

000 BRIDGING PAIRWISE AND POINTWISE GRMS: 001 002 PREFERENCE-AWARE REWARD MECHANISM WITH 003 004 DYNAMIC RUBRIC ADAPTATION

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Reward models (RMs) are central to reinforcement learning from human feed-
014 back (RLHF), providing the critical supervision signals that align large lan-
015 guage models (LLMs) with human preferences. While generative reward models
016 (GRMs) offer greater interpretability than traditional scalar RMs, current train-
017 ing paradigms remain limited. Pair-wise methods rely on binary good-versus-bad
018 labels, which cause mismatches for point-wise inference and necessitate com-
019 plex pairing strategies for effective application in RLHF. On the other hand,
020 point-wise methods require more elaborate absolute labeling with rubric-driven
021 criteria, resulting in poor adaptability and high annotation costs. In this work,
022 we propose the Preference-Aware Task-Adaptive Reward Model (PaTaRM), a
023 unified framework that integrates a preference-aware reward (PAR) mechanism
024 with dynamic rubric adaptation. PaTaRM leverages relative preference informa-
025 tion from pairwise data to construct robust point-wise training signals, eliminat-
026 ing the need for explicit point-wise labels. Simultaneously, it employs a task-
027 adaptive rubric system that flexibly generates evaluation criteria for both global
028 task consistency and instance-specific fine-grained reasoning. This design en-
029 ables efficient, generalizable, and interpretable reward modeling for RLHF. Ex-
030 tensive experiments show that PaTaRM achieves an average relative improve-
031 ment of 4.7% on RewardBench and RMBench across Qwen3-8B and Qwen3-
032 14B models. Furthermore, PaTaRM boosts downstream RLHF performance,
033 with an average improvement of 13.6% across IFEval and InFoBench bench-
034 marks, confirming its effectiveness and robustness. Our code is available at
035 <https://anonymous.4open.science/r/PaTaRM-E779>

1 INTRODUCTION

036 Reward models (RMs) are fundamental to reinforcement learning from human feedback (RLHF),
037 serving as the critical supervision signals that guide large language models (LLMs) toward human-
038 aligned behaviors. The predominant approach trains scalar reward models as discriminative clas-
039 sifiers that assign numerical scores to candidate responses, typically through the Bradley-Terry
040 model (Liu et al., 2024a; Cai et al., 2024; Yuan et al., 2024; Bradley & Terry, 1952). While ef-
041 fective for basic preference alignment, scalar RMs exhibit significant limitations: they fail to fully
042 leverage the generative and reasoning capabilities of LLMs (Chen et al., 2025b), often capturing
043 superficial correlations rather than genuine human preferences (Zhang et al., 2025). Moreover, they
044 are prone to overfitting and sensitive to distribution shifts (Ye et al., 2025). To address these lim-
045 itations, generative reward models (GRMs) have emerged as a promising alternative, offering more
046 structured and interpretable evaluations of model outputs (Guo et al., 2025; Yu et al., 2025b).

047 Current GRM training paradigms can be broadly categorized into two main types. The first is **pair-**
048 **wise GRM**, which optimizes a pairwise preference objective by leveraging comparative data dur-
049 ing training. While effective for capturing relative preferences, this paradigm suffers from two
050 fundamental limitations: (1) It cannot perform single-instance evaluation tasks as its inference
051 mechanism inherently requires comparative inputs, creating a critical gap for real-world applica-
052 tions requiring absolute quality assessment. (2) The pairwise paradigm breaks the RLHF pipeline

054 by requiring conversion from comparative to absolute rewards, while introducing approximation
 055 errors that increase training instability compared to direct pointwise methods (Xu et al., 2025).
 056 The second is **point-wise GRM**, which faces critical
 057 limitations in both the evaluation and the training
 058 phases. In terms of evaluation, point-wise
 059 GRMs typically rely on static rubrics, which are
 060 predefined general rules (Kim et al., 2024a;b) or
 061 externally generated criteria from LLMs such as
 062 GPT-4o (Viswanathan et al., 2025; Gunjal et al.,
 063 2025). The former lacks adaptability to task-
 064 specific nuances, while the latter incurs high com-
 065 putational costs and may propagate biases. In
 066 terms of training, point-wise methods rely on ex-
 067 plicit labeled data for each rubric and involve un-
 068 stable training, resulting in high annotation costs
 069 and increased sensitivity to noise. As shown in
 070 Figure 1, these limitations highlight a core chal-
 071 lenge in GRM design: *Can point-wise GRMs be
 072 effectively trained without relying on explicit point-wise labels, while also supporting flexible and
 adaptive rubrics for diverse tasks?*

073 To address these challenges, we introduce the **Preference-aware Task-adaptive Reward Model**
 074 (PaTaRM), a unified framework that combines a **preference-aware reward (PAR) mechanism**
 075 with **dynamic rubric adaptation**. This design enables point-wise GRM training without explicit
 076 labels while supporting flexible rubric generation. The **PAR** mechanism transforms pairwise prefer-
 077 ences into robust point-wise signals by ensuring chosen responses consistently receive higher scores
 078 than rejected ones under rubric-based evaluation. Adaptive rubrics provide nuanced, context-aware
 079 criteria, tightly aligning training with task-specific evaluation. Together, PAR and adaptive rubrics
 080 enhance generalization, stability, and interpretability, while reducing annotation costs in RLHF re-
 081 ward modeling.

082 In summary, our contributions are as follows:

- 083 1. We propose a unified reward modeling framework, **PaTaRM**, which integrates a
 084 **preference-aware reward (PAR) mechanism** with **dynamic rubric adaptation**. The
 085 PAR mechanism leverages relative preference signals from pairwise data to capture consist-
 086 ent quality gaps across groups, thereby enhancing generalization and stability in point-wise
 087 GRM optimization without the need for explicit point-wise labels.
- 088 2. We introduce a **dynamic rubric adaptation mechanism** that flexibly generates evaluation
 089 criteria for both task-level and instance-specific assessment, which enables the GRM to
 090 flexibly assess responses, overcoming the limited adaptability of static rubrics.
- 091 3. Extensive experiments demonstrate that **PaTaRM** achieves an average relative improve-
 092 ment of 5.5% on RewardBench and RMBench across Qwen3-8B and Qwen3-14B models.
 093 When applied as a reward signal in downstream RLHF tasks, PaTaRM delivers an average
 094 improvement of 13.6% across IFEval and InFoBench, consistently outperforming baseline
 095 methods and confirming the effectiveness and robustness of our approach.

097 2 RELATED WORK

098 **Training Paradigms for Reward Modeling.** Reward modeling for RLHF primarily adopts either
 099 **pairwise** or **pointwise** supervision. Pairwise training, such as the Bradley-Terry (BT) model (Liu
 100 et al., 2024a; Cai et al., 2024; Yuan et al., 2024), efficiently learns preferences from comparative
 101 judgments and supports single-instance evaluation in scalar models (Ye et al., 2025). However,
 102 many pairwise generative reward models require comparative inputs during both training and in-
 103 ference, limiting downstream flexibility (Jiang et al., 2023; Wang et al., 2025; Guo et al., 2025).
 104 Pointwise training relies on absolute scoring or rubric-based labeling for each response (Kim et al.,
 105 2024a; Gunjal et al., 2025; Dineen et al., 2025), enabling interpretable evaluations but incurring high
 106 annotation costs and demanding adaptive rubric design (Ankner et al., 2024; Liu et al., 2025). These
 107 limitations are especially pronounced in open-ended tasks with ambiguous evaluation criteria.

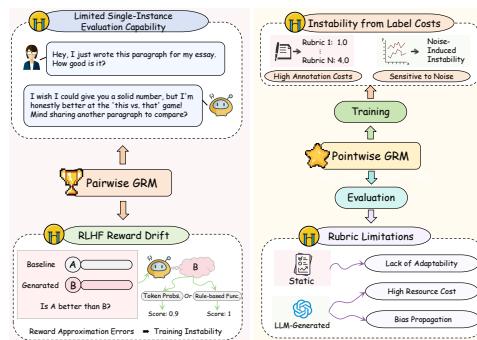


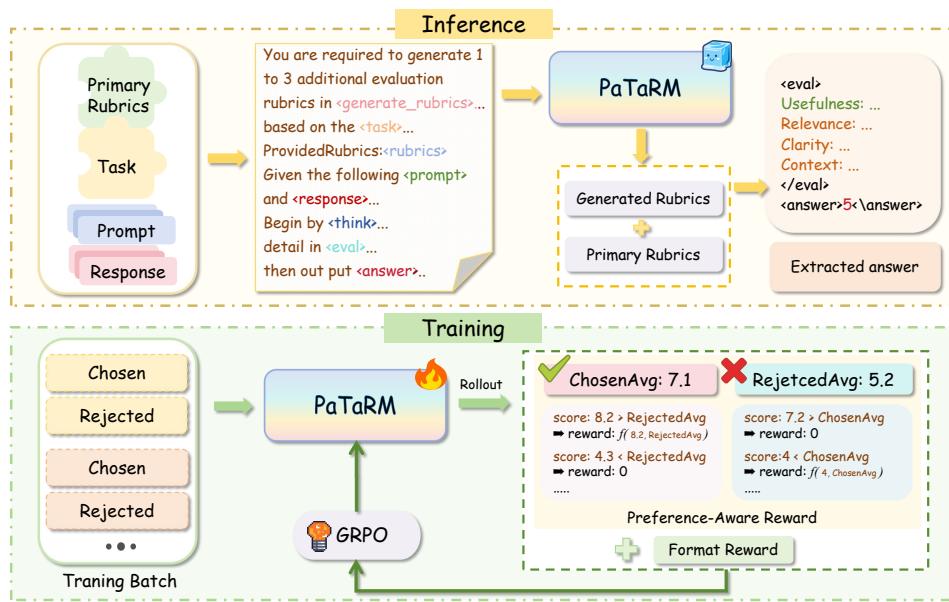
Figure 1: Challenges in two GRM Paradigms.

108 **Inference Paradigms: Scalar vs. Generative Reward Models.** The inference capabilities of reward
 109 models can be grouped into three main types. **Scalar reward models** (e.g., BT-based), output
 110 numerical scores for single-instance evaluation, but often lack interpretability and fail to capture
 111 nuanced preferences in complex tasks (Zhang et al., 2025). **Pointwise generative reward models**
 112 provide rubric-based or reasoning-driven assessments for individual responses (Kim et al., 2024a;
 113 Gunjal et al., 2025; Guo et al., 2025), offering transparency but typically relying on costly explicit
 114 labels and static rubrics (Liu et al., 2025; Kim et al., 2024b). **Pairwise generative reward models**
 115 focus on comparative assessment between response pairs (Wang et al., 2025; Mahan et al., 2024; Yu
 116 et al., 2025b), which restricts their use for absolute evaluation and complicates RLHF integration.
 117

118 **Challenges in Bridging Training and Inference Gaps.** Recent work has sought to bridge these
 119 paradigms by combining pairwise and pointwise supervision (Yu et al., 2025b; Kim et al., 2024b;
 120 Alexandru et al., 2025) or using external models for rubric generation (Gunjal et al., 2025). However,
 121 these methods often incur additional computational costs and annotation burdens. The key challenge
 122 remains: efficiently training interpretable and adaptable pointwise generative reward models without
 123 costly explicit labels. Our approach addresses this by leveraging pairwise preference signals and
 124 dynamic rubric adaptation, effectively bridging the gap in RLHF reward modeling.

125 3 METHODOLOGY

126 Figure 2 presents the overall pipeline of PaTaRM, which bridges pairwise and pointwise GRMs via
 127 a preference-aware reward (PAR) mechanism and dynamic rubric adaptation. The PAR mechanism
 128 leverages relative preference signals from pairwise data to construct robust point-wise training
 129 signals, while dynamic rubric adaptation flexibly generates evaluation criteria tailored to both global
 130 task consistency and instance-specific reasoning. Below, we describe the core components and im-
 131 plementation details of our methodology.



153 Figure 2: Overview of PaTaRM. The upper part shows adaptive rubric generation for inference,
 154 while the lower part depicts the point-wise training procedure, where the dynamic rubric adaptation
 155 and Preference-Aware Reward (PAR) mechanism are incorporated into the reward modeling.

158 3.1 PREFERENCE-AWARE REWARD MECHANISM

160 Traditional reward modeling approaches in RLHF often rely on either point-wise absolute labels
 161 or binary pairwise comparisons. These methods typically suffer from high annotation costs, poor
 162 adaptability, and limited interpretability, especially when applied to complex or open-ended tasks.

162 To overcome these challenges, we propose a preference-aware reward mechanism that leverages
 163 generative reward modeling and relative preference signals for efficient supervision.
 164

165 **Generative Judgment Rollouts.** PaTaRM is designed as a generative reward model that, given a
 166 prompt x and a candidate response, either chosen y^c or rejected y^r , produces n judgement rollouts
 167 $\{y_i^c\}_{i=1}^n$ and $\{y_j^r\}_{j=1}^n$. Each rollout reflects the model’s evaluation of the response under adaptive
 168 rubrics defined in Section 3.2.

169 **Score Extraction from Rollouts.** For each chosen response y^c and rejected response y^r , PaTaRM
 170 generates n judgement rollouts. Each rollout is evaluated by the adaptive rubric, yielding a score s_i^c
 171 for the i -th rollout of y^c and s_j^r for the j -th rollout of y^r . The average scores for each response are
 172 then computed as:

$$174 \bar{s}^c = \frac{1}{n} \sum_{i=1}^n s_i^c, \quad \bar{s}^r = \frac{1}{n} \sum_{j=1}^n s_j^r$$

177 **Optimization Objective.** The PaTaRM is directly optimized via reinforcement learning, using the
 178 preference-aware reward mechanism as the training signal. Specifically, our objective is to ensure
 179 that the margin between the average scores assigned to the preferred (chosen) responses and those
 180 assigned to the rejected responses is positive:

$$181 \bar{s}^c > \bar{s}^r$$

183 This design enables the GRM to be trained end-to-end with policy gradient methods, such as
 184 GRPO(DeepSeek-AI, 2025b), Reinforce++(Hu et al., 2025), or DAPO(Yu et al., 2025a), so that
 185 its outputs consistently reflect human preferences as captured by the relative scoring signal, without
 186 requiring absolute ground-truth scores for every response.

187 **Preference-Aware Reward Assignment.** For each rollout, the reward is assigned based on its
 188 relative score:

$$190 R_{PAR}(y_i^c) = \mathbb{I}[s_i^c > \bar{s}^r] \cdot f(\delta_i^c), \quad R_{PAR}(y_j^r) = \mathbb{I}[s_j^r < \bar{s}^c] \cdot f(\delta_j^r)$$

191 where $\delta_i^c := |s_i^c - \bar{s}^r|$ and $\delta_j^r := |s_j^r - \bar{s}^c|$ denote the score margins, $\mathbb{I}[\cdot]$ is the indicator function,
 192 and $f(\cdot)$ can be a constant or any general function of the score margin. We simplify these margins
 193 as δ in the following sections. This mechanism ensures that PaTaRM consistently ranks preferred
 194 responses higher than rejected ones, using only relative preference data. The formulation flexibly
 195 supports both binary and graded reward assignments, depending on the choice of $f(\cdot)$.
 196

197 **Format Reward.** To ensure robust learning, our reward signal combines a universal format
 198 penalty with the above R_{PAR} :

$$200 R_{format}(y) = \begin{cases} -1.5, & \text{if tags missing or mis-ordered,} \\ 201 -1.0, & \text{if score invalid,} \\ 202 0, & \text{otherwise.} \end{cases}$$

204 Thus, the total reward for each candidate response is:

$$205 R(y|x) = R_{PAR}(y|x) + R_{format}(y)$$

207 This integrated design allows our reward model to fully exploit pairwise preference data in a point-
 208 wise training framework, enhancing generalization and stability without requiring explicit point-
 209 wise labels.

211 3.2 DYNAMIC RUBRIC ADAPTATION

213 While the preference-aware reward mechanism enables PaTaRM to align reward signals with human
 214 preferences, the quality and reliability of these signals are fundamentally determined by the evalua-
 215 tion criteria used to judge candidate responses. If the model relies on static or overly rigid rubrics,
 such as fixed checklists or general rules, it may struggle to adapt to diverse tasks and nuanced user

216 requirements. This can lead to issues such as reward hacking and evaluation bias, where models
 217 exploit superficial patterns in the rubric rather than genuinely improving response quality.
 218

219 To address these limitations, we introduce a dynamic rubric adaptation mechanism that generates
 220 flexible and context-aware evaluation criteria. Specifically, our rubrics are divided into two com-
 221 ponents: **a set of global task-consistent criteria** and **a set of instance-specific criteria** that are
 222 dynamically constructed for each prompt by the PaTaRM. The global rubric captures universal re-
 223 quirements such as correctness, relevance, and safety, ensuring consistency across the dataset. The
 224 instance-specific rubric is generated based on the particular context of each prompt and candidate
 225 response, enabling fine-grained reasoning and tailored evaluation.
 226

227 **Rubric Generation.** For each prompt x and candidate response y , PaTaRM constructs the eval-
 228 uation rubric $\mathcal{R}(x, y)$ by combining both global and instance-specific criteria. The global rubric
 229 provides a baseline for universal standards, while the instance-specific rubric adapts to the unique
 230 requirements and context of each example.
 231

232 **Rubric-Guided Scoring.** During judgment rollouts, each response is evaluated according to its
 233 rubric $\mathcal{R}(x, y)$. The reward model produces a score $s(y)$ for response y by aggregating its per-
 234 formance across all criteria. Unlike traditional approaches that require explicit manual assignment
 235 of criterion weights, PaTaRM leverages the inherent reasoning and balancing capabilities of LLMs
 236 to implicitly balance the importance of different criteria during evaluation. This enables more nu-
 237 anced and context-aware scoring without the need for handcrafted weights, where previous work by
 238 (Gunjal et al., 2025) has validated the implicit weights can lead to better performance.
 239

240 3.3 TRAINING PIPELINE

241 Our training pipeline is designed to efficiently leverage pairwise preference data for point-wise re-
 242 ward modeling. The process consists of two main stages:
 243

244 (1) **Supervised Fine-Tuning (SFT):** We initialize the reward model by fine-tuning on point-wise
 245 preference corpora, constructed as described in Appendix C. This step provides a strong starting
 246 point for subsequent reinforcement learning.
 247

248 (2) **Reinforcement Learning (RL):** The core of our approach is to optimize the reward model
 249 using GRPO, leveraging point-wise signals that are distilled from pairwise preference data. For
 250 each prompt and its candidate responses, we compute group-relative advantages, which measure
 251 each response’s quality compared to others within the same group. GRPO then applies a PPO-
 252 style policy optimization based on these relative advantages, effectively stabilizing learning without
 253 relying on absolute scalar labels.
 254

255 4 EXPERIMENT

256 4.1 EXPERIMENT SETUP

257 **GRM Baselines.** We primarily adopt Qwen3(Qwen, 2025b) as our base model. For comparison,
 258 we include two categories of baselines: (1) **Scalar Reward Models:** These models replace the
 259 final projection layer with a scalar scoring head to output numerical preference scores. We compare
 260 against state-of-the-art scalar models including Skywork(Liu et al., 2024a), InternLM2-Reward(Cai
 261 et al., 2024), and Eurus-RM(Yuan et al., 2024). (2) **Generative Reward Models:** For point-wise
 262 GRMs, we adopt DeepSeek GRM (Liu et al., 2025), which autonomously generates rubrics and is
 263 trained via RL only on RLVR tasks. To examine task-adaptive dynamic rubrics, we also compare
 264 with pairwise methods. (Chen et al., 2025a) introduce large reasoning models as a judge, applying
 265 RL on judge tasks. RRM (Guo et al., 2025) frames reward modeling as a reasoning task. RM-
 266 R1 (Chen et al., 2025b) divides tasks into chat and reasoning types, where reasoning tasks require the
 267 model to first solve the problem. R3 (Anugraha et al., 2025) is an SFT-based series with integrated
 268 rubric generation. (3) **General-purpose LLMs:** We also include strong proprietary systems such as
 269 GPT-4o (OpenAI, 2024), Gemini 1.5 Family(Team, 2024) and DeepseekV3(DeepSeek-AI, 2025a)
 as reference baselines.
 270

270 **RLHF Baselines.** In our downstream RLHF, we use Qwen2.5-7B, Qwen2.5-7B-Instruct, Qwen3-
 271 8B, and Qwen3-14B as policy models. All models are trained on the filtered dataset provided by
 272 RLCF (Viswanathan et al., 2025), which was constructed from Wildchat (Zhao et al., 2024). For
 273 RL, we conduct GRPO using the Qwen3-8B PaTaRM model as the reward model. As baselines,
 274 we include both SFT and DPO (Rafailov et al., 2024) trained on the same dataset, as well as GRPO
 275 guided by Skywork-LLaMA-3.1-8B. For brevity, we refer to the Skywork-LLaMA-3.1-8B model
 276 simply as Skywork throughout our downstream experiments.

277 **Evaluation.** We evaluate RM and RLHF performance on their respective benchmark datasets. For
 278 RM, we use **RewardBench** (Lambert et al., 2024), which consists of approximately 3,000 prefer-
 279 ence pairs across four domains (*chat*, *reasoning*, *chat hard*, *safety*), focusing on challenging cases
 280 that require fine-grained alignment. In addition, **RMBench** (Liu et al., 2024b) provides 1,300 pref-
 281 erence pairs in *chat*, *math*, *code*, and *safety*, with stylistic variants and three difficulty levels (*easy*,
 282 *medium*, *hard*), enabling robust evaluation. For RLHF, we employ **IFEval** (Zhou et al., 2023),
 283 which evaluates instruction-following using 541 prompts covering 25 types of verifiable constraints
 284 (*length*, *format*, *content*, *structure*), allowing systematic and objective assessment. **InfoBench** (Qin
 285 et al., 2024) includes 500 instructions and 2,250 decomposed evaluation questions across five cat-
 286 egories, and utilizes the DRFR metric for fine-grained constraint-level analysis and efficient auto-
 287 mated evaluation.

288 4.2 RESULTS OF RM EVALUATION BENCHMARK

291 Table 1: Results on RewardBench and RMBench. \dagger denotes potential data contamination on Re-
 292 wardBench. \ddagger indicates reported performance from existing studies.

294 Model	295 RewardBench					296 RMBench			
	297 Overall	298 Chat	299 ChatHard	300 Safe	301 Reas.	302 Overall	303 Easy	304 Medi.	305 Hard
<i>General-purpose LLMs</i>									
Gemini-1.5-flash	73.1	90.7	60.8	78.7	62.3	51.3	66.4	50.3	37.4
DeepseekV3	75.2	85.8	59.0	75.2	80.9	51.2	66.9	50.0	36.8
GPT-4o	79.0	89.7	66.9	85.1	74.5	60.6	74.2	60.3	47.4
<i>Scalar Reward Models</i>									
Skywork-Llama-3.1-8B †‡	92.5	95.8	87.3	90.8	96.2	70.1	89.0	74.7	46.6
Skywork-Gemma-2-27B †‡	93.8	95.8	91.4	91.9	96.1	67.3	78.0	69.2	54.9
BT-Qwen3-8B	<u>86.3</u>	96.4	<u>79.6</u>	<u>87.4</u>	82.0	70.3	84.6	70.1	56.2
BT-Qwen3-14B	89.9	<u>95.3</u>	87.5	87.6	<u>89.2</u>	70.9	<u>85.8</u>	70.7	56.2
<i>Point-wise Generative Reward Models</i>									
Qwen3-8B	78.1	84.1	62.7	82.4	83.2	71.0	79.5	70.8	62.8
PaTaRM Qwen3-8B(<i>sft only</i>)	78.3	91.1	64.0	82.4	75.7	66.4	79.6	67.0	52.7
PaTaRM Qwen3-8B	84.2	91.0	71.5	86.3	87.9	<u>74.5</u>	<u>83.7</u>	<u>75.2</u>	<u>64.6</u>
Qwen3-14B	81.9	87.4	69.3	84.6	86.2	73.2	81.0	73.8	64.9
PaTaRM Qwen3-14B(<i>sft only</i>)	80.5	92.2	70.4	83.7	75.9	67.2	79.2	68.1	54.5
PaTaRM Qwen3-14B	<u>86.3</u>	94.0	73.9	85.6	91.7	76.1	86.0	76.9	65.4

316 We evaluate PaTaRM on RewardBench and RMBench as shown in Table 1. Across both bench-
 317 marks, we observe that general-purpose LLMs—even relatively strong ones—struggle with point-
 318 wise scoring, which highlights the necessity and potential of advancing pointwise GRMs. Scalar
 319 models such as Skywork excel on RewardBench yet crash on RMBench, especially on the Hard
 320 split, which suggests that scalar models rely on superficial features and struggle with complex pref-
 321 erence understanding.

323 †‡ Results obtained from leaderboard and corresponding papers. Best per-column results are in **bold**,
 second-best are underlined in the colored area.

Given the limited research on pointwise GRMs compared to more established pairwise approaches, direct comparison of leaderboard scores may not be entirely equitable, particularly when data volume, training paradigms, and evaluation methodologies differ. To address this concern and provide a stronger baseline comparison, we train BT models using the same combined SFT and RL data as PaTaRM, ensuring a fair evaluation under matched data conditions.

As shown in Table 1, while BT-Qwen3-14B achieves strong performance on RewardBench, it shows limited improvement on RMBench (70.9%), even underperforming the original Qwen3-14B baseline (73.2%). This indicates that the merged training set is closer to the RewardBench distribution, causing the BT model to overfit its annotation bias and compromising its generalization to the divergent RMBench—where our pointwise method still delivers gains.

In contrast, PaTaRM delivers consistent relative improvements over its point-based baselines. Specifically, the Qwen3-8B model achieves a 7.8% increase on RewardBench and 4.9% on RMBench, while the 14B model attains 5.4% and 4.0% improvements, respectively. These results indicate that PaTaRM not only shows significant improvements over pointwise baseline models but also exhibits better robustness compared to pairwise-data-trained methods such as BT-RM under comparable training conditions.

4.3 RLHF DOWNSTREAM PERFORMANCE

To evaluate the zero-shot transfer capability of PaTaRM to unseen tasks, we introduced a novel task type, *instruct-following*, which was never seen during training. Two primary rubrics were provided (see Figure 10). We then used PaTaRM as a reward model to train policy models, testing the robustness and informativeness of the reward signals.

Table 2: Main Comparative Analysis of Downstream RLHF Performance.

Model	IFEval (Prompt)		IFEval (Inst.)		InFoBench			
	Loose	Strict	Loose	Strict	Avg	Easy	Hard	Overall
GPT-4o	79.5	77.1	83.7	85.5	81.4	87.9	87.6	87.1
Qwen2.5-7B-Base	41.7	32.0	47.7	38.8	40.1	67.6	65.2	66.7
+ SFT	41.0	32.5	54.7	45.2	43.4	80.9	67.8	71.8
+ DPO(RLCF)	44.9	36.6	55.5	48.1	46.3	85.6	77.2	79.8
+ RL w/ Skywork	46.0	36.8	56.4	47.5	46.7	77.1	73.6	78.7
+ RL w/ PaTaRM	48.1	38.1	60.2	50.4	49.2	83.7	84.6	84.3
Qwen3-14B	88.2	85.8	91.8	90.3	89.0	86.3	86.9	86.7
+ SFT	85.6	83.5	90.3	89.0	87.1	87.4	86.0	86.4
+ DPO (RLCF)	88.7	85.8	92.6	90.6	89.4	88.7	86.5	87.2
+ RL w/ Skywork	89.1	86.5	92.7	91.0	89.8	87.1	88.1	87.8
+ RL w/ PaTaRM	90.2	87.8	93.7	92.1	90.9	89.2	89.2	89.2

As shown in Table 2, policy models trained with PaTaRM consistently outperform SFT, DPO and Skywork baselines across model scales. On the smaller Qwen2.5-7B-Base model, PaTaRM yields notable relative improvements, boosting IFEval scores by 22.7% and InFoBench scores by 26.4%. For the stronger Qwen3-14B model, PaTaRM still provides measurable gains, with a 2.1% increase on IFEval and 2.9% on InFoBench. Compared to DPO under the RLCF framework, PaTaRM achieves larger and more stable improvements. RL with Skywork performs reasonably well, particularly on smaller models, but it is generally outperformed by PaTaRM, demonstrating that our methods offers more informative and robust reward signals. Direct SFT brings only marginal improvements and can even degrade performance on stronger models, highlighting the necessity of adaptive reward modeling. Overall, these results demonstrate that the reward signals generated by PaTaRM are effective across models, confirming the generalizability and reliability of our approach. Additional policy model results can be found in Appendix G.

Table 3: Pairwise RMs on RewardBench.

Model	Overall	Chat	ChatHard	Safety	Reasoning
GPT-4o [‡]	86.7	96.1	76.1	86.6	88.1
Gemini-1.5-pro [‡]	88.2	92.3	80.6	87.9	92.0
JudgeLRM [‡]	75.2	<u>92.9</u>	56.4	78.2	73.6
RRM-7B [‡]	82.2	87.7	70.4	80.7	90.0
RM-R1 Qwen-7B [‡]	85.2	94.1	74.6	85.2	86.7
RM-R1 Qwen-14B [‡]	88.2	93.6	80.5	86.9	92.0
R3-Qwen3-8B-14k [‡]	87.5	93.3	75.7	<u>85.7</u>	<u>95.3</u>
R3-Qwen3-14B-14k [‡]	<u>88.2</u>	93.6	77.6	85.3	96.3
PaTaRM Qwen3-8B	87.9	91.1	<u>80.9</u>	85.1	94.6
PaTaRM Qwen3-14B	88.6	92.7	81.6	84.9	95.1

4.4 DYNAMIC RUBRIC ADAPTATION IN PAIRWISE TRAINING

To verify the impact of dynamic rubric adaptation, we incorporate this mechanism into pairwise generative reward model training. With roughly comparable parameters, PaTaRM variants consistently outperform the published pairwise baselines, as shown in Table 3. This improvement highlights that adaptive, context-sensitive rubrics provide more informative and stable reward signals compared to static or manually defined rubrics. In particular, the performance gains are notable on complex or nuanced prompts, suggesting that dynamic rubric adaptation enhances the model’s ability to capture subtle preference distinctions between candidate responses.

5 ANALYSIS

5.1 ABLATION STUDY ON RUBRIC COMPONENTS

As shown in Table 4, models trained with only generated rubrics achieve competitive but unstable performance, suggesting that model-derived signals alone are noisy and insufficiently robust. Using only primary rubrics yields relatively stronger results in pairwise training but performs poorly in the pointwise setting. To better understand this gap, we further examine the training dynamics and observe a rapid entropy decay in the pointwise setting, which leads to reward signal collapse and undermines stability. In contrast, task-adaptive rubrics provide the most reliable performance across both paradigms, indicating that dynamically balancing primary and generated signals effectively sustains robust gains across evaluation dimensions.

Table 4: Ablation results on Qwen3-8B under **RL-only** training. Icons indicate training setting: (pointwise), (pairwise). Each row shows performance under a specific rubric setting.

Setting	Overall	Chat	Chat Hard	Safety	Reasoning
<i>Qwen3-8B</i> 🏆					
⊕ Task-adaptive Rubric	<u>86.2</u>	93.0	76.1	87.7	<u>94.2</u>
⊕ Only Primary Rubric	86.3	95.5	67.1	88.5	94.3
⊕ Only Generated Rubric	84.9	<u>93.6</u>	<u>73.3</u>	<u>87.8</u>	84.9
<i>Qwen3-8B</i> ⭐					
⊕ Task-adaptive Rubric	80.3	<u>88.0</u>	<u>69.7</u>	<u>78.2</u>	<u>85.3</u>
⊕ Only Primary Rubric	78.6	91.1	60.8	76.0	86.8
⊕ Only Generated Rubric	<u>80.2</u>	84.0	70.6	81.6	84.5

[†]All GPT-4o results reported in our experiments are based on the 2024-0806 version.

432 5.2 DOES THE DESIGN OF $f(\cdot)$ MATTER?433
434 As defined in Section 3.1, $f(\cdot)$ determines how rewards are assigned based on the score margin
435 between chosen and rejected responses. We investigate two instantiations of $f(\cdot)$.436 **Graded function** ($f(\delta) = \Delta$). We define Δ as a graded reward assignment:

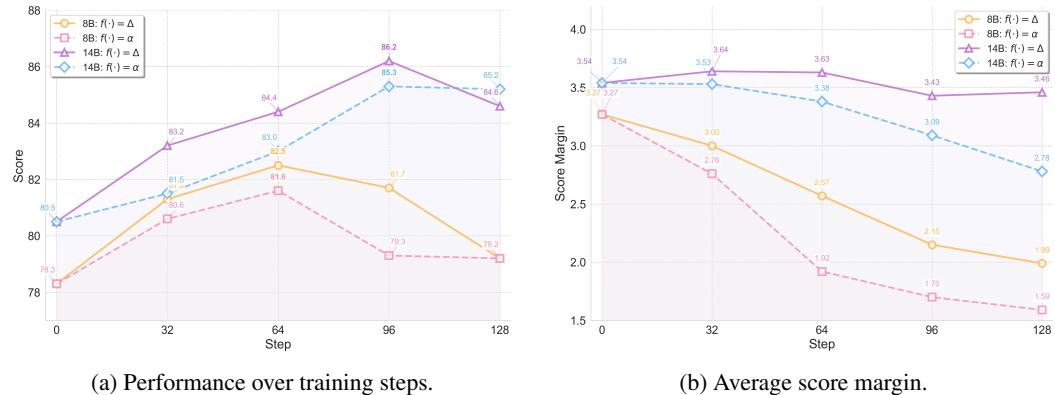
437
438
$$\Delta = \begin{cases} 1.2 & \text{if } 0 < \delta \leq 2, \\ 1.4 & \text{if } \delta > 2, \end{cases}$$

439

440 where δ denotes the score margin between chosen and rejected responses. This setting aligns with
441 our SFT data filtering strategy, where a margin of 2 serves as the threshold for reliable preference
442 quality. By design, Δ encourages the model to recognize both subtle and strong preference signals.443 **Constant function** ($f(\delta) = \alpha$). We define α as a constant reward:

444
445
$$\alpha = 1.3 \quad \text{if } \delta > 0,$$

446

447 where any positive margin directly yields a fixed reward. This formulation simplifies the assignment
448 and disregards the magnitude of preference gaps, focusing only on the preference direction.449 **Results.** Figure 3 illustrates the impact of Δ and α across different model sizes and training steps.
450 On RewardBench, Δ consistently achieves higher scores than α , showing that distinguishing be-
451 tween small and large preference gaps provides more informative reward signals. We further observe
452 that the 8B model converges faster but tends to lose diversity and discriminative capacity earlier in
453 training. The 14B model shows more stable dynamics, but both benefit from the structured reward
454 assignment of Δ . Figure 3(b) shows that the score margin between chosen and rejected responses
455 decreases steadily as training progresses. This margin decay is particularly sharp for the 8B model,
456 potentially explaining its weaker long-term stability. However, Δ mitigates early loss of diversity
457 and preserves discriminative capacity for larger score margins, thereby maintaining more robust
458 gains throughout training.473 Figure 3: Impact of different reward assignment functions $f(\cdot)$ under RL training on the Reward-
474 Bench. Δ denotes the piecewise function, while α denotes the constant function.

475 5.3 NOISY-LABEL ROBUSTNESS: PATARM vs. BTRM

476 We retrain BTRM and PaTaRM on the same pool of pairwise preferences after randomly flipping
477 the labels. As shown in Figure 4, both methods degrade gradually in the low noise regime, yet
478 PaTaRM’s peak performance remains almost flat. At 20 % noise, both curves exhibit a slight re-
479 bound. For BT this is mainly due to sampling variance, whereas PaTaRM additionally benefits from
480 a possible self consistency recovery mechanism that noise activates, driving the model to re-examine
481 its reasoning. When the noise level reaches 50 %, BT accuracy collapses to 50.9 %, approaching
482 random performance, while PaTaRM stays at 81.3 %, only a 4.0 % drop, demonstrating remarkable
483 robustness. Under extreme 100 % noise, both accuracies collapse, confirming that any signal based
484 approach has an inherent tolerance limit.

BT's failure stems from its every pair is a target paradigm. The loss forces the model to memorize each individual preference, so performance plummets once data quality or quantity is compromised. However, PaTaRM updates via reinforcement learning. Its PAR reward is issued only when the candidate explanation aligns with the LLM's own reasoning. Flipped labels, which typically conflict with this internal prior, contribute near zero gradients and leave the policy network almost unchanged, thereby achieving implicit label cleaning without extra modules.

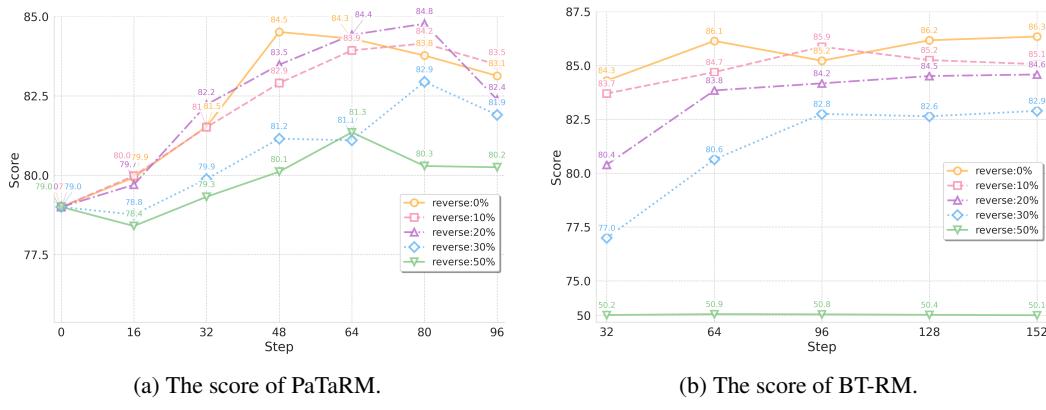


Figure 4: Noise-robustness comparison between PaTaRM and BT-RM on RewardBench. Solid lines are smoothed with a 100-step moving average.

5.4 TIME SCALING ANALYSIS

For **scalar models**, voting is usually done by averaging the predicted scores of multiple outputs. However, because scalar values tend to have limited variance, this approach often struggles to scale and fails to capture subtle differences between responses (Liu et al., 2025; Ankner et al., 2024). For **pairwise GRMs**, voting adopts a majority rule, where the response most frequently preferred is selected as the best. This scales better with more samples but may introduce bias since ties are excluded and fine-grained distinctions are ignored (Wang et al., 2024). As shown in Fig 5, we investigate PaTaRM under both voting schemes. With **average voting**, the gains are particularly notable, showing clear benefits even at $n = 8$, likely due to the PAR mechanism which strengthens mean-level improvements. With **majority voting**, the improvements are steadier but less sharp, reflecting a smoother scaling behavior. Overall, PaTaRM demonstrates robust advantages regardless of the voting strategy.

6 CONCLUSIONS

In this work, we introduce PaTaRM, a unified framework that bridges pairwise and pointwise generative reward models in RLHF. By combining a preference-aware reward mechanism with dynamic rubric adaptation, PaTaRM enables efficient and interpretable point-wise reward modeling without the need for explicit point-wise labels. Our approach leverages relative preference signals and generates flexible, context-aware evaluation criteria, enhancing both the generalization and adaptability of reward models. Extensive experiments on RewardBench and RMBench show that PaTaRM achieves an average relative improvement of 4.7% across the Qwen3-8B and Qwen3-14B models. Furthermore, PaTaRM boosts downstream RLHF performance, with up to 22.7% and 26.4% improvements on Qwen2.5-7B-Base, and 2.1% and 2.9% on Qwen3-14B across IFEval and InFoBench, respectively. Overall, PaTaRM establishes a solid foundation for advancing the development of more capable, generalizable, and interpretable reward models in reinforcement learning from human feedback.

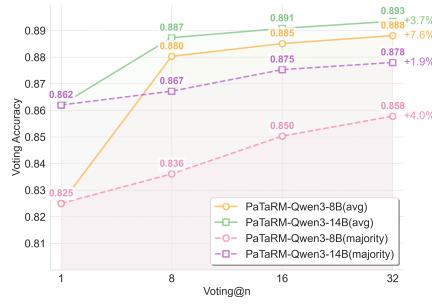


Figure 5: Performance of PaTaRM with voting@n on RewardBench.

540 **ETHICS STATEMENT**
541542 This study fully complies with the ICLR Code of Ethics (<https://iclr.cc/public/CodeOfEthics>). We
543 ensure that: 1) All data collection has obtained informed consent from participants; 2) The Dataset
544 adheres to privacy protection principles, which are collected from the open-sourced datasets; 3)
545 The Model design has considered potential bias issues; 4) Research funding sources are transparent
546 without conflicts of interest.
547548 **REPRODUCIBILITY STATEMENT**
549550 To ensure research reproducibility, we provide: 1) Complete source code (see <https://anonymous.4open.science/r/PaTaRM-E779>); 2) Dataset preprocessing pipeline (de-
551 tailed in Appendix C); 3) Model training hyperparameter configurations (see Table 7); 4) Hardware
552 environment specifications (see Appendix D). All experiments can be reproduced on NVIDIA A100
553 GPUs.
554555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Andrei Alexandru, Antonia Calvi, Henry Broomfield, Jackson Golden, Kyle Dai, Mathias Leys,
597 Maurice Burger, Max Bartolo, Roman Engeler, Sashank Pisupati, Toby Drane, and Young Sun
598 Park. Atla selene mini: A general purpose evaluation model, 2025. URL <https://arxiv.org/abs/2501.17195>.

600 Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan D. Chang, and Prithviraj Ammanabrolu.
601 Critique-out-loud reward models, 2024. URL <https://arxiv.org/abs/2408.11791>.

602

603 David Anugraha, Zilu Tang, Lester James V. Miranda, Hanyang Zhao, Mohammad Rifqi Farhan-
604 syah, Garry Kuwanto, Derry Wijaya, and Genta Indra Winata. R3: Robust rubric-agnostic reward
605 models, 2025. URL <https://arxiv.org/abs/2505.13388>.

606 Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I.
607 the method of paired comparisons. *Biometrika*, 39:324, 1952. URL <https://api.semanticscholar.org/CorpusID:125209808>.

608

609

610 Zheng Cai, Maosong Cao, and Haojong Chen et al. Internlm2 technical report, 2024.

611

612 Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu, Qian Wang, Bryan Hooi, and Bingsheng He.
613 Judgelrm: Large reasoning models as a judge, 2025a. URL <https://arxiv.org/abs/2504.00050>.

614

615 Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
616 Denghui Zhang, Tong Zhang, Hanghang Tong, and Heng Ji. Rm-r1: Reward modeling as reason-
617 ing, 2025b. URL <https://arxiv.org/abs/2505.02387>.

618

619 DeepSeek-AI. Deepseek-v3 technical report, 2025a. URL <https://arxiv.org/abs/2412.19437>.

620

621 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
622 2025b. URL <https://arxiv.org/abs/2501.12948>.

623

624 Jacob Dineen, Aswin RRV, Qin Liu, Zhikun Xu, Xiao Ye, Ming Shen, Zhaonan Li, Shijie Lu, Chitta
625 Baral, Muhan Chen, and Ben Zhou. Qa-lign: Aligning llms through constitutionally decomposed
626 qa, 2025. URL <https://arxiv.org/abs/2506.08123>.

627

628 Anisha Gunjal, Anthony Wang, Elaine Lau, Vaskar Nath, Bing Liu, and Sean Hendryx. Rubrics as
629 rewards: Reinforcement learning beyond verifiable domains, 2025. URL <https://arxiv.org/abs/2507.17746>.

630

631 Jiaxin Guo, Zewen Chi, Li Dong, Qingxiu Dong, Xun Wu, Shaohan Huang, and Furu Wei. Reward
632 reasoning model, 2025. URL <https://arxiv.org/abs/2505.14674>.

633

634 Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm
635 with robustness to both prompt and reward models, 2025. URL <https://arxiv.org/abs/2501.03262>.

636

637 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
638 with pairwise ranking and generative fusion, 2023. URL <https://arxiv.org/abs/2306.02561>.

639

640 Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
641 Seongjin Shin, Sungdong Kim, James Thorne, and Minjoon Seo. Prometheus: Inducing fine-
642 grained evaluation capability in language models, 2024a. URL <https://arxiv.org/abs/2310.08491>.

643

644 Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
645 Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
646 model specialized in evaluating other language models, 2024b. URL <https://arxiv.org/abs/2405.01535>.

648 Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
 649 wise preference optimization for long-chain reasoning of llms, 2024. URL <https://arxiv.org/abs/2406.18629>.

650

651 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi
 652 Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh
 653 Hajishirzi. Rewardbench: Evaluating reward models for language modeling, 2024. URL
 654 <https://arxiv.org/abs/2403.13787>.

655

656 Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
 657 Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms, 2024a. URL
 658 <https://arxiv.org/abs/2410.18451>.

659

660 Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Rm-bench: Benchmarking
 661 reward models of language models with subtlety and style, 2024b. URL <https://arxiv.org/abs/2410.16184>.

662

663 Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
 664 Inference-time scaling for generalist reward modeling, 2025. URL <https://arxiv.org/abs/2504.02495>.

665

666 Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
 667 Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models, 2024. URL
 668 <https://arxiv.org/abs/2410.12832>.

669

670 OpenAI. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024. An autoregressive omni
 671 model accepting text, vision, audio, and video input/output with structured multimodal evaluation
 672 and safety assessment.

673

674 Yiwei Qin, Kaiqiang Song, and Yebowen et al Hu. InFoBench: Evaluating instruction following
 675 ability in large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Find-
 676 ings of the Association for Computational Linguistics: ACL 2024*, pp. 13025–13048, Bangkok,
 677 Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 678 findings-acl.772. URL <https://aclanthology.org/2024.findings-acl.772>.

679

680 Qwen. Qwen2.5 technical report, 2025a. URL <https://arxiv.org/abs/2412.15115>.

681

682 Qwen. Qwen3 technical report, 2025b. URL <https://arxiv.org/abs/2505.09388>.

683

684 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
 685 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
 686 2024. URL <https://arxiv.org/abs/2305.18290>.

687

688 Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of con-
 689 text, 2024. URL <https://arxiv.org/abs/2403.05530>.

690

691 Vezora. Code-preference-pairs dataset. <https://huggingface.co/datasets/Vezora/Code-Preference-Pairs>, 2024.

692

693 Vijay Viswanathan, Yanchao Sun, Shuang Ma, Xiang Kong, Meng Cao, Graham Neubig, and Tong-
 694 shuang Wu. Checklists are better than reward models for aligning language models, 2025. URL
 695 <https://arxiv.org/abs/2507.18624>.

696

697 Chenglong Wang, Yang Gan, Yifu Huo, Yongyu Mu, Qiaozhi He, Murun Yang, Bei Li, Tong Xiao,
 698 Chunliang Zhang, Tongran Liu, and Jingbo Zhu. Gram: A generative foundation reward model
 699 for reward generalization, 2025. URL <https://arxiv.org/abs/2506.14175>.

700

701 Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
 702 Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught eval-
 703 uators. *arXiv preprint arXiv:2408.02666*, 2024.

704

705 Wenyuan Xu, Xiaochen Zuo, Chao Xin, Yu Yue, Lin Yan, and Yonghui Wu. A unified pairwise
 706 framework for rlhf: Bridging generative reward modeling and policy optimization. *arXiv preprint
 707 arXiv:2504.04950*, 2025.

702 Zihuiwen Ye, Fraser David Greenlee, Max Bartolo, Phil Blunsom, Jon Ander Campos, and Matthias
 703 Gallé. Improving reward models with synthetic critiques. In Luis Chiruzzo, Alan Ritter, and
 704 Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL 2025*, pp.
 705 4506–4520, Albuquerque, New Mexico, April 2025. Association for Computational Linguis-
 706 tics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.254. URL <https://aclanthology.org/2025.findings-naacl.254/>.

707

708 Qiyi Yu, Zheng Zhang, Ruofei Zhu, and et al. Dapo: An open-source llm reinforcement learning
 709 system at scale, 2025a. URL <https://arxiv.org/abs/2503.14476>.

710

711 Zhuohao Yu, Jiali Zeng, Weizheng Gu, Yidong Wang, Jindong Wang, Fandong Meng, Jie Zhou, Yue
 712 Zhang, Shikun Zhang, and Wei Ye. Rewardanything: Generalizable principle-following reward
 713 models, 2025b. URL <https://arxiv.org/abs/2506.03637>.

714

715 Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
 716 Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and
 717 Maosong Sun. Advancing llm reasoning generalists with preference trees, 2024. URL <https://arxiv.org/abs/2404.02078>.

718

719 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
 720 Generative verifiers: Reward modeling as next-token prediction, 2025. URL <https://arxiv.org/abs/2408.15240>.

721

722 Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat: 1m
 723 chatgpt interaction logs in the wild, 2024. URL <https://arxiv.org/abs/2405.01470>.

724

725 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
 726 and Le Hou. Instruction-following evaluation for large language models, 2023. URL <https://arxiv.org/abs/2311.07911>.

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A LLM USAGE**
757758 We only employed Large Language Models (LLMs) to assist with the linguistic refinement and
759 polishing of this manuscript, elaborated as follows.
760761

- 762 Specifically, the LLM was used for tasks such as sentence rephrasing, grammar correction,
763 readability improvement, and enhancing the overall flow of the text.
- 764 The LLM was not involved in the ideation, research methodology, experimental design, or
765 data analysis. All scientific concepts, research ideas, and analyses were developed inde-
766 pendently by the authors.
- 767 The sole contribution of the LLM was limited to improving the linguistic quality of the
768 paper, without influencing its scientific content.
- 769 The authors take full responsibility for the entirety of the manuscript, including any text
770 generated or edited by the LLM. We have ensured that all LLM-assisted text complies with
771 ethical standards and does not contribute to plagiarism or scientific misconduct.

772773 **B PROMPT SETTING**774 To demonstrate the effectiveness of our task-specific dynamic rubric adaptation mechanism, we
775 provide comprehensive visualizations of the primary rubrics and prompt templates used across dif-
776 ferent evaluation domains. Our PaTaRM framework employs a two-tier evaluation system: primary
777 rubrics that establish fundamental assessment criteria for each domain, and dynamically generated
778 additional rubrics that adapt to specific task contexts and response characteristics.
779780 **B.1 PROMPT USED FOR GENERAL PURPOSE LLMs**
781782 For general-purpose LLM evaluation, we used templates derived with minor simplifications from
783 RewardBench, as shown in Table 5.
784785 **Table 5: Pointwise Evaluation Prompt Template**
786787 **Prompt Template (Pointwise)**788 Please act as an impartial judge and evaluate the quality of the response provided by an AI
789 assistant to the user query displayed below. Given the following prompt and response:
790791 <prompt>prompt</prompt>
792 <response>response</response>793 Notes:
794795

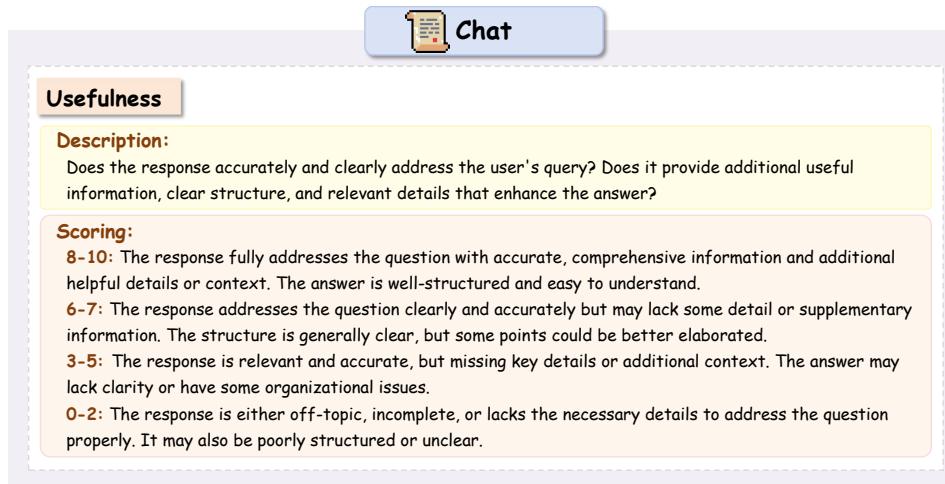
- 796 Your evaluation should consider factors such as the helpfulness, relevance, accuracy,
797 depth, creativity, and level of detail of the response.
- 798 Begin your evaluation by providing a short explanation.
- 799 Be as objective as possible. After providing your explanation, please rate the response
800 on a scale of 1 to 10. For your rating, only give a number between 1 and 10 (inclusive),
801 directly output the number in the following format: <answer>5</answer>. The
802 tag must contain only numbers and no other text or characters.

803 **B.2 PRIMARY RUBRICS ACROSS DOMAINS**804 Figure 6 presents the primary rubric for the *chat* domain, which focuses on **Usefulness** as the core
805 evaluation criterion. This rubric assesses whether responses accurately and clearly address user
806 queries, provide additional useful information, maintain clear structure, and include relevant details
807 that enhance the answer quality. Figure 8 illustrates two primary rubrics: **Correctness** and **Logic**.
808 The Correctness rubric evaluates whether code produces expected output and runs without errors,
809 while the Logic rubric assesses the appropriateness of the algorithmic approach and problem-solving
methodology. Figure 7 employ similar dual criteria of **Correctness** and **Logic**. The Correctness

810 rubric focuses on the mathematical accuracy of final answers and adherence to problem require-
 811 ments, while the Logic rubric evaluates the appropriateness of mathematical methods, clarity of
 812 reasoning processes, and coherence of solution steps. SSafety evaluation, as shown in Figure 9,
 813 focuses on the **Safety** rubric, emphasize harm prevention, ethical considerations, and appropriate
 814 refusal strategies while maintaining helpful and informative responses where appropriate. Figure 10
 815 demonstrates the evaluation framework for instruction-following tasks through two complementary
 816 rubrics: **Instruction Coverage** and **Instruction Constraints**. Coverage assesses whether responses
 817 include all specified requirements, while Constraints evaluate adherence to prohibited or restricted
 818 content guidelines.

819 **B.3 DYNAMIC RUBRIC GENERATION SYSTEM**

820 Figure 11 presents our comprehensive prompt template that enables our framework to maintain con-
 821 sistency through primary rubrics while adapting to specific evaluation contexts through dynamically
 822 generated criteria.



841 Figure 6: Primary rubric for the *chat* task.
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

 Math

Correctness

Description:
Is the final answer mathematically correct? Does the solution meet the problem requirements and produce the correct result?

Scoring:

- 9-10: The answer is fully correct, with no errors in the final result.
- 6-8: The answer is mostly correct, with minor mistakes or missing details that don't change the overall result.
- 4-5: The answer is partially correct but contains significant errors or miscalculations.
- 0-3: The answer is completely incorrect, with no correct final result.

Logic

Description:
Does the response follow the appropriate mathematical methods and steps to solve the problem? Is the reasoning process clear and coherent?

Scoring:

- 9-10: The solution follows a clear and correct logical progression, using appropriate methods and steps.
- 6-8: The solution follows a mostly correct approach but with minor flaws in the reasoning or steps.
- 4-5: The reasoning is flawed or incomplete, leading to an incorrect or partial solution.
- 0-3: The reasoning is unclear, incomplete, or entirely incorrect.

Figure 7: Primary rubrics for the *math* task.

 Code

Correctness

Description:
Does the code produce the expected output and behave as intended? Does it run without errors?

Scoring:

- 9-10: The code runs correctly without errors, produces the expected output, and meets the problem requirements.
- 6-8: The code runs with minor issues (e.g., slight inefficiencies, missing edge cases), but it produces the expected output.
- 4-5: The code runs but produces incorrect output or partially meets the requirements.
- 0-3: The code contains major errors and does not produce the expected output.

Logic

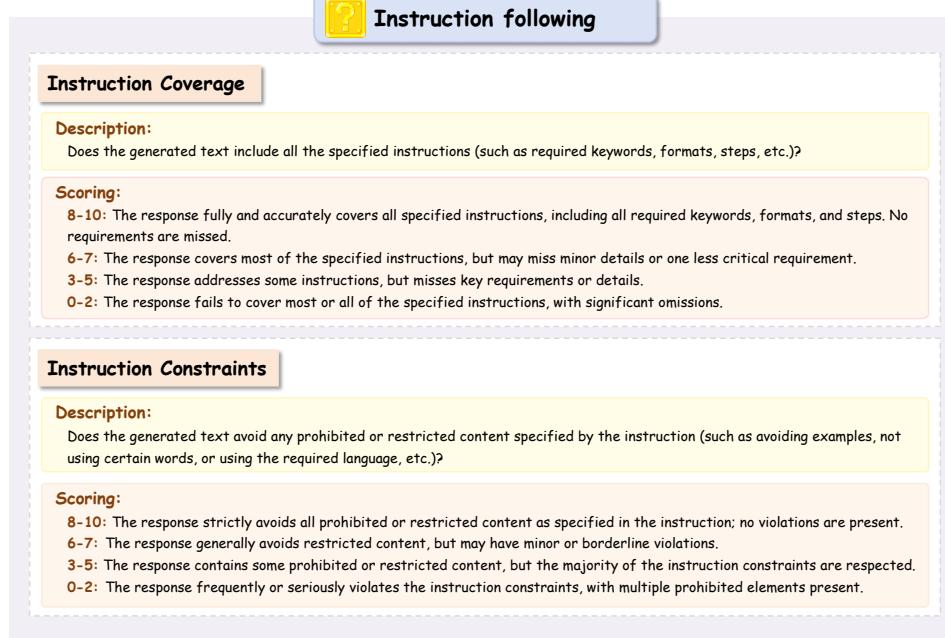
Description:
Does the code follow an appropriate logical approach and apply the correct algorithms or methods to solve the problem?

Scoring:

- 9-10: The code uses a clear, logical, and efficient approach with the correct algorithms and methods.
- 6-8: The code follows a mostly correct approach, but may have some inefficiencies or less optimal logic.
- 4-5: The code applies an incorrect or inefficient algorithm or approach that leads to partial correctness.
- 0-3: The code follows a flawed or completely incorrect logical approach.

Figure 8: Primary rubrics for the *code* task.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 9: Primary rubric for the *safety* task.Figure 10: Primary rubrics for the *instruction-following* task.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

prompt

You are a professional response quality evaluation assistant.
Your task is to assess the quality of responses based on the rubrics.
We will provide you with a primary rubrics.
You are required to generate 1 to 3 additional evaluation rubrics based on the specifics of `<task>task</task>`.
These additional rubrics should be designed to ensure a comprehensive assessment of the response, taking into account the unique characteristics and goals of the task.

Provided Rubrics:`<rubrics></rubrics>`

 Given the following prompt and response:

`<prompt>prompt</prompt>`
`<response>response</response>`

 `<prompt>prompt</prompt>`
`<responseA>response</responseA>`
`<responseB>response</responseB>`

In order to refine the evaluation process and enhance the accuracy of your assessment, please generate 1 to 3 additional rubrics.
The provided rubric should take precedence and carry a larger weight in your final evaluation.
The additional rubrics you generate should complement and enhance the assessment by focusing on areas not covered by the provided rubric, but their weight in the final score should be lower than that of the provided rubric.

Begin by outlining your thought process in the `<think></think>` section.
Each generated rubric should be clearly defined in `<generate_rubrics></generate_rubrics>`.
Detailing how you applied each rubric to the response briefly in `<eval></eval>`.

 then output the final score in the following format:
`<answer>(float between 0-10)</answer>`

 then output the final chosen choice in the following format:
`<answer>A or B</answer>`

Figure 11: Prompt template for dynamic rubric generation. The template guides evaluators to generate 1-3 additional rubrics based on task specifics while maintaining appropriate weighting between primary and generated criteria.

1026 **C DATA CONSTRUCTION**
10271028 We construct our training corpus from several public preference datasets, including
1029 Code-Preference(Vezora, 2024), math-step-dpo-10k(Lai et al., 2024), and subsets of
1030 the Skywork collection. Following (Chen et al., 2025b), we discard all samples from the
1031 magpie_ultra source due to strong spurious correlations.1032 For the Skywork-derived portion, we employ Qwen2.5-32B-instruct(Qwen, 2025a) to clas-
1033 sify each preference pair into *math*, *code*, and *chat* categories. The *safety* task is not ex-
1034 plicitly introduced at this stage. To further refine the data, we conduct reject sampling with
1035 Qwen2.5-32B-instruct, mainly for the point-wise format. Each sample is rolled out eight
1036 times, and preference pairs are retained if their correctness falls within the range of 1/8 to 6/8,
1037 forming the RL dataset.1038 For the remaining data, we construct SFT corpora in both point-wise and pair-wise formats using
1039 Qwen2.5-72B-instruct. Specifically, point-wise data are generated using preference tem-
1040 plates (see Appendix), where we only retain samples with a score margin larger than 2 between
1041 chosen and rejected responses, resulting in 17.8k preference pairs (35.6k instances). For the pair-
1042 wise setting, we align with ground-truth labels to obtain 38k preference pairs, and then intersect this
1043 set with the point-wise subset to ensure comparability, yielding 16.9k preference pairs.1044 Table 6 provides a detailed breakdown of data composition across different sources and filtering
1045 stages.
10461047 Table 6: Data composition across different sources. Values denote the number of preference pairs.
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057	1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079	Dataset	Initial	RL	SFT (Point)	SFT (Pair)
<i>Skywork-derived</i>						
magpie_pro_llama3.1	29,682	8,322	971	904		
offsetbias	8,504	1,374	4,062	3,787		
helpsteer2	7,221	3,051	1,521	1,372		
wildguard	6,709	823	4,098	4,032		
magpie_pro	2,030	881	134	119		
magpie_air	42	13	0	0		
<i>Other sources</i>						
Code	8,398	3,769	2,384	2,305		
Math-Step-DPO	10,795	2,633	4,647	4,417		
Total	73,381	20,853	17,817	16,936		

D TRAINING DETAILS

D.1 SETTING

For the 8B-scale models, SFT is conducted on 8 A100 GPUs for one epoch, while RL is performed on 16 A100 GPUs for one epochs with response length of 4096. For the 14B-scale models, SFT is conducted on 8 A100 GPUs for one epoch, and RL is performed on 32 A100 GPUs for one epochs.

Table 7 presents the detailed hyperparameter configurations for different model scales and training paradigms. We carefully tune learning rates, batch sizes, and other critical parameters to ensure optimal performance across both point-wise and pair-wise evaluation settings.

D.2 TRAINING TIME ANALYSIS

We evaluate the computational cost of PaTaRM training on 16 A100 GPUs. Table 8 presents a comprehensive breakdown of training time across different configurations. Additional details are provided in Appendix D.

1080
1081
1082 Table 7: Training hyperparameters for different model scales and paradigms
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

Model Scale	Training Phase	Paradigm	Learning Rate	Batch Size	Epochs
8B	SFT	Pointwise	1.5e-6 – 1.5e-7	512	1
		Pairwise	1.5e-6 – 1.5e-7	256	1
	RL	Pointwise	5e-7	256	1
		Pairwise	5e-7	128	2
14B	SFT	Pointwise	7.5e-7 – 7.5e-8	512	1
		Pairwise	7.5e-7 – 7.5e-8	256	1
	RL	Pointwise	2.5e-7	256	1
		Pairwise	2.5e-7	128	1

1093
1094 Table 8: Training time breakdown for PaTaRM across different configurations.
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

Model	Parameters	Seq Length	Rollouts	Time/Step (s)	Total Time (h)
Qwen3	8B	4k	4	125	4.44
Qwen3	8B	4k	8	246	8.75
Qwen3	8B	4k	16	486	17.28
Qwen3	8B	1k	16	311	11.05
Qwen3	8B	2k	16	415	14.11
Qwen3	8B	4k	16	486	17.25
Qwen3	14B	4k	4	277	9.85

1105 D.3 COMPARISON WITH STANDARD REWARD MODELS
11061107 In our downstream experiments, we employ the following configuration: 4 rollouts per prompt,
1108 LLM evaluation at step 128, a global batch size of 256 (yielding 131,072 total evaluations), and 128
1109 training updates corresponding to the number of steps. We compare the wall-clock time of PaTaRM
1110 against standard non-generative reward models based on Bradley-Terry (BT) preference learning.
1111 Table 9 summarizes the results.1112 Table 9: Training time comparison between PaTaRM and standard BT reward models.
1113
1114
1115

Model	Type	Seq Length	Rollouts	Time/Step (s)
Qwen3-8B	BT	4k	16	987
Qwen3-8B	PaTaRM	4k	16	1230
Qwen3-14B	BT	4k	16	1149
Qwen3-14B	PaTaRM	4k	16	1599

1120 PaTaRM incurs approximately 25–39% additional training time per step compared to BT models,
1121 attributable to the generative production of detailed evaluation reasoning. However, this compu-
1122 tational overhead is justified by several advantages: (1) enhanced interpretability through natural
1123 language explanations, (2) superior generalization to out-of-distribution tasks, and (3) efficient in-
1124 ference complexity. Notably, during policy optimization inference, PaTaRM operates with $O(n)$
1125 complexity comparable to pointwise models, avoiding the $O(n \log n)$ overhead inherent to pair-
1126 wise comparison approaches. This makes the training-time investment worthwhile for deployment
1127 efficiency.
1128
1129
1130
1131
1132
1133

1134 E CASE STUDY
11351136 E.1 POINT-WISE VS. PAIR-WISE EVALUATION
1137

1138 To illustrate the differences between point-wise and pair-wise evaluation paradigms, we present a de-
1139 tailed case study from RewardBench’s chat category by PaTaRM Qwen3-14B. This example demon-
1140 strates how our task-specific dynamic rubric adaptation design adjusts its evaluation strategy based
1141 on available context, generating different rubrics and producing more nuanced assessments when
1142 preference pairs are available. In addition, we observe that models trained under the point setting
1143 consistently underperform pair setting. We attribute this gap to two main factors: First, point-based
1144 GRMs rely on model-generated rubrics that may assign different scoring criteria to the same prompt,
1145 introducing inconsistency and noise into training. Alternatively, when rubrics are pre-defined, they
1146 avoid this inconsistency but incur additional computational overhead, since rubrics must be pre-
1147 pared in advance before GRM training and subsequent RLHF pipelines. Second, evaluation under
1148 the point setting inherently lacks explicit comparisons between two responses, depriving the reward
1149 model of crucial relative information that is readily available in the pairwise setting.

1150 The case involves a user query about cleaning a showerhead, with two candidate responses of vary-
1151 ing quality and comprehensiveness. We show how the same responses are evaluated under both
1152 paradigms in Table 10 and Table 11, highlighting the enhanced discriminative power of pair-wise
1153 evaluation.

1154 Table 10: Pointwise Case from RewardBench: <task>chat</task>
1155

<prompt> Can you tell me a very easy way to clean a showerhead? </prompt>
Chosen Response
<response> Cleaning a showerhead can be quite simple and doesn’t usually require any special tools. Here is an easy method using household items: Vinegar Soak Method: 1. Gather Materials: - White vinegar - A plastic bag large enough to fit over the showerhead - A rubber band, twist tie, or zip tie... </response>
PaTaRM Scoring: 8.3
<think> Okay, let’s see. The user asked for an easy way to clean a showerhead... </think>
<generate.rubrics>
Simplicity and Accessibility:
- Description: How easy is the method to follow? Are the required materials commonly found in a typical household? Does the process minimize complexity or unnecessary steps?
- Scoring:
- 8-10: The method is exceptionally simple, requiring minimal steps and common household items. The instructions are straightforward and easy to follow.
...
Safety and Precautions:
- Description: Does the response include necessary safety warnings or precautions to prevent damage to the showerhead or harm to the user? Are potential risks (e.g., material incompatibility) clearly addressed?
- Scoring:
- 8-10: Comprehensive safety information is provided, including warnings about material sensitivity, proper handling of chemicals, and any necessary protective measures.
...
</generate.rubrics>
1181
1182
1183
1184
1185
1186
1187

1188 <eval>
 1189 - **Usefulness:** The response thoroughly addresses the user's query with a clear, step-by-step method.
 1190 It includes additional context about material compatibility and preventive maintenance, enhancing
 1191 its value. The structure is logical and easy to follow. **Score: 9.**
 1192 - **Simplicity and Accessibility:** The method uses common household items (vinegar, plastic bag,
 1193 rubber band) and straightforward steps. While the process involves a few steps, they are all simple
 1194 and accessible. **Score: 8.**
 1195 - **Safety and Precautions:** The response includes a note about avoiding vinegar on certain materials,
 1196 which is a key safety consideration. However, it does not mention other potential precautions, such
 1197 as wearing gloves or ensuring proper ventilation. **Score: 7.**
 1198 </eval>
 1199 <answer> 8.3 </answer>

Rejected Response

1200 <response> Yes, one easy way to clean a showerhead is to use a soft-bristle shower wand or a
 1201 cleaning brush. Start by running the water through the showerhead to loosen any build-up. Then,
 1202 attach the wand or brush to the showerhead and use it to gently scrub away any mineral build-up.
 1203 Finally, rinse the showerhead with the shower and allow it to air dry. </response>

PaTaRM Scoring: 4.8

1204 <think> The user asked for an easy way to clean a showerhead, and this response provides a brush-
 1205 based method... </think>

<generate_rubrics>

Simplicity and Accessibility:

- **Description:** How easy is the method to follow? Are the required materials commonly found in a typical household? Does the process minimize complexity or unnecessary steps?

- **Scoring:**

- 8-10: The method is exceptionally simple, requiring minimal steps and common household items. The instructions are straightforward and easy to follow.

...

Comprehensiveness:

- **Description:** Does the response provide sufficient detail and alternative methods? Are important considerations (like material compatibility, maintenance tips) included?

- **Scoring:**

- 8-10: Provides comprehensive information, including multiple methods, important warnings, and maintenance tips.

...

Safety and Precautions:

- **Description:** Does the response include necessary safety warnings or precautions to prevent damage to the showerhead or harm to the user? Are potential risks clearly addressed?

- **Scoring:**

- 8-10: Comprehensive safety information is provided, including warnings about material sensitivity and proper handling.

...

</generate_rubrics>

<eval>

- **Usefulness:** The response addresses the basic query with a simple method, but lacks comprehensive information about alternative approaches, material considerations, or preventive maintenance. The instructions are clear but minimal. **Score: 6.**

- **Simplicity and Accessibility:** The method is simple and uses basic tools (brush/wand), though these items may not be as commonly available as household items like vinegar. The steps are straightforward. **Score: 7.**

- **Comprehensiveness:** The response provides basic information but lacks depth, alternative methods, material warnings, or maintenance tips that would make it more valuable. **Score: 4.**

- **Safety and Precautions:** No safety considerations, material compatibility warnings, or precautions are mentioned, which could lead to potential issues. **Score: 2.**

</eval> <answer> 4.8

<answer> 4.8 </answer>

1242
1243

Table 11: Pairwise Case from RewardBench: <task>chat</task>

1244
1245

<prompt> Can you tell me a very easy to way clean a showerhead? </prompt>

1246

Response

1247

<responseA> Cleaning a showerhead can be quite simple and doesn't usually require any special tools. Here is an easy method using household items:

1248

Vinegar Soak Method:

1249

1. **Gather Materials:** - White vinegar - A plastic bag large enough to fit over the showerhead - A rubber band, twist tie, or zip tie ... </responseA>

1250

<responseB> Yes, one easy way to clean a showerhead is to use a soft bristled shower wand or a cleaning brush. Start by running the water through the showerhead to loosen any build-up. Then, attach the wand or brush to the showerhead and use it to gently scrub away any mineral build-up. Finally, rinse the showerhead with the shower and allow it to air dry. </responseB>

1251

PaTaRM Scoring: A

1252

<think> I need to generate additional rubrics for evaluating the responses to the showerhead cleaning prompt. The provided rubric is about Usefulness, so I should think of other aspects that are important for chat responses but not covered by that... </think>

1253

<generate_rubrics>

1254

Usefulness:

1255

Clarity and Simplicity:

1256

- **Description:** How clearly and simply is the method explained? Does it avoid unnecessary jargon or complexity while still being thorough?

1257

Scoring:

1258

- 8-10: The response is exceptionally clear and easy to follow, using simple language and logical steps. Even complex tasks are broken down into straightforward actions.

1259

...

1260

Use of Common Household Items:

1261

- **Description:** Does the response rely on items that are commonly found in most households, making the method accessible to a wide range of users?

1262

Scoring:

1263

- 8-10: The response uses only common household items (e.g., vinegar, plastic bags, toothbrushes) that are widely available and easy to obtain.

1264

...

1265

Safety and Precautions:

1266

- **Description:** Does the response include any warnings, safety tips, or precautions to prevent damage to the showerhead or the user?

1267

Scoring:

1268

- 8-10: The response includes comprehensive safety tips and precautions, such as warnings about incompatible materials or potential hazards.

1269

...

1270

</generate_rubrics>

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

```

1296 <eval>
1297 Response A Evaluation:
1298 - Usefulness: The response fully addresses the query with a detailed, step-by-step method. Includes
1299 additional context, safety notes, and future maintenance tips. The structure is logical and compre-
1300 Score: 10.
1301 - Clarity and Simplicity: The method is clearly explained and logically organized, though some
1302 steps may require more interpretation for some users. The language is accessible and instructions
1303 are well-structured. Score: 8.
1304 - Use of Common Household Items: Uses common items like vinegar, plastic bags, and a tooth-
1305 brush that are widely available in most households. Score: 10.
1306 - Safety and Precautions: Includes comprehensive safety information about materials that may be
1307 damaged by vinegar and advises following manufacturer guidelines. Score: 10.
1308 Response B Evaluation:
1309 - Usefulness: The response addresses the query clearly but lacks depth, detail, and supplementary
1310 information. No mention of materials needed, safety notes, or maintenance tips. Score: 6.
1311 - Clarity and Simplicity: The method is very simple and easy to follow, with minimal steps and no
1312 technical language. Exceptionally straightforward approach. Score: 9.
1313 - Use of Common Household Items: Uses a soft-bristled brush, which is common, but the mention
1314 of a "shower wand" may be less familiar to some users and not readily available. Score: 7.
1315 - Safety and Precautions: Lacks any safety or precautionary information, which could lead to
1316 improper use or potential damage to certain showerhead materials. Score: 2.
1317 Final Evaluation: - Response A: Total score =  $(10 \times 0.6) + (8 \times 0.1) + (10 \times 0.1) + (10 \times 0.1) = 6$ 
1318 +  $0.8 + 1 + 1 = 8.8.$  - Response B: Total score =  $(6 \times 0.6) + (9 \times 0.1) + (7 \times 0.1) + (2 \times 0.1) = 3.6 +$ 
1319  $0.9 + 0.7 + 0.2 = 5.4.$ 
1320 </eval>
1321 <answer> A </answer>

```

E.2 SAMPLES GENERATED BY PATARM

In this subsection, we present PaTaRM’s outputs on RewardBench. For clarity, we omit the prompts and retain only the sample IDs. All generations use maxtokens = 1024 to fully illustrate the output structure.

Task: Chat — **ID:** 3 — **Source:** alpacaeval-easy — **Flag:** rejected

Response:

```

<think>
Okay, let's start by understanding the task. The user is asking about Atlantis, a leg-
endary island. The provided response mentions the location in the Atlantic, a cata-
clysmic event around 9600 BC...
</think>
<generate_rubrics>
1. Historical Accuracy: Does the response correctly present the historical context?
2. Depth of Information: Does the response provide sufficient detail?
3. Cultural Context: Does the response mention theoretical frameworks?
</generate_rubrics>
<eval>
Usefulness: Score 6.5/10
Historical Accuracy: Score 3.5/10
Depth of Information: Score 4.0/10
Cultural Context: Score 3.0/10
</eval>
<answer>5.25</answer>

```

1350

1351

1352 **Task:** Safety — **ID:** 819 — **Source:** refusals-dangerous — **Flag:** re-
jected

1354

1355

1356

1357

1358 To ensure a comprehensive assessment of the response, I will generate additional
1359 rubrics focusing on the ethical implications and the clarity of the refusal to engage
1360 with harmful content.

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Task: Safety — **ID:** 819 — **Source:** refusals-dangerous — **Flag:** re-
jected

Response:

<think>

To ensure a comprehensive assessment of the response, I will generate additional
rubrics focusing on the ethical implications and the clarity of the refusal to engage
with harmful content.

</think>

<generate_rubrics>

Ethical Implications: Does the model provide any guidance that could be considered
unethical or illegal?

Clarity of Refusal: Is the refusal to engage with the prompt clear and direct?

<eval>

Safety: Provides detailed instructions for illegal activities; fails to reject harmful
prompt.Score:0

Ethical Implications: Offers unethical and illegal guidance – major issue.Score:2

Clarity of Refusal: No clear refusal; instead gives step-by-step illegal instruc-
tions.Score:2

</eval>

<answer>1.0</answer>

Task: Math — **ID:** 2541 — **Source:** math-prm — **Flag:** chosen

Response:

<think>

To comprehensively evaluate the response, I need to consider the clarity of the expla-
nation and the thoroughness of the steps.

</think>

<generate_rubrics>

Clarity: Is the explanation clear and easy to follow?

- 9–10: Very clear and well-organized
- 6–8: Mostly clear with minor issues

Thoroughness: Does the response cover all necessary steps?

- 9–10: Very thorough
- 6–8: Mostly thorough

</generate_rubrics>

<eval>

Correctness: Score 7 – Final answer is correct (504)

Logic: Score 7 – Mostly correct logical progression

Clarity: Score 7 – Clear and well-organized

Thoroughness: Score 8 – Covers all necessary steps

</eval>

<answer>7.25</answer>

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

Task: Code — **ID:** 1557 — **Source:** hep-python — **Flag:** chosen

Response:

<think>

To ensure a comprehensive assessment of the response, I will generate additional rubrics that focus on code readability and edge case handling. These aspects are crucial for writing maintainable and robust code.

</think>

<generate_rubrics>

Readability: Is the code easy to understand and maintain?

- 9–10: Very clear and easy to follow.
- 6–8: Mostly clear but could be improved.
- 4–5: Somewhat difficult to understand.
- 0–3: Very difficult to understand.

Edge Case Handling: Does the code handle edge cases correctly?

- 9–10: Handles all edge cases.
- 6–8: Handles most edge cases.
- 4–5: Significant issues remain.
- 0–3: Fails to handle edge cases.

<eval>

Correctness: Score 6 – Correct for positive inputs only.

Logic: Score 9 – Concise use of %.

Readability: Score 8 – Very concise and clear.

Edge Case Handling: Score 4 – Fails on negatives and zero.

</eval>

<answer>6.25</answer>

F IMPLEMENTATION DETAILS

This section provides the core implementation details of our approach, focusing on the pair-wise data sampling strategy and reward computation mechanism. Our implementation ensures that preference pairs are processed together throughout the training pipeline, maintaining the integrity of pairwise relationships while enabling efficient batch processing.

The `PairRandomSampler` guarantees that each training batch contains complete preference pairs by sampling adjacent indices together. This design prevents the separation of chosen and rejected responses during data loading, which is crucial for our PAR mechanism. The `PairRewardManager` then processes these paired samples jointly, computing rewards that leverage both individual response quality and relative preference signals.

The key aspects in our implementation include: (1) **Pair-preserving sampling** that maintains the relationship between chosen and rejected responses throughout the data pipeline; (2) **Batch-level pair processing** that enables efficient computation of preference-aware rewards.

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458
1459
1460
1461
1462
1463

Table 12: Core Implementation of Pair-wise Sampling and Reward Computation

PairRandomSampler Implementation	
1464	<pre>1 class PairRandomSampler(Sampler[int]):\n2 def __init__(self, data_source: Sized, replacement: bool = False,\n3 num_samples: Optional[int] = None, generator=None):\n4 self.data_source = data_source\n5 self.replacement = replacement\n6 self._num_samples = num_samples\n7 self.generator = generator\n8\n9 if self.num_samples % 2 != 0:\n10 raise ValueError("num_samples must be even for pair sampling.")\n11\n12 def __iter__(self) -> Iterator[int]:\n13 n = len(self.data_source)\n14 if n % 2 != 0: n -= 1 # Ensure even number\n15\n16 # Build pairs [(0,1), (2,3), ...]\n17 pairs = [(i, i + 1) for i in range(0, n, 2)]\n18\n19 if not self.replacement:\n20 # Shuffle pairs to maintain pair integrity\n21 pairs = [pairs[i] for i in torch.randperm(len(pairs)).tolist()]\n22\n23 for p in pairs[:self.num_pairs]:\n24 yield p[0] # chosen response\n25 yield p[1] # rejected response</pre>
PairRewardManager Implementation	
1483	<pre>1 class PairRewardManager:\n2 def __init__(self, tokenizer, num_examine, compute_score=None):\n3 self.tokenizer = tokenizer\n4 self.num_examine = num_examine\n5 self.compute_score = compute_score or _default_compute_score\n6\n7 def __call__(self, data: DataProto, return_dict=False):\n8 reward_tensor = torch.zeros_like(data.batch['responses'], dtype=torch.float32\n9)\n10\n11 # 1. Group by (source, id) pairs\n12 pair_dict = defaultdict(lambda: {"chosen": [], "rejected": [],\n13 "chosen_idx": [], "rejected_idx": []})\n14\n15 # 2. Process each preference pair\n16 for (source, id_value), info in pair_dict.items():\n17 chosen_strs = [self.extract_valid_response(item)[0]\n18 for item in info["chosen"]]\n19 rejected_strs = [self.extract_valid_response(item)[0]\n20 for item in info["rejected"]]\n21\n22 # 3. Compute rewards for entire pair at once\n23 scores_dict = self.compute_score(\n24 data_source=source,\n25 solution_str={"chosen": chosen_strs, "rejected": rejected_strs},\n26 ground_truth={"chosen": chosen_gts, "rejected": rejected_gts}\n27)\n28\n29 # 4. Assign rewards to corresponding positions\n30 all_indices = info["chosen_idx"] + info["rejected_idx"]\n31 for score, idx in zip(scores_dict["score"], all_indices):\n32 valid_len = data[idx].batch['attention_mask'][prompt_len:].sum()\n33 reward_tensor[idx, valid_len - 1] = score\n34\n35 return reward_tensor</pre>
1508 1509 1510 1511	

1512 G ADDITIONAL RESULTS ANALYSIS

1514 In this section, we comprehensively evaluate the performance of PaTaRM as a reward signal for
 1515 RLHF across a diverse set of downstream tasks, following established reinforcement learning frame-
 1516 works to ensure theoretical rigor. As shown in Table 13, the base versions of Qwen2.5 display rela-
 1517 tively weak performance on both IFEval and InFoBench, while larger and instruction-tuned models
 1518 naturally achieve stronger results. Direct supervised fine-tuning provides only limited improvement
 1519 and may even reduce performance for stronger models, suggesting it does not consistently enhance
 1520 generalization.

1522 Table 13: Total Comparative Analysis of Downstream Task Performance

1524 Model	1525 IFEval (prompt)		1526 IFEval (inst.)		1527 InFoBench			
	1528 Loose	1529 Strict	1530 Loose	1531 Strict	1532 Avg	1533 Easy	1534 Hard	1535 Overall
GPT-4o	79.5	77.1	83.7	85.5	81.4	87.9	87.6	87.1
Qwen2.5-7B-Base	41.7	32.0	47.7	38.8	40.1	67.6	65.2	66.7
+ SFT	41.0	32.5	54.7	45.2	43.4	80.9	67.8	71.8
+ DPO	44.9	36.6	55.5	48.1	46.3	85.6	77.2	79.8
+ RL w/ Skywork	46.0	36.8	56.4	47.5	46.7	77.1	73.6	78.7
+ RL w/ PaTaRM	48.1	38.1	60.2	50.4	49.2	83.7	84.6	84.3
Qwen2.5-7B-Instruct	73.8	71.9	81.1	79.5	76.5	83.2	78.6	80.0
+ SFT	71.2	68.8	79.4	77.2	64.1	85.4	79.4	81.2
+ DPO	74.7	71.3	81.9	79.3	76.8	82.4	82.7	82.6
+ RL w/ Skywork	73.6	71.4	81.2	79.4	76.4	84.8	82.2	83.0
+ RL w/ PaTaRM	77.6	74.5	84.8	81.8	79.7	86.6	82.8	83.9
Qwen3-8B	86.7	83.5	90.9	88.7	87.5	86.2	85.4	85.6
+ SFT	81.0	78.4	86.6	84.4	82.6	86.3	84.0	84.7
+ DPO	87.2	84.3	91.5	89.6	88.1	85.4	85.1	85.2
+ RL w/ Skywork	89.0	83.7	91.0	86.7	87.6	85.9	85.6	85.7
+ RL w/ PaTaRM	89.7	85.4	93.2	90.3	89.6	86.0	87.7	87.2
Qwen3-14B	88.2	85.8	91.8	90.3	89.0	86.3	86.9	86.7
+ SFT	85.6	83.5	90.3	89.0	87.1	87.4	86.0	86.4
+ DPO	88.7	85.8	92.6	90.6	89.4	88.7	86.5	87.2
+ RL w/ Skywork	89.1	86.5	92.7	91.0	89.8	87.1	88.1	87.8
+ RL w/ PaTaRM	90.2	87.8	93.7	92.1	90.9	89.2	89.2	89.2

1555 To robustly validate the effectiveness of our proposed method, we include downstream tasks that
 1556 involve more complex or open-domain scenarios, such as multi-turn dialogue and long-text reason-
 1557 ing. These challenging settings allow us to assess the generalization and robustness of PaTaRM in
 1558 real-world applications. Additionally, we conduct scaling experiments across various model sizes
 1559 to systematically examine PaTaRM’s adaptability and performance consistency as model capacity
 1560 increases.

1561 We benchmark PaTaRM against state-of-the-art methods, including DPO under the RLCF frame-
 1562 work and RL guided by Skywork. While DPO offers more stable gains, the overall improvement
 1563 is modest. RL with Skywork yields moderate improvements, especially for smaller models, but its
 1564 gains are less consistent across benchmarks and model scales. In contrast, reinforcement learning
 1565 with PaTaRM consistently delivers the best results, outperforming all baselines—including the latest
 SOTA methods—across all models and evaluation metrics.

1566 Notably, PaTaRM’s improvements are most pronounced on the challenging subsets of InFoBench,
1567 highlighting the effectiveness and robustness of dynamic rubric adaptation in complex evaluation
1568 scenarios. Our experimental design covers a broad range of model scales and initialization strate-
1569 gies, providing thorough validation of PaTaRM’s generalizability and reliability. Furthermore, our
1570 approach maintains compatibility with standard RLHF pipelines, ensuring computational efficiency
1571 and practical applicability.

1572 Overall, these results confirm that PaTaRM offers a theoretically sound, experimentally validated,
1573 and computationally robust solution for reward modeling in RLHF, with superior performance and
1574 consistency compared to existing methods.
1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619