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Abstract001

Generalization abilities of well-trained large002
language models (LLMs) are known to scale003
predictably as a function of model size. In con-004
trast to the existence of practical scaling laws005
governing pre-training, the quality of LLMs006
after post-training compression for efficient de-007
ployment remains highly unpredictable, often008
requiring case-by-case validation in practice.009
In this work, we attempted to close this gap010
for post-training weight quantization of LLMs,011
by conducting a systematic empirical study on012
multiple LLM families quantized to numerous013
low-precision tensor data types using popular014
weight quantization techniques. We identified015
key scaling factors pertaining to characteristics016
of the local loss landscape, based on which the017
performance of quantized LLMs can be reason-018
ably well predicted by a statistical model.019

1 Introduction020

Large language models (LLMs) based on the trans-021

former architecture (Vaswani et al., 2023) are022

known to obey empirical scaling laws. An LLM’s023

generalization abilities, measured by the negative-024

log-likelihood (NLL) loss in next-token predic-025

tion, are predictably related to increases in pa-026

rameter count, pre-training data volume, and com-027

putation cost (Kaplan et al., 2020; Dettmers and028

Zettlemoyer, 2023; Henighan et al., 2020; Alabdul-029

mohsin et al., 2022; Su et al., 2024; Song et al.,030

2024; Muennighoff et al., 2023; Bordelon et al.,031

2024; Bahri et al., 2024).032

Thanks to the guidance from scaling laws, pre-033

training of LLMs, a notoriously expensive compu-034

tation in practice, enjoys a certain degree of confi-035

dence in return on investment. However, training is036

but half way toward model deployment in the real037

world. For these LLMs to run efficiently on a target038

accelerator for inference, they often undergo post-039

training compression, such as quantization (Gho-040

lami et al., 2021; Frantar et al., 2022; Park et al.,041

2024; Kim et al., 2023, 2024; Yao et al., 2022). 042

Post-training quantization (PTQ) is a process 043

that attempts to preserve a trained LLM’s gener- 044

alizability, while performing its computation with 045

low-precision data types. As such, PTQ, a pro- 046

cess involving numerous extra factors, introduces 047

significant additional uncertainty into the qual- 048

ity of the final model for deployment, in many 049

cases completely obscuring the predictability pre- 050

scribed by the pre-training scaling laws. This 051

makes PTQ in today’s practice a business of trial- 052

and-error (Huang et al., 2024; Sharify et al., 2024; 053

Yuan et al., 2023; Hu et al., 2022), lacking use- 054

ful practical guidance from scaling laws like those 055

governing model pre-training. 056

In this work, we attempted to close this gap in 057

knowledge by systematically studying the empir- 058

ical scaling of extra factors involved in PTQ, in 059

addition to the pre-trained NLL loss. We briefly 060

enumerate below all factors considered. 061

1. Loss of pre-trained LLM. This is a known scal- 062

ing law that determines the quality of a trained 063

LLM as the input to the PTQ procedure; intu- 064

itively, the better the trained model, the better 065

its quantized version would be, everything else 066

being equal. Section 2.1 is dedicated to it. 067

2. Local loss landscape of pre-trained LLM. Be- 068

cause quantization is a specific perturbation to 069

the trained network, the resulting loss due to 070

the perturbation depends not only on the con- 071

verged NLL loss, but also on how steeply the 072

loss changes in the neighborhood of conver- 073

gence (Frumkin et al., 2023; Nahshan et al., 074

2020; Evci et al., 2020). Section 2.2 is dedi- 075

cated to its scaling. 076

3. Low-precision data type for quantization. Nu- 077

merous novel tensor data types for efficient in- 078

ference have emerged recently (Rouhani et al., 079

2023; Dettmers et al., 2023; Agrawal et al., 080

2024; Guo et al., 2022); intuitively, both the ten- 081

sor data type and its numerical precision would 082
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Figure 1: Scaling of pre-trained NLL loss. NLL
losses evaluated on the validation split of the WikiText-2
dataset are plotted against the total parameter counts in
the transformer layers’ weight tensors. Model families
are color-coded and the symbol sizes encode the weight
parameter count, a convention shared by following fig-
ures.

correlate with the quality of quantization. Sec-083

tion 2.3 is dedicated to its scaling.084

4. PTQ algorithm. After aggressive low-precision085

quantization, certain PTQ optimization algo-086

rithms are commonly used to recover some087

model quality (Frantar et al., 2022; Xiao et al.,088

2024; Lin et al., 2024; Lee et al., 2024). These089

methods typically minimizes local quantization090

error as opposed to direct global loss optimiza-091

tion as in quantization-aware fine-tuning (e.g.092

Li et al. 2023; Jeon et al. 2024). Section 2.4 is093

dedicated to its scaling.094

We show with concrete examples (for procedural095

details see Section 4), that all the above factors have096

underlying empirical scaling laws for certain LLM097

families. Incorporating these empirical rules, in098

Section 3, we build a predictive statistical model099

that takes the above factors as input and predicts100

the outcome of a PTQ procedure on unseen LLMs101

at a reasonable accuracy.102

2 Factors subject to scaling for LLM PTQ103

2.1 Loss of pre-trained LLM104

First, we recapitulate one of the original scaling105

laws on well trained LLMs with no data limit (Ka-106

plan et al., 2020).107

We visualize in Figure 1 this scaling law with our108

experiments (see Section 4 for details). The GPT-2,109

OPT and BLOOM model families roughly follow110

one power law, whereas models in the Llama 2/3111

family track a different, but qualitatively similar112

path.113

Figure 2: Local radial loss landscape mapping.
Shown here is measurement of the typical loss land-
scape in the neighborhood of pre-trained weights, by
evaluation of the loss along typical radial perturbations,
3 independent instances illustrated for opt-1.3b, to-
gether with their Taylor series approximations.

Figure 3: Local loss landscape of LLMs grouped in
families. Shown are the mean (colored curves) and
range (colored shades) of 3 independent measurements
for each model. The typical characteristics are common
to all models. Within a family, larger models tend to
have flatter local loss landscape, in a predictable manner.

2.2 Characteristics of local loss landscape 114

Next, we characterize another crucial factor intrin- 115

sic to the LLM itself, its local loss landscape. 116

A quantization of network weight w 1 can be 117

1Here we denote by vector w a flattened version of all
weight matrices (W1, · · · ,WL) of the network that are sub-
ject to quantization.
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Figure 4: Scaling of local loss landscape as a function of LLM size. We plot NLL loss against weight parameter
count, with typical perturbation SNR as a gray-scale heat map. Thin white iso-SNR curves are at 2 dB increments.
With OPT family as the only exception, vertical spacing of these iso-SNR curves is shorter in large models than in
small ones of the same family, suggesting flatter local minima at larger model sizes.

considered as a perturbation w → w + ∆w =118

Q(w), where Q is a quantizer, and the resulting119

loss of the quantized network becomes NLL(w +120

∆w) from the pre-trained NLL(w). The result-121

ing loss is a function not only of the pre-trained122

weight w, but also of the perturbation ∆w, often123

approximated by Taylor expansion,124

NLL(w +∆w) = NLL(w)125

+ g⊤∆w +
1

2
∆w⊤H∆w126

+O(∥∆w∥2).127

Here g and H are the gradient and Hessian at w,128

and ∥·∥ is the ℓ2-norm.129

As the absolute magnitude of w scales with di-130

mensionality (see Appendix A), we use signal-to-131

noise ratio (SNR), a relative quantity to measure132

the magnitude of its perturbation ∆w,133

SNR(w,∆w) = 20 log10
∥w∥
∥∆w∥

,134

in decibel (dB). A higher SNR represents a smaller135

deviation ∆w from w. When the perturbation is136

due to quantization, i.e. ∆w = Q(w)−w, SNR be-137

comes signal-to-quantization-noise ratio (SQNR),138

SQNR(w) = 20 log10
∥w∥

∥Q(w)−w∥
.139

Intuitively, the flatter the local loss landscape is140

near w, the less impact a same perturbation ∆w141

is to exert on the loss. In Figure 2, we show with142

an example LLM, the typical local loss landscape143

in the neighborhood of pre-trained weights. We144

randomly sample a unit vector ê ∼ SD from the 145

D-dimensional unit sphere, D being the dimen- 146

sionality of w, and measure NLL(w + λê) while 147

sweeping λ ∈ R+. We see that the typical radial 148

loss is very step-like: it stays relatively low and flat 149

near w, then rises rapidly (faster than quadratic), 150

and finally plateaus further away from w. These 151

qualitative characteristics are shared by all LLMs 152

of various sizes and from various families (Fig- 153

ure 3). 154

We also find that, within the same LLM family, 155

larger models have flatter local loss landscape than 156

smaller ones, in a systematic way (Figures 3, 4) for 157

each family. 158

2.3 Low-precision data type for quantization 159

Now, we identify an extrinsic factor in PTQ process 160

that is independent from the LLM itself, namely 161

the low-precision tensor data type for quantiza- 162

tion. Note that we consider tensorial data types, 163

not simply scalar numerical formats. In addition 164

to traditional integer quantization that requires cali- 165

bration, emerging standards such as microscaling 166

(MX, Rouhani et al. 2023) adopt more effective 167

and efficient tensor data types, which we study in 168

this work. we also present a comparative study of 169

traditional integer quantization in Appendix B. 170

We first ask how the magnitude of quantization 171

errors ∆w = Q(w) − w vary across LLMs for 172

certain data types. Despite the existence of signif- 173

icant scaling of ∥w∥ (see Appendix A for further 174

details), the SQNRs are relatively invariant across 175

model families and model sizes (Figure 5, left), 176

and vary across numerical data types in a highly 177

predictable manner. In contrast, NLL losses show 178
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Figure 5: SQNRs and NLL losses resulting from weight quantization, before PTQ. We show round-to-nearest
(RTN) results for all models in multiple LLM families. Consistent with convention set in Figure 1, model families
are color-coded and model sizes are encoded by symbol sizes.

Figure 6: SQNRs and NLL losses resulting from weight quantization, after PTQ. Similar to Figure 5, we show
GPTQ results for all models in multiple LLM families.
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a much more nonlinear and less predictable pat-179

tern (Figure 5, right), with a rough trend of lower180

precision data formats leading to higher losses.181

However, with certain choices of weight data182

type, the quantization could be a perturbation that183

is significantly flatter than the typical flatness of184

the local loss landscape, which we shall elaborate185

in the next section.186

Figure 7: Scaling of SQNRs and NLL losses before
and after PTQ, relative to the typical loss landscape.
We show data from 3 members of the OPT model family,
whose parameter counts are separated by 1 order of mag-
nitude. RTN (before PTQ, hollow symbols) and GPTQ
(after PTQ, filled symbols) are plotted together with the
typical radial loss landscape empirically mapped.

2.4 PTQ optimization method187

Finally, we study another important extrinsic factor188

that contributes to the quality of quantized LLMs189

for inference, the PTQ optimization algorithm.190

To each model and for each weight data type,191

we applied an improved GPTQ procedure (see Sec-192

tion 4.3 for details) to further optimize the RTN193

quantized network, and measured resulting SQNRs194

and NLL losses (Figure 6).195

What GPTQ did to the quantized model can be196

appreciated from inspection of individual models.197

Figure 7 shows 3 members of varied sizes from the198

OPT family. Apparently, the application of GPTQ199

Figure 8: Changes in SQNRs and NLL losses result-
ing from GPTQ for all models in the OPT family.
Numerical precision is color-coded and model size en-
coded by symbol size. Diagonal line represents identity.

generally reduced both the SQNR and NLL loss 200

of the RTN model. The reduction in SQNR is rel- 201

atively consistent across model sizes and data for- 202

mats, whereas the reduction in NLL loss is highly 203

variable as a function of model size and quantiza- 204

tion precision in, however, a rather systematic way. 205

An aggregation of direct comparisons of SQNRs 206

and NLL losses before and after the GPTQ pro- 207

cedure for the OPT model family is presented in 208

Figure 8. 209

With our systematic collection of empirical data 210

pertaining to all the above-mentioned factors, we 211

are able to uncover patterns in the highly var- 212

ied, and seemingly haphazard, effect of GPTQ 213

on given a specific LLM quantized to a spe- 214

cific numerical data type. Here we demonstrate 215

with the model opt-1.3b subject to quantization 216

to mxint6_128, mxint4_128, mxint3_128 and 217

mxint2_128 (Figure 9). The observation is that 218

GPTQ greatly improves mxint3_128 quantization, 219

but only marginally improves its 6-bit, 4-bit and 2- 220

bit counterparts. The effect of GPTQ seems highly 221

non-monotonic as a function of quantization preci- 222

sion. Nevertheless, in the light of the underlying 223

local loss landscape, the phenomenon can be well 224

understood. First, RTN quantization to MX weight 225

formats often lead to perturbations that are flatter 226

than typical radial loss profiles; the application of 227

GPTQ, further seeks an even flatter perturbation di- 228

rection in the loss landscape, as evident in Figure 9. 229

However, because these radial loss profiles are very 230

step-like, any linear or quadratic approximations 231

typically fail to characterize them well at SNRs 232

lower than 20 dB. Because of the difference in the 233

effective radii between the RTN and GPTQ loss 234

profiles that are both step-like, a narrow window 235

in SNR exists within which the effect of GPTQ 236
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Figure 9: Local loss landscape underlying varied
effectiveness of GPTQ acting on the same model
quantized at different weight precision. Shown
here are data of opt-1.3b quantized to mxint6_128,
mxint4_128, mxint3_128 and mxint2_128. The col-
ored, hollow or filled diamonds represent the SQNRs
and NLL losses before and after GPTQ, respectively.
We further map the underlying radial loss landscape in
the directions of typical random perturbation (thin gray
lines), of RTN quantization (colored dashed lines) and
of GPTQ quantization (colored solid lines).

is substantial. Note that the location and size of237

this window is a function of the model family, the238

model size, and the numerical data type for weight239

quantization, as we described above.240

3 Building a predictive model241

To sum up our findings so far:242

1. The characteristics of local loss landscape, just243

like the loss itself, scales with model size in244

LLM families, an intrinsic model property.245

2. Choices of the low-precision data type for quan-246

tization and the PTQ process, acting within the247

local loss landscape, lead to different SQNRs248

and losses, in a predictable way.249

Taking these empirical rules into consideration,250

we now build a predictive model based on random251

forest regression. We set the hyperparameters, the252

Figure 10: A predictive model based on random for-
est regression. Data for 18 models from the 5 LLM
families used for predictive model fitting are shown in
light gray; colored symbols represent held-out test data
from mpt-7b and pythia-1b, respectively. Prediction
and observation are plotted against each other for direct
comparison, diagonal line marking identity.

Figure 11: Prediction of NLL losses after GPTQ,
for unseen LLMs. We tested our predictive model’s
performance on 2 held-out LLMs from unseen model
families, mpt-7b and pythia-1b. Convention follows
Figure 7, with additional large circular symbols repre-
senting model prediction of GPTQ losses.

number of estimators and maximum depth of the 253

regressor, to 120 and 8, respectively. The regressor 254

takes a few empirically measured features as input, 255

and directly predicts the resulting NLL loss of the 256

final, quantized model. Given a specific LLM and 257

a specific MX data format with quantizer Q, the in- 258

put features are: (a) weight parameter count D, (b) 259
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pre-trained loss NLL(w), (c) SQNR of RTN quan-260

tization SQNR(w), (d) loss of RTN quantization261

NLL (Q(w)), (e) radial slope of local loss land-262

scape at RTN weights dNLL
dSQNR

∣∣
Q(w)

, (f) numerical263

format’s precision P, number of element exponent264

bits E, and block size K. The model outputs a pre-265

dicted loss after GPTQ, NLL(Q(w∗)).266

We fit the model on all feature data collected267

from models in the 5 LLM families above, and test268

its prediction for 2 held-out models from unseen269

model families, namely EleutherAI/pythia-1b270

and mosaicml/mpt-7b. The prediction is reason-271

ably accurate (Figures 10, 11), suggesting that the272

underlying scaling laws are generalizable across273

both different model sizes and different LLM fami-274

lies. See Appendix C for detailed interpretation of275

the predictive model.276

4 Experimental procedures277

4.1 Models and dataset278

We experimented with models from 5 LLM279

families, namely GPT-2 (Radford et al., 2019),280

OPT (Zhang et al., 2022), BLOOM (Workshop281

et al., 2023), Llama 2 (Touvron et al., 2023), and282

Llama 3 (Meta, 2024). The models were served283

by the Hugging Face Model Hub. We identify284

the models by their unique name string identifier285

throughout this paper, with their organization pre-286

fixes sometimes omitted for brevity.287

To validate the generalizability of our empirical288

scaling rules extracted from studying the above 5289

model families, we tested their predictive power290

on 2 held-out LLMs, EleutherAI/pythia-1b (Bi-291

derman et al., 2023), and mosaicml/mpt-7b (Mo-292

saicML, 2023).293

The WikiText-2 dataset (Merity et al., 2016) was294

used in all experiments, with the text tokenized by295

corresponding tokenizers at maximum sequence296

length of each respective model. 128 examples297

from the training split were used as calibration298

dataset for PTQ algorithms. All examples from the299

validation split were used for validation.300

4.2 Numerical tensor data type and notations301

We experimented with microscaling (MX, Rouhani302

et al. 2023) compliant data formats, where a block303

of tensor elements share a same scaling factor in the304

format of e8m0 (8-bit exponent and 0-bit mantissa),305

and each element being of a low-precision float or306

int number. We experimented with 36 distinct MX307

data types with precision with block sizes ranging 308

from 16 to 128, and element precision from 2 to 6. 309

We denote MX formats by mxfpP_eEmM_K or 310

mxintP_K, following the notation from commu- 311

nity standard (Rouhani et al., 2023), where P is 312

the precision, K the block size, and E, M the num- 313

bers of element exponent and mantissa bits. For 314

example, mxint6_64 represents an MX data type 315

where the element is in int6 and the block size 64; 316

mxfp4_e2m1_128 refers to an MX format whose 317

element format is a custom float4 with 1 sign bit, 318

2-bit exponent, 1-bit mantissa, and a block size of 319

128. 320

4.3 GPTQ 321

We adopted an enhanced version of GPTQ compat- 322

ible with MX weight formats (Sharify et al., 2024), 323

with two additional improvements. First, we tuned 324

the dampening factor layerwise as a hyperparam- 325

eter. For each layer, we did a grid search over the 326

space
{
10−3, 10−2, · · · , 103, 104

}
and chose the 327

dampening factor that minimized layerwise output 328

mean squared error (MSE). Second, in contrast to 329

Frantar et al. (2022) who performed sequential lay- 330

erwise Hessian accumulation and optimization to 331

minimize GPU memory usage, we did Hessian ac- 332

cumulation in unquantized network for all layers 333

before optimization. In consistency with the orig- 334

inal work, 128 sequences from the training data 335

split was used for Hessian accumulation. 336

4.4 Loss landscape mapping 337

All NLL losses were evaluated on the entire val- 338

idation data split at half precision. Second-order 339

loss landscape features requiring backward passes, 340

namely Hessian-vector products, were computed in 341

single precision using the PyHessian package (Yao 342

et al., 2020). 343

5 Conclusion 344

In this work, we demonstrated that, just like that of 345

pre-training, the outcome of post-training quantiza- 346

tion of well-trained LLMs can also be predictable, 347

thanks to underlying scaling laws governing the 348

local loss landscape, numerical data formats and 349

effects of PTQ algorithms. We summarize in Fig- 350

ure 12 an aggregated tradeoff between network 351

quantization and its quality. We believe our find- 352

ings would provide practical value to the deploy- 353

ment of LLMs on resource-constrained devices. 354
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Figure 12: Tradeoff between quantized model weight size and its generalization. The models in each
subplot from top to bottom are: gpt2, gpt2-medium, gpt2-large, gpt2-xl; opt-125m, opt-350m, opt-1.3b,
opt-2.7b, opt-6.7b, opt-13b; bloom-560m, bloom-1b1, bloom-1b7, bloom-3b, bloom-7b1; Llama-2-7b-hf,
Llama-2-13b-hf, Meta-Llama-3-8B. The marker colors represent different quantized precision. Circles represent
models quantized to mxfp formats, diamonds those quantized to mxint formats, with hollow markers standing for
RTN and filled markers GPTQ. Black filled squares represent the pre-trained float model. Dashed/dotted gray
lines connects the losses of the same model quantized to different data format families. There are 4 such lines for
each model: mxint (RTN): dotted, mxfp (RTN): dotted, mxint (GPTQ): dashed, and mxfp (GPTQ): dashed. We
highlight the difference before and after GPTQ by a vertical colored dashed line.
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6 Limitations355

Due to constraint of computational resources, we356

experimented with models up to 13 billion parame-357

ters. The predictive power of our scaling rules on358

much larger LLMs is pending further validation.359
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A Scaling of ℓ2-norms of model weights676

In Figure 13, we summarize the scaling of the ℓ2-677

norms of transformer weights, for all models in the678

5 LLM families under study. We found that, with679

the exception of the GPT-2 and OPT families, ∥w∥680

scales close to half power laws w.r.t. parameter681

count D, suggesting a rather constant element-wise682

weight magnitude across models of different sizes.683

We also found that, not surprisingly, the closeness684

to half power law scaling of ℓ2-norms is correlated685

with the constancy of SQNRs for all MX data types686

across models.687

Figure 13: Scaling of weight ℓ2-norm. Convention
same as in Figure 1. Light gray lines in the background
mark square-root power laws, ∥w∥ ∝ D

1
2 .

B Scaling in the case of PTQ to688

traditional int quantization689

We note that, in the case of traditional weight quan-690

tization to integer (int) numerical formats, an extra691

step of calibration is necessary. Calibration opti-692

mizes additional parameters per quantizer, namely693

a scale and/or a zero point, depending on the quan-694

tization scheme. The affine transformation pre-695

scribed by the scale and zero point can also have696

varied granularities, from per-tensor, per-group to697

per-channel. Furthermore, different optimization698

objectives could be used to determine scale and699

zero point. These extra parameters and procedures700

likely introduce additional variability into the scal-701

ing of PTQ of LLMs, making traditional int quan-702

tization more unpredictable than MX quantization.703

With concrete examples, here we show that this704

is indeed the case. We create and calibrate int705

quantizers at varied precisions and granularities,706

denoted by intP_(chan|gG|tens). For example,707

int4_tens represents a 4-bit per-tensor format,708

and int3_g32 a 3-bit per-group format with group709

size 32. We chose symmetric quantization scheme710

(with scale and no zero point) and calibrate by min- 711

imizing mean squared error (MSE) of quantization. 712

Calibration data are 128 sequences taken from the 713

training split. 714

Figure 14: SQNRs induced by traditional int versus
MX quantizers for the smallest 3 models in the OPT
family. For notations of int formats and procedural
details of calibration see the main text. Numerical pre-
cision is color-coded and symbol sizes encode model
capacity.

Not surprisingly, we find that SQNRs from int 715

quantization are much more variable than those 716

from MX quantization, and do not seem to scale 717

monotonically with model size (Figure 14). In 718

addition, the changes to SQNRs and NLL losses as 719

a consequence of GPTQ are much less predictable 720

in the cases of int than MX data types (Figure 15). 721
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Figure 15: Scaling of SQNRs and NLL losses before
and after PTQ, for int versus MX data types. Con-
vention same as in Figure 7. Data for opt-1.3b are
shown, with int and MX formats separated in 2 panels.

C Interpretation of the importance of722

input features to the predictive model723

Beyond making accurate predictions of the differ-724

ence in NLL loss between GPTQ and RTN, inter-725

preting our predictive model can grant insight into726

the specific characteristics that make GPTQ most727

effective and the scenarios in which GPTQ should728

be employed.729

Figure 16: Importance and interpretation of features
used by our predictive model. Mean and standard
deviation of the importance score (Gini importance)
for each input feature, calculated across all 120 trees
in the random forest (left). The predictive model’s
feature-specific decision-making process for quantiz-
ing mosaicml/mpt-7b to the mxint3_64 format (right).

The Gini importance, also known as mean de-730

crease in impurity, measures how much each fea-731

ture contributes to reducing the Gini impurity in the732

dataset when making splits (Louppe et al., 2013). 733

As shown in (Figure 16, left), our random forest 734

regressor pays the most attention to the NLL loss 735

of RTN, which can intuitively be explained by the 736

understanding that GPTQ improves off of the base- 737

line RTN quantization. Partial dependence graphs 738

further reveal that the model pays more attention to 739

the NLL loss of RTN at higher loss values, which 740

is reasonable given that a higher starting NLL loss 741

leaves greater room for GPTQ improvement. The 742

number of parameters, the NLL loss of the original 743

model, and the local loss slope are also considered 744

by the predictive model because they describe the 745

initial conditions of each LLM that differentiate 746

their individual loss landscapes. 747

The quantization format accounts for three input 748

features, namely precision, number of exponent 749

bits, and block size. Of these features, precision has 750

the largest influence on model prediction, which 751

agrees with our findings that the largest variation in 752

NLL loss between formats is driven by the number 753

of bits (Figure 6, right). Note that the information 754

gained from the quantization format is likely also 755

embedded in the SQNR of RTN due to the strong 756

correlation between SQNR and data format shown 757

in (Figure 5, left), explaining why SQNR of RTN 758

is also an important model feature. 759

The waterfall plot in (Figure 16, right), high- 760

lights one example of how each input feature con- 761

tributes to the random forest’s prediction of the ef- 762

fect of GPTQ in quantizing the mosaicml/mpt-7b 763

model to the mxint3_64 format. 764

D Cost of loss landscape feature 765

computation 766

Figure 17: Computational cost of GPTQ versus loss
landscape mapping. We show data measured from
runs of 3 models from the OPT family on a single A100
GPU, where time needed for loss landscape mapping is
measured on 3 random weight perturbations.

Our predictive model does not rely on features 767

requiring second-order information, only empirical 768
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loss evaluation at critical points in the parameter769

space. Thus, only a few forward passes are needed770

to compute the input features to carry out a predic-771

tion, making the extraction of predictive features772

inexpensive. In Figure 17, we measure wall-clock773

time of feature extraction and compare it to con-774

ducting GPTQ optimization. We find that the over-775

head of running GPTQ is significantly more than776

measuring the step-wise loss landscape of 3 ran-777

dom weight perturbations, with the difference in778

overhead scaling with the model size. In practice,779

we only need loss landscape information local to780

the SNR of RTN, which could further reduce the781

amount of computation needed. It is much more782

economical to use the predictive model based on783

scaling, than to actually compute GPTQ.784
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