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ABSTRACT

Reinforcement learning algorithms typically necessitate extensive exploration of
the state space to find optimal policies. However, in safety-critical applications,
the risks associated with such exploration can lead to catastrophic consequences.
Existing safe exploration methods attempt to mitigate this by imposing constraints,
which often result in overly conservative behaviours and inefficient learning. Heavy
penalties for early constraint violations can trap agents in local optima, deterring
exploration of risky yet high-reward regions of the state space. To address this,
we introduce a method that explicitly learns state-conditioned safety represen-
tations. By augmenting the state features with these safety representations, our
approach naturally encourages safer exploration without being excessively cautious,
resulting in more efficient and safer policy learning in safety-critical scenarios. Em-
pirical evaluations across diverse environments show that our method significantly
improves task performance while reducing constraint violations during training,
underscoring its effectiveness in balancing exploration with safety.

1 INTRODUCTION

Reinforcement learning (RL) has achieved notable success across various domains, from game
playing (Shao et al., 2019) to robotics (Zhang & Mo, 2021; Singh et al., 2022). However, training RL
agents directly in safety-critical environments remains challenging partly due to the presence of failure
events that are deemed undesirable or unacceptable both during training and deployment. To manage
these failures, RL algorithms typically rely on failure penalties or impose safety constraints (Xie
et al., 2022; Leike et al., 2017; Achiam et al., 2017; Stooke et al., 2020). While these methods help
minimize unsafe behaviours during learning, they often result in overly cautious policies, restricting
the agent’s ability to explore leading to sub-optimal performance. The key challenge, therefore, lies
in designing RL algorithms that can effectively balance the risks of exploration with the reward of
task completion.

One significant factor contributing to conservative behaviour in RL agents is "primacy bias" (Nikishin
et al., 2022), where early experiences exert a lasting influence on the agent’s learning trajectory. In
safety-critical applications, severe penalties for constraint violations encountered early in the training
process can disproportionately shape the agent’s policy, leading to overly cautious decision-making
and hindered exploration. As a result, agents learn safety representations that overestimate the risk
of failure, discouraging further exploration. This often results in agents with a narrow view of the
state space and locally optimal yet overly conservative policies that sacrifice performance for safety.
While a considerable body of research has explored some notion of safety estimation for safer policy
learning (Tang et al., 2019; Chow et al., 2018; Greenberg et al., 2022), most approaches focus on
failure prevention by implicitly or explicitly restricting agent exploration. For example, methods
such as Bharadhwaj et al. (2020) and Srinivasan et al. (2020) filter out actions with the likelihood
of failure above a specific threshold. In this work, we demonstrate that by incorporating accurate
safety representations into the learning process, agents can make more informed decisions, balancing
exploration with safety.
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Specifically, we present Safety Representations for Policy Learning (SRPL), a framework that aug-
ments an RL agent’s state representation by integrating a state-conditioned safety representation
derived from the agent’s experiences during the learning process. SRPL is grounded in the under-
standing that risk is often unevenly distributed among states. For instance, driving in the wrong lane
on a two-lane road is inherently unsafe, independent of the specific policy the agent follows. The
safety representation is captured by a steps-to-cost (S2C) model, which for any given state estimates
the distribution over the proximity to unsafe or cost-inducing states. Additionally, by learning safety
representations that are state-centric utilizing data from the agent’s experience (as opposed to just the
current policy), we encourage the generalizability of the safety representations across tasks.

To summarize, we study three primary hypotheses addressing the key challenges outlined:

• By directly integrating safety information into the state representation, the safety and
efficiency of RL agents during the learning process are significantly enhanced.

• Safety representations can be efficiently learned online using the experiences generated
during RL training, resulting in improved performance without requiring prior or additional
data.

• When learned from an agent’s entire experience that includes a diversity of policies, safety
representations can be generalized across various tasks, acting as an effective prior for
learning new tasks.

The SRPL framework can be used to augment any RL algorithm and we show results for several
on-policy and off-policy baselines in Sec 5. We evaluate SRPL agents on several simulated robotic
tasks, including manipulation, navigation, and locomotion. Our results show that by leveraging safety
information, SRPL agents are significantly more sample-efficient while being safer during learning
compared to baselines. Additionally, safety information transfers well across tasks, providing a useful
prior for learning new policies.

2 PRELIMINARIES

Markov decision processes (MDPs) are defined as a tuple ⟨S,A, T,R, d, γ⟩, where S is a set of
states, A is a set of actions, R : S × A × S → R is the reward function indicating the immediate
reward for executing action a in state s and resulting in state s′, T : S × A × S → [0, 1] is the
forward dynamics model indicating the probability of transitioning to state s′ after executing action
a in state s, d : S → [0, 1] represents the probability of starting in a state s ∈ S, and γ ∈ [0, 1) is
the discount factor. The solution to an MDP is an optimal policy π∗ that maximizes the expected
discounted cumulative reward, J(π):

J(π) = Es0∼d(s)

[
Eτ∼π

[ H∑
t=0

γtR(st, at, st+1)

]]
. (1)

Here, H is the length of the horizon.

Constrained MDPs (CMDPs) are defined as a tuple ⟨S,A, T,R, d, γ, C, β⟩, where ⟨S,A, T,R, d, γ⟩
is an MDP, C : S → {0, 1} is a cost function, and β is the constraint threshold or a maximum,
cumulative cost that is acceptable in expectation. Intuitively, we can view the constraints imposed by
C and β as reducing the set of possible policies from all policies Π to those satisfying the constraints
ΠC ⊆ Π. The solution to a CMDP is a policy π∗ where

π∗ = argmaxπ∈ΠC
J(π),ΠC =

{
π ∈ Π : JC(π) ≤ β

}
.

where JC(π) = Es0∼d(s)

[
Eτ∼π

[ H∑
t=0

γtC(st)
]] (2)

To find an optimal policy, online RL algorithms allow an agent to explore the environment while
simultaneously using these trajectory rollouts to optimize the policy. In deep reinforcement learning
(DRL), it is typically impossible to guarantee that an agent will never execute a policy π /∈ ΠC
during training. Therefore, in the absence of any prior information, the agent will likely violate
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Figure 1: To motivate the benefit of learning state-conditioned safety representations in safety-critical applica-
tions, we perform experiments on the Island Navigation environment Leike et al. (2017). We assume access
to the Manhattan distance from the nearest water cell as ground truth (GT) safety information. (Col 1) shows
that without this information, penalties due to failure early in the learning process bias the agent toward overly
conservative behaviour resulting in suboptimal policies that avoid water but fail to complete the task. (Col
2) compares the Q-value estimates of a DQN agent with and without GT safety information across all states
over multiple episodes. Without safety information, the agent fails to distinguish between risky and less risky
states, producing uniformly low Q-values across all states. This highlights the inability of RL agents to learn
good safety representations using reward signals alone. (Col 3) examines state visitation patterns over episodes,
showing that while both agents initially explore the environment, the agent without safety information quickly
reduces exploration, oscillating between two states to avoid failure but failing to reach the goal state while the
agent with safety information is able to explore a larger region of the state-space. More detailed discussion in
Sec. 3.1

the constraints during exploration. Given this, we often care about both the cumulative constraint
violations incurred during training as well as the expected constraint violations of the final policy.

In the remainder of this paper, we will refer to states that we aim to avoid, such as sink states in MDPs
and cost-inducing states in CMDPs, as “unsafe” states. We’ve also used "distance to unsafe" and
"steps to unsafe" interchangeably. We define a failure as an event where a constraint is violated, and
we will use the terms “failure” and “constraint violation” interchangeably. Furthermore, following
common practices in safe RL literature (Achiam et al., 2017; Stooke et al., 2020; Sootla et al., 2022),
we assume that unsafe states can be identified either through the termination of an episode or via the
cost signal.

3 SAFETY REPRESENTATIONS FOR POLICY LEARNING

In this section, we will begin by motivating the usefulness of safety information in a toy example
where we assume that this information is somehow provided. Subsequently, we will formalize our
choice of safety representation and describe the SRPL framework.

3.1 MOTIVATING EXAMPLE

To demonstrate the usefulness of state-centric safety representations, we perform experiments on
Island Navigation (Leike et al., 2017), a grid world environment designed for evaluating safe
exploration approaches. The agent’s goal is to navigate the island without entering the water cells.
Entering a water cell is considered unsafe and leads to a failure penalty in the form of a negative
reward and episode termination. The agent is only rewarded when it visits the goal state. The input
to the RL agent is the image of the entire grid. Instead of experimenting with a single environment
with a fixed start and goal state (Leike et al., 2017) where the agent can simply memorize action
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Figure 2: SPRL Framework: SPRL explicitly learns safety representations for states as distribution over proximity
to unsafe states (cost-inducing states) through a steps-to-cost (S2C) model and uses this information to implicitly
guide policy learning towards exploring safer regions of the state space.

sequences, we create four different versions (Fig. 11 (in the appendix)) of the Island Navigation
environment with different start and goal positions as well as locations of the water tiles. Each episode
begins with randomly selecting an environment. Thus the agent needs to learn good state-conditioned
representations of safety to solve the task as well as minimize failures during learning.

In this environment, a reasonable proxy for safety associated with every cell is its Manhattan distance
to the nearest water cell. To investigate how this priviliged safety information can be useful to
the policy, we provide the RL agent with this distance (referred to as GT safety) by adding it to
the state representation. We train DQN(Mnih et al., 2015) agents with and without this safety
information, along with variants of DQN that model aleatoric (c51 Bellemare et al. (2017)) and
epistemic (BootstrapDQN Osband et al. (2016)) uncertainty.

Fig. 1 (col 2) shows the evolution of the Q-value distributions for all state-action pairs for a particular
instance of the environment during training, for DQN agents with and without safety information. In
the presence of safety information, the DQN agent is able to efficiently learn a correlation between
safety information and reward, outputting low Q-values for risky states (GT safety = 1) and high
Q-values for safe states (GT safety = 3), as a result efficiently exploring the state-space and ultimately
converging to an optimal policy. On the other hand, the DQN agent without this information fails to
learn accurate internal representations of safety and instead overestimates risk for all states resulting
in uniformly low Q-values (Fig. 1 (col 2) (row 1)), further discouraging exploration and as a result
converging to a sub-optimal policy (Fig. 1 (col 1) (row 1)). Fig. 1 (col 3) (row 1) shows that the
policy learned by the DQN agent in the absence of safety information ensures safety of the agent
by oscillating between two or three states near the start state1 but fails to consistently reach the goal
state resulting in low average return (Fig. 1 (col 1)).

This example demonstrates that having access to additional information about the safety of a state can
be useful for RL agents to overcome the bias created by negative experiences early in learning that
result in an overestimation of risk leading to low Q-values and, as a result, yield conservative policies
with sub-optimal performance. However, typically this information is not provided to a learning
agent and must be inferred from the agent’s observation of the environment. We propose explicitly
learning safety representations using agent experience during learning.

3.2 STATE-CENTRIC SAFETY REPRESENTATIONS

We propose to learn state-conditioned safety representations as an inductive bias to enable safety-
informed agents by leveraging the agent’s prior experience. This raises two key questions: (1)
What constitutes an ideal state-centric representation of safety? (2) How should we train such a
representation?

An effective safety representation must capture the immediate likelihood of failure in the current
state as well as reflect potential risks in future states. This representation should incorporate both the
risks associated with exploration from a given state, the uncertainties in the environment’s dynamics,
and the ambiguities in policy choices for action selection following the current state. A simple scalar
safety representation (Bharadhwaj et al., 2020; Srinivasan et al., 2020), lacks the expressiveness
necessary to capture these complexities. Therefore, we propose modelling safety as a probability

1Episodes terminate when the agent reaches the goal state or enters a water cell. However, oscillating between
two states causes episodes to truncate at the max-steps limit of 100, resulting in high state-visitation counts
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distribution over distances to cost-inducing states. To avoid learning representations that overfit data
from a narrow region of the state space induced by a particular policy, we propose to learn safety
representations over the entirety of the agent’s experience instead of policy-specific rollouts.

Figure 3: Safety Representation: We demonstrate the S2C model’s
output on two different states (A & B). A being farther from the
water cells (indicated in blue) has its peak at 3 (distance from the
unsafe set) while B is a more risky state and has its peak at 1.

Formally, we model safety as a func-
tion S : S → ∆Hs , where S is
the state space and ∆Hs represents
a probability simplex over the safety
horizon Hs

2. Given the experience
of an agent, the model St(s) aims
to capture the conditional probability
of entering an unsafe state in exactly
t ∈ {1, 2, . . . ,Hs} steps given that
the agent is in state s (Fig. 3). Here,
SHs(s) represents the probability that
the agent remained safe throughout
the safety horizon Hs without encoun-
tering an unsafe state based on the
agent’s past experience. This model
can be learned from the set of trajectories which represent the experience of the agent, as we will
describe next.

3.3 SRPL FRAMEWORK

To learn the state-centric safety representation , we train a neural network, referred to as the “steps-
to-cost” or the S2C model, which takes the state as input and outputs the corresponding safety
representation. This representation is modelled as a discrete distribution, implemented as the softmax
output of a neural network Sν parameterized by ν.

The safety representation is learned alongside the RL policy by constructing a separate re-
play buffer DS2C in the case of on-policy algorithms, which contains trajectories τ =
(s0, δτ (s0)), . . . , (sn, δτ (sn)) from policy rollouts. In the case of off-policy algorithms like
CSC (Bharadhwaj et al., 2020) and CVPO Liu et al. (2022), the off-policy buffer is used to store the
“steps-to-cost” information corresponding to states for each trajectory. At the end of each episode,
every state s in the trajectory τ is labelled with its corresponding “steps-to-cost” value δτ (s), which
is the number of actions taken before encountering an unsafe state. If no unsafe state is encountered
during the episode, the distance to unsafe for all states in the trajectory is set to the safety horizon
length (Hs) to indicate safety of the state within the safety horizon. In this way, for every trajectory
τ ∈ DS2C and for every state s ∈ τ , we have a label δτ (s) which we can use to train our S2C model
by minimizing the following negative log-likelihood loss3:

LS2C((s, τ); ν) = −
Hs∑
t=1

I[δτ (s) = t] log(Sν
t (s)) (3)

where I[δ(s) = t] is an indicator function that takes value 1 if δτ (s) = t and 0 otherwise.

In the SRPL framework, (Fig. 2), the output of the S2C model Sν(s) is incorporated into the agent’s
state by augmenting the original state with the learned safety representation. The augmented state
is defined as s′ = {s,Sν(s)}. For high-dimensional observations, such as raw images, the safety
representation is concatenated with the encoded feature representation of the observation, such that
the augmented observation becomes o′ = {F(o),Sν(o)}, where F is the feature encoder.

Implementation details: We model the safety distribution over a fixed safety horizon Hs << H ,
relying on the assumption that information about near-term safety is more important and an agent can
safely navigate the state space with this information. Instead of modelling the distribution over all
time steps between [1, Hs], we split this range into bins to further reduce the dimensionality of the
safety representation. An ablation over the choices of bin size and safety horizon Hs is included in
the Appendix A.6.1. For on-policy algorithms, a separate off-policy replay buffer is maintained which

2Hs << H , where H is the MDP time horizon.
3For categorical distributions, NLL loss is equivalent to Cross-Entropy loss.

5



Published as a conference paper at ICLR 2025

Figure 4: Performance of SRPL agents (denoted SR-*) on four different tasks. For these experiments, both
the S2C model and the policy have been randomly initialized so no prior information has been provided to the
agent. SRPL agents consistently outperform their baseline counterparts on both safety during learning as well as
sample efficiency. Results were obtained by averaging the training runs across five seeds. The input to the RL
agent is state-based in the form of joint states or LiDAR points.

stores policy rollouts along with the distance to unsafe values. To preserve only relevant experiences
about policies similar to the agent’s current policy, the replay buffer throws away samples from older
policies. More thorough implementation details are provided in Appendix A.2

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We perform our experiments on four tasks in three distinct environments. First is a manipulation
task AdroitHandPen (Rajeswaran et al., 2017) where a 24-degree of freedom Shadow Hand agent
needs to learn to manipulate a pen from a start orientation to a randomly sampled goal orientation.
Dropping the pen from the hand is considered a failure or constraint violation. Next, we have an
autonomous driving environment SafeMetaDrive (Li et al., 2022), where an RL agent is learning to
drive on the road while avoiding traffic, each collision incurs a cost and the cost threshold is set to
1 (β = 1). Finally, we evaluate our method on the Safety Gym (Ray et al., 2019) environment on
tasks PointGoal1 and PointButton1. For the PointGoal1 task we have a point agent that is tasked with
reaching a random goal position from a random start position, the environment consists of regions
that are unsafe and accumulate cost. For the PointButton1 task, the agent needs to press a sequence
of buttons in the correct order, pressing the wrong button incurs a cost. In addition, there are static
hazards and dynamic objects that the agent needs to avoid. The goal in these environments is to do
the task while incurring costs lower than a threshold (β = 10). Additionally, we also show results
on Mujoco locomotion environments (Ant, Hopper and Walker2d) in the Appendix. The goal in
these tasks is for the robot to move as fast as possible while avoiding falling on the ground which is
considered a failure or a constraint violation.

Further, we evaluate the transferability of learned safety representations from one task to another.
For this, we use PointButton1 as the source task and PointGoal1 as the target task. We augment
the state representation of the Safety Gym environments to ensure the same state dimensionality
for PointGoal1 and PointButton1 (More details in Appendix A.4). The S2C model is trained on
the source task and frozen for the target task and we study the performance of the S2C model at
transferring information in terms of safety and efficiency on the target task. Additionally, we show
that the S2C model provides a good initialization for fine-tuning representations on the target task in
the case of transferring both policy and safety representations.

4.2 BASELINES & COMPARISON

The SRPL framework can be integrated with any RL algorithm that accounts for risk sensitivity or
operates in safety-critical environments. We evaluate its effect on feature learning by comparing
several baseline algorithms with their SRPL-augmented versions. We compare against both off-policy
and on-policy safe RL algorithms. On-policy baselines include Constrained Policy Optimization
(CPO) (Achiam et al., 2017), a second-order method for enforcing constraints, TRPO-PID (Stooke
et al., 2020) a Lagrangian-based method that uses a PID controller for stable learning, SauteRL (Sootla
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AdroitHandPen SafeMetaDrive PointGoal1 PointButton1
Methods Return (↑) #failures (↓) Success Rate (↑) Total Cost (↓) Return (↑) Cost-Rate (∗1e2) (↓) Return (↑) Cost-Rate (∗1e2) (↓)

CPO 4154± 1798 6667± 363 0.088± 0.1 2715± 366 6.25± 3.28 1.61± 0.12 0.91± 0.70 1.64± 0.06

TRPO-PID 4809± 2641 6629± 445 0.076± 0.17 2471± 1326 2.96± 2.61 1.09± 0.02 0.15± 0.73 1.13± 0.06

SauteRL 3831± 1783 9100± 2557 0.08± 0.09 10170± 1196 3.63± 1.73 1.08± 0.02 −1.45± 0.56 1.09± 0.02

CRPO 7893± 2576 5752± 1146 0.22± 0.24 2966± 732 7.49± 1.56 1.58± 0.13 1.47± 0.68 1.58± 0.05

SR-CPO 7176 ± 1392 4797± 931 0.47± 0.34 1997 ± 151 11.63 ± 2.28 1.49± 0.03 2.21 ± 1.16 1.53± 0.05

SR-TRPO-PID 5963± 1384 5311± 741 0.12± 0.29 2001± 1014 7.31± 2.85 1.07± 0.02 1.38± 1.19 1.08± 0.02

SR-SauteRL 4094± 1007 6316± 1634 0.15± 0.12 8682± 814 4.46± 1.25 1.05 ± 0.01 −1.01± 0.61 1.04 ± 0.01
SR-CRPO 8800 ± 985 4626 ± 447 0.53 ± 0.18 2889± 549 10.49± 4.64 1.51± 0.02 3.12 ± 0.99 1.53± 0.02

Table 1: Performance of the RL policies at the end of the training. SRPL versions of the baseline algorithms
(denoted by SR-*) consistently reduce the number of failures or cost-rate while significantly improving return.
Training details for SRPL and baselines are provided in Appendix A.2. The input to the RL agent is state-based
in the form of joint states or LiDAR points.

et al., 2022) a state-augmentation method that stores the remaining constraint budget as part of the
state information, CRPO (Xu et al., 2021) a primal approach which updates the policy by alternating
between reward maximization and constraint satisfaction. Off-policy baselines include Conservative
Safety Critics (CSC) (Bharadhwaj et al., 2020) which learns a safety critic using a safe Bellman
operator and Constraint Variational Policy Optimization (CVPO) (Liu et al., 2022) which formulates
the constrained MDP problem as an Expectation Maximization (EM) problem.

Evaluation Metrics. For AdroitHandPen environment, we evaluate SRPL and baselines on episodic
return (sample efficiency) and total failures/costs incurred during the training of the RL agent (safety).
For the SafeMetaDrive environment, we evaluate the algorithms on task performance and safety in
terms of the success rate and total cost, respectively. For the Safety Gym environments, we evaluate
the algorithms on the task performance and safety in terms of episodic return and episodic cost,
respectively. Additionally, we measure the task performance and safety at the end of training for
the Safety Gym environments in terms of average return and cost rate respectively. Cost-rate is
measured by dividing the total cost incurred during training by the number of actions/steps taken in
the environment.

5 RESULTS

5.1 LEARNING SAFETY REPRESENTATIONS ALONGSIDE POLICY

We study the performance of SRPL agents when jointly training the S2C model and policy (Fig. 4). In
this setting, the S2C model does not contain prior information and thus must learn state-conditioned
safety representations using rollouts generated by the agent during training.

Table 1 shows the results for on-policy safe RL algorithms along with their SRPL counterparts.
Learning safety representations alongside the policy greatly enhances the sample efficiency of the
baseline algorithms on all tasks, while enabling faster constraint satisfaction or fewer failures or costs
during training. From Fig. 4, we can see that SauteRL (Sootla et al., 2022) performs the best in
terms of constraint satisfaction in the case of Safety Gym (Ray et al., 2019) environments where the
constraint threshold is greater than 1 (β > 1) and fails to do the same for tasks like AdroitHandPen
and SafeMetaDrive. We hypothesize that this limitation arises from how SauteRL encodes the
remaining safety budget into the state. In these environments, the safety budget remains 0 until a
constraint violation occurs, rendering it ineffective for accurately representing safety throughout the
task.

Fig. 5 shows the results for off-policy baselines and their SRPL counterparts on Safety Gym
environments PointGoal1 and PointButton1 over 2M timesteps4. By filtering out actions that might
cause a constraint violation through the use of a safety critic, CSC (Bharadhwaj et al., 2020) enables
better constraint satisfaction but results in conservative or suboptimal task performance. On the other
hand, CVPO (Liu et al., 2022) is significantly more sample efficient than CSC as well as the on-policy
counterparts. SRPL significantly improves the sample efficiency of both CVPO and CSC baselines
reaching similar or higher performance in comparison to SR-CVPO and SR-CPO in just 2M steps.
5.2 RISK-REWARD TRADEOFF

In CMDPs, safety and task performance can be treated as separate objectives, framing the problem as a
multi-objective optimization task. Depending on the safety-critical nature of a system, different levels

4Off-policy methods are generally more sample efficient and require fewer training samples
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Figure 5: Off-policy results for CSC and CVPO and
their SRPL counterparts on Safety Gym environments
over 2M timesteps. While CSC has better constraint
satisfaction it also leads to suboptimal performance,
CVPO has better sample efficiency which is further
improved by SRPL.

Figure 6: Transferring the Safety Representations:
Transferring the policy as well as learned safety rep-
resentations from PointButton1 to PointGoal1. Zero-
shot transfer of the (frozen) safety representation leads
to significant improvement in terms of sample effi-
ciency over vanilla CPO with or without policy trans-
fer. Fine-tuning the safety representations on Point-
Goal1 further improves the performance while leading
to better constraint satisfaction for policy transfer.

of tolerance for constraint violations during learning can be set, effectively prioritizing one objective
over the other. Emphasizing safety during the learning process tends to discourage exploration, which
can subsequently reduce task performance, a phenomenon often referred to as the risk-reward or
safety-performance tradeoff. To investigate the effect that learning safety representations has on
this tradeoff, we conduct experiments comparing the risk-reward tradeoff capabilities of SPRL with
baseline algorithms.

In algorithms that approach the CMDP problem through a Lagrangian formulation (CSC in Fig. 7),
prioritizing safety corresponds to increasing the value of the initial Lagrange multiplier. A higher
Lagrange multiplier value reduces exploration and enhances safety during learning. In algorithms
like CPO (Achiam et al., 2017) that enforce exact constraint satisfaction at each step, we adjust
the constraint threshold to modulate this tradeoff. Our experiments are conducted in two distinct
environments: AdroitHandPen and Ant. In Fig. 7 , each point represents the policy’s total cost
incurred during learning (x-axis) and its final performance (y-axis), measured as the average return,
for various safety requirement settings (either Lagrange multiplier or constraint threshold). The
ellipses represent the variance across both the x and y directions. As we increase the priority of safety
while learning, the number of failures reduces along with the task performance for all RL agents.

Figure 7 clearly illustrates that SPRL improves baseline algorithms’ ability to balance task perfor-
mance and safety during the learning process. This indicates that the SPRL framework facilitates
safer learning for a given level of task performance or enhances task performance for a desired level
of safety. Additionally, as expected, the figure shows that safety information becomes increasingly
valuable as the safety-criticality of the objective rises.

5.3 SRPL AS AN EFFECTIVE PRIOR

As described in Sec. 4.1, to study the generalizability of the learned safety representations across
tasks, we use PointButton1 as the source task and PointGoal1 as the target task. We present two sets of
results 1) where we transfer the safety representations but not the policy (Fig. 6(left)), training policy
from scratch on the target task) and 2) where we transfer both the policy and the safety representations
to the target task. Additionally, for both these cases, we study the effect of freezing the S2C model
(i.e. safety representations) as well as finetuning the safety representations on the target task.

From Fig. 6 (left), we see that transferring safety representations without finetuning them on the
target task (SR-CPO (safety transfer) (frozen)) improves the sample efficiency as well as enables
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Figure 7: Risk-Reward Tradeoff: SR-CPO is able to
better tradeoff risk and reward in comparison to vanilla
CPO thanks to learned safety representations.

Figure 8: Alternative Safety Representations: An anal-
ysis of the effect of different choices in modelling
safety representations on overall performance in terms
of safety and efficiency of the algorithm.

faster constraint satisfaction on the target task. However, training the safety representations directly
on the target task from scratch (SR-CPO (no transfer)) leads to better performance at convergence,
due to the fact that the source and the target environments are not identical in their distribution of
cost-inducing states. We further see that fine-tuning the safety representations (SR-CPO (safety
transfer) (finetuned)) achieves similar performance at convergence and faster constraint satisfaction in
comparison to learning representations from scratch. Fig. 6 (right) shows the results when transferring
the policy from source to target task. We see that CPO with policy transfer is able to be more sample
efficient compared to CPO trained from scratch. Transferring both the learned safety representations
and the policy keeping the safety representations frozen (SR-CPO (policy transfer) (frozen)) leads to
significant improvement in sample efficiency over CPO (policy transfer). Additionally, finetuning the
safety representations on the target task (SR-CPO (policy transfer) (finetuned)) leads to even more
sample-efficient agents as well as better constraint satisfaction.

6 ABLATIONS & ANALYSIS

6.1 ALTERNATIVE SAFETY REPRESENTATIONS

The choice of modelling the safety representation depends on the properties we desire our safety
representations to encode. For the safety representation to be state-centric we need it to be trained in
a policy-agnostic way (i.e. unlike the value function the safety representation encodes the likelihood
of failure from data collected from a diverse set of policies experienced during learning). In this
section, we study some of the alternate choices of safety representations:

(v1) modelling safety representation as the expected likelihood of entering an unsafe/cost-
inducing state for the current policy (Bharadhwaj et al., 2020),

(v2) policy-dependent safety representation as a distribution over proximity to unsafe states
trained using on-policy rollouts,

(v3) learning the safety representation, as proposed here, from the past experience of the agent,
across a diverse set of policies.

As shown in Fig. 8, SRPL outperforms all other safety representation models. The safety representa-
tion learned in (v1) does not improve the performance of the RL agent, as this information is already
captured by the cost-critic in CPO (Achiam et al., 2017). Although the policy-dependent safety repre-
sentation (v2) enhances the base algorithm’s performance, it does not surpass SRPL. We attribute this
to two key factors: (1) SRPL utilizes data from previous policies, allowing the safety representation
to encode information about a broader region of the state space, while the policy-dependent safety
representation is confined to on-policy rollouts, a common limitation in on-policy versus off-policy
reinforcement learning (Haarnoja et al., 2018); (2) by learning state-centric features, SRPL promotes
more stable dynamics during RL training, in contrast to the policy-dependent representations, which
fluctuates with policy updates.
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6.2 EFFECT OF SAFETY REPRESENTATIONS FOR HIGH-DIMENSIONAL OBSERVATIONS

To investigate the effects of learning low-dimensional state-centric safety representations from high-
dimensional observations, we conducted experiments in the Safety-Gym PointGoal1 environment
Ray et al. (2019). We examined how different sensor modalities impact task performance and safety
during learning. As shown in Table 2, increasing the dimensionality of sensor observations, from
LiDAR to depth to RGB, leads to a decline in both safety and task performance. This degradation
is likely due to the increased complexity involved in learning effective representations from higher-
dimensional data. Additionally, Table 2 emphasizes that as the dimensionality of observations rises,
learning safety representations as an inductive bias becomes increasingly critical for ensuring safe
and efficient policy learning.

7 RELATED WORK

Sensor Return (↑) Cost-Rate (∗1e2) (↓)
Modality CPO SR-CPO change (%) CPO SR-CPO change (%)
LiDAR 6.45± 2.91 11.63± 2.28 +77.69 1.61± 0.12 1.49± 0.03 −19.67
Depth 3.78± 2.41 9.44± 3.86 +149.73 1.91± 0.48 1.66± 0.1 −27.47
RGB 2.54± 1.838 8.134± 4.46 +219.98 2.0± 0.334 1.7± 0.374 −30.01

Table 2: Safety representation learning improves agent performance
(return) and reduces constraint violations (cost-rate) in higher-
dimensional observation spaces, where representation learning is
typically more challenging.

Representation Learning for RL: RL
algorithms often need to learn effec-
tive policies based on observations of
the environment, rather than having
direct access to the true state. These
observations can come from sensors like RGB cameras, LiDAR, or depth sensors. Learning rep-
resentations that capture the essential aspects of the environment or task can significantly enhance
efficiency and performance. To achieve this, various methods employ auxiliary rewards or alternative
training signals (Sutton et al., 2011; Jaderberg et al., 2016; Riedmiller et al., 2018; Lin et al., 2019;
Bhatia et al., 2023). One effective approach is learning to predict future latent states, which has
proven valuable in both model-free (Munk et al., 2016; Schwarzer et al., 2020; Ota et al., 2020) and
model-based (Watter et al., 2015; Ha & Schmidhuber, 2018) settings. In this paper, we’ve focused on
learning representations for state-conditioned safety that can enable more informed decision-making
in safety-critical applications.

Safe Exploration: Safe exploration (Achiam et al., 2017; Liu et al., 2022; Sootla et al., 2022; Stooke
et al., 2020; Jiang et al., 2023; Gu et al., 2024) approaches need to contend with both the aleatoric
uncertainty of the environment and the epistemic uncertainty associated with the exploration of
unseen parts of the state-space. These methods commonly achieve this by restricting exploration to
parts of the state space with low epistemic uncertainty. Bayesian model-based methods (Berkenkamp,
2019), represent uncertainty within the model via Gaussian processes, favouring exploration in states
with low uncertainty. (Huang et al., 2023) incorporate lagrangian-methods into world models. Fisac
et al. (2019), Srinivasan et al. (2020), Kang et al. (2022) and Bharadhwaj et al. (2020) use a safe
Bellman operator (called the safety critic) to evaluate the risk of failure from a given state taking a
particular action and use it to restrict exploration by filtering out actions with high risk of failure
or formulating constraints according to the safety critic. (Sootla et al., 2022; Jiang et al., 2023) use
accumulated cost as a proxy for risk associated with a state and use it to augment the state space.

8 DISCUSSION & CONCLUSION

While SRPL offers a valuable approach for improving safety representations in RL agents, it comes
with certain limitations, which, though typical of many RL methods, are still worth noting. First,
SRPL has difficulty capturing long-horizon causal mechanisms related to safety. For example, a
state at the beginning of a long single-way track leading to an unsafe state is actually very risky for
the agent but would be represented by the safety representation as low risk or safe, as the number
of actions separating the current and final, unsafe state is large. While challenging, such examples
are not typical for most embodied or otherwise high-risk agents. Second, our chosen definition of
safety has practical limits. We do not consider degrees of safety, and in general defining safety, harm,
danger, or any other bad outcome typically involves substantial nuance in real-world settings which
most safe RL methods, including SRPL, struggle to capture completely.

In summary, this paper addresses the problem of reinforcement learning (RL) agents becoming
overly conservative as a result of penalties due to safety violations early in training in safety-critical
environments, leading to suboptimal policies. To tackle this, we propose a framework that learns state-
specific safety representations from the agent’s experiences. By integrating this safety information
into the state representation, our approach enables more informed and balanced decision-making.
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A APPENDIX

Figure 9: DQN with resets: Resetting the DQN agent to overcome conservatism results in significantly more
failures during training.

Figure 10: Conservatism in CPO: As the cost-limit is reduced CPO agent struggles to overcome the bias induced
by initial experiences where the agent encountered heavy penalties due to constraint violation, resulting in overly
conservative behaviours.

A.1 PRIMACY BIAS IN SAFE RL

RL agents overfitting on early experience is a well-studied problem. Nikishin et al. (2022) first
showed that outcomes of early experience can have long-lasting effects on subsequent learning of
RL agents. Machado et al. (2018) identified poor data diversity caused by limited exploration as
the primary reason for overfitting. In safety-critical systems, penalties imposed on RL agents due
to constraint violations early in the training can further disincentivize exploration limiting the data
diversity further. As a result RL agent tends to learn from samples from a narrow region of the
state space resulting in conservative behaviors and suboptimal performance. Nikishin et al. (2022)
proposed to reset the agent to encourage exploration and avoid primacy bias but for safety-critical
applications resetting the RL agent can lead to catastrophic consequences. As shown in Fig. 9, DQN
with resets lead to significantly more failures than vanilla DQN, while not resulting in significant
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improvement in performance. In this paper, we’ve proposed to deal with this problem by learning
state-centric representations of safety that force the agent to learn safety representations from limited
data and overcome conservative behaviour.

To illustrate the extent of overfitting on negative experiences experienced by the agent early in
training, we study the impact of penalties caused by constraint violation on the behaviour of the agent.
We experiment on AdroitHandPen with CPO (Achiam et al., 2017) for different cost thresholds. A
lower cost limit in the case of CPO is essentially equivalent to penalizing failures during learning
more and more. From Fig. 10 We see that as we reduce the cost limit the number of failures reduces
but also the resultant policy becomes more and more conservative, ultimately for cost limit = 0.01,
the agent fails to learn anything about the task and settles for a local optima in which it doesn’t move.

A.2 IMPLEMENTATION DETAILS

In this section, we aim to clarify some of the design choices and implementation details used for
training SRPL agents for on-policy and off-policy baselines. Our implementations were based on top
of FSRL Liu et al. (2024) and Omnisafe Ji et al. (2024) codebases.

A.2.1 LEARNING THE SAFETY REPRESENTATION

The safety representation aims to characterize a state with respect to its proximity to the unsafe states
and models a distribution over steps-to-cost based on the agent’s past experience. Empirically, in
the case of discrete state-spaces like Island Navigation, for a given state safety representation this is
equivalent to maintaining the normalized frequencies over proximity to unsafe states based on the
agent’s past experience or policy rollouts in the past.

Here we face a dilemma about how to learn such a representation. Should we use on-policy rollouts
or should we use off-policy data? There is an inherent tradeoff in this choice: if we train the safety
representation using on-policy rollouts to ensure coverage we would need to collect lots of samples
which will make the algorithm highly sample inefficient and also unsafe. This is particularly infeasible
in the case of off-policy baselines like CVPO (Liu et al., 2022) and CSC (Bharadhwaj et al., 2020),
where the policy is updated at every step. On the other hand, if we learn the safety representations
completely using all of the agent’s past experience, at some point the representation will become
irrelevant to the current policy because it is storing information about policies that might be too
different from the current policy. To manage this tradeoff, we learn the safety representation using
off-policy data from the agent’s past but recent experience, we maintain a separate replay buffer
in case of on-policy algorithms or reuse the existing replay buffer of off-policy algorithms to store
steps-to-cost δτ (s) for a state encountered in a particular trajectory τ . We keep a fixed replay buffer
size and experiences that are generated by the older policies are discarded when the replay buffer gets
full in a First In First Out (FIFO) manner. This allows us to ensure that the safety representation is
learned with enough data to ensure coverage over the state space while also keeping the representation
relevant for the current policy.

A.3 TRAINING THE S2C MODEL

Because the output of the S2C model is given to condition policy learning, there are some consid-
erations while training the S2C model to stabilize the training of the SRPL agent. In the case of
on-policy baselines, since the policy is frozen while collecting on-policy rollouts, the dynamics
of learning the safety representation alongside the policy is more stable and we update the safety
representation (i.e., the S2C) model at a higher frequency than the policy. On the other hand, doing
this in case of off-policy algorithms like CSC Bharadhwaj et al. (2020) and CVPO Liu et al. (2022)
really destabilizes training because the policy is being updated at a very high frequency making the
dynamics really complex. To solve this, we train the safety representations at a significantly lower
frequency than the policy. This ensures that the S2C model is frozen while the policy is being updated.
The idea is similar to the use of target networks proposed in Mnih et al. (2015) to stabilize training.

A.3.1 PRACTICAL CONSIDERATIONS

There are some practical considerations in order to show results on environments like AdroitHandPen
and Mujoco (Ant, Hopper, Walker2d). Training these tasks with a cost-limit of 0 leads to overly
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Figure 11: Island Navigation: Instead of experimenting with a single environment with fixed start and goal
state where the agent can simply memorize action sequences. We create four different versions of the Island
Navigation environment with different start and goal positions as well as locations of the water tiles.

conservative policies that learn nothing about the task as demonstrated in Fig. 7 and Fig. 10, for a
cost-limit of 0, the # failures is very low but also the performance degrades. To address this issue we
went with the cost limit of 0.1 for our experiments for both SRPL and vanilla versions of the baseline
algorithms.

A.3.2 HYPERPARAMETER DETAILS

As described earlier we chose a bin size of 4 and safety horizon Hs = 80 for PointGoal1 and
PointButton1 environments and a bin size of 4 and safety horizon Hs = 40 for all the other envi-
ronments. The batch size for training the S2C model was chosen between 512 and 5000 and we
found that a batch size of 5000 led to better performance in Safety Gym environments and 512 for
all the other environments. Additionally, we optimize for hyperparameters like when to update the
S2C model update − freq which was set to 100 for on-policy baselines and 20000 for off-policy
baselines. Additionally, we used a learning rate of 1e− 6 or 1e− 5 for on-policy experiments and a
learning rate of 1e− 3 for off-policy baselines. The well-optimized hyperparameters of the baseline
algorithms can be found in open-source implementations such as Omnisafe Ji et al. (2024)5 (for
CPO, CRPO, TRPO-PID, SauteRL) and FSRL Liu et al. (2024)6 (for CVPO). For CSC Bharadhwaj
et al. (2020) we used the hyperparameters specified in the original paper. We faced difficulty in
training on-policy baseline algorithms on SafeMetaDrive with default hyperparameters from Om-
nisafe, fine-tuning hyperparameters revealed that lower target-kl stabilizes the baseline algorithms.
target − kl = 0.0005. Additionally, we faced difficulty in stabilizing CVPO Liu et al. (2022) on
AdroitHandPen and Ant tasks with the default hyperparameters. We couldn’t stabilize the training
with a limited hyperparameter search. The S2C model has the same network architecture as the policy
which in most cases is an MLP with two hidden layers of size 64.

A.4 ENVIRONMENTAL DETAILS

• Island Navigation (Leike et al., 2017) is a grid-world environment explicitly designed
for evaluating safe exploration algorithms. The environment consists of an agent marked
A, trying to navigate an island to reach a goal G while avoiding water cells (marked in
blue). Entering a water cell is considered a failure and the agent receives a heavy reward
penalty along with episode termination. The state observation consists of the image of
the island at a given time (as such the state is completely observable). The action space
is [”left”, ”right”, ”up”, ”down”], so there is no action to stay in place. Because its a
deterministic environment with a small distance between the start state and goal state, its not
difficult for RL agents to just remember the action sequences instead of learning an accurate
state-conditioned value function. In order to avoid such a situation, we instead created 4
copies of the same environment with different positions of start state and goal state as well
as the location of the water cells (Fig. 11).

5https://github.com/PKU-Alignment/omnisafe
6https://github.com/liuzuxin/FSRL
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• AdroitHandPen (Rajeswaran et al., 2017) is a manipulation environment, where a 24-degree
of freedom Shadow Hand agent is learning to manipulate a pen from a randomly initialized
start orientation to a randomly specified goal orientation. The input to the RL agent is
the angular positions of the finger joints, the pose of the palm of the hand, as well as the
current pose of the pen and the target pose of the pen. The action space is continuous and
are the absolute angular position of the hand joints (24-dimensional). The pen falling on
the ground is considered a failure and induces a cost. Since the cost-inducing state is also
non-ergodic (irrecoverable), maximum cost for an episode cannot be greater than 1. The
agent is provided a dense reward based on the similarity of the current pose to the target
pose of the pen.

• SafeMetaDrive (Li et al., 2022) is an autonomous driving environment, where an agent is
tasked with navigating the traffic containing static and dynamic participants. The agent has
to frequently change lanes or apply brakes to avoid incurring costs. Any collision induces
cost and the cost-limit is set to 1. The observation space consists of LiDAR information
about the surrounding objects, ego-vehicle’s pose, and safety indicators along with route
points. The agent is rewarded for following the waypoints/route as well as for keeping the
lane and for driving at high velocity. The action space consists of steering, brake and throttle
values.

• Safety-Gym (Ray et al., 2019) is a navigation environment, we evaluate SRPL on PointGoal1
and PointButton1 tasks. In PointGoal, a randomly initialized point agent is trying to navigate
to a randomly sampled goal position while avoiding hazards in the environment which
are the cost-inducing states, so that the total cost for an episode doesn’t exceed 10. In
PointButton1, the agent is tasked with pressing the specific orange button, pressing the
wrong button induces a cost and there are hazards as well as dynamic obstacles in the
environment which are cost-inducing. Cost threshold is set to 10. In the original version
of safety gym, the agent’s observation consists of LiDAR information about every object
including hazards, buttons and goal position individually. This prevents us from doing the
generalization experiment since the dimensionality of the observation for PointGoal1 and
PointButton1 are different because they have different objects in the environment. To address
this we aggregate the Lidar information for all objects into one LiDAR observation that for
every LiDAR point provides the distance to the nearest object as well as the corresponding
object label. The action space for the point agent is the two-dimensional (force applied to
move the point agent and the velocity about the z-axis). The reward function for the agent is
based on the distance to the goal state.

• Mujoco environments (Todorov et al., 2012): We evaluate SRPL on three locomotion tasks
(Ant, Hopper and Walker2d). The goal in all three tasks is to run as fast as possible while not
falling on the ground. Falling on the ground is considered a failure and induces a cost. We
treat the agent fallen on the ground as a non-ergodic state and thus the maximum cumulative
cost for an episode can be 1. The agent’s state input is the joint position and velocity of the
robot’s body parts as the centre of mass-based external forces acting on the body. The action
space is the torques applied to each joints. The agent’s reward is proportional to the velocity
of the agent, and the agent is penalized for applying high torque on its joints.

A.5 ADDITIONAL RESULTS

In addition to the results presented in the main paper, we perform experiments on Mujoco environ-
ments (Ant, Hopper and Walker2d) and show results for CPO (Achiam et al., 2017) and CRPO (Xu
et al., 2021) along with their SRPL counterparts. From Fig. 12, we can see for the Ant environment,
CRPO significantly outperforms CPO in terms of task performance (i.e. return) but also leads to
more failures during training. SR-CRPO has similar performance in terms of return but significantly
lower total failures during training thus making the algorithm safer. On the other hand, SR-CPO
leads to an improvement in the performance in terms of return in comparison to CPO, while incurring
similar but fewer failures. Similarly, for Hopper SR-CRPO outperforms all other baselines in terms
of task performance as well as leads to the least total failures during training. SR-CPO also shows
improvement over CPO in terms of safety by incurring fewer failures during learning. Finally, on
Walker2d, SR-CPO outperforms all the baselines in terms of task performance while incurring the
same number of failures as SR-CRPO. We observe a consistent improvement in either the safety or
efficiency of the SRPL versions of the algorithms in comparison to their vanilla counterparts.
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Figure 12: We report the performance of safety-informed SRPL agents (denoted SR-*) on Mujoco environments
(Ant, Hopper and Walker2d). For these experiments, both the S2C model and the policy have been randomly
initialized so no prior information has been provided to the agent. Safety-informed agents consistently outperform
their vanilla counterparts on both safety during learning as well as sample efficiency. Results were obtained by
averaging the training runs across five seeds. The input to the RL agent is the joint state and velocity.

Figure 13: Choice of bin size: Results on
SafeMetaDrive show that lowering the bin size better
the performance of the model.

Figure 14: Choice of safety horizon Hs Results on
MetaDrive show that higher safety horizon Hs leads
to improvement in performance but above a threshold
the curve plateaus.

To provide more clarity into the results presented in the paper, we have added Fig. 16, which highlights
the episodic cost for AdroitHandPen and SafeMetaDrive environments as well as the respective
cost-limits. In our experiments we observed that setting the cost-limit to 0 for AdroitHandPen or the
Mujoco environments was leading to the policy failing to learn anything, so we set the cost-limit to
0.1 (β = 0.1) for AdroitHandPen as well as Mujoco experiments (Fig. 12). For clarity we’ve also
added pairwise plots for baseline algorithms with their SRPL versions on AdroitHandPen Fig. 17,
SafeMetaDrive Fig. 18, PointGoal1 Fig. 19 and PointButton1 Fig. 20.

A.6 ADDITIONAL ABLATIONS

To further analyze the safety representations proposed in the paper, we perform additional ablations
that study the effect of design choices like safety horizon (Hs) and bin size for learned distribution. We
also study the generalization ability of the learned safety representations across constraint thresholds.

A.6.1 EFFECT OF SAFETY HORIZON AND BIN SIZE

In Fig. 13 and 14 we study the effect of different choices of bin size and safety horizon on the
performance of the policy both in terms of safety (in terms of total cost) and efficiency (in terms of
success rate) for SafeMetaDrive environment. In Fig. 14, we analyze the effect of varying safety
horizons for a fixed bin size of bin − size = 2. We can see that both success rate and total cost
almost plateau post the bin size of around 50, the dimensionality of the safety representation can be
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Figure 15: Generalization across Cost thresholds: Since safety representations are learned to model the proximity
to unsafe states, they can be generalized across cost thresholds. Here we show that safety representation learnt
on PointButton1 with cost-limit = 10 can be transferred to PointGoal1 task for cost-limits other than 10 without
the need for fine-tuning and results in improved sample efficiency.

the cause behind the slight deterioration in performance beyond Hs = 50. Fig. 13 studies the effect
of bin sizes given a fixed safety horizon Hs = 40, from the figure it is clear that smaller bin sizes
lead to better performance both in terms of safety and efficiency of the SRPL agents.

A.6.2 GENERALIZATION OF SAFETY REPRESENTATION ACROSS COST THRESHOLDS

Instead of modelling the likelihood of constraint violation, safety representation encodes the distribu-
tion over steps to cost or distance to cost-inducing/unsafe states. This design choice is based on the
principle that we are interested in modelling state-centric features that are generalizable and don’t
depend on the task definition (for e.g., the cost threshold definition). We perform experiments on
PointGoal1 environment for the transferability of safety representation across constraint thresholds.
For this experiment, we mimic the structure of the generalization experiments shown in Sec. 5.3. We
treat PointButton1 as the source task and PointGoal1 as the target task where the safety representation
as well as policy for both CPO and SR-CPO is trained on PointButton1 task. In order to study
the generalizability of safety representations across cross thresholds we don’t fine-tune the safety
representation on the target task for different cost thresholds thus freezing the S2C model. From
Fig. 15, we can see that SR-CPO (policy transfer) (frozen safety) significantly outperforms CPO
(policy transfer), thus transferring the policy and frozen safety representation across tasks enables
SRPL agents to learn more samples efficiently while ensuring constraint satisfaction for different
constraint thresholds.
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Figure 16: The figure shows Episodic Cost / Episodic Failure for AdroitHandPen and SafeMetaDrive experiments

Figure 17: AdroitHandPen: We plot all the baselines and their SRPL counterparts
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Figure 18: SafeMetaDrive: We plot all the baselines and their SRPL counterparts

Figure 19: PointGoal1: We plot all the baselines and their SRPL counterparts
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Figure 20: PointButton1: We plot all the baselines and their SRPL counterparts
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