±0.30 10.01±0.30 4.67±0.12 85.68±0.51
APS 73.99±1.06 19.42±0.60 12.98±0.29 65.27±1.32 44.33±0.16 10.45±0.40 5.01±0.17 84.69±0.85
WaveletNet 51.71±1.95 21.56±1.01 14.61±0.34 60.74±4.37 36.71±3.04 15.46±0.64 7.67±0.23 76.13±1.86

Ours 100±0.00 16.25±0.72 9.45±0.03 70.12±2.10 100±0.00 9.75±0.15 4.39±0.03 86.06±0.19
Ours+LPF 100±0.00 20.34±1.62 13.77±0.84 65.60±2.31 100±0.00 10.72±0.11 5.30±0.03 84.12±0.23
Ours+APS 100±0.00 18.81±1.59 12.32±0.84 67.01±3.79 100±0.00 10.47±0.09 5.10±0.03 84.62±0.31

Table 2: Performance comparison of ours and other techniques in ECG datasets for CVD classification

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 98.53±0.17 91.32±0.23 91.22±0.24 98.34±0.16 98.37±0.15 83.22±0.72 73.50±1.99 93.21±0.30
Aug. 99.00±0.16 91.96±0.19 91.89±0.22 98.45±0.18 98.96±0.17 82.28±1.18 72.32±2.20 93.20±0.42
LPF 98.69±0.14 92.01±0.23 91.94±0.58 98.50±0.24 98.94±0.39 84.40±0.16 75.68±0.76 93.80±0.32
APS 98.60±0.17 90.69±0.89 89.44±1.00 98.31±0.24 — — — —
WaveletNet 91.02±1.14 90.87±1.02 90.02±1.00 97.94±0.21 65.03±0.71 76.06±0.64 63.35±3.40 87.02±0.29

Ours 100±0.00 92.10±0.25 91.93±0.85 98.47±0.15 100±0.00 83.15±0.65 74.12±1.80 93.28±0.31
Ours+LPF 100±0.00 92.05±0.52 91.96±0.54 98.51±0.10 100±0.00 85.20±0.40 77.50±1.21 94.20±0.19
Ours+APS 100±0.00 91.61±1.11 91.10±0.56 98.36±0.20 — — — —

not be near the boundary. This assumption does not apply to time series, where the whole signal
carries the information (Demirel & Holz, 2023) additional to local waveform features, and as such,
there is no explicit boundary condition or input area to consider for limiting the range of shifts.

Table 3: Performance comparison of ours with other
techniques in EEG for sleep stage classification

Method Sleep-EDF
S-Cons ↑ Acc ↑ W-F1 ↑ κ ↑

Baseline 95.06±0.61 75.41±2.01 74.87±1.92 67.12±2.96
Aug. 99.00±0.17 74.89±1.11 74.03±1.46 65.89±1.81
LPF 92.43±1.24 73.56±2.93 76.01±1.98 65.68±3.46
APS — — — —
WaveletNet 84.40±5.90 73.54±4.78 72.74±3.45 64.66±4.12

Ours 100±0.00 77.90±1.92 76.77±2.58 70.01±1.10
Ours+LPF 100±0.00 73.12±1.89 75.34±1.61 64.98±2.27

These empirical results align with our mo-
tivation for proposing a differentiable bi-
jective function to map samples subjected
to different shifts to the same point on the
high-dimensional data manifold rather than
assuming a limited shift space. Addition-
ally, applying low-pass filtering to prevent
aliasing can degrade performance for cer-
tain time series, where the interaction be-
tween low and high frequencies plays a
critical role (Canolty et al., 2006).

Time delay as adversary? Another interesting outcome from the results is the significant consis-
tency decrease of models as the number of output classes increases. This behavior in the models is
similar to previous findings on adversarial examples, indicating that the robustness decreases with
a higher number of classes (Fawzi et al., 2018). During our experiments, we observed the same
phenomenon where the small shifts of the input change the output to another class, particularly when
the task complexity increased with a higher number of classes. For example, in the case of HR
estimation as in Table 1, even short shifts (as low as 10–100 ms) can lead to a change in the prediction
by over 80 bpm, despite no alteration in the periodicity of the signal, which is the main feature for
this task.

Table 4: Performance comparison of our method with others in IMU datasets for Activity and Step

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 94.07±1.38 85.39±2.30 83.20±2.94 98.27±0.33 91.87±1.36 91.16±1.38 54.31±4.40 4.76±0.11 2.74±0.08
Aug. 96.55±0.80 85.42±4.50 83.69±6.74 98.38±0.28 91.97±0.44 91.31±0.49 61.01±4.88 4.08±0.14 2.29±0.07
LPF 95.05±0.21 83.96±3.44 81.08±4.21 98.10±0.10 92.10±0.80 91.43±0.94 59.77±4.40 4.16±0.16 2.35±0.11
APS 96.40±0.03 81.75±4.11 79.01±5.33 98.30±0.24 91.83±1.35 91.01±1.47 45.50±2.69 4.74±0.16 2.69±0.07
WaveletNet 94.56±1.31 82.78±4.62 80.73±5.59 96.76±0.15 90.72±0.38 90.71±0.39 59.14±3.10 5.20±0.66 2.95±0.41

Ours 100±0.00 87.71±1.98 85.67±2.47 100±0.00 91.93±1.14 91.12±1.03 100±0.00 4.28±0.34 2.43±0.21
Ours+LPF 100±0.00 84.78±2.46 82.58±2.62 100±0.00 92.51±0.55 91.80±0.62 100±0.00 3.75±0.33 2.12±0.18
Ours+APS 100±0.00 82.96±1.79 81.10±1.73 100±0.00 91.38±0.32 90.64±0.32 100±0.00 3.87±0.19 2.19±0.11
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Normally, it is expected that models learn the periodicities in these signals and infer the heart rate.
However, our results indicate that the models learn something else or in a different way, because as
the signal undergoes a slight shift, the model prediction jumps more than 100%, even though the
periodicity remains unchanged with the shift operation.

We believe these drastic output changes arise from the model’s sensitivity to (shortcut) fea-
tures (Geirhos et al., 2020; Zhang et al., 2021), resulting in a performance decrease when evaluated
on samples different from those encountered during training. Since our proposed transformation
works as an adaptive linear constraint in the data space, it reduces the potential points where samples
can exist, thereby enhancing overall performance.

One distinct result from our experiments is that when previous shift-invariancy techniques are applied
to the heart rate prediction task, the average error rate of the models increases by 7–10%. This
performance decrease can be easily observed in the DaLiA for the adaptive sampling technique. The
performance discrepancy between tasks can be attributed to the dataset and signal characteristics.
Since DaLiA contains impulse random noise with multiple periodicities, the norm-based subsam-
pling can inadvertently emphasize the noisy waveforms instead of the desired pattern during the
subsampling of feature maps, leading to a decrease in prediction performance.

We conduct detailed ablation experiments to further investigate the impact of various components,
with a particular focus on the effect of the proposed mapping function under different modifications,
i.e., modified loss for optimization, on the overall model’s performance across time series tasks.

4.1 ABLATION STUDY

We present a comprehensive investigation of our method and the effect of its components on the
performance. Mainly, we investigate the effect of guiding the proposed transformation with different
loss functions and without any guidance. First, we map all samples to a single manifold Mϕ0 ,
i.e., T (x, ϕ) is applied with a constant ϕ = 0 instead of learning the angle for each sample. We
experimented with different values of ϕ ∼ (−π, π], but observed no significant change in the
performance when the mapped manifold is constant for samples. Second, we modify the loss for
training the guidance network to increase the variance of angles—increasing the possible manifolds
where data can be found—without changing the cross-entropy loss from the classification network as
in Equation 9, (L̂G). Finally, we train both networks only with the cross-entropy loss (L′

G = LC).

We compared these three variants of the learning techniques with the original proposed implementa-
tion as each represents distinct approaches for manipulating the data space. For example, when all
samples are mapped to a single manifold, the variations in samples decrease significantly since there is
only one possible phase angle for the chosen harmonic with period T0. Additionally, the relationships
among all sinusoidal components remain invariant, given that the proposed transformation is a linear
function of the frequency. Conversely, optimizing the guidance network to increase the variance of
angles, thereby favoring a greater sample diversity, expands the possible variations for samples.

L̂G = LC −
√

Var(fθG(|F(T (x,ϕ))|)) (9)

Tables 5 and 6 summarize the results where we exclude the consistency metric from the tables as the
models that include the proposed transformation are always completely shift-invariant. The first row
(T (x, ϕ)) in the tables shows the performance when all the samples are mapped to a single manifold
i.e., without a guidance network for learning the mapping. The second row (L′

G) represents the
performance when the guidance network is only optimized using the categorical cross-entropy loss.
The third row (L̂G) presents the performance when the variance of angles is optimized to increase
during training. And, the last row (Ours) is the original implementation of the proposed method. We

Table 5: Ablation experiments for HR (left) and IMU (right) tasks

Method IEEE SPC22 DaLiAPPG

MAE ↓ RMSE ↓ ρ ↑ MAE ↓ RMSE ↓ ρ ↑
T (x, ϕ) 11.15 19.18 62.07 4.77 10.13 85.35
L′
G 9.80 17.16 66.80 4.60 10.10 85.52

L̂G 9.45 17.00 69.10 4.41 9.63 86.35
Ours 9.45 16.25 70.12 4.39 9.75 86.06

Change +1.70 +2.97 +8.05 +0.38 +0.38 +0.71

Method UCIHAR HHAR Clemson

Acc ↑ F1 ↑ Acc ↑ F1 ↑ MAPE ↓ MAE ↓
T (x, ϕ) 84.67 82.65 92.33 91.56 4.64 2.67
L′
G 84.30 82.49 91.98 91.18 4.42 2.52

L̂G 84.82 81.99 91.51 90.83 4.31 2.45
Ours 85.81 83.81 91.83 91.12 4.28 2.43
Change (%) +1.14 +1.16 -0.50 -0.44 +0.36 +0.24
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Table 6: Ablation experiments for Sleep (left) and ECG (right) tasks

Method Sleep-EDF

Acc ↑ F1 ↑ W-F1 ↑ κ ↑
T (x, ϕ) 75.54±2.39 66.96±1.78 75.53±2.29 67.08±0.03
L′
G 77.21±1.51 67.67±1.67 76.89±1.71 69.39±0.02

L̂G 77.75±1.23 68.04±1.16 77.01±1.07 69.94±0.01
Ours 77.80±1.95 67.01±2.65 76.77±2.58 70.01±1.10

Change +2.26 +0.05 +1.24 +2.93

Method Chapman PhysioNet

Acc ↑ F1 ↑ AUC ↑ Acc ↑ F1 ↑ AUC ↑
T (x, ϕ) 91.82 90.76 98.36 83.12 73.67 93.24
L′
G 91.27 90.10 98.38 82.81 73.75 93.45

L̂G 91.88 90.84 98.44 83.30 73.90 93.51
Ours 92.10 91.93 98.40 83.15 74.12 93.30
Change (%) +0.28 +1.17 +0.04 +0.03 +0.45 +0.06

also report the change when the mapping function is guided using the network fGθ
and optimized

using the loss defined in Equation 7, as opposed to being a fixed, non-learnable function.

As can be seen from the tables, when the models are trained by guiding the mapping (with fGθ
),

the performance of the models increases significantly up to 8%, except for the HHAR dataset with
a marginal performance decrease of 0.5%. Importantly, adding the guidance network does not
bring any additional parameters that help the learning, meaning that the model achieves improved
generalization with the same capacity. Furthermore, the additional model parameters introduced
to the overall framework approximately amount to one percent of those in the classifier. While the
performance increase can be associated with the decreased possible variations in the signals, our
ablation experiments show that decreasing the variations blindly using the transformation with the
same angle, decreases performance. Therefore, it is important to guide the transformation function
for reducing the dimensionality, i.e., the space and time variations of a signal, of the whole data space.
Overall, the results obtained from the ablation study and main experiments support the previous
propositions and our motivation for presenting a diffeomorphism for preventing the inconsistency of
deep learning models to the time shifts while increasing the generalization capability. Additional
results (i.e., the extended results and ablations) regarding the performance of the proposed method
can be found in Appendix D. Investigations regarding the performance improvements of the proposed
diffeomorphism with different model networks are given in Appendix E. We discussed the limitations
and future work in Appendix H.

5 RELATED WORK

Shift-invariant networks Modern deep learning architectures use strided convolution or pooling to
decrease the variance to a certain extent (Fukushima, 1980). However, Azulay and Weiss have demon-
strated that a shift of one pixel in an image can lead to a significant alteration in the output probability
of a trained classifier (Azulay & Weiss, 2018). Previous works showed that the downsampling caused
aliasing and used low-pass filtering before the downsampling to prevent information loss (Zhang,
2019; Mairal et al., 2014). However, the used filters have suboptimal frequency responses, and
realizing the ideal filter in practice is unfeasible. This leads to persistent aliasing, becoming a more
significant concern for time series where high-frequency components are crucial for classification.

Adaptive subsampling methods have been recently explored for shift-invariancy (Chaman & Dok-
manic, 2021; Xu et al., 2021). Mainly, these methods perform subsampling on a constant (Chaman &
Dokmanic, 2021) or input dependent (Rojas-Gomez et al., 2022) grid. This approach has a notable
limitation in time series, particularly when nonlinear activation functions are involved. The methods
tend to overlook variations in boundaries arising from the translation of samples, thereby imposing
additional constraints on invariance (Rojas-Gomez et al., 2022). Consequently, the evaluation of
these methods is restricted to a narrow range of shifts, covering only a limited subset of the shift
space. Moreover, their reliance on a grid scheme for sampling introduces a sensitivity to sampling
rates, leading to performance gaps across the entire shift space (Michaeli et al., 2023). Therefore, we
shift the paradigm and present a bijective transformation to modify the data space. Moreover, unlike
existing methods that change network topology by modifying the pooling or adding extra filters
without achieving complete shift-invariancy, our method guarantees invariance in neural network
models without imposing any restrictions on the model topology or shift range.

Time-delay neural networks Efforts to design shift-invariant models for time series predate
modern deep learning methods (Hasegawa et al., 1996; Waibel et al., 1989). For example, a time-
delay neural network (TDNN) network is designed to have the ability to represent relationships
between events in time frames where the learned features by the network are aimed to be invariant
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under translation in time (Waibel et al., 1989). TDNN is trained with all time-shifted copies of
samples and weights are updated by the average of all corresponding time-delayed error values.
This is similar to the supervised training of a network with randomly shifted versions of samples.
Although this strategy achieved shift-invariance for the first type of networks, as they do not include
a pooling layer, it was shown that this approach is ineffective for modern architectures where pooling
and derivatives are used (Scherer et al., 2010), and the network’s invariance is limited to patterns
seen during training and fails generalization (Azulay & Weiss, 2018). In this work, as we learn the
mapping for each sample, the proposed transformation ensures that all shifted variants of a sample are
mapped to a single point. Hence, a single data point effectively represents all the augmented variants.

6 CONCLUSION

The inadequacy of shift-invariance in deep learning models, particularly in the context of time
series data, remains a significant challenge. Existing solutions designed for images not only prove
ineffective for time series but also result in performance deterioration for some tasks. To address
this, we have introduced a novel method with a differentiable bijective function tailored for shift-
invariancy. Our approach ensures that samples, under various shifts, are mapped to a data manifold
without reducing dimensions, preserving task-related information without any loss. We validated the
proposed transformation theoretically and empirically, showing that it establishes shift-invariance
in deep learning models without constraints on the shift range. In extensive experiments across five
tasks, our approach consistently outperforms state-of-the-art methods, demonstrating its effectiveness
in achieving complete shift-invariance without limitations on the model topology.
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APPENDIX

A THEORETICAL ANALYSIS

Here, we present complete proofs of our theoretical study, starting with notations. We assume all the
samples (time series) are absolutely summable, and finite.

A.1 REPRESENTATIONS AND NOTATIONS

A.1.1 FREQUENCY DOMAIN

Fourier transform of a real-valued sample with a finite duration is obtained as in Equation 10.

F(x) = |X(ejω)|ejϕ(ω) =

∫ ∞

−∞
x(t)e−jωt, (10)

where ω = 2π
T , and ω and T are the frequency in radian and period for all sinusoidals 3 in the range

of Nyquist rate. |X(ejω)| and ϕ(ω) denote the amplitude and phase for all frequencies, respectively.
Thus, the amplitude and phase angle of a particular sinusoidal are represented as |X(ejω0)| and
ϕ(ω0). Similarly, the period for this sinusoidal is T0 = 2π/ω0. The phase difference between a
sinusoidal and an angle ϕ is shown in Equation 11.

∆ϕx(t) =

{
(θ−2π)∗T0

2π , if θ > π
θ∗T0

2π , else
, and θ = [ϕ(ω0)− ϕ] % 2π, (11)

where T0/2π = 1/ω0. The calculated phase difference between the sample and given angle
normalizes the phase change for the sinusoidal to exactly match the angle ϕ when shifted ∆ϕx(t) in
the complex domain as in equations below.

F(x) = |X(ejω)|ejϕ(ω)e−jω∆ϕ after shifting |X(ejω)|ejϕ(ω0)e−jω0(θ/ω0) (12)

|X(ejω0)|ejϕ(ω0)e−jω0(ϕ(ω0)−ϕ)/ω0) (13)

|X(ejω0)|ejϕ for the sinusoidal with frequency ω0 (14)

A.1.2 TRANSFORMATION AND DIFFEOMORPHISMS

The observed samples x(t) from the sets with the (shift) variants are considered elements of manifolds
Mϕ according to the phase angle ϕ(ω0) of the harmonic with a period equal to or longer than the
length of the segment t, i.e., the specific harmonic with period T0 and frequency ω0. In other words,
if the phase angle of the harmonic ω0 is ϕa for a sample x(t), the sample lies in manifold Mϕa . The
mapping function f : Mϕa → Mϕb between manifolds is defined as T (x(t), ϕb) = (x̃(t), ∆ϕb)
where x(t) lies in Mϕa , and x̃(t) lies in Mϕb . Similarly, the inverse mapping f−1 : Mϕb → Mϕa

is represented as T (x̃(t), ϕa) = (x(t), ∆ϕa). x̃(t) and x(t) only differ by a random time shift t′
where this random time shift can be calculated using the phase angles of harmonics with frequency
ω0, which makes the presented transformation a bijective function between time series manifolds.
The differentiation of the mapping function at sample x(t) is shown as Dfx : TxM

ϕa → TfxM
ϕb .

3Harmonics and sinusoids are used interchangeably throughout the paper.
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A.2 NOTATION LIST

Notation Description

x Time series represented as a bold lowercase symbol

F(x) Discrete Fourier transformation of time series x

∠ The complex argument for obtaining phase values

ω Variable that represents the frequencies in radian

|X(ejω)| Magnitude components of the Fourier transformation of a time series

ϕ(ω) Phase components of the Fourier transformation of a time series

ω0 Frequency of the specific harmonic whose period is equal or longer than the sample x

T0 = 2π
ω0

Period of the specific harmonic with frequency ω0

Φ Random variable for phase angles, i.e., ϕ ∼ Φ

ϕ(ω0) Phase angle of a specific harmonic with the frequency ω0

ϕx(t) Variable that represents phase angles of all harmonics for sample x(t)

ϕx(t−t′) Variable that represents phase angles for sample x(t− t′)

ϕx(t)(ω0) Phase angle of the specific harmonic with the frequency ω0 for sample x(t)

T (x, ϕ) The proposed transformation function

∆ϕ Phase difference between two angles

∆ϕx(t) Phase difference between the given angle ϕ in the transformation and the harmonic
with frequency ω0 when sample x(t) is decomposed using Fourier transformation

∆ϕx(t−t′) Phase difference between the given angle ϕ in the transformation and the harmonic
with frequency ω0 when sample x(t− t′) is decomposed using Fourier transformation

Mϕ Manifold notation with an angle ϕ

Mϕa A specific manifold with the angle ϕa

T (x, ϕa) The output of the transformation, i.e., a time series that lies on the manifold Mϕa

F(T (x, ϕ)) Fourier transformation of the output from the proposed transformation: Since the trans-
formation function produces a tuple, we specifically apply the Fourier transformation
to the first output, which corresponds to the time series.

fθ(.) Parametric mapping with parameter θ

fGθ
: Rd → Φ The guidance network that outputs an angle to map the sample to a specific manifold

fCθ
: X → Y The classifier neural network

Var(.) Variance function

% Modulo operation

Table 7: Detailed list of notations used in this work
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A.3 PROOFS

Lemma A.1 (Circular Shift). Given a sample x in the interval [0, tint] and its shifted version x(t−t′),
where the shift is a random value from the finite real numbers, i.e., t′ ∈ (−∞,∞). The shift is
periodic with the signal length tint, leading to the same vector representation when the shift is an
integer multiple of the signal length.

∞ > t > |t′| > −∞, 0 = t′ (mod tint) =⇒ x(t) = x(t− t′)

Proof. From circular shift, we know

x(t) = x(t (mod tint)) (15)

x(t− t′) = x((t− t′) (mod tint)) (16)

Therefore, 0 = t′ (mod tint) =⇒ x(t) = x(t− t′)

Throughout the proofs, the length of the samples and their intervals are denoted by the same variable
t. In other words, the samples are assumed to start at t = 0 and finish at tint = t.

A.4 PROOF FOR PROPOSITION 2.1

Proposition A.2 (Time shift as a Group Operation). Shift operation in time domain defines an Abelian
Group of phase angles in the frequency domain for each harmonic with frequency ωk.

(Φk,+ mod 2π), where Φk = ϕ | ϕ = (ϕ(ωk) + ωkt
′) mod 2π, t′ ∈ R (17)

Proof. Let x(t+ t′) be randomly shifted variant of sample x(t) where t′ ∈ R. We can decompose
these two sequences as in below using Fourier transformation.

x(t)
F(.)−−−→ |X(ejω)|ejϕ(ω) and x(t+ t′)

F(.)−−−→ |X(ejω)|ej(ϕ(ω)+ωt′) (18)

The phase values of these two time series for a harmonic at the given frequency can be expressed as
follows.

ϕx(t)(ωk) = ϕ(ωk) and ϕx(t−t′)(ωk) = ϕ(ωk) + ωkt
′ (19)

Then, we can define a set of phase angles Φk with shift values t′.

Φk = {ϕ | ϕ = (ϕ(ωk) + ωkt
′) mod 2π, t′ ∈ R} (20)

This set of phase angles with time shift operation defines the circle group T. The circle group is
Abelian (Fuchs, 1960), with time shifts corresponding to multiplication in the complex plane. For
completeness, we have shown all the group axioms.

GROUP AXIOMS

The set of phase angles with time shift, Φk = {ϕ | ϕ = (ϕ(ωk) + ωkt
′) mod 2π, t′ ∈ R}, satisfies

the five axioms of an Abelian group under modular addition.

Axiom 1: Closure
For any two phase angles ϕ1, ϕ2 ∈ Φk, their sum is also in Φk.

Let ϕ1 = (ϕ(ωk) + ωkt
′
1) mod 2π and ϕ2 = (ϕ(ωk) + ωkt

′
2) mod 2π. Then their sum is:

ϕ1 + ϕ2 = (ϕ(ωk) + ωkt
′
1 + ϕ(ωk) + ωkt

′
2) mod 2π

ϕ1 + ϕ2 = (ϕ(ωk) + ωk(t
′
1 + t′2)) mod 2π

Since t′1 + t′2 ∈ R, the sum is also in Φk, so closure holds.

Axiom 2: Associativity
For any three phase angles ϕ1, ϕ2, ϕ3 ∈ Φk, their sum is associative under addition modulo 2π.
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((ϕ1 + ϕ2) mod 2π) + ϕ3) mod 2π = (ϕ1 + (ϕ2 + ϕ3) mod 2π) mod 2π

Let ϕ1 = (ϕ(ωk) + ωkt
′
1) mod 2π, ϕ2 = (ϕ(ωk) + ωkt

′
2) mod 2π, and ϕ3 = (ϕ(ωk) + ωkt

′
3)

mod 2π. Then:

((ϕ1 + ϕ2) mod 2π) + ϕ3 = (ϕ(ωk) + ωkt
′
1 + ωkt

′
2) mod 2π + ϕ3

= (ϕ(ωk) + ωk(t
′
1 + t′2) mod 2π + ωkt

′
3) mod 2π

Similarly, for the right-hand side:

ϕ1 + ((ϕ2 + ϕ3) mod 2π) = ϕ1 + (ϕ(ωk) + ωk(t
′
2 + t′3) mod 2π)

= (ϕ(ωk) + ωkt
′
1 + ωk(t

′
2 + t′3)) mod 2π

Using (a+b) mod 2π = ((a mod 2π)+(b mod 2π)) mod 2π, both sides simplify to (ϕ(ωk)+
ωk(t

′
1 + t′2 + t′3)) mod 2π. Thus, associativity holds under addition modulo 2π.

Axiom 3: Identity Element
The identity element in this group is the phase angle when no time shift has occurred, i.e., t′ = 0.

ϕ0 = (ϕ(ωk) + ωk · 0) mod 2π = ϕ(ωk)

For any ϕ1 ∈ Φk, we have:
ϕ1 + ϕ0 = ϕ1

Thus, ϕ0 is the identity element.

Axiom 4: Inverse Element
For any phase angle ϕ1 = (ϕ(ωk) + ωkt

′) mod 2π, its inverse is:

ϕ−1
1 = (−ωkt

′) mod 2π

Then:
ϕ1 + ϕ−1

1 = (ϕ(ωk) + ωkt
′ − ωkt

′) mod 2π = ϕ(ωk)

Thus, each element has an inverse.

Axiom 5: Commutativity
For any two phase angles ϕ1, ϕ2 ∈ Φk, the sum is commutative:

ϕ1 + ϕ2 = ϕ2 + ϕ1

This follows from the commutativity of modular addition, so the group is Abelian.

Proposition 2.1 states that shift operation in time domain defines an Abelian group of phase angles
for each harmonic. Proposition 2.1 holds a key role in our algorithm, as it establishes an abstract
connection between the time-domain shift operation and its effects on samples in the frequency
domain.
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A.4.1 PROOF FOR THEOREM 2.2

Theorem A.3 (Covering the Entire Time Space Injectively). Given a sample x, the defined function
T (x, ϕ) : Φ× Rd → Rd ×∆Φ is bijective such that all shift variants of a sample can be covered
with the unique phase angle of a harmonic whose period is longer or equal to the length of x.

∀ϕa, ϕb ∈ Φ, T (x, ϕa) = T (x, ϕb) =⇒ ϕa = ϕb

∀t′ ∈ R, ∃ϕ ∈ Φ, T (x, ϕ) = (x(t− t′), ∆ϕ),

Proof.

x(t)
F(.)−−−→ |X(ejω)|ejϕ(ω) (21)

x(t− t′)
F(.)−−−→ |X(ejω)|ej(ϕ(ω)−ωt′) (22)

ϕx(t) = ϕ(ω), ϕx(t−t′) = ϕ(ω)− ωt′ (23)

ϕx(t) − ϕx(t−t′) = ωt′, (24)

Using Euler’s formula,

ϕx(t) − ϕx(t−t′) = (ωt′) (mod 2π) (25)

ϕx(t) − ϕx(t−t′) =

(
2π

T
t′
)

(mod 2π) (26)

∀T0 ∈ T, ∞ > T0 ≥ t =⇒ ϕx(t)(ω0)− ϕx(t−t′)(ω0) =
2π

T0
t′ (27)

Thus,

ϕx(t)(ω0)− ϕx(t−t′)(ω0) = ϕx(t)(ω0)− ϕx(t−t′)(ω0) =⇒ t′ = t′ (28)

Also,

∀T0 ∈ T, ∞ > t > T0 =⇒ ϕx(t)(ω0)− ϕx(t−t′)(ω0) =

(
2π

T0
t′
)

mod 2π, (29)

∵ ∃t′ ∈ R,
(
2π

T0
t′
)

> 2π (30)

∴ ∃t′, t′ ∈ R, ¬(ϕx(t)(ω0)− ϕx(t−t′)(ω0) = ϕx(t)(ω0)− ϕx(t−t′)(ω0) =⇒ t′ = t′), (31)

which proves injection. Similarly, for surjection using Lemma A.1,

∀t′ ∈ R, ∞ > T0 ≥ t > |t′| =⇒ ϕx(t)(ω0)− ϕx(t−t′)(ω0) =
2π

T0
t′ (32)

The final equation completes the proof by showing that the phase difference between the sample and
its shifted version can get unique values for any shift, i.e., covering the whole time space.
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A.4.2 PROOF FOR THEOREM 2.3

Theorem A.4 (Guarantees for Shift-Invariancy). Given a sample x and a randomly shifted variant of
it x(t− t′), if the transformation function T (x, ϕ) is applied to both samples with the same angle ϕa,
the resulting time series will be the same while carrying the same information.

T (x(t), ϕa) =
(
x̃(t), ∆ϕx(t)

)
, T (x(t− t′), ϕa) =

(
x̃(t), ∆ϕx(t−t′)

)
Proof.

x(t)
F(.)−−−→ |X(ejω)|ejϕ(ω), x(t− t′)

F(.)−−−→ |X(ejω)|ejϕ(ω)eωt′ (33)

ϕx(t) = ϕ(ω), ϕx(t−t′) = ϕ(ω)− ωt′ (34)

ϕx(t−t′) − ϕx(t) = −ωt′ (35)

Using Equation 11, the phase difference between samples (x(t),x(t− t′)) and ϕa can be obtained as,

∆ϕx(t) =
[ϕ(ω0)− ϕa]

2π
· T0, ∆ϕx(t−t′) =

[ϕ(ω0)− ω0t
′ − ϕa]

2π
· T0 (36)

∆ϕx(t−t′) −∆ϕx(t) = −ω0t
′ T0

2π
(37)

Using Fourier transform as in Equation 4,

F {T (x(t), ϕa)} = |X(ejω)|ejϕ(ω)e−jω∆ϕx(t) (38)

F {T (x(t− t′), ϕa)} = |X(ejω)|ejϕ(ω)e−jωt′e
−jω∆ϕx

(t−t′) (39)

Given that the amplitudes are identical, demonstrating equality in phase is sufficient, as shown below,

ϕT (x(t),ϕa) = ϕ(ω)− ω∆ϕx(t), ϕT (x(t−t′),ϕa) = ϕ(ω)− ωt′ − ω∆ϕx(t−t′) (40)

ϕT (x(t−t′),ϕa) − ϕT (x(t),ϕa) = −ωt′ − ω∆ϕx(t−t′) + ω∆ϕx(t) (41)

ϕT (x(t−t′),ϕa) − ϕT (x(t),ϕa) = −ωt′ − ω
[
∆ϕx(t−t′) −∆ϕx(t)

]
(42)

ϕT (x(t−t′),ϕa) − ϕT (x(t),ϕa) = −ωt′ − ω

[
−ω0t

′ T0

2π

]
(43)

ϕT (x(t−t′),ϕa) − ϕT (x(t),ϕa) = −ωt′ + ω

[
2π

T0
t′
T0

2π

]
(44)

ϕT (x(t−t′),ϕa) − ϕT (x(t),ϕa) = −ωt′ + ωt′ (45)

ϕT (x(t−t′),ϕa) = ϕT (x(t),ϕa) (46)

F {T (x(t), ϕa)} = |X(ejω)|ejϕT (x(t),ϕa) (47)

F {T (x(t− t′), ϕa)} = |X(ejω)|ejϕT (x(t−t′),ϕa) (48)

Therefore, the output time series samples will be the same after applying the transformation.

We complete the proof by showing the phase and magnitude of Fourier transformation of both samples
are the same after transformation even though a random unknown shift is applied to the sample. Thus,
the proposed transformation guarantees shift-invariancy without limiting the range of shifts.
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B ALGORITHM

In this section, we present the pseudocode and the PyTorch (Paszke et al, 2019) implementation for
the proposed transformation function. Algorithm 1 details each step of the transformation, which
takes a sample, x, and an angle, ϕ as inputs and outputs the transformed sample.

Algorithm 1 Algorithm for the proposed diffeomorphism.

1: Input: x, ϕa

2: Output: T (x, ϕa)

3: |X(ejω)|ejϕ(ω) =
∫∞
−∞ x(t)e−jωt ▷ Calculate the Fourier transformation to obtain harmonics

4: ϕ(ω0) = ∠
(
|X(ejω0)|ejϕ(ω0)

)
▷ Obtain the angle for the harmonic with period T0

5: θ = [ϕ(ω0)− ϕa] % 2π

6: ∆ϕ =

{
(θ−2π)∗T0

2π
, if θ > π

θ∗T0
2π

, else
▷ Calculate the phase difference between the harmonic and the angle ϕ

7: |X(ejω)|ej(ϕ(ω)−ω∆ϕ) = |X(ejω)|ejϕ(ω) ∗ e−jω∆ϕ ▷ Apply a linear phase shift to each harmonic

8: Return: F−1(|X(ejω)|ej(ϕ(ω)−ω∆ϕ))

Below, we provide the PyTorch implementation of our proposed transformation function, which
includes two functions. The first function, distanceCalculate, computes the phase differ-
ence between the harmonic with frequency ω0 and the desired input angles. The second function,
diffeomorphism, performs the main transformation: it takes as inputs the samples x and the
angles ϕ, and outputs the transformed samples in the time domain.

def distanceCalculate(angleDiff):
theta = angleDiff % (2 * torch.pi)
# Calculate the angular distance on the unit circle
theta[theta > torch.pi] -= 2 * torch.pi
return theta

def diffeomorphism(sample, desiredAngles):
B, L, D = sample.shape
samplesFFT = torch.fft.rfft(sample, dim=1)
freq = torch.fft.rfftfreq(n=L)
phAngle = torch.angle(samplesFFT)
# Get the phase angle of the harmonic with frequency T_0
angles = phAngle[torch.arange(phAngle.size(0)), 1, 0].squeeze()
# Calculate the angle difference
theta = distanceCalculate(angles-desiredAngles)
# Normalize it to the sepecific harmonic with frequency w_0
dtheta = theta / (2*torch.pi*freq[1])
# Create complex exponentials with specific phase values
linShift = torch.exp(-1j*2*torch.pi*freq[None,:]*dtheta[:,None])
linShift = linShift.unsqueeze(dim=2).expand(-1, -1, D)
# Apply a linear phase shift to all harmonics
shiftedFFT = linShift*(samplesFFT)
# Return to the time domain
transformedSamples = torch.fft.irfft(shiftedFFT, n=L, dim=1)
return transformedSamples

Implementation 1: PyTorch implementation of the proposed transformation
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C EXPERIMENTS

Here, we give a detailed description of datasets, architectures, metrics, and training details for our
experiments. We performed our experiments on NVIDIA GeForce RTX 4090 GPUs, involving
training with three random seeds for all datasets, totaling approximately 480 GPU hours including
ablation. We reported the mean of three runs with the standard deviation.

C.1 DATASETS

In this section, we give details about the datasets that are used during our experiments. Overall,
we have used eight datasets with five different time series tasks (heart rate prediction, cardiovas-
cular disease classification, activity recognition, step counting, sleep stage classification) from
four sensor modalities (photoplethysmography, electrocardiogram, inertial measurement units, elec-
troencephalography). When deciding datasets for our experiments, we put significant emphasis on
selecting time series signals that carry valuable information about individuals’ mental and physical
health. Therefore, we specifically choose signals generated by humans.

C.1.1 HEART RATE PREDICTION

IEEE SPC The IEEE SPC dataset overall has 22 recordings of 22 subjects, ages ranging from 18
to 58 performing three different activities (Rocha et al., 2020). Each recording has sampled data from
three accelerometer signals and two PPG signals along with the ECG data with a sampling frequency
of 125 Hz. All these recordings were recorded from the wearable device placed on the wrist of each
individual. All recordings were captured with two 2-channel PPGs with green LEDs, a tri-axial
accelerometer, and a chest ECG for the ground-truth HR estimation. We averaged the two channels
of PPG for prediction. We choose the last five subjects of SPC22 to be used for source domains.
Throughout our experiments, we used PPG channels without integrating any inertial measurements.

Dalia The PPG dataset for motion compensation and heart rate estimation in Daily Life Activities
(DaLiA) was recorded from 15 subjects (8 females, 7 males, mean age of 30.6), where each recording
was approximately two hours long. PPG signals were recorded while subjects went through different
daily life activities, for instance sitting, walking, driving, cycling, working, and so on. PPG signals
were recorded at a sampling rate of 64 Hz. The first five subjects are used as source domains, similar
to Demirel & Holz (2023).

We standardize all PPG datasets as follows, same as the previous works (Biswas et al., 2019).
Initially, a fourth-order Butterworth bandpass filter with a frequency range of 0.5–4 Hz is applied
to PPG signals. Subsequently, a sliding window of 8 seconds with 2-second shifts is employed for
segmentation, followed by z-score normalization of each segment. Lastly, the signal is resampled to
a frequency of 25 Hz for each segment. While the current validation setup does not encompass the
entire PPG datasets, we follow the same setup to be consistent with prior studies. Additional results
with further experiments can be found in Appendix D.

C.1.2 HUMAN ACTIVITY RECOGNITION

UCIHAR Human activity recognition using a smartphone’s dataset (UCIHAR) (Anguita et al.,
2012) is collected by 30 subjects within the age range of 16 to 48 performing six daily living activities
with a waist-mounted smartphone. Six activities include walking, sitting, lying, standing, walking
upstairs, and walking downstairs. Data is captured by 3-axial linear acceleration and 3-axial angular
velocity at a constant rate of 50 Hz. We used the pre-processing technique the same as in (Qian
et al., 2021) such that the input contains nine channels with 128 features (it is sampled in a sliding
window of 2.56 seconds and 50% overlap, resulting in 128 features for each window). Windows
are normalized to a mean of zero and unit standard deviation before feeding it to the models. The
experiments are conducted with a leave-one-domain-out strategy with the first five subjects, where
one of the domains is chosen to be the unseen target (Qian et al., 2022).

HHAR Heterogeneity Dataset for Human Activity Recognition (HHAR) is collected by nine
subjects within an age range of 25 to 30 performing six daily living activities with eight differ-
ent smartphones—Although HHAR includes data from smartwatches as well, we use data from
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smartphones—that were kept in a tight pouch and carried by the users around their waists (Stisen et al.,
2015). Subjects then perform six activities including cycling, sitting, descending stairs, ascending
stairs, standing, and walking. Considering the variable sampling frequencies of smart devices in the
HHAR dataset, we downsampled the readings to 50,Hz. We employed sliding windows with lengths
of 100 (two seconds) and 50, using a specified step size. These windows were then normalized to a
mean of zero with unit standard deviation. In our experiments, we utilized the data from the first four
subjects (i.e., a, b, c, d) as source domains, following a similar approach to previous papers (Qian
et al., 2022; Demirel & Holz, 2023).

C.1.3 CARDIOVASCULAR DISEASE (CVD) CLASSIFICATION

Chapman Chapman University, Shaoxing People’s Hospital (Chapman) ECG dataset which pro-
vides 12-lead ECG with a 10-second sampling rate of 500 Hz. The recordings are downsampled to
100 Hz, resulting in each ECG frame consisting of 1000 samples. The labeling setup follows the same
approach as in Zheng et al. (2020) with four classes: atrial fibrillation, GSVT, sudden bradycardia,
and sinus rhythm. The ECG frames are normalized to have a mean of 0 and scaled to have a standard
deviation of 1. We split the dataset to 80–20% for training and testing as suggested in Zheng et al.
(2020). We chose leads I, II, III, and V2 during our experiments for both ECG datasets.

PhyioNet 2017 The 2017 PhysioNet/CinC Challenge aims to classify, from 8,528 single-lead ECG
recordings (between 30 s and 60 s in length), whether the recording shows normal sinus rhythm,
atrial fibrillation (AF), an alternative rhythm, or is too noisy to be classified, i.e., four classes. We
normalize the signals to have zero mean and unit standard deviation. Additionally, we zero-pad the
shorter recordings to ensure they have the same length. We split the dataset into training, validation,
and test sets according to the patients using a 60, 20, 20 configuration.

C.1.4 STEP COUNTING

The Clemson dataset has 30 participants (15 males, 15 females), Each participant wore three Shim-
mer3 sensors. We used the IMU sensor readings from non-dominant wrists to predict step count
where each sensor recorded accelerometer and gyroscope data at 15 Hz. We calculated the total
magnitude of the accelerometer and fed it to the model as a pre-processing without any filtering. We
used window lengths of 32 seconds without an overlap in the regular walking setting. We conducted
10-fold cross-validation, with each fold consisting of 3 subjects for testing and validation. And, six
randomly selected subjects were used for training in each fold.

C.1.5 SLEEP STAGE CLASSIFICATION

We used the Sleep-EDF dataset which has five classes: wake (W), three different non-rapid eye
movements (N1, N2, N3), and rapid eye movement (REM). The dataset includes whole-night PSG
sleep recordings, where we used a single EEG channel (i.e., Fpz-Cz) with a sampling rate of 100 Hz.
We employed the identical data split as presented in the paper (Eldele et al., 2021), accessible online,
without applying any additional pre-processing steps. We ran three distinct seeds using the same split
and reported the mean and standard deviation on the test set.

C.2 METRICS

We used the common evaluation metrics in the literature for each task. Specifically, we used mean
absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient (ρ) for
heart rate prediction. We used accuracy (Acc), macro-F1 score (F1) for activity recognition, and an
additional area under the receiver operating characteristic curve (AUC) for cardiovascular disease
classification (Kiyasseh et al., 2020). We used the mean absolute percentage error (MAPE) for step
counting (Yang et al., 2020; Femiano et al., 2022). For sleep stage classification, we used accuracy,
macro, and weighted F1 scores (F1, W-F1), along with Cohen’s Kappa coefficient (κ) (Cohen, 1960).

C.3 BASELINES

In this section, we give a detailed explanation of each baseline we compare our method.
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C.3.1 LPF (BLURRING)

In convolutional neural networks (CNNs), pooling layers or ordinary convolutions with strides greater
than 2 would conduct downsampling on the feature maps to reduce their size and increase the
model’s receptive field. However, since features are averaged or discarded in the downsampling,
information may be lost, i.e., aliasing. Traditional pooling aggregates all values within the window
to a single value. In contrast, Zhang (2019) aims to minimize information loss caused by pooling
operations via replacing the traditional pooling kernel with a Gaussian kernel as an low-pass filtering
(LPF). Specifically, when using a Gaussian kernel, LPF applies a Gaussian-weighted function to
the neighborhood values around each feature for convolution, and obtains a weighted average result.
Compared to the traditional pooling operations of simply selecting the maximum/average value within
the window, LPF operations that use Gaussian-weighted averages can better preserve the relative
positions and spatial relationships between features, thus alleviating the problem of information loss
caused by pooling operations. In our implementations, we used 1D version of LPF with a length
of 5. We evaluated filter lengths of 3, 5, 7 to determine the optimum size for each task. During our
experiments, we observed the best performance with a filter length of 5, except for HR prediction,
where a length of 3 was optimal.

C.3.2 APS

To make the sampling layer invariant to shifts, Chaman & Dokmanic (2021) proposed to subsample by
partitioning feature maps into polyphase components and select the component with the highest norm.
This approach has a significant limitation when applied to time series, especially with the nonlinear
activation functions. It tends to overlook variations in boundaries arising from the translation of
samples, thereby imposing additional shift constraints for providing invariance (Rojas-Gomez et al.,
2022). Consequently, the evaluation of these methods is restricted to a narrow range of shifts, covering
only a limited subset of the shift space. Moreover, as this approach selects the component with the
highest norm, it requires feature maps to have unique values.

C.3.3 WAVELET NETWORKS

Wavelet networks (Romero et al., 2024) consist of several stacked layers that respect scale and
translation. At the beginning, the network consists of a lifting group convolution layer that lifts
input time-series to the scale-translation group, followed by arbitrarily many group convolutional
layers. At the end of the network, a global pooling layer is used to produce scale-translation invariant
representations. Wavelet Networks are proposed for equivariant mappings between input and output.
However, to turn an equivariant network into an invariant network, an extra layer that is equivariant
in this degenerate sense (in practice, this often means either averaging or creating a histogram of
the activations of the last layer) should be applied (Kondor & Trivedi, 2018). For example, the
well-known wavelet scattering network achieves invariance by stacking equivariant layers followed
by a final invariant one in that of scattering networks (Mallat, 2012). However, our proposed method
does not require an additional layer as it operates on data manifolds directly.

We used the original GitHub (https://github.com/dwromero/wavelet_networks) im-
plementation, leaving the dropout and base parameters unchanged. We searched over the learning
rate (e.g., {10−3, 10−4, 10−5}) using the validation set for each time series task.
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C.4 IMPLEMENTATION DETAILS

Here, we have provided the details of the architectures, and hyperparameters. Primarily, we used the
1D Res-Net (Hong et al., 2020) implementation in the supervised settings. While some alternative
deep learning models can perform better in time series such as the combination of convolutional
and LSTM layers, similar to previous works in shift consistency (Zhang, 2019), we focused on deep
learning models which are mainly composed of convolutional layers.

C.4.1 ARCHITECTURES

Here, we present the details of architectures that are investigated for the performance of shift-invariant
techniques. Some details that are not given in the tables are as follows. Batch normalization (Ioffe &
Szegedy, 2015) is applied after each convolutional block. ReLU activation is employed following
batch normalization, in line with (He et al., 2015). We also applied a Dropout (Srivastava et al.,
2014) with 0.5 after each activation and before the convolutions. Finally, a global average pooling is
implemented before the linear layers.

Table 8: ResNet architecture

Repetition Layer Kernel Size Output Size Stride

1 Input (C,T) - (C, T) -
1 Conv (5, 1) (64, T/2) 1

8
Residual Block
Conv (5, 1) (128, T/4) 2
Conv (5, 1) (128, T/4) 1

1 Linear - (n_classes,) -
# Parameters for dataset (C,T)
IEEE SPC (C=1,T=200) ≈210k
DaLiA (C=1,T=200) ≈210k
Chapman (C=4,T=1000) ≈197k
PhysioNet (C=1,T=6000) ≈197k
Sleep (C=1,T=3000) ≈3.2M

Table 9: The model topologies of the classifier fC and guidance network fG

(a) FCN architecture

Layer Kernel
Size

Output
Size

Input (C,T) - (C, T)
Conv (32 kernels) (8, 1) (32, T-4)
Max Pooling (2,1) (32, (T-4)/2)
Conv (64 kernels) (8, 1) (64, (T-4)/2-4)
Max Pooling (2,1) (64, (T-4)/4-2)
Conv (128 kernels) (8, 1) (128, (T-4)/4-6)
Max Pooling (2,1) (128, (T-4)/8-3)
Linear - (n_classes,)

# Parameters for dataset (C,T)
UCIHAR (C=9,T=65) ≈100k
HHAR (C=6,T=51) ≈91k
Clemson (C=1,T=240) ≈432k

(b) Guidance architecture

Layer Kernel
Size

Output
Size

Input (C,T) — (C, T)
Conv (4 kernels) (8, 1) (4, T-5)
Max Pooling (2,1) (4, (T-5)/2+1)
Conv (16 kernels) (5, 1) (16, (T-5)/2-1)
Max Pooling (2,1) (16, (T-5)/4+1)
Conv (32 kernels) (3, 1) (32, (T-5)/4+1)
Max Pooling (2,1) (32, (T-5)/8+1)
Linear - (n_classes,)

# Parameters for dataset (C,T)
UCIHAR (C=9,T=65) ≈2.5k
HHAR (C=6,T=51) ≈2k
Clemson (C=1,T=240) ≈3k

IEEE SPC (C=9,T=65) ≈2.4k
DaLiA (C=9,T=65) ≈2.4k
Chapman (C=4,T=500) ≈6k
PhysioNet (C=1,T=3000) ≈13k
Sleep (C=1,T=1500) ≈8k
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Tables 8, 9a, and 9b give an overall for the architectures with the number of parameters for each
dataset. From these tables, it can be observed that the number of parameters for the guidance network
is much less than the main classifier, where the ratio is close to ≈2–4%.

The parameter count of the guidance network could be further reduced by selectively inputting only
the important frequencies for each time series task, which can be determined using prior knowledge,
rather than the entire spectrum. Nevertheless, for the sake of consistency, we perform the Fourier
transform with the number of harmonics same as the length of time series and provide the entire
spectrum to the guidance network as the input. One advantage of this input modeling is that the ratio
between the number of parameters for the guidance network and the main classifier decreases more
when the main classifier has more blocks as they are independent. For example, the guidance network
has 1000× fewer parameters than the main classifier for the sleep stage classification task where we
have used 18 ResNet blocks for the classifier model for all techniques. At the same time, this addition
increases the performance metrics up to 3%. Furthermore, increasing the number of parameters
can decrease the performance of the models as it can cause overfitting of the training data (Cao
et al., 2022; Wen et al., 2023), which is observed in our case as well (See Table 3 in Appendix D for
additional results).
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D ADDITONAL RESULTS

D.1 SLEEP STAGE CLASSIFICATION

Here, we present extended results for the sleep stage classification task in Table 3. Specifically, we
include the F1 score as an additional metric and employ a larger network to observe its impact on
performance.

Table 10: Performance comparison of ours with other methods in EEG for sleep stage classification

Method Sleep-EDF
S-Cons ↑ Acc ↑ F1 ↑ W-F1 ↑ κ ↑

Baseline 95.06±0.61 75.41±2.01 65.40±1.33 74.87±1.92 67.12±2.96
Baseline (2×) 91.09±1.26 73.88±2.10 65.84±3.29 74.32±2.86 65.14±2.94
Aug. 99.00±0.17 74.89±1.11 64.71±1.55 74.03±1.46 65.89±1.81
LPF 92.43±1.24 73.56±2.93 68.08±1.97 76.01±1.98 65.68±3.46
APS — — — — —
Ours 100±0.00 77.90±1.92 67.01±2.65 76.77±2.58 70.01±1.10
Ours+LPF 100±0.00 73.12±1.89 67.42±1.99 75.34±1.61 64.98±2.27

Although our method ranked second in F1 metric, it is important to highlight that F1 scores are a
biased measure of classification quality (Christen et al., 2023; Powers, 2015), which is a problem
when comparing recordings with a different prevalence of the classes as in sleep staging (Malafeev
et al., 2018). Therefore, we reported additional metrics for measuring the performance of baselines.
In particular, we included the kappa score, a metric widely used for evaluating algorithms in this
specific task (Malafeev et al., 2018; Biswal et al., 2018). Additionally, sleep stage classification
and certain other tasks have empty APS values as the authors’ original implementation encountered
overflow issues with matrix repetition, particularly for longer arrays.

Overall, our proposed method demonstrates a significant performance improvement in three of
the metrics, with high kappa and accuracy—both of which are commonly used in the medical
domain (Biswal et al., 2018) while ranking second in the F1 metric, following the LPF approach. We
also performed the same ablation experiments for investigating the behavior of the loss function on
the performance of the model for the sleep stage classification and reported the results in Table 11
while excluding the consistency metric as the model that include the proposed transformation are
always completely shift-invariant.

Table 11: Ablation experiments for sleep stage classification

Method Sleep-EDF
Acc ↑ F1 ↑ W-F1 ↑ κ ↑

T (x, ϕ) 75.54±2.39 66.96±1.78 75.53±2.29 67.08±0.03
L′
G 77.21±1.51 67.67±1.67 76.89±1.71 69.39±0.02

L̂G 77.75±1.23 68.04±1.16 77.01±1.07 69.94±0.01
Ours 77.80±1.95 67.01±2.65 76.77±2.58 70.01±2.50

Change +2.26 +0.05 +1.24 +2.93

Table 11 also supports the previous experiments and claims regarding the advantages of guiding
the proposed diffeomorphism with a neural network. When the models are trained by guiding the
mapping function, the performance of the models increases up to 3% in Kappa (κ) score.
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D.2 HEART RATE PREDICTION

Here, we conducted additional experiments to evaluate the models’ performance using varied amounts
of training and testing data. Initially, we reduced the training data while increasing the testing data
by dividing the datasets in half based on subjects to investigate the performance with less training
data. Table 12 presents the results, where our proposed method also increases performance by
3–4% compared to the baseline architecture while reducing the variance between different runs and
improving shift consistency by 40–60%, even in the low data regime.

Table 12: Performance comparison of ours and other methods in PPG datasets for HR estimation

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 55.70±2.61 25.93±0.07 11.55±0.08 48.85±0.85 31.48±0.41 12.51±0.05 5.59±0.05 85.37±0.20
Aug. 70.35±0.47 26.21±0.48 12.06±0.33 48.50±1.22 53.38±0.29 12.31±0.09 5.60±0.05 85.90±0.13
LPF 67.43±0.56 25.87±1.02 14.03±0.69 47.76±2.49 39.82±1.33 12.65±0.09 5.81±0.01 84.87±0.23
APS 60.43±1.08 24.83±1.26 11.14±0.83 52.10±2.90 38.99±0.85 12.49±0.11 5.61±0.04 85.68±0.17

Ours 100±0.00 24.67±0.06 11.10±0.16 52.26±0.27 100±0.00 12.30±0.11 5.57±0.03 85.95±0.25
Ours+LPF 100±0.00 26.01±0.27 14.04±0.24 47.20±0.86 100±0.00 12.78±0.09 6.18±0.01 84.48±0.26
Ours+APS 100±0.00 24.67±0.32 11.38±0.13 51.64±0.73 100±0.00 12.40±0.08 5.67±0.02 85.63±0.30

We also performed the same ablation studies for heart rate prediction task in the low data regime and
presented the results in Table 13.

Table 13: Ablation experiments for HR task with less training data

Method IEEE SPC22 DaLiAPPG

MAE ↓ RMSE ↓ ρ ↑ MAE ↓ RMSE ↓ ρ ↑
T (x, ϕ) 12.04 25.49 50.72 6.10 12.94 85.03
L′
G 11.29 25.10 51.10 5.63 12.80 85.10

L̂G 11.32 25.08 51.18 5.60 12.71 85.12
Ours 11.10 24.67 52.26 5.57 12.30 85.95
Change +0.94 +0.82 +1.54 +0.53 +0.64 +0.92

The ablation study results with a reduced training dataset align with our main findings, where reducing
variations uniformly using the same angle transformation negatively impacts performance. Likewise,
expanding the potential solution space with L̂G leads to a performance decline compared to our
proposed method.
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D.3 DIFFEOMORPHISMS IN DEEP LEARNING

In this section, we review previous transformation functions and diffeomorphisms used in deep
learning models. Invariant classification of input samples with neural networks has a long-standing
history, with the Spatial Transformer Network (STN) being introduced to learn transformation
functions for invariant image classification (Jaderberg et al., 2015). Similarly, Temporal Transformer
Networks (TTN), an adaptation of STNs for time series applications, were introduced to predict the
parameter of warp functions and align time series (Lohit et al., 2019; Shapira Weber & Freifeld,
2023). Recent methods have focused on optimizing a known family of diffeomorphism, known as
diffeomorphic warping functions (Martinez et al., 2022) for time series alignment, through deep
learning (Detlefsen et al., 2018; Shapira Weber et al., 2019). Thus, a significant distinction between
our approach and previous techniques lies in the fact that we introduce a novel tailored diffeomorphism
that is capable of mapping samples subjected to shifts to the same point in the high-dimensional data
manifold, to ensure shift-invariancy.

Although previous techniques were designed for different purposes, such as time-warping (Lohit et al.,
2019), we also evaluated and compared the performance and shift consistency of their transformation
functions. Specifically, we implemented sequence temporal transformations (STN) for clinical time
series from Oh et al. (2018) and TTN (Lohit et al., 2019) where the transformation and the classifier
are trained together to maximize classification performance by minimizing the cross-entropy loss
for both methods. In our implementation of STN, we followed the original design, using a neural
network with two convolutional layers and two pooling layers, where pooling is applied between and
after the convolutions. After the pooling operations, two fully connected layers are applied to the
resulting feature maps to obtain the transformation parameter. The overall results in time series tasks
are presented in the tables below.

Table 14: Performance comparison of our method with different transformations in HR estimation

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 61.99±1.19 18.39±2.96 10.28±1.41 62.64±5.74 32.08±0.22 9.86±0.23 4.40±0.03 86.01±0.51
Aug. 76.48±1.77 18.73±1.15 10.42±0.40 64.06±3.70 52.77±0.39 9.85±0.21 4.47±0.06 85.99±0.49

Baseline+STN 67.13±1.53 18.45±2.73 10.35±0.73 63.49±4.10 44.81±0.25 9.90±0.17 4.43±0.04 85.96±0.47
Baseline+TTN 60.12±1.10 20.57±1.23 11.55±1.87 60.17±3.64 39.13±0.30 10.23±0.30 4.45±0.05 84.31±0.67
Ours 100±0.00 16.25±0.72 9.45±0.03 70.12±2.10 100±0.00 9.75±0.15 4.39±0.03 86.06±0.19

Table 15: Performance comparison of our method with different transformations in ECG datasets

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 98.53±0.17 91.32±0.23 91.22±0.24 98.34±0.16 98.37±0.15 83.22±0.72 73.50±1.99 93.21±0.30
Aug. 99.00±0.16 91.96±0.19 91.89±0.22 98.45±0.18 98.96±0.17 82.28±1.18 72.32±2.20 93.20±0.42

Baseline+STN 98.31±0.13 91.45±0.20 91.33±0.19 98.31±0.14 98.55±0.14 83.12±0.50 73.27±1.54 93.23±0.28
Baseline+TTN 97.69±0.15 91.27±0.17 90.54±0.38 98.23±0.21 97.12±0.23 82.51±0.63 71.43±1.43 93.07±0.35
Ours 100±0.00 92.10±0.25 91.93±0.85 98.47±0.15 100±0.00 83.15±0.65 74.12±1.80 93.28±0.31

Table 16: Performance comparison of our method with different transformations in IMU datasets

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 94.07±1.38 85.39±2.30 83.20±2.94 98.27±0.33 91.87±1.36 91.16±1.38 54.31±4.40 4.76±0.11 2.74±0.08
Aug. 96.55±0.80 85.42±4.50 83.69±6.74 98.38±0.28 91.97±0.44 91.31±0.49 61.01±4.88 4.08±0.14 2.29±0.07

Baseline+STN 93.96±1.22 83.22±1.23 83.57±2.14 98.30±0.24 88.92±1.10 89.10±1.20 58.56±4.78 4.94±0.13 2.53±0.10
Baseline+TTN 93.32±1.95 83.27±1.57 82.78±3.12 97.10±0.78 90.03±1.74 90.18±1.10 45.89±3.02 5.43±0.20 2.89±0.18
Ours 100±0.00 87.71±1.98 85.67±2.47 100±0.00 91.93±1.14 91.12±1.03 100±0.00 4.28±0.34 2.43±0.21

As shown in the tables, other transformation functions fail to achieve true shift-invariance. While the
STN method shows some improvements on certain datasets, it still lacks full shift-invariance. This
limitation arises because STN relies on a neural network to estimate transformation parameters from
time series data. However, this temporal transformation has no information about the position of the
time series. Thus, when the input is shifted, the output changes.
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D.4 EXPANDED COMPARISON

Here, we compared the performance of techniques when random data augmentation (Aug.) is applied
during training. In other words, the samples are randomly shifted and fed to the models during
training. During inference, the performance of methods with original samples is evaluated without
applying any shifts. We present the results in the tables below.

Table 17: Performance comparison of our method and other techniques with data augmentation for
HR estimation

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 61.99±1.19 18.39±2.96 10.28±1.41 62.64±5.74 32.08±0.22 9.86±0.23 4.40±0.03 86.01±0.51
Aug. 76.48±1.77 18.73±1.15 10.42±0.40 64.06±3.70 52.77±0.39 9.85±0.21 4.47±0.06 85.99±0.49
LPF 76.88±0.73 20.20±1.54 13.44±0.82 65.40±1.92 38.67±0.30 10.01±0.30 4.67±0.12 85.68±0.51
APS 73.99±1.06 19.42±0.60 12.98±0.29 65.27±1.32 44.33±0.16 10.45±0.40 5.01±0.17 84.69±0.85
WaveletNet 51.71±1.95 21.56±1.01 14.61±0.34 60.74±4.37 36.71±3.04 15.46±0.64 7.67±0.23 76.13±1.86

LPF + Aug. 76.17±1.15 20.39±1.15 13.22±0.36 61.72±2.87 55.62±0.21 12.57±0.19 6.02±0.11 84.94±0.40
APS + Aug. 74.88±0.61 18.01±0.15 10.57±0.15 66.40±2.21 53.70±0.08 12.84±0.10 6.08±0.02 85.62±0.65
WaveletNet + Aug. 50.14±0.14 20.10±1.15 13.41±0.57 61.90±3.50 36.71±3.04 15.46±0.64 7.67±0.23 76.13±1.86

Ours 100±0.00 16.25±0.72 9.45±0.03 70.12±2.10 100±0.00 9.75±0.15 4.39±0.03 86.06±0.19
Ours+LPF 100±0.00 20.34±1.62 13.77±0.84 65.60±2.31 100±0.00 10.72±0.11 5.30±0.03 84.12±0.23
Ours+APS 100±0.00 18.81±1.59 12.32±0.84 67.01±3.79 100±0.00 10.47±0.09 5.10±0.03 84.62±0.31

Table 18: Performance comparison of ours and other techniques with data augmentation in ECG
datasets for CVD classification

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 98.53±0.17 91.32±0.23 91.22±0.24 98.34±0.16 98.37±0.15 83.22±0.72 73.50±1.99 93.21±0.30
Aug. 99.00±0.16 91.96±0.19 91.89±0.22 98.45±0.18 98.96±0.17 82.28±1.18 72.32±2.20 93.20±0.42
LPF 98.69±0.14 92.01±0.23 91.94±0.58 98.50±0.24 98.94±0.39 84.40±0.16 75.68±0.76 93.80±0.32
APS 98.60±0.17 90.69±0.89 89.44±1.00 98.31±0.24 — — — —
WaveletNet 91.02±1.14 90.87±1.02 90.02±1.00 97.94±0.21 65.03±0.71 76.06±0.64 63.35±3.40 87.02±0.29

LPF + Aug. 98.85±0.20 92.05±0.13 91.94±0.40 98.53±0.20 99.00±0.50 83.27±0.61 74.03±1.56 93.20±0.31
APS + Aug. 98.60±0.17 90.69±0.89 89.44±1.00 98.31±0.24 — — — —
WaveletNet + Aug. 91.02±1.14 90.87±1.02 90.02±1.00 97.94±0.21 65.03±0.71 78.90±0.57 65.88±1.44 88.67±0.22/

Ours 100±0.00 92.10±0.25 91.93±0.85 98.47±0.15 100±0.00 83.15±0.65 74.12±1.80 93.28±0.31
Ours+LPF 100±0.00 92.05±0.52 91.96±0.54 98.51±0.10 100±0.00 85.20±0.40 77.50±1.21 94.20±0.19
Ours+APS 100±0.00 91.61±1.11 91.10±0.56 98.36±0.20 — — — —

Table 19: Performance comparison of our method and others with data augmentation in IMU datasets
for Activity and Step

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 94.07±1.38 85.39±2.30 83.20±2.94 98.27±0.33 91.87±1.36 91.16±1.38 54.31±4.40 4.76±0.11 2.74±0.08
Aug. 96.55±0.80 85.42±4.50 83.69±6.74 98.38±0.28 91.97±0.44 91.31±0.49 61.01±4.88 4.08±0.14 2.29±0.07
LPF 95.05±0.21 83.96±3.44 81.08±4.21 98.10±0.10 92.10±0.80 91.43±0.94 59.77±4.40 4.16±0.16 2.35±0.11
APS 96.40±0.03 81.75±4.11 79.01±5.33 98.30±0.24 91.83±1.35 91.01±1.47 45.50±2.69 4.74±0.16 2.69±0.07
WaveletNet 94.56±1.31 82.78±4.62 80.73±5.59 96.76±0.15 90.72±0.38 90.71±0.39 59.14±3.10 5.20±0.66 2.95±0.41

LPF + Aug. 97.65±1.30 84.67±3.45 83.32±3.50 98.65±0.12 92.45±0.78 91.70±0.62 59.77±4.40 3.81±0.13 2.23±0.10
APS + Aug. 96.40±0.03 78.40±3.75 75.43±4.33 98.87±0.34 92.40±0.40 91.49±0.73 45.50±2.69 3.94±0.10 2.50±0.07
WaveletNet + Aug. 94.56±1.31 82.78±4.62 80.73±5.59 96.76±0.15 90.72±0.38 91.71±0.39 60.23±2.54 5.18±1.02 3.02±0.48

Ours 100±0.00 87.71±1.98 85.67±2.47 100±0.00 91.93±1.14 91.12±1.03 100±0.00 4.28±0.34 2.43±0.21
Ours+LPF 100±0.00 84.78±2.46 82.58±2.62 100±0.00 92.51±0.55 91.80±0.62 100±0.00 3.75±0.33 2.12±0.18
Ours+APS 100±0.00 82.96±1.79 81.10±1.73 100±0.00 91.38±0.32 90.64±0.32 100±0.00 3.87±0.19 2.19±0.11

From the results, we can see that applying shift data augmentation during training did not consistently
improve performance, and in some cases, it led to a decrease. For instance, in the HR prediction task,
training the low-pass filtering method with randomly shifted samples resulted in lower performance.
We believe that random shifts may reduce the inter-class separation between samples, causing
them to overlap in the feature space (Wang et al., 2022). As a result, even though the number of
training samples increases with augmentation, this reduced separation can lead to a decline in model
performance.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

E IMPROVEMENTS IN PERFORMANCE ACROSS DIFFERENT NETWORKS

In this section, we conduct experiments to observe the performance of our proposed method when it is
integrated into different network architectures. First, we employed the same 1D ResNet architecture
for IMU related tasks as we used the fully convolutional network without residual connections in
the main results because of better performance. Second, we applied a transformer with positional
encoding, which is designed for time series tasks (Qian et al., 2022), to all tasks. Specifically, we
used linear layers with a stack of four identical blocks. The linear layer converts the input data to
embedding vectors of 128. Each block is made up of a multi-head self-attention layer and a fully
connected feed-forward layer. We use residual connections around each layer.

We have not included blurring (LPF) and adaptive sampling in the transformer network analysis, as
these methods are primarily tailored for convolutional architectures. Additionally, due to lack of
convergence in the heart rate prediction task, we have omitted reporting results from the transformers.
We reported the results in the tables below.

Table 20: Performance comparison of our method with others in IMU with ResNet

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 97.40±0.86 85.02±3.92 83.35±3.90 99.29±0.02 91.78±1.07 91.70±1.08 84.80±4.15 6.83±1.60 3.97±0.96
Aug. 98.40±0.37 86.66±1.26 85.12±1.53 99.31±0.04 92.82±0.35 92.84±0.35 95.88±1.10 6.62±1.10 3.83±0.66
LPF 97.91±0.60 84.03±2.67 82.49±2.93 93.01±1.92 91.33±1.43 91.38±1.40 94.59±0.71 4.46±0.04 2.50±0.26
APS 98.02±0.46 81.98±3.36 79.23±4.20 93.01±1.92 92.13±0.22 92.14±0.22 93.01±1.92 6.61±1.44 3.84±0.84

Ours 100±0.00 87.12±2.21 85.21±3.10 100±0.00 91.90±0.10 92.02±0.07 100±0.00 6.55±0.75 3.93±0.61
Ours+LPF 100±0.00 83.05±3.86 80.14±3.62 100±0.00 92.45±0.45 92.50±0.44 100±0.00 4.45±0.22 2.45±0.13
Ours+APS 100±0.00 84.33±2.93 83.01±3.13 100±0.00 92.25±0.17 92.30±0.16 100±0.00 6.07±0.47 3.50±0.28

Table 21: Performance comparison of our method with others in IMU with Transformer

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 90.44±0.48 69.15±4.79 65.64±4.59 96.98±0.20 91.10±1.83 91.04±1.92 93.87±2.12 6.55±0.83 3.77±0.48
Aug. 93.68±0.64 73.23±2.75 69.79±3.63 98.35±0.06 89.21±0.07 89.16±0.11 95.46±2.65 6.54±0.34 3.76±0.17
Ours 100±0.00 74.02±3.01 70.42±3.47 100±0.00 91.55±1.20 91.19±1.19 100±0.00 6.50±0.55 3.77±0.31

Table 22: Performance comparison of ours and others in ECG with Transformer

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 98.53±0.17 91.32±0.23 91.22±0.24 98.34±0.16 98.37±0.15 83.22±0.72 73.50±1.99 93.21±0.30
Aug. 99.00±0.16 91.96±0.19 91.89±0.22 98.45±0.18 98.96±0.17 82.28±1.18 72.32±2.20 93.20±0.42
Ours 100±0.00 92.10±0.25 91.93±0.85 98.40±0.15 100±0.00 83.35±0.65 74.12±1.80 93.28±0.31
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We also integrated our proposed transformation into some recent neural networks and investigated the
performance. Mainly, we employed ModernTCN (donghao & wang xue, 2024) and T-WaveNet (LIU
et al., 2022) architectures. When we implemented ModernTCN, we follow the original implementa-
tion from We set the patch size and stride to 5 and 2, respectively, while keeping the backbone and
dropout rate the same as in the original implementation. The stem, downsampling, and FFN ratios
were set to 1.

Table 23: Performance comparison of our method for HR estimation using ModernTCN

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 38.62±0.23 34.67±0.45 29.26±0.41 3.45±0.54 10.24±0.46 20.52±0.46 11.90±0.24 60.16±1.27
Aug. 50.15±0.07 34.36±2.14 28.29±3.04 01.95±2.23 39.10±1.27 15.36±1.16 7.25±0.64 79.97±2.53
Ours 100±0.00 33.45±1.07 29.33±1.09 08.96±3.73 100±0.00 15.20±1.22 7.13±0.10 80.05±1.08

Table 24: Performance comparison of our method for ECG datasets using ModernTCN

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 98.53±0.17 55.48±1.34 46.07±1.03 73.35±0.34 87.77±1.20 51.84±4.80 22.41±2.30 60.34±1.64
Aug. 95.51±3.38 81.93±3.60 79.15±4.63 94.88±1.11 98.96±0.17 60.13±2.57 28.86±5.23 70.57±6.10
Ours 100±0.00 83.80±2.06 80.73±2.70 95.41±0.33 100±0.00 60.58±1.50 30.73±1.08 72.58±3.76

Table 25: Performance comparison of our method for IMU datasets using ModernTCN

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 95.89±2.10 86.68±1.53 85.45±2.35 97.23±0.18 92.21±0.76 92.09±1.10 73.96±2.18 4.03±0.11 2.32±0.09
Aug. 96.55±0.80 85.42±4.50 83.69±6.74 98.38±0.28 91.97±0.44 91.31±0.49 61.01±4.88 4.08±0.14 2.29±0.07
Ours 100±0.00 88.73±1.47 87.19±1.94 100±0.00 94.12±0.87 93.43±1.10 100±0.00 3.88±0.26 2.15±0.16

Table 26: Performance comparison of our method using ModernTCN for sleep stage classification

Method Sleep-EDF
S-Cons ↑ Acc ↑ F1 ↑ W-F1 ↑ κ ↑

Baseline 71.84±1.78 69.50±1.81 62.84±1.39 71.21±1.66 60.39±2.20
Aug. 95.47±5.75 72.96±4.72 64.50±4.14 73.61±5.12 64.90±6.13
Ours 100±0.00 73.36±3.10 65.37±2.88 74.10±1.97 65.42±3.51

From these results, we can see that ModernTCN architecture performs relatively poor compared to
1D ResNet architecture in most tasks. However, for the IMU related tasks, ModernTCN outperforms
other architectures. Similarly, when we integrate our method into the ModernTCN, the performance
increases by 5–10% while decreasing the variation between runs.
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We also performed experiments with T-WaveNet, a tree-structured wavelet deep neural network.
The model decomposes input signals into multiple subbands and builds a tree structure with data-
driven wavelet transforms the bases of which are learned using invertible neural networks. We use
the original implementation from https://openreview.net/forum?id=U4uFaLyg7PV.
Following the original implementation, the wavelet functions are learned together with the neural
network instead of using stationary wavelet transforms like Haar.

Table 27: Performance comparison of our method for HR estimation using T-WaveNet

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 49.73±1.61 21.78±1.87 15.77±1.59 60.30±4.16 39.69±0.17 13.38±0.19 6.15±0.08 83.10±0.47
Aug. 71.11±1.24 19.29±2.31 12.16±1.51 66.50±6.30 53.95±0.28 12.82±0.30 5.89±0.11 83.63±0.76
Ours 100±0.00 19.03±2.41 12.10±2.10 67.76±6.55 100±0.00 12.65±0.25 5.59±0.10 84.05±0.57

Table 28: Performance comparison of our method for ECG datasets using T-WaveNet

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 97.23±0.19 93.17±0.80 92.40±0.78 98.87±0.18 94.72±1.91 78.94±1.60 71.43±2.24 92.44±1.03
Aug. 98.19±0.68 93.63±0.36 92.89±0.32 98.96±0.10 95.43±0.89 79.77±0.99 70.72±1.42 92.33±0.63
Ours 100±0.00 93.45±0.40 92.92±0.50 99.00±0.15 100±0.00 79.89±1.10 71.61±2.10 92.50±0.89

Table 29: Performance comparison of our method for IMU datasets using T-WaveNet

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 97.63±1.45 72.77±2.36 70.48±4.16 98.37±0.96 92.37±0.89 91.53±1.03 89.50±0.50 6.69±0.54 3.90±0.31
Aug. 98.30±2.43 72.82±3.34 68.78±3.53 98.68±0.65 92.88±1.15 92.05±1.28 89.29±0.72 6.62±0.59 3.83±0.31
Ours 100±0.00 74.04±2.10 71.04±3.25 100±0.00 92.95±1.14 91.60±0.93 100±0.00 6.03±0.50 3.54±0.35

Table 30: Performance comparison of our method using T-WaveNet for sleep stage classification

Method Sleep-EDF
S-Cons ↑ Acc ↑ F1 ↑ W-F1 ↑ κ ↑

Baseline 71.84±1.78 69.50±1.81 62.84±1.39 71.21±1.66 60.39±2.20
Aug. 95.47±5.75 72.96±4.72 64.10±1.23 73.61±5.12 64.90±6.13
Ours 100±0.00 73.36±5.10 65.90±1.07 74.10±3.97 65.42±3.51

As shown in tables, the proposed transformation also increases the performance of the different neural
networks. One important result from the comparison of these tables is that there is a correlation
between the model’s ability to remain invariant to shifts and its performance, up to a certain threshold
where the model performs adequately. However, beyond that point, as the model’s performance
declines, the consistency in shift increases, resulting in the model consistently outputting the wrong
class. For instance, in the case of step counting, the transformer architecture performs quite worse
and fails to distinguish between samples. As a result, the consistency of the transformer is higher
compared to ResNet and fully convolutional networks while the performance is lower. We believe
that investigating the invariance of different neural architectures alongside their performance on time
series tasks can shed light on model networks and the fundamental reasons behind abrupt output
changes with small changes in the input signal, i.e., ≈ 10–15 ms shift.
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F VISUAL EXAMPLES

In this section, we provide some visual examples to show how the proposed transformation function
works. First, we show the t-SNE (van der Maaten & Hinton, 2008) representations of the embeddings
obtained from a trained model with and without applying our transformation in Figure 4.

(c) Embeddings with our transformationBaseline model(b)

Shifted variants of a single sample Different samples from healthy rhythm
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Figure 4: (a) Comparison of pairwise Euclidian distances of randomly shifted embeddings with and
without applying our method. (b) t-SNE visualizations of embeddings without our method show
some shifted samples clustering with opposite class embeddings. (c) With our transformation, all
shifted variants of the same signal cluster correctly within their true class label.

For visualization, we selected 50 different ECG (healthy) signals from the test set. We then took a
single arrhythmia ECG sample from the test set, applied 49 shifts to it (50 samples with the original),
and created variants shown in blue. Finally, we compared the embeddings with and without applying
our proposed transformation function. As seen in Figure 4, applying our transformation function
maps the shifted samples to a single point in the embedding space, with the maximum Euclidean
distance between embeddings being close to 10−6.

Second, we conducted a simple experiment to investigate how the guidance network works with the
proposed transformation. Specifically, we created a two-label classification task where the model
classifies sinusoids by frequency. The dataset includes two waveforms: x1(t) = cos (ω1t+ ϕ1) +
cos (ω2t+ ϕ2) and x2(t) = cos (ω1t+ ϕ1) + cos (ω3t+ ϕ3), with the model identifying whether
the input contains frequency ω2 or ω3. Frequencies were set at 5, 24, and 25 Hz for ω1, ω2, and ω3,
respectively, with ω1 included in both waveforms to increase task difficulty. We set the sampling rate
of the signals to 300 Hz.
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Figure 5: Input waveforms to the classifier in the third epoch (a) without applying our transformation
function. (b) with our guidance network (fθG). Another experiment with a different seed. Input
waveforms (c) without applying our transformation function. (d) with our guidance network (fθG ).
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To add diversity, we randomly shifted x1(t) and x2(t) by angles sampled from [0, π] and added
Gaussian noise (ϵ) with variance of 0.1. We used the FCN similar to that specified in Appendix C.4 as
the architecture. This experimental setup is inspired by similar experiments exploring neural network
behaviors (Rahaman et al., 2019).

Figure 5 illustrates an interesting result: after a few weight updates, the guidance network assigns
angles ϕ that maximize the Euclidean distance between inter-class samples. For instance, before
applying the guidance network, the distance between a pair of samples is 9.12 (Figure 5 (a)). After
applying the guidance network, this distance increases by four to 43.6 (Figure 5 (b)). Interestingly,
running the same experiment with a different seed (i.e., a new random initialization of the guidance
network) shows that the assigned angles differ, but the Euclidean distances between the samples
remain almost unchanged, shifting only slightly from 43.6 to 42.8 (See Figure 5 (d)).

This experiment can also explain the occasional performance increase when the angle variance
increases with a loss term as there is no single solution for minimizing the distance, but there can be
infinitely many depending on the frequency distribution of the dataset and classes.
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Figure 6: (a) Angle assignments across different seeds. (b) Euclidean distances between intra-class
samples, compared with and without the proposed transformation (W/o T (x, ϕ)). The results show
that the Euclidean distances are highly consistent across different seeds, with the curves nearly
overlapping. Additionally, when the transformation is not applied, the distances between intra-class
samples are noticeably higher.

We conducted an additional experiment to analyze the angle assignments across runs using the IEEE
SPC22 dataset. The experiment was performed with three random seeds, and the results are presented
in Figure 6. In Figure 6 (a), we reported the assigned angles in cos (ϕ) as the angle −π and π are the
same due to the circular property of the angles. While the assigned angles vary slightly between runs,
the Euclidean distances between samples consistently converge to similar values. Specifically, the
intra-class samples are closer in the transformed space compared to the case when the transformation
is not applied.
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G EXPANDED REVIEW OF RELATED WORK

Transformation Applying phase shifts to time series is commonly used in signal process-
ing (Haykin & Veen, 2002; Oppenheim et al., 1996). Recently, shifting phase values of harmonics have
also been applied in the machine learning community for data augmentation of time series (Demirel
& Holz, 2023; Qian et al., 2022). However, our proposed transformation differs from these in two
key aspects. First, our work is the first to represent every point in the shift space uniquely with
the phase angle of a harmonic whose period is equal to or longer than the length of the sample,
i.e., T0 ≤ t. This observation enables us to design a bijective transformation that ensures shift
invariance. Additionally, we integrated this observation into deep learning frameworks using a novel
loss function, demonstrating that our proposed method enhances model performance while ensuring
shift invariance.

Second, we apply linear phase shifts to keep waveform features intact. Since if an input signal is
subjected to a phase shift that is a nonlinear function of ω similar to Qian et al. (2022); Demirel &
Holz (2023), then the complex exponential components of the input at different frequencies will be
shifted in a manner that results in a change in their relative phases. Superimposing these exponentials
can result in a signal that significantly differs from the input if special precautions are not taken. Thus,
this alteration in the waveform (Oppenheim et al., 1996) can potentially affect downstream labels or
generate unrealistic signals.

However, our transformation applies the tailored shift linearly to all harmonics while keeping the
information content of signals unchanged (Mallat, 2012) as the transformation operates as a group
action.

Shift-invariant Kernels Learning shift invariant representations from data has a long history in
machine learning (Grosse et al., 2007; Rahimi & Recht, 2007). The initial effort focused on designing
shift-invariant kernels for feature extraction (Rahimi & Recht, 2007), which were applied to support
vector machines. A different approach introduced shift-invariant sparse coding technique, which
reconstructs an input using all basis functions across all possible shifts (Grosse et al., 2007). However,
the classification performance of these techniques were significantly outperformed by the modern
networks. Thus, recent approaches have focused on integrating shift-invariant kernels into modern
convolutional neural networks in a stacked manner while using Gaussian low-pass filters to prevent
aliasing (Mairal et al., 2014).

However, applying low-pass filters to prevent anti-aliasing completely is not possible (Oppenheim
et al., 1996). Thus, high-frequency components will always (partially) alias. This is more problematic
for time series as the interaction of high and low frequencies are more common (Demirel & Holz,
2023; Canolty & Knight, 2010). Therefore, applying a low-pass filter can reduce the performance
of neural networks in certain time series tasks, as shown by our experiments. The filtering may
inadvertently attenuate important high-frequency components, which are essential for distinguishing
patterns, leading to suboptimal model outcomes.

Learning based Transformations Methods to standardize inputs have been around for a long
time (Yüceer & Oflazer, 1993). An important recent work along this direction is the Spatial Trans-
former Network (STN) being introduced to learn transformation functions for invariant image classi-
fication (Jaderberg et al., 2015). Similarly, Temporal Transformer Networks (TTN), an adaptation of
STNs for time series applications, were introduced to predict the parameter of warp functions and
align time series (Lohit et al., 2019; Shapira Weber & Freifeld, 2023). Recent studies have utilized
canonical equivarant networks to obtain mapping points for inputs (Kaba et al., 2023). However,
these methods face significant limitations as the operation order increases. Specifically, higher-order
transformations in group equivarant networks require additional filter copies in the lifting layer
and an increased number of parameters in the subsequent group convolution layers. While this
can improve performance, it comes at the cost of significantly higher computational and model
complexity. Furthermore, prior works restrict mappings to a finite number of group elements defined
by the canonicalization network. In contrast, our proposed transformation eliminates this limitation
entirely, enabling each sample to map to any point in the input space—infinitely many—without
relying on a neural network. This is achieved by uniquely representing each point in the shift space
using a specific harmonic.
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H DISCUSSION, LIMITATIONS AND FUTURE WORK

In this work, we propose a new diffeomorphism to achieve shift invariant deep learning models for
time series in real-world tasks. While existing techniques show promise for images, they fall short
in time series, where the interaction of low and high frequencies are an important part of the data
generation. The proposed transformation offers a novel solution, ensuring that samples will map the
same point in the high dimensional data manifold despite a random shift. Theoretical and empirical
analysis demonstrates its effectiveness across several time series tasks, enhancing model robustness
while improving the performance.

While our approach consistently improves the performance of deep learning models for time series
data, it is worth noting the potential areas for future investigation and improvement. First, we
conducted our experiments on health-related time series tasks from humans since the robustness of
models is crucial in those domains. Therefore, extending the proposed transformation to images for
shift or rotation invariancy presents an intriguing direction for future investigations. Thus, we believe
that future research could benefit on adapting our approach to diverse domains, including images, to
explore shift or rotation invariance further. Second, our approach requires samples to be expanded
into the sum of periodic sinusoidals with Fourier expansion followed by using the phase angle of the
one whose period equals or exceeds the length of the signal. Input samples should be decomposed
the sinusoidals while considering this requirement. Therefore, we believe future work can benefit
by detecting the phase of a specific sinusoidal which satisfies the condition and apply a linear phase
all-pass filter without performing the operation in the frequency domain. Lastly, we observed notable
performance improvements from the additional guidance network when it is used with the proposed
diffeomorphism while applying a proper loss function. Thus, we believe that further performance
improvements can be achieved through a refined design incorporating alternative inputs.
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