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ABSTRACT

Accurate estimation of time-varying treatment effects is crucial for optimizing in-
terventions in personalized medicine. However, observational data often contains
complex confounding bias and temporal complexities, making counterfactual es-
timation challenging. We propose Temporal Adaptive Convolutional Intervention
Network (TACIN), a novel model that introduces an Intervention-aware Func-
tional Convolution kernel to emphasize the role of treatments and capture com-
plex temporal treatment interactions. TACIN addresses confounding bias from
a domain generalization perspective, approximating the unknown target domain
using adversarial examples and incorporating Sharpness-Aware Minimization to
derive a generalization bound. This approach is more suitable for longitudinal
settings compared to existing methods inspired by domain adaptation techniques
due to inherent differences between static and longitudinal contexts. Experiments
on simulated datasets demonstrate TACIN’s superior performance compared to
state-of-the-art models for counterfactual estimation over time. The code for
reproducing the experimental results is available in an anonymous repository at
https://anonymous.4open.science/r/TACIN-2D20.

1 INTRODUCTION

Precise estimation of time-varying treatment effects is crucial in domains like personalized medicine,
where optimizing individual interventions relies on accurate estimating counterfactual outcomes
(Huang & Ning, 2012). Randomized Controlled Trials, despite being the gold standard for causal
inference (Hariton & Locascio, 2018), are limited by high costs and ethical concerns. Consequently,
research has shifted focus to methods tackling confounding bias and temporal complexities in ob-
servational data for accurate counterfactual estimation.

Time-varying confounders often introduce complex confounding bias in observational data, leading
to inaccurate estimates. Recent studies (Bica et al., 2020b; Melnychuk et al., 2022; Wang et al.,
2024) have addressed this issue by learning representations to break the association between histor-
ical information and treatment assignment, drawing inspiration from domain adaptation techniques
used in static causal inference settings (Shalit et al., 2017; Hassanpour & Greiner, 2019; Johans-
son et al., 2022). However, the suitability of domain adaptation in longitudinal settings remains
questionable due to inherent differences between the two contexts.

Due to the unobservability of counterfactuals, we aim to train a model on the factual (source) do-
main that generalizes well to the counterfactual (target) domain. In static settings (Figure 1(a)),
the target domain during testing is consistent with training and can be sampled, aligning with do-
main adaptation (Ganin et al., 2016). However, in longitudinal settings, the historical information of
length t generated under the training intervention policy (Figure 1(b)) differs from the τ -step inter-
vened historical information under a different testing policy (Figure 1(c)). The unknown true data
generation process renders the target distribution unknown during testing, potentially explaining the
ineffectiveness of current balancing strategies in longitudinal settings (Huang et al., 2024).

Another challenge in longitudinal settings arises from temporal complexities, particularly those
caused by interactions between treatments over time. For instance, Roemhild et al. (2022) em-
phasize the existence of complex temporal interactions between antibiotics, which is crucial for
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Figure 1: In static settings, the allocation of treatments does not affect the generation of covariates.
As illustrated in Figure 1(a), confounding bias leads to distributional differences among interven-
tion groups, while the distribution within each treatment group remains consistent across training
and testing sets. However, in longitudinal settings, the data distribution is determined by a sequence
of treatments. When the intervention policy during the testing phase from time t − τ to t (Fig-
ure 1(c)) differs from that of the training phase (Figure 1(b)), it is infeasible to sample from the true
distribution, as the data generation mechanism is unknown.

optimizing antibiotic use and minimizing resistance. To address this, Wang et al. (2024) propose a
dual-module architecture called ACTIN, which highlights these interactions by processing historical
and current treatment information at the same scale. However, similar to previous works (Bica et al.,
2020b; Melnychuk et al., 2022), ACTIN treats treatments as general inputs, overlooking the unique
role that treatments play. This oversight may hinder the model’s ability to capture complex temporal
treatment interactions. In static settings, methods such as VCNet (Nie et al., 2020) have demon-
strated that emphasizing the role of treatments is a key point in model design, but in longitudinal
settings, this remains an open question.

To address these challenges, we propose a novel model called Temporal Adaptive Convolutional
Intervention Network (TACIN) for counterfactual estimation over time. In order to emphasize the
role that treatments play, we draw inspiration from VCNet, which allows the weights of the predic-
tion head to be functions of the treatment. TACIN introduces an Intervention-aware 1 Functional
Convolution (IFC) kernel, ensuring that the convolutional kernel at each time step depends on the
related treatment. Specifically, we employ Radial Basis Functions (RBFs) as basis functions to fit
nonlinear functions of treatments, enhancing the model’s ability to handle complex temporal treat-
ment interactions. Furthermore, since the target domain is unobservable in longitudinal settings, we
revisit confounding bias from the perspective of domain generalization. TACIN approximates the
unknown target domain by generating adversarial examples using the Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015). By incorporating Sharpness-Aware Minimization (SAM) (Foret
et al., 2021), a technique for enhancing model generalization performance, we derive a general-
ization bound for the model under certain conditions. The objective function proposed based on
this theoretical analysis can more effectively mitigate time-varying confounding bias. A compre-
hensive review of related work, which motivates and contextualizes our contributions, is provided
in Appendix A, which motivates and contextualizes our contributions. Extensive experiments on
simulated datasets validate the effectiveness of TACIN, demonstrating superior performance over
state-of-the-art models for counterfactual estimation over time.

2 PROBLEM FORMULATION

Consider an i.i.d. observational dataset D containing detailed information for N patients, denoted

as D =

{
x

(i)
t ,a

(i)
t ,y

(i)
t

T (i)

t=1 ∪ v(i)

}N
i=1

. For each patient i, we observe time-varying covariates

X
(i)
t ∈ X , treatments A

(i)
t ∈ A, and outcomes Y

(i)
t ∈ Y at discrete time steps T (i), along with

static covariates V(i) ∈ V such as gender and age. For notational simplicity, we omit the patient-
specific superscript (i) when the context is clear.

1In causal inference, “intervention” is a broad term. We primarily use “treatment” for medical interventions,
although the terms are used interchangeably herein.
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Building upon the potential outcome framework (Rubin, 1978) and its extension to time-varying
treatments (Robins & Hernan, 2008), we aim to estimate time-varying counterfactual outcomes
(Bica et al., 2020b; Lim et al., 2018; Li et al., 2021). Let H̄t = (X̄t, Āt−1, Ȳt,V) denote the
patient’s historical information, where X̄t = (X1, · · · ,Xt), Ȳt = (Y1, · · · ,Yt), and Āt−1 =
(A1, · · · ,At−1). Our objective is to estimate the potential outcome Yt+τ [āt:t+τ−1] following a
treatment sequence āt:t+τ−1 = (at, · · · ,at+τ−1), conditioned on the historical information H̄t:

E[Yt+τ [āt:t+τ−1]|H̄t]. (1)
To identify treatment effects from observational data, we rely on the assumptions of consistency,
sequential ignorability, and sequential overlap, as established in prior works (Lim et al., 2018; Bica
et al., 2020b; Melnychuk et al., 2022; Wang et al., 2024) and detailed in Appendix B.

3 METHOD

3.1 INTERVENTION-AWARE FUNCTIONAL CONVOLUTION

To enhance the model’s ability to emphasize the role of treatments and capture potentially com-
plex temporal interactions, we propose an Intervention-aware Functional Convolution (IFC) kernel.
Explicitly encoding treatment information within the functional convolution operation enables IFC
to better understand treatment impact on patient outcomes over time. This intervention-aware ap-
proach facilitates the learning of intricate relationships between treatments and covariates, ultimately
improving the model’s capacity for predicting counterfactual outcomes accurately.

In our proposed IFC, we employ a one-dimensional dilated convolution kernel that differs from
traditional approaches (Oord et al., 2016) by incorporating the corresponding treatment as a function
at each time step. Specifically, the output at time step t can be computed as:

F (t) =

k−1∑
i=0

Wiφ(at)zt−d·i + b. (2)

In the equation, F (t) ∈ Rdout denotes the output at time step t, where dout is the output dimension.
The convolution kernel size is denoted by k, while d denotes the dilation factor. Wi ∈ Rdout×din

is the i-th convolution weight matrix, where din is the input dimension. The intervention function
φ(at) takes the treatment at at time step t as input. zt−i ∈ Rdin is the input at time step t − i, and
b ∈ Rdout denotes the bias.

Radial Basis Functions (RBFs) are widely used as basis functions for approximating nonlinear func-
tions and capturing complex interactions between variables. In this study, we explore two types of
RBFs, Gaussian and Multiquadric, as the basis functions in the IFC kernel to capture the temporal
treatment interactions.

Let c ∈ Rdc denote the centers of the RBFs. The Gaussian RBF for the i-th dimension of the
treatment a and the j-th center c is defined as:

ψGaussian(ai, cj) = exp

(
− (ai − cj)2

2ζ2

)
, (3)

where ζ is the width parameter controlling the spread of the Gaussian function. Similarly, the
Multiquadric RBF for the i-th dimension of a and the j-th center c is:

ψMultiquadric(a
i, cj) =

√
(ai − cj)2 + σ2, (4)

where σ is a constant parameter controlling the shape of the Multiquadric function.

The overall basis function φ(a) is obtained by summing the weighted RBF values over all dimen-
sions of the treatment and all centers:

φ(a) =

da∑
i=1

dc∑
j=1

wijψ(ai, cj), (5)

where ψ(ai, cj) can be either the Gaussian RBF or the Multiquadric RBF, and {wij} are the learn-
able weights associated with each RBF. By incorporating these RBF-based basis functions into the
IFC, the model can learn the complex, nonlinear relationships in the temporal dynamics of treatment
effects, enabling more accurate estimation of counterfactual outcomes.
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Figure 2: The module in TACIN that learns representations of historical information primarily con-
sists of multiple IFC blocks. To enlarge the receptive field, we employ dilated convolutions, where
d denotes the dilation factor. The right side of the figure illustrates the structure of an IFC kernel,
which is determined by the treatment nonlinear function φ(At) at the current time step (abbreviated
as φAt in the figure). Subsequently, counterfactual estimation is performed on the learned represen-
tations using feedforward neural networks GX and GY .

3.2 ADDRESSING CONFOUNDING BIAS FROM A DOMAIN GENERALIZATION PERSPECTIVE

Existing methods for causal inference with time-varying treatments often borrow ideas from
the static setting and aim to address confounding bias through the lens of domain adaptation.
Specifically, these approaches seek to learn representations that align the conditional distributions
P (Φ(H̄t)|At = aj) across different treatment assignments aj , thereby removing the association
between time-dependent confounders present in the patient history H̄t and time-varying treatments
At (Bica et al., 2020b; Melnychuk et al., 2022; Wang et al., 2024). However, for this alignment to
successfully remove confounding bias, it is assumed that the distribution of the observed histories
H̄t remains consistent between training and testing (see Remark 1 for a detailed explanation). In
the longitudinal setting, this assumption may not hold, limiting the effectiveness of these methods
in real-world scenarios. To illustrate this, we can derive the distribution of H̄t in the training phase
as:

P (H̄t) = P (X1)

t−1∏
s=1

Ptrain(As|H̄s)P (Xs+1|H̄s,As) (6)

where Ptrain(As|H̄s) denotes the probability of treatment assignment at step s given the history H̄s,
which is typically determined by doctors following specific treatment policies during training.

However, during the testing phase, given a history H̄t−τ , we may encounter a new sequence of
treatments Āt−τ :t−1 of length τ , which results in a trajectory of length t. The distribution of this
trajectory can be expressed as:

Pτ (H̄t) = P (H̄t−τ )

t−1∏
s=t−τ

Ptest(As|H̄s)P (Xs+1|H̄s,As), (7)

where Ptest(As|H̄s) represents the treatment assignment policy employed during the testing phase
(e.g., random assignment), which generally differs from the policy used during training.

The testing phase involves trajectories H̄t of length t, formed by applying different treatment sub-
sequences of length τ , whose distribution often differs from that observed during training. This
discrepancy between the distributions of H̄t in the training and testing phases poses a significant
challenge for methods that rely on the assumption of distributional consistency, leading to the inabil-
ity to maintain consistent conditional distributions P (Φ(H̄t)|At = aj) across different treatment
assignments aj in the testing phase.

In contrast to previous work, this paper proposes a novel perspective on addressing confound-
ing bias through the lens of domain generalization. Let ut = [H̄t,At] ∈ U , h : U → Y
be a hypothesis function for counterfactual estimation, and l : Y × Y → R+ be a loss func-
tion. We denote the source (observed) domain of ut as DS , which follows the factual distribution
PS(ut) = P (H̄t|At)P (At), and the target domain as DT , which follows the counterfactual distri-
bution PT (ut) = Ptest(H̄t|At)Ptest(At). Let RS := Eut∼PS

[l(h(ut),yt)] denote the factual risk of

4
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a hypothesis h, and similarly, let RT denote the counterfactual risk. Our goal is to find a hypothesis
h that minimizes RT .

Previous works (Bica et al., 2020b; Melnychuk et al., 2022; Wang et al., 2024) have often approached
this problem from the perspective of domain adaptation. However, based on our earlier analysis,
for the target domain DT , we not only lack knowledge of the potential outcomes but also of its
distribution, making it infeasible to sample from the observed data. In other words, we are faced
with a domain generalization problem, where the model have to generalize to unseen distributions
during testing. To address this challenge, we propose a novel approach that constructs a upper
bound on the counterfactual risk based on Sharpness-Aware Minimization (SAM) and adversarially
generated samples. The specific details are provided in the next section.

3.3 GENERALIZATION BOUND ON COUNTERFACTUAL RISK

In order to derive a upper bound on the counterfactual riskRT , we first introduce the concept of SAM
(Foret et al., 2021). SAM is a novel optimization technique that seeks to find a flat minimum of the
loss function, which has been shown to improve the generalization performance of deep learning
models. The key idea behind SAM is to minimize the maximum loss within a neighborhood of
the current model parameters, rather than just the loss at the current parameters. Formally, given a
model hθ parameterized by θ, SAM solves the following optimization problem:

min
θ

max
‖ε‖≤ρ

RS(hθ+ε), (8)

where ε is a small perturbation to the model parameters, and ρ is a hyperparameter that controls the
size of the neighborhood around θ. By solving this minimax optimization problem, SAM finds a
set of parameters θ∗ that minimize the maximum loss within a ρ-neighborhood of θ∗, resulting in a
flatter loss landscape and improved generalization. Additionally, Foret et al. (2021) point out that
the factual risk can be bounded as shown in Lemma 1.

Lemma 1 (Sharpness-Aware Minimization (Foret et al., 2021)). The source riskRS(hθ) is bounded
using the following PAC-Bayes generalization bound for any ρ with probability 1− δ:

RS(hθ) ≤ max
‖ε‖≤ρ

R̂S(hθ+ε) + γ(‖θ‖22/ρ2), (9)

where γ(‖θ‖22/ρ2) =

√√√√ 1
n−1

(
k log

(
1 +

‖θ‖22
ρ2

(
1 +

√
log(n)
k

)2
)

+ 4 log n
δ + Õ(1)

)
, and n is

the training set size used for calculation of empirical risk R̂S(hθ), k is the number of parameters
and ‖θ‖2 is the norm of the weight parameters.

Given that our primary objective is to optimize the counterfactual error, we first introduce the gen-
eralization bounds proposed by Shalit et al. (2017) based on domain adaptation to bridge the gap
between the factual and counterfactual risks.

Lemma 2 (Generalization Bound via IPM (Shalit et al., 2017)). Let Φ : U → R be a one-to-one
representation function, with inverse Ψ. Let h : U → Y and f : R → Y be hypothesis and H,F
be the sets of all possible hypothesis (i.e. Hypothesis Space) over U and R respectively. Let G be a
family of functions g : R → Y . Define the Integral Probability Metric(IPM) of two distributions:

IPMG(PΦ
S , P

Φ
T ) = sup

g∈G

∣∣∣Er∼PΦ
S

[g(r)]− Er∼PΦ
T

[g(r)]
∣∣∣ , (10)

where r = Φ(u). Suppose there exists a constantBΦ > 0, such that ∀h ∈ H, y ∈ Y, 1
BΦ
l(f(r), y) ∈

G. Then we have:
RT (h) ≤ RS(h) +BΦ · IPMG(PΦ

S , P
Φ
T ). (11)

However, as analyzed in Section 3.2, we cannot sample from the distribution PΦ
T , rendering the

bound provided in Equation 11 impractical for direct application. To address this issue, we propose
to generate adversarial examples using the Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2015) and provide the following lemma to upper bound IPMG(PΦ

S , P
Φ
T ).

5
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Lemma 3 (Generalization Bound via Adversarial Distribution). Let PΦ
S and PΦ

T be the source and
target distributions of the representation r, respectively. Consider the following conditions:

1. For all f ∈ F and y ∈ Y , the loss function l(f(r), y) ∈ G;

2. G is a set of Lipschitz functions, i.e., there exists L > 0 such that for all g ∈ G and
r1, r2 ∈ R, |g(r1)− g(r2)| ≤ L|r1 − r2|;

3. Er∼PΦ
A
|r|+ Er∼PΦ

S
|r| <∞;

4. For all f ∈ F , maxy

∣∣∣Er∼PΦ
A

[l(f(r), y)]− Er∼PΦ
S

[l(f(r), y)]
∣∣∣ > 0.

Let the adversarial samples be generated by radv = r + ε · sign(∇rl(f(r), y)) and radv ∼ PΦ
A ,

where ε = arg maxε[l(f(radv), y)) − l(f(r), y))]. If conditions (1)-(4) hold, then there exists a
constant MΦ > 0 such that

IPMG(PΦ
S , P

Φ
T ) ≤MΦ · IPMG(PΦ

S , P
Φ
A ). (12)

Lemma 3 indicates that under certain conditions, we can approximate IPMG(PΦ
S , P

Φ
T ) using

IPMG(PΦ
S , P

Φ
A ), where PΦ

A denotes the distribution of adversarial examples generated from the
source distribution PΦ

S . Among these conditions, the third one ensures that the adversarial and tar-
get distributions are absolutely integrable, a property satisfied by probability distributions with finite
variance. This condition guarantees that the expected values of functions under these distributions
are well-defined and finite. Furthermore, the fourth condition is reasonable because adversarial ex-
amples are generated to maximize the model’s loss, implying that the loss incurred by the adversarial
distribution is likely to be strictly greater than that of the source distribution. This condition ensures
that the adversarial distribution provides a meaningful upper bound on the target risk.

Under these conditions, Lemma 3 provides a tractable way to approximate the distributional dis-
crepancy between the source and target domains using the IPM between the source distribution and
its adversarially perturbed counterpart. This approximation allows us to optimize the representation
Φ to minimize the distributional discrepancy, even without having access to samples from the target
domain. To further improve the model’s generalization ability on unseen domains, we derive a upper
bound on the factual risk by combining the results from Lemma 1, Lemma 2, and Lemma 3.
Theorem 1 (Generalization Bound via SAM and Adversarial Distribution). Under the conditions
of Lemma 2 and Lemma 3, we have:

RT (hθ) ≤ max
‖ε‖≤ρ

R̂S(hθ+ε) + αΦIPM(PΦ
S , P

Φ
A ) + γ(‖θ‖22/ρ2), (13)

where αΦ > 0 is a constant.

In the following, we introduce how to leverage the IFC kernel to construct models for counterfactual
estimation over time, and optimize them based on theoretical results.

3.4 COUNTERFACTUAL ESTIMATION

As shown in Figure 2, we propose the Temporal Adaptive Convolutional Intervention Network
(TACIN). Following the methodology of Bai et al. (2018), TACIN consists of a representation mod-
ule Φ(·), which employs residual connections (He et al., 2016) to concatenate multiple IFC blocks:

o = Activation(B(z) + F (z)). (14)

When input z and output F (z) dimensions match, B is an identity map. Otherwise, B becomes a
1× 1 convolution to align dimensions.

TACIN employs an autoregressive recursive strategy (Chevillon, 2007; Taieb & Atiya, 2015) for
multi-step prediction, which has also been adopted by (Li et al., 2021; Wang et al., 2024). During
the training process, we need to predict the output and time-varying covariates at the next time
step. TACIN defines a feedforward neural network GY to decode the predicted output from the
representation Φ(ut). For notational simplicity, we denote Φ(ut) as rt. We use the Mean Squared
Error (MSE) to define the following loss function:

LtY (θ) = ‖Yt+1 −GY (rt)‖2. (15)

6
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TACIN employs two feedforward neural networks, GX and JX , for covariate prediction. Specif-
ically, GX is responsible for decoding the expected covariates from rt. Drawing inspiration from
Wang et al. (2024), we utilize JX to design a smoothing mechanism. This mechanism, influenced
by the gating mechanism in GRUs (Cho et al., 2014), aims to adapt to the varying trends of different
covariates. Analogously, we define the following loss function:

LtX(θ) = ‖Xt+1 − (ηGX(rt) + (1− η)Xt)‖2, (16)

where η = Sigmoid(JX(rt)) is the smoothing factor. Based on Theorem 1, we propose the follow-
ing objective function:

L =
1

N

∑
i∈D

T∑
t=1

max
‖ε‖≤ρ

(Lt(i)Y (θ+ε) + λ1Lt(i)X (θ+ε)) + λ2

T∑
t=1

IPM(ri∈Dt , ri∈Dtadv
) + λ3R(θ), (17)

where R(θ) is the regularization term. We implement TACIN using the Pytorch Lightning frame-
work and employ the Adam algorithm (Kingma & Ba, 2014) for gradient optimization. Upon com-
pletion of the training phase, TACIN generates one-step-ahead predictions and employs an autore-
gressive strategy for multi-step-ahead predictions.

4 EXPERIMENTS

In this section, we validate the effectiveness of TACIN through comparative experiments on simu-
lated datasets. Subsequently, we conduct ablation studies to examine the efficacy of our proposed
theory, specifically the role of Equation 17 in mitigating confounding bias.

Baselines. We compare our method against state-of-the-art models for counterfactual estimation
over time: RMSN (Lim et al., 2018), CRN (Bica et al., 2020b), G-Net (Li et al., 2021), CT (Mel-
nychuk et al., 2022), and ACTIN (Wang et al., 2024). To ensure fair comparison, we perform
hyperparameter tuning for all baselines (see details in Appendix E).

4.1 EXPERIMENTS WITH FS-TUMOR DATA

Data. The fully-synthetic tumor (FS-Tumor) growth dataset, constructed using a pharmacokinetic-
pharmacodynamic model (Geng et al., 2017), provides a realistic simulation of the combined effects
of chemotherapy and radiotherapy on lung cancer patients. This dataset has gained significant at-
tention in the research community and has been extensively utilized for evaluating various causal
inference methods in studies such as (Lim et al., 2018; Bica et al., 2020b; Melnychuk et al., 2022;
Wang et al., 2024). One notable feature of this advanced bio-mathematical model is the inclusion of
a parameter γ, which allows for the control of time-varying confounding in the dataset. By adjust-
ing the value of γ, researchers can simulate scenarios where historical data have varying degrees of
influence on treatment allocation. As γ increases, the confounding bias becomes more pronounced,
as past information plays a more dominant role in determining the course of treatment.

In the original dataset, both radiotherapy and chemotherapy interventions are binary. However, in
real-world clinical settings, these treatments often involve varying dosages. To better reflect this
complexity, we have adapted the interventions in our study to be continuous rather than binary.
This modification allows for a more nuanced representation of treatment intensities, aligning our
simulations more closely with clinical realities. For a detailed description of the dataset generation
process, including this adaptation, please refer to Appendix D.1.

Results. Figure 3 illustrates the performance comparison between TACIN and the baseline models
on the FS-Tumor dataset. The results demonstrate that TACIN exhibits superior or highly competi-
tive performance across different levels of time-varying confounding (γ = 0, 2, and 4) and prediction
steps (1 to 6 steps). In most cases, TACIN and the baseline models share a similar performance trend,
typically reaching a peak RMSE around the 3rd step and then showing a decreasing trend in long-
term predictions. It is noteworthy that this trend does not stem from a reduction in the difficulty
of long-term prediction tasks, but rather may be attributed to the reduction of tumor size after the
application of treatment interventions, leading to a decrease in RMSE.

It is especially important to note that as confounding bias becomes more severe, treatment allocation
grows increasingly imbalanced, complicating the capture of temporal treatment interactions. In such
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Figure 3: Performance comparison of the TACIN model with alternative models for 1-step to 6-step
predictions on FS-Tumor datasets. Results are presented for three levels of time-varying confound-
ing factor: γ = 0, γ = 2, and γ = 4. Each subplot shows the mean RMSE over ten runs for a
specific γ value, with the x-axis representing the prediction steps (1 to 6) and the y-axis showing the
RMSE.

Table 1: τ -step-ahead prediction results for experiments with CISD dataset. Shown: RMSE as mean
± standard deviation over ten runs.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

RMSN 1.85± 0.56 3.03± 0.76 3.50± 0.83 3.86± 0.79 4.59± 1.44 5.21± 1.38
CRN 1.67± 0.39 2.56± 0.78 3.07± 0.90 3.52± 0.89 4.19± 1.53 4.77± 1.48
G-Net 2.06± 0.54 2.92± 0.84 3.48± 1.03 3.80± 1.01 4.42± 1.48 5.11± 1.52
CT 1.85± 0.49 2.81± 0.83 3.30± 0.87 3.63± 0.87 4.20± 1.35 4.85± 1.37
ACTIN 0.89± 0.31 1.48± 0.61 1.94± 0.69 2.58± 0.84 3.31± 1.22 4.24± 1.83

TACIN 0.71± 0.14 0.97± 0.28 1.31± 0.47 1.66± 0.49 2.03± 0.62 2.32± 0.66

scenarios, the benefits of TACIN are particularly pronounced, clearly demonstrating the superiority
of its distinctive IFC approach. For more comprehensive experimental results on the FS-Tumor
dataset, please refer to Appendix F.

4.2 EXPERIMENTS WITH CISD DATA

Data. The Continuous Intervention Synthetic Dataset (CISD) (Wang et al., 2024) is a synthetic time
series dataset designed to simulate the effects of continuous interventions. In this dataset, the gen-
eration of treatment variables relies on nonlinear transformations of historical covariate data and the
addition of noise, reflecting confounding bias through a Beta distribution. Furthermore, the genera-
tion of covariate and outcome variables significantly depends on complex nonlinear transformations
that not only capture the dynamic influence of historical covariates and treatment data but also en-
hance the realism of the dataset. These nonlinear processing techniques make the CISD dataset a
useful tool for investigating the intricate dynamic effects of continuous interventions, making it par-
ticularly suitable for simulating treatment effects in real-world scenarios. For a detailed description
of the dataset generation process, please refer to Appendix D.2.

Results. Table 1 presents the τ -step prediction results on the CISD dataset. Compared to the FS-
Tumor dataset, CISD has a higher dimensionality of covariates, resulting in more complex temporal
treatment interactions. As the number of prediction steps increases, this complexity leads to greater
challenges in making accurate predictions, which can be observed from the performance of different
models. The results demonstrate that TACIN consistently outperforms other baseline models across
all prediction steps. Notably, as the number of prediction steps increases, the advantage of TACIN
over other baseline models becomes more prominent. This highlights the effectiveness of TACIN
in capturing temporal treatment interactions by emphasizing the role of treatments through the IFC
approach, thereby significantly improving model performance. In contrast, other models such as
ACTIN, although attempting to address these interactions, still treat treatments as general inputs,
limiting their potential to handle nonlinear complexities.
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Figure 4: The ablation study results for TACIN on the FS-Tumor dataset with γ = 4.
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Figure 5: The ablation study results for ACTIN on the FS-Tumor dataset with γ = 4.

4.3 ABLATION STUDIES

To further investigate the effectiveness of our proposed theory, we conducted an ablation study on the
FS-Tumor dataset with γ = 4. We compared the performance of the TACIN model with and without
the objective function in Equation 17 to evaluate the impact of the proposed theory on alleviating
confounding bias. To contrast with balancing strategies from the perspective of domain adaptation,
we also selected ACTIN as a representative for the ablation experiment. The results are shown in
Figure 4 and Figure 5.

The “with” and “without” represent the presence and absence of the objective function in TACIN
or the balancing strategy in ACTIN, respectively. We conducted the Wilcoxon signed-rank test on
the results of ten runs (datasets with different seeds) to determine whether the “with” configuration
significantly outperforms the “without” configuration. The symbols *, **, and *** denote p-values
less than 0.1, 0.05, and 0.01, respectively, indicating varying levels of statistical significance. The
“ns” label signifies non-significant results. Cases with lower average RMSE under the “with” con-
figuration are highlighted in red.

The results in Figure 4 show that TACIN with our proposed objective function consistently achieves
superior performance when τ ranges from 1 to 6, and the results are statistically significant. Ex-
amining the distribution of experimental results reveals that our objective function leads to stable
improvements across datasets generated with different random seeds, especially on those more chal-
lenging datasets (higher RMSE). In contrast, Figure 5 demonstrates that the balancing strategie of
ACTIN slightly outperforms the baseline when τ is between 1 and 3, but the difference is not sta-
tistically significant. The distribution indicate that the impact of the balancing strategie on model
performance is not evident, particularly when τ is large. This observation aligns with our theoretical
analysis, suggesting that approaching the problem from the perspective of domain generalization,
rather than domain adaptation, is more effective in reducing time-varying confounding bias.

5 CONCLUSION

In this paper, to overcome the challenges posed by confounding bias and temporal complexities in es-
timating counterfactuals over time, we propose a novel model called TACIN. By encoding treatment
information within the IFC kernel, TACIN can better emphasize the role of treatments, effectively
capturing the complexities caused by temporal treatment interactions. Furthermore, TACIN provides
a new perspective on mitigating time-varying confounding bias by bounding the counterfactual es-
timation error from the viewpoint of domain generalization. We demonstrate the effectiveness of
TACIN from both theoretical and practical aspects, highlighting its potential for accurate counter-
factual estimation in longitudinal settings.
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REPRODUCIBILITY STATEMENT

All theoretical proofs in this paper can be found in Appendix C. To ensure the reproducibility of the
experimental results, we provide all the code used to reproduce the experimental results in an anony-
mous repository at https://anonymous.4open.science/r/TACIN-2D20. Readers can
follow the detailed steps provided in the repository to reproduce the experimental results presented
in this paper.
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A RELATED WORK

A.1 CAUSAL INFERENCE WITH LONGITUDINAL DATA

Recently, significant progress has been made in the field of longitudinal data analysis by incorpo-
rating neural network techniques for counterfactual estimation. For instance, RMSN (Lim et al.,
2018) combines two propensity networks and employs an inverse probability weighting (IPTW)
based training method in its prediction model. G-Net (Li et al., 2021) enhances the traditional G-
computation technique through a deep learning framework. Similarly, CRN (Bica et al., 2020b),
which is also based on RNN networks, focuses on learning balanced representations to mitigate
confounding bias. In contrast to these works, CT (Melnychuk et al., 2022) proposes utilizing a more
powerful transformer model to better handle long-term dependencies, while ACTIN (Wang et al.,
2024) introduces a dual-module framework that effectively enhances the ability of simple models to
handle complex temporal treatment interactions. It is worth noting that CRN, CT, and ACTIN all
adopt the idea of domain adaptation to learn balanced representations by eliminating the association
between historical information and current treatment assignments to alleviate confounding bias.

There have been significant advances in causal inference based on longitudinal data, albeit with dif-
ferent settings from ours (Bica et al., 2020a; Hatt & Feuerriegel, 2024; Frauen et al., 2023; Seedat
et al., 2022; Meng et al., 2023; Hess et al., 2024; Chen et al., 2023). These works primarily focus on
addressing time-varying confounding factors in longitudinal observational data to achieve accurate
causal effect estimation. For instance, the Time Series Deconfounder (Bica et al., 2020a) and Deep-
ACE (Frauen et al., 2023) utilize recurrent neural networks and end-to-end deep learning models,
respectively, combining latent variable inference and iterative G-computation formula to adjust for
the impact of time-varying confounders. For irregularly sampled longitudinal data, Treatment Ef-
fect Neural Controlled Differential Equation (TE-CDE) (Seedat et al., 2022) and Bayesian Neural
Controlled Differential Equation (BNCDE) (Hess et al., 2024) propose differential equation-based
modeling approaches to estimate counterfactual outcomes, with BNCDE additionally providing un-
certainty estimates of treatment effects using Bayesian uncertainty quantification. Chen et al. (2023)
introduces a multi-task Gaussian process model that captures relationships between treatments, sub-
jects, and temporal variations by defining multi-task priors, thereby estimating dynamic treatment
effects. The aforementioned works mainly focus on causal inference under standard conditions,
while COSTAR (Meng et al., 2023) considers the problem of counterfactual estimation under dis-
tributional shifts and improves model performance by introducing self-supervised learning, which
sets it apart from other studies. Overall, these research efforts enrich the methods for causal infer-
ence on longitudinal data, providing new perspectives for addressing issues such as time-varying
confounders, irregularly sampled data, and distributional shifts.

A.2 CAUSAL INFERENCE WITH STAIC DATA

In static settings, a key challenge is that treatments are often assigned based on unit-specific covari-
ates, leading to imbalanced covariate distributions across treatment groups. Addressing this imbal-
ance is crucial for ensuring the reliability of causal inference (Johansson et al., 2016; Shalit et al.,
2017; Yoon et al., 2018). Inspired by domain adaptation, a line of research tackles this challenge
by learning balanced representations between treatment and control groups. For instance, Shalit
et al. (Shalit et al., 2017) learn balanced representations by minimizing the Integral Probability
Metric (IPM) distance between the distributions of treated and control groups. These representa-
tion learning-based methods aim to eliminate distributional differences between treatment groups,
thereby mitigating the impact of confounding bias on causal effect estimation.

Another challenge is how to differentiate treatment variables from other covariates within neural
network architectures, which has been noted in previous works (Shalit et al., 2017; Schwab et al.,
2020; Nie et al., 2020). For binary treatments, Shalit et al. (Shalit et al., 2017) introduce the Counter-
factual Regression (CFR) framework, which learns a shared representation followed by two separate
”heads” to predict post-treatment and control outcomes, effectively mitigating the potential loss of
treatment information in high-dimensional latent representations. This approach has been widely
adopted in subsequent studies (Louizos et al., 2017; Shi et al., 2019; Hassanpour & Greiner, 2019).
For continuous treatments, Nie et al. (Nie et al., 2020) propose the Varying Coefficient Network
(VCNet), allowing the prediction head weights to be continuous functions of the treatment, simi-
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larly emphasizing the impact of treatment information. However, in longitudinal settings, how to
design models specifically for treatment information remains an open question.

A.3 DOMAIN GENERALIZATION

Domain generalization (DG) aims to learn a model that can perform well on unseen target do-
mains, which is crucial for addressing distribution shift problems in real-world scenarios (Blanchard
et al., 2011; Muandet et al., 2013). Many methods have been proposed to tackle this issue, in-
cluding learning domain-invariant representations (Motiian et al., 2017; Matsuura & Harada, 2020),
data augmentation-based approaches (Xu et al., 2020; Volpi et al., 2018), and robustness training-
based methods (Shi et al., 2021; Foret et al., 2021; Zhang et al., 2024). Despite the significant
progress made by these methods in tasks such as image classification, their application to time se-
ries data remains challenging. Compared to static data, the dynamic generative process of time
series data makes their distribution more complex, which may be the reason why the strategy of
learning domain-invariant representations is less effective in mitigating time-varying confounding
bias. The flatness-related methods, such as Sharpness-Aware Minimization (SAM) (Foret et al.,
2021), adopted in this paper aim to address the effects of domain shifts by identifying flat minima,
seeking regions in the loss landscape where small perturbations in the input have minimal impact
on the model’s predictions. By leveraging flat minima, these methods enhance the model’s robust-
ness to domain variations. It is worth noting that this approach is just one possible solution path,
and from the perspective of domain generalization, it can bring us more possibilities for mitigating
time-varying confounding bias.

B ASSUMPTIONS

To reliably identify treatment effects from observational data, it is essential to adopt the following
assumptions, as delineated in related literature (Lim et al., 2018; Bica et al., 2020b; Li et al., 2021;
Melnychuk et al., 2022; Wang et al., 2024):

Assumption A.1 (Consistency). At time t + 1, the observed outcome Yt+1 is identical to the
potential outcome Yt+1[at] under the treatment at at time t, i.e., Yt+1 = Yt+1[at].

Assumption A.2 (Sequential Overlap). The probability of receiving any treatment at at time t is
always positive, i.e., 0 < P (At = at | H̄t = h̄t) < 1, ∀at ∈ A if P (H̄t = h̄t) > 0, where h̄t is a
realization of H̄t.

Assumption A.3 (Sequential Ignorability). The treatment at any time t is independent of the po-
tential outcomes at time t+ 1, given the observed history, i.e., At ⊥ Yt+1[at] | H̄t, ∀at ∈ A. This
indicates the absence of unobserved confounders that affect both treatment and outcome.

C PROOFS

Lemma A.1 (Sharpness Aware Minimization (Foret et al., 2021)). The source risk RS(hθ) is
bounded using the following PAC-Bayes generalization bound for any ρ with probability 1− δ:

RS(hθ) ≤ max
‖ε‖≤ρ

R̂S(hθ+ε) + γ(‖θ‖22/ρ2), (18)

where γ(‖θ‖22/ρ2) =

√√√√ 1
n−1

(
k log

(
1 +

‖θ‖22
ρ2

(
1 +

√
log(n)
k

)2
)

+ 4 log n
δ + Õ(1)

)
, and n is

the training set size used for calculation of empirical risk R̂S(hθ), k is the number of parameters
and ‖θ‖2 is the norm of the weight parameters.

Proof. See Theorem 2 in the paper sharpness aware minimization (Foret et al., 2021).

Lemma A.2 (Generalization Bound via IPM (Shalit et al., 2017)). Let Φ : U → R be a one-to-one
representation function, with inverse Ψ. Let h : U → Y and f : R → Y be hypothesis and H,F
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be the sets of all possible hypothesis (i.e. Hypothesis Space) over U and R respectively. Let G be a
family of functions g : R → Y . Define the Integral Probability Metric(IPM) of two distributions:

IPMG(PΦ
S , P

Φ
T ) = sup

g∈G

∣∣∣Er∼PΦ
S

[g(r)]− Er∼PΦ
T

[g(r)]
∣∣∣ , (19)

where r = Φ(u). Suppose there exists a constantBΦ > 0, such that ∀h ∈ H, y ∈ Y, 1
BΦ
l(f(r), y) ∈

G. Then we have:
RT (h) ≤ RS(h) +BΦ · IPMG(PΦ

S , P
Φ
T ). (20)

Proof. Since Φ(·) is a one-to-one function and r = Φ(u),u = Ψ(r),

Eu∼PS
[`(h(u), y)] = Er∼PΦ

S
[`(f(r), y)],

Eu∼PT
[`(h(u), y)] = Er∼PΦ

T
[`(f(r), y]. (21)

Then ∀h ∈ H ,

RT (h)−RS(h) = Eu∼PT
[`(h(u), y)]− Eu∼PS

[`(h(u), y)] (22)
= Er∼PΦ

T
[`(f(r), y)]− Er∼PΦ

S
[`(f(r), y)] (23)

≤ |Er∼PΦ
T

[`(f(r), y)]− Er∼PΦ
S

[`(f(r), y)]| (24)

≤ BΦ sup
g∈G

∣∣∣Er∼PΦ
S

[g(r)]− Er∼PΦ
T

[g(r)]
∣∣∣ (25)

= BΦ · IPMG(PΦ
S , P

Φ
T ). (26)

Lemma A.3 (Generalization Bound via Adversarial Distribution). Let the adversarial samples are
generated by radv = r+ε·sign(∇rl(f(r), y)) and radv ∼ PΦ

A , where ε = arg maxε[l(f(radv), y))−
l(f(r), y))]. Suppose (1) ∀f ∈ F, y ∈ Y , the loss function l(f(r), y) ∈ G, (2) G is a set of Lipschitz
functions, i.e., ∃L > 0, s.t. ∀g ∈ G, r1, r2 ∈ R, |g(r1) − g(r2)| ≤ L|r1 − r2|,(3) Er∼PΦ

A
|r| +

Er∼PΦ
S
|r| < ∞, (4) ∀f ∈ F,maxy

∣∣∣Er∼PΦ
A

[l(f(r), y)]− Er∼PΦ
S

[l(f(r), y)]
∣∣∣ > 0. Then, there

exists a constant MΦ > 0, such that

IPMG(PΦ
S , P

Φ
T ) ≤MΦ · IPMG(PΦ

S , P
Φ
A ). (27)

Proof. It suffices to prove:

∀g ∈ G,∃MΦ > 0 and g∗ ∈ G, such that∣∣∣Er∼PΦ
S

[g(r)]− Er∼PΦ
T

[g(r)]
∣∣∣ ≤MΦ

∣∣∣Er∼PΦ
S

[g∗(r)]− Er∼PΦ
A

[g∗(r)]
∣∣∣ . (28)

In fact,

L.H.S =
∣∣∣Er∼PΦ

S
[g(r)]− Er∼PΦ

T
[g(r)]

∣∣∣ (29)

=
∣∣∣Er∼PΦ

S
[g(r)]− Er∼PΦ

S
[g(r0)] + Er∼PΦ

T
[g(r0)]− Er∼PΦ

T
[g(r)]

∣∣∣ (30)

≤
∣∣∣Er∼PΦ

S
[g(r)]− Er∼PΦ

S
[g(r0)]

∣∣∣+
∣∣∣Er∼PΦ

T
[g(r0)]− Er∼PΦ

T
[g(r)]

∣∣∣ (31)

≤ Er∼PΦ
S
|g(r)− g(r0)|+ Er∼PΦ

T
|g(r)− g(r0)| (32)

≤ L(Er∼PΦ
S
|r− r0|+ Er∼PΦ

T
|r− r0|) (33)

≤ 2L(Er∼PΦ
S
|r|+ Er∼PΦ

T
|r|). (34)

Let MAS = maxy

∣∣∣Er∼PΦ
A

[`(f(r), y)]− Er∼PΦ
S

[`(f(r), y)]
∣∣∣ ,

MTS = 2L(Er∼PΦ
T
|r|+ Er∼PΦ

S
|r|)
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By condition (3) and (4), MTS <∞,MAS > 0.

Taking MΦ = MTS/MAS , we have M > 0, and

L.H.S ≤MΦ ·MAS . (35)

Since ∀f ∈ F, y ∈ Y , the loss function `(f(r), y) ∈ G,∣∣∣Er∼PΦ
A

[`(f(r), y)]− Er∼PΦ
S

[`(f(r), y)]
∣∣∣ ≤ sup

g∈G

∣∣∣Er∼PΦ
A

[g(r)]− Er∼PΦ
S

[g(r)]
∣∣∣ = IPMG(PΦ

A , P
Φ
S )

(36)

Therefore,

MAS ≤ IPMG(PΦ
A , P

Φ
S ). (37)

Thus, L.H.S ≤ R.H.S.

Theorem A.4 (Generalization Bound via SAM and Adversarial Distribution). Under the conditions
of Lemma A.2 and Lemma A.3, we have:

RT (hθ) ≤ max
‖ε‖≤ρ

R̂S(hθ+ε) + αΦIPM(PΦ
S , P

Φ
A ) + γ(‖θ‖22/ρ2), (38)

where αΦ > 0 is a constant.

Proof. From the generalization bound for domain adaptation we have the following result according
to Lemma A.2:

RT (h) ≤ RS(h) +BΦ · IPMG(PΦ
S , P

Φ
T ). (39)

The first term of R.H.S of Equation 39 can be bounded as stated in Lemma A.1,

RS(hθ) ≤ max
‖ε‖≤ρ

R̂S(hθ+ε) + γ(‖θ‖22/ρ2). (40)

By Lemma A.3, the second term of R.H.S of Equation 39 can be bounded with the IPM between
adversarial distribution and source distribution:

IPMG(PΦ
S , P

Φ
T ) ≤MΦ · IPMG(PΦ

S , P
Φ
A ). (41)

Denote αΦ = BΦMΦ, then αΦ > 0 and

RT (hθ) ≤ max
‖ε‖≤ρ

R̂S(hθ+ε) + αΦIPM(PΦ
S , P

Φ
A ) + γ(‖θ‖22/ρ2). (42)

Remark 1. Taking CRN (Bica et al., 2020b) as an example, we explain why the inconsistency be-
tween the train and test distributions weakens the effectiveness of learning balanced representations.
Theorem 1 in CRN guarantees that the learned representations are independent of the current treat-
ment assignment. Theorem 1 relies on the validity of Proposition 1 in the paper, and the core of its
proof lies in the fact that the optimal prediction probabilities are given by:

G∗a = arg max
Ga

K∑
j=1

∫
x′

log(Gja(x′))PΦ
j (x′)dx′ subject to

K∑
j=1

Gja(x′) = 1, (43)

where x′ = Φ(h̄t). However, similar to our analysis in Section 3.2, we can conclude that PΦ
j (x′)

during testing differs from that during training. Therefore, the G∗a, which represents the optimal
prediction probabilities learned based on the training set, may not retain its optimality on the test
set. This leads to the inability to guarantee consistent conditional distributions P (Φ(H̄t)|At = aj)
across different treatment assignments aj during testing.
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D DATASETS DESCRIPTION

D.1 FS-TUMOR DATASET

In the study by (Geng et al., 2017), the authors model the volume of tumor growth for a period of
t + 1 days following a cancer diagnosis using the Tumor Growth (TG) simulator, which generates
one-dimensional outcomes. The simulator incorporates two treatment strategies: radiotherapy (Ar

t )
and chemotherapy (Ac

t ). In our implementation, we modify the treatment strategies to be contin-
uous, ranging from 0 to 1, instead of binary. The treatments are applied in the model as follows:
radiotherapy has an instantaneous effect d(t) on the subsequent outcome when administered to a
patient, while chemotherapy influences multiple future outcomes with a diminishing effect C(t),
described by the equation:

Yt+1 =

(
1 + ρ log

(
K

Yt

)
− βCC(t)− (αrd(t) + βrd(t)2) + εt

)
Yt, (44)

where ρ,K, βC , αr, βr are specified simulation parameters, and εt is the noise term, modeled as an
independent sample from a normal distributionN(0, 0.012). The individual patient response is char-
acterized by the parameters βC , αr, βr, which are drawn from a mixture of three truncated normal
distribution components. The mixture component indices serve as static covariates. For the precise
parameter values, please consult the code implementation provided in the supplementary materials2.
A biased treatment assignment introduces time-varying confounding for both treatments. The treat-
ment assignment for radiotherapy (Ar

t ) and chemotherapy (Ac
t) is sampled from beta distributions,

expressed as:

Ar
t ,A

c
t ∼ Beta(2σt, 2− 2σt), (45)

where

σt = σ

(
γ

Dmax

(
D̄15(Ȳt−1)−Dmax/2

))
, (46)

with σ(·) representing a sigmoid activation function, Dmax the maximum tumor diameter,
D̄15(Ȳt−1) the average tumor diameter over the past 15 days, and γ the confounding parameter.
The parameter γ allows for control over the degree of confounding. Specifically, when γ = 0, treat-
ment assignments are completely randomized. Increasing γ enhances the influence of time-varying
confounding. In our adjustments, dt and Ct are nonlinear functions of Ar

t and Ac
t , respectively,

fitted by cubic spline functions. Specifically, we have:

d(t) = 2csr(Ar
t ), (47)

C(t) = 5csc(Ac
t), (48)

where csr and csc denote the cubic spline functions for radiotherapy and chemotherapy, respectively.
This nonlinear functional setting introduces a more complex and realistic relationship between the
treatment effects and the treatment intensities.

At each time step, for every patient in the test group, a set of counterfactual trajectories is generated
based on τ . For single-step predictions, all possible one-step-ahead counterfactual outcomes Yt+1

are simulated, reflecting the tumor volume for each potential treatment combination. In the case of
multi-step predictions, the number of potential outcomes for Yt+2, . . . , Yt+τmax increases exponen-
tially with the length of the forecast horizon τmax.

Across different levels of confounding γ, we generate 1,000 patient trajectories for the training
phase, 100 for validation, and another 100 for the testing phase. The duration of each trajectory is
limited to a maximum of 60 time steps, with the understanding that some patients may have shorter
trajectories due to recovery or demise.

In line with previous studies (Bica et al., 2020b; Melnychuk et al., 2022), we compute the normalized
RMSE, which is scaled relative to the maximum tumor volume Vmax = 1150 cubic centimeters.

2Please refer to our supplementary materials.
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D.2 CISD DATASET

Drawing on the methodology outlined in (Wang et al., 2024), we construct a synthetic dataset fea-
turing continuous interventions modeled through an autoregressive process, where the treatment
variable At ranges within [0, 1]. The time series is iteratively generated following the detailed steps
below.

The generation of the treatment variable At at each time t involves manipulating historical covariate
data. The average of these historical covariates, denoted as Xm, is calculated over time:

Xm =
1

w

w∑
i=1

Xt−i, (49)

where w is the window size of past time steps influencing the current value.

This mean covariate vector Xm undergoes multiple non-linear transformations coupled with noise
addition, forming a decision variable:

dt = sin(2πX1
m) + cos(2πX2

m)×X5
m + max(X3

m,X
4
m) +N(0, σ2

a), (50)

where σa denotes the noise scale for the treatment variable, and superscripts indicate specific el-
ements within Xm. From the decision variable dt, a probability pt is derived using the sigmoid
function:

pt =
1

1 + exp(−dt)
. (51)

The treatment variable At is then sampled from a Beta distribution, influenced by pt and scaled by
γ, formalized as:

γ1 = 1 + γ × pt, γ2 = 1 + γ × (1− pt), (52)
At ∼ Beta(γ1, γ2). (53)

This setup ensures that At encapsulates the effects of historical covariate dynamics through non-
linear, noise-induced transformations, and represents treatment effects stochastically with proba-
bilistic modeling using the Beta distribution.

For each treatment variable At, a transformed treatment array, T (At), is first obtained through
non-linear transformations. This array is then subjected to a specific masking procedure to derive a
transformed matrix Amatrix.

The covariates at time t, Xt, are generated by blending Xm with Amatrix and adding Gaussian noise:

Xt = Xm ×Amatrix +N(0, σ2
x), (54)

where σx is the noise scale for X.

The outcome at time t, Yt, is then produced by integrating Xm with At and incorporating Gaussian
noise:

Yt = cos(2πAt)×X1
m + A2

t ×X4
m + sin(2πAt)×X6

m + exp(At)×X3
m +N(0, σ2

y), (55)

where σy is the noise scale for Y.

For immediate future predictions, we randomly select five interventions At from a uniform distri-
bution U(0, 1) to compute counterfactual outcomes. When predictions extend over multiple steps,
defined by τmax, we generate a diverse set of trajectories for each patient at every step, corresponding
to the projection horizon.

E HYPERPARAMETER TUNING

Hyperparameter optimization was conducted for all baseline models including RMSN, CRN, G-Net,
CT, and ACTIN through a random grid search. The ranges for these random searches for RMSN,
CRN, G-Net, and CT are detailed in Tables 2, 3, 4, and 5 respectively. The search space for ACTIN
is outlined in Table 6.
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For ACTIN, hyperparameter optimization was initially performed for two distinct base models,
TCN and LSTM. However, after evaluation, the TCN model was selected as the sole base model
for ACTIN due to its superior performance. The optimization for the TCN model within ACTIN
specifically involved adjustments to channel sizes, dilation factors, and kernel sizes, as specified in
Table 6. Our model, TACIN, also underwent a similar process of hyperparameter optimization to
ensure optimal performance.

Table 2: The hyperparameter tuning ranges for RMSN are tailored for different datasets. In the table,
NPt, NPh, NE , and ND represent the Propensity treatment network, Propensity history network,
Encoder, and Decoder sub-models, respectively. It is generally presumed that the hyperparameter
ranges apply uniformly across all sub-models unless specified otherwise.

Hyperparameter Range (FS-Tumor) Range (CISD)

LSTM layers 1 1, 2
Learning rate 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001

Minibatch size (NPt, NPh, NE) 64, 128, 256 64, 128, 256
Minibatch size (ND) 256, 512, 1024 256, 512, 1024

LSTM hidden units (NPt) 8, 12, 16 4, 8, 12
LSTM hidden units (NPh, NE) 8, 12, 16 4, 8, 12
LSTM hidden units (ND) 16, 32, 64 4, 8, 12

LSTM dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5

Max gradient norm (NPt, NPh, NE) 0.5, 1.0, 2.0 0.5, 1.0, 2.0
Max gradient norm (ND) 0.5, 1.0, 2.0, 4.0 0.5, 1.0, 2.0, 4.0

Random search iterations 30 30

Number of epochs 150 150

Table 3: The specified hyperparameter tuning ranges for CRN vary across different datasets. In this
context, NE and ND represent the Encoder and Decoder sub-models, respectively. It is generally
assumed that these sub-models follow the same hyperparameter ranges unless noted otherwise.

Hyperparameter Range (FS-Tumor) Range (CISD)

LSTM layers 1 1, 2
Learning rate 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001

Minibatch size (NE) 64, 128, 256 64, 128, 256
Minibatch size (ND) 256, 512, 1024 256, 512, 1024

LSTM hidden units (NE) 3, 6, 12, 18, 24 8, 16, 24, 32
LSTM hidden units (ND) der der

BR size der (NE) 3, 6, 12, 18, 24 3, 6, 9, 16, 32
BR size ddr (ND) 3, 6, 12, 18, 24 6, 12, 18, 24, 48

FC hidden units (NE) 6, 9, 12, 24, 48, 96 8, 12, 16, 24, 32
FC hidden units (ND) 6, 9, 12, 24, 48, 96 8, 12, 16, 24, 32

LSTM dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5

Random search iterations 30 30

Number of epochs 150 150

F ADDITIONAL RESULTS

In this section, we provide the complete experimental results on the FS-Tumor dataset, with γ rang-
ing from 0 to 4 and τ from 1 to 6, as shown in Table 8. The results demonstrate that TACIN
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Table 4: The specified ranges for hyperparameter tuning of G-Net vary across different datasets.

Hyperparameter Range (FS-Tumor) Range (CISD)

LSTM layers 1 1, 2
Learning rate 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256 64, 128, 256
LSTM hidden units 12, 18, 24 8, 16, 32
LSTM output size do 12, 18, 24 3, 6, 12, 24
FC hidden units 6, 12, 18, 24 12, 24, 48
LSTM dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5
Random search iterations 30 30
Number of epochs 150 150

Table 5: Hyperparameter tuning ranges for CT across different datasets.

Hyperparameter Range (FS-Tumor) Range (CISD)

Transformer blocks 1 1
Learning rate 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256 64, 128, 256
Attention heads 2 2
Transformer units 8, 12, 16, 32 8, 16, 32
BR size dr 8, 12, 16, 32 8, 16, 32
FC hidden units 8, 12, 16, 32, 64 8, 16, 32
Sequential dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5
Max positional encoding 15 15
Random search iterations 30 30
Number of epochs 150 150

consistently outperforms the baselines across different γ values and prediction horizons. In partic-
ular, TACIN achieves the lowest RMSE values for γ values of 2, 3, and 4, indicating its superior
performance in estimating the counterfactual outcomes. The results further confirm the effectiveness
of TACIN in handling time-varying confounding bias and improving the accuracy of causal effect
estimation in longitudinal data analysis.
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Table 6: Specified ranges for hyperparameter tuning of ACTIN across various datasets.

Hyperparameter Range (FS-Tumor) Range (CISD)

Linear transformation size 4, 8, 16 16, 32, 64
Learning rate l 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001
Learning rate lD 0.001, 0.0002, 0.0001 0.001, 0.0002, 0.0001
Minibatch size 64, 128, 256 64, 128, 256
BR size dr 8, 12, 16, 32 8, 16, 32

TCN-based Kernel sizes 2, 3 2, 3
Dilation factors 2, 3 2, 3
Channel size dc dr dr

FC hidden units 16, 32, 64 16, 32, 64
Dropout rate 0.1, 0.2, 0.3 0.1, 0.2, 0.3
Random search iterations 30 30
Number of epochs 150 150

Table 7: Specified ranges for hyperparameter tuning of TACIN across various datasets.

Hyperparameter Range (FS-Tumor) Range (CISD)

Learning rate l 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256 64, 128, 256
Representation size dr 8, 16, 32 4, 8, 16

RBF multiRBF, guassianRBF multiRBF, guassianRBF
IFC Kernel sizes 2, 3 2, 3
Dilation factors 3 3
Channel size dc dr dr

FC hidden units 16, 32, 64 16, 32, 64
Dropout rate 0, 0.1, 0.2, 0.3 0, 0.1, 0.2, 0.3
Random search iterations 30 30
Number of epochs 150 150
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Table 8: The one-step-ahead and multi-step-ahead prediction results for the FS-Tumor dataset.
Shown: RMSE as mean ± standard deviation over ten runs.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

γ = 0 RMSN 0.72 ± 0.24 0.86 ± 0.23 0.88 ± 0.23 0.84 ± 0.23 0.78 ± 0.23 0.71 ± 0.22
CRN 0.67 ± 0.18 0.82 ± 0.21 0.85 ± 0.22 0.82 ± 0.22 0.76 ± 0.21 0.68 ± 0.19
G-Net 0.70 ± 0.21 0.94 ± 0.21 1.02 ± 0.24 0.97 ± 0.23 0.90 ± 0.23 0.82 ± 0.21
CT 0.69 ± 0.17 0.82 ± 0.19 0.84 ± 0.21 0.80 ± 0.20 0.74 ± 0.19 0.67 ± 0.18
ACTIN 0.69 ± 0.24 0.83 ± 0.20 0.85 ± 0.21 0.79 ± 0.20 0.73 ± 0.20 0.66 ± 0.19
TACIN 0.68 ± 0.17 0.79 ± 0.15 0.81 ± 0.17 0.77 ± 0.18 0.71 ± 0.17 0.66 ± 0.15

γ = 1 RMSN 0.69 ± 0.13 0.86 ± 0.27 0.90 ± 0.28 0.87 ± 0.29 0.82 ± 0.30 0.75 ± 0.31
CRN 0.78 ± 0.17 0.93 ± 0.30 0.90 ± 0.28 0.82 ± 0.25 0.75 ± 0.23 0.67 ± 0.23
G-Net 0.68 ± 0.15 0.94 ± 0.28 1.00 ± 0.28 0.96 ± 0.28 0.89 ± 0.26 0.82 ± 0.27
CT 0.71 ± 0.12 0.88 ± 0.30 0.88 ± 0.29 0.82 ± 0.28 0.76 ± 0.26 0.70 ± 0.25
ACTIN 0.70 ± 0.14 0.86 ± 0.30 0.86 ± 0.28 0.81 ± 0.26 0.76 ± 0.24 0.70 ± 0.24
TACIN 0.69 ± 0.17 0.82 ± 0.29 0.85 ± 0.28 0.81 ± 0.29 0.74 ± 0.26 0.67 ± 0.25

γ = 2 RMSN 0.85 ± 0.12 0.97 ± 0.27 1.03 ± 0.33 1.00 ± 0.36 0.95 ± 0.36 0.89 ± 0.39
CRN 0.86 ± 0.18 0.91 ± 0.26 0.97 ± 0.31 0.92 ± 0.34 0.86 ± 0.32 0.80 ± 0.34
G-Net 0.81 ± 0.18 0.98 ± 0.28 1.07 ± 0.33 1.03 ± 0.34 0.95 ± 0.32 0.90 ± 0.34
CT 0.87 ± 0.23 0.91 ± 0.24 0.99 ± 0.30 0.94 ± 0.31 0.91 ± 0.31 0.86 ± 0.31
ACTIN 0.79 ± 0.21 0.87 ± 0.24 0.93 ± 0.29 0.89 ± 0.31 0.83 ± 0.29 0.77 ± 0.30
TACIN 0.78 ± 0.16 0.85 ± 0.24 0.88 ± 0.28 0.84 ± 0.29 0.77 ± 0.27 0.71 ± 0.28

γ = 3 RMSN 1.09 ± 0.40 1.27 ± 0.39 1.34 ± 0.40 1.29 ± 0.46 1.27 ± 0.59 1.21 ± 0.70
CRN 1.09 ± 0.44 1.25 ± 0.41 1.33 ± 0.47 1.30 ± 0.43 1.26 ± 0.44 1.16 ± 0.41
G-Net 1.13 ± 0.42 1.42 ± 0.48 1.50 ± 0.50 1.38 ± 0.48 1.26 ± 0.46 1.14 ± 0.45
CT 1.17 ± 0.45 1.20 ± 0.39 1.31 ± 0.45 1.34 ± 0.46 1.27 ± 0.41 1.17 ± 0.40
ACTIN 1.08 ± 0.39 1.20 ± 0.37 1.28 ± 0.45 1.27 ± 0.46 1.20 ± 0.46 1.10 ± 0.44
TACIN 1.09 ± 0.43 1.09 ± 0.30 1.19 ± 0.38 1.16 ± 0.39 1.08 ± 0.34 0.99 ± 0.32

γ = 4 RMSN 1.52 ± 0.55 1.94 ± 1.06 2.10 ± 1.30 1.95 ± 1.22 1.78 ± 1.09 1.57 ± 0.97
CRN 1.61 ± 0.63 2.11 ± 1.19 2.16 ± 1.30 2.07 ± 1.24 1.91 ± 1.17 1.69 ± 1.01
G-Net 1.47 ± 0.52 2.08 ± 1.11 2.27 ± 1.29 2.16 ± 1.25 2.01 ± 1.20 1.87 ± 1.18
CT 1.66 ± 0.58 2.22 ± 1.09 2.12 ± 1.00 1.99 ± 0.90 1.85 ± 0.83 1.74 ± 0.81
ACTIN 1.58 ± 0.47 1.86 ± 0.92 1.90 ± 1.02 1.79 ± 0.97 1.69 ± 0.94 1.58 ± 0.89
TACIN 1.31 ± 0.52 1.54 ± 0.76 1.69 ± 0.90 1.62 ± 0.88 1.55 ± 0.87 1.39 ± 0.81
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