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Abstract

Implicit models are a general class of learning models that forgo the hier-
archical layer structure typical in neural networks and instead define the
internal states based on an “equilibrium” equation, offering competitive
performance and reduced memory consumption. However, training such
models usually relies on expensive implicit differentiation for backward
propagation. In this work, we present a new approach to training implicit
models, called State-driven Implicit Modeling (SIM), where we constrain the
internal states and outputs to match that of a baseline model, circumventing
costly backward computations. The training problem becomes convex by
construction and can be solved in a parallel fashion, thanks to its decom-
posable structure. We demonstrate how the SIM approach can be further
applied to parameter reduction and robust training by combining it with
custom objective functions.

1 Introduction

Conventional neural networks are built upon a hierarchical architecture, where input in-
formation is processed through several recursive layers (Goodfellow et al., 2016). Canon-
ical examples of this include standard feed-forward networks or convolutional networks
(Krizhevsky et al., 2012; Simonyan & Zisserman, 2015). Recent work has proposed a more
general perspective, where the internal states are implicitly defined through an “equilibrium”
equation (Bai et al., 2019; Chen et al., 2018; El Ghaoui et al., 2021), allowing for loops
in the model’s computational graph. As illustrated in Bai et al. (2020); Gu et al. (2020),
implicitly-defined models are able to match state-of-the-art performance of explicitly-defined
models on several tasks. In fact, the implicit framework is a more general model with greater
capacity to possibly model novel architectures and prediction rules for deep learning that
are not necessarily tied to any notion of “layers.”

The forward pass of an implicit model usually relies on solving an algebraic equation using
methods such as fixed-point equations (El Ghaoui et al., 2021), ODE solvers (Dupont et al.,
2019), or root-finding methods (Bai et al., 2020). The backward pass involves differentiating
through the implicit equation, which usually relies on expensive black-box solvers, projected
gradient descent, or approximate gradients (Geng et al., 2021). The costly backward
computation remains a challenge in the training and evaluation of implicit models. In this
work, we develop a novel method to circumvent computing the backward pass. We start
from a baseline model (e.g., a pre-trained layered neural network) and constrain the states
and outputs of the implicit model to match those baseline states. The SIM training problem
is strictly feasible and convex by construction and thus can be solved efficiently, bypassing
the expensive implicit differentiation. Additionally, the method is very scalable: it can be
implemented in parallel provided that the objective is decomposable across its internal state,
which is usually the case.

We find that with our approach, the number of training samples required to efficiently and
effectively train an implicit model is significantly reduced. For example, using 20%-30% of
total training data is enough to train an implicit model on CIFAR-100 dataset. Our method
can also be combined with additional objectives such as parameter reduction or improving
robustness, making it a versatile training scheme.

Our main contributions are summarized as follows:
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• We propose a general State-driven Implicit Modeling (SIM) training scheme to
efficiently learn an implicit model by matching the internal state and outputs of a
baseline model without expensive implicit differentiation.

• We present simple ways to obtain the internal state and outputs from either a
standard (layered) neural network or an implicit model.

• We introduce an efficient parallel convex training algorithm for the SIM training
problem.

• We demonstrate the efficacy of the SIM algorithm on parameter reduction and
robustness.

Our experimental results display a competitive performance of our method on both parameter
reduction and improving robust training, motivating future directions of research in this new
class of learning model.

2 Preliminaries

Notations. Throughout the paper, we use n,m, p, q to denote the number of internal states,
the number of input samples, the dimension of input vectors, and the dimension of output
vectors, respectively. For a matrix V , |V | denotes its absolute value (i.e. |V |ij = |Vij |); ‖V ‖0
is its cardinality, i.e., the number of non-zero entries of V ; ‖V ‖∞ is the max-row-sum matrix
operator norm; ‖V ‖F is the Frobenious norm. Finally, λpf(M) denotes the Perron-Frobenius
(PF) eigenvalue of a square non-negative matrix M (Berman & Plemmons, 1994).

Assumption 2.1 (component-wise non-expansive). A function φ is component-wise non-
expansive (CONE) if

∀ u, v ∈ Rn : |φ(u)− φ(v)| ≤ |u− v|,
with inequality and absolute value taken component-wise.

We are given a data set with input matrix U ∈ Rp×m and output matrix Y ∈ Rq×m,
where each column represents an input or output vector. An implicit model consists of an
equilibrium equation in a “state matrix” X ∈ Rn×m and a prediction equation:

X = φ(AX +BU) (equilibrium equation) (1a)

Ŷ (U) = CX +DU (prediction equation) (1b)

where φ : Rn×m → Rn×m is a nonlinear activation that is strictly increasing and satisfies
Assumption (2.1), such as ReLU, tanh, or sigmoid. While the above model seems very
specific, it covers as special cases most known architectures arising in deep learning. Matrices
A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and D ∈ Rq×p are model parameters. In equation (1a), the
input feature matrix U ∈ Rp×m is passed through a linear transformation by weight matrix
B and the internal state matrix X ∈ Rn×m is obtained as the fixed-point solution to equation
(1a). The output prediction Ŷ is then obtained by feeding the state X through the prediction
equation (1b). The structure is illustrated in Figure 1, where the “pre-activation” and
“post-activation” state matrices Z,X are shown; in those matrices, each column corresponds
to a single data point.

[
A B
C D

]
φ

UŶ = CX +DU

X = φ(Z)Z = AX +BU

Figure 1: A block-diagram view of an implicit model, where Z is the pre-activation state
“before” passing through the activation function φ and X is the post-activation state “after”
passing through φ.

The forward pass of an implicit model relies on the fixed-point solution of the underlying
equilibrium equation, while a backward pass requires one to differentiate this equation with
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respect to the model parameters (A,B,C,D). The solution to the equilibrium equation
(1a) does not necessarily exists nor be unique. We say that an equilibrium equation with
activation map φ is well-posed if the following well-posedness condition is satisfied (El Ghaoui
et al., 2021).

Definition 2.2 (well-posedness). The n× n matrix A is said to be well-posed for φ if, for
any b ∈ Rn, the solution x ∈ Rn of the following equation x = φ(Ax+ b) exists and is unique.

Scaling the network. Consider a standard layer-based neural network N : R×R→ R×R
with activation φ that satisfies Assumption (2.1) and maps input feature matrix U ∈ Rp×m to
outputs Y = N (U) via hidden layers. As shown in El Ghaoui et al. (2021), for such networks,
there exists an equivalent implicit model, (AN , BN , CN , DN , φ) as in (1). Without loss of
generality, we may re-scale the original weight matrices of N to obtain a strongly well-posed
implicit model, (A′N , B

′
N , C

′
N , D

′
N , φ), by Theorem (2.4), in the sense that ‖A′N ‖∞ < 1. This

result also allows us to consider the convex constraint ‖A‖∞ < 1 as a sufficient condition as
opposed to the non-convex PF sufficient condition, in light of the bound λpf(A) ≤ ‖A‖∞.

Theorem 2.3 (PF sufficient condition for well-posedness). Assume that φ satisfies Assump-
tion (2.1). Then, A is well-posed for any such φ if λpf(|A|) < 1. Moreover, the solution x
of equation (1a) can be computed via the fixed point iterations x→ φ(Ax+ b), with initial
condition x = 0.

Theorem 2.4 (Rescaled implicit model). Assume that φ is CONE and positively homo-
geneous, i.e., φ(αx) = αφ(x) for any α ≥ 0 and x. For a neural network N with its
equivalent implicit form (AN , BN , CN , DN , φ), where AN satisfies PF sufficient condition
for well-posedness of Theorem (2.3), there exists a linearly-rescaled equivalent implicit model

(A′N , B
′
N , C

′
N , D

′
N , φ) with ‖A′N ‖∞ < 1 that gives the same output Ŷ as the original N for

any input U .

The proofs of Theorem (2.3) and (2.4) are given in the appendices.

3 State-driven Implicit Modeling

The State-driven Implicit Modeling (SIM) framework trains an implicit model with a

constraint: it should match both the state X and outputs Ŷ of another “baseline” (implicit
or layered) model, when the same inputs U are applied. For a given baseline model, the
state matrix X can be obtained by running a set of fixed-point iterations (if the baseline is
implicit), or a simple forward pass (if the baseline is a standard layered network). In both
cases, we can extract the pre-activation state matrix Z, such that the post-activation state
matrix satisfies X = φ(Z). Each column of matrices Z and X corresponds to a single data
point; when the baseline is a layered network, these matrices are constructed by stacking all
the intermediate layers into a long column vector, where the first intermediate layer is at the
bottom and the last intermediate layer is on top.

We give a simple example of how to construct X,Z from a 3-layer fully-connected network
of the form:

ŷ(u) = W2x2, x2 = φ(W1x1) x1 = φ(W0x0), x0 = u,

where u is a single vector input. For notational simplicity, we exclude the bias terms, which
can be easily accounted for by considering the vector (u, 1) instead of u. Each column of Z
and X corresponds to the state from a single input. The column z is formed by stacking all
the intermediate layers before passing through φ and the column x is formed by stacking all
the intermediate layers after passing through φ:

z =

(
W1x1

W0x0

)
, x = φ(z) =

(
x2

x1

)
.

In this example, we can easily verify that its equivalent implicit from is as follows:(
A B

C D

)
=

 0 W1 0

0 0 W0

W2 0 0

 .
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For a more complicated network, finding an equivalent implicit form may be a non-trivial
task. The SIM framework allows us to consider any baseline deep neural networks without
ever having to address this challenge: we simply need to extract the pre- and post-activation
state matrices.

With matrices X,Z fixed, we now consider the training problem, where the model parameters
are encapsulated in a partitioned matrix M ∈ R(n+q)×(n+p) and we define Ỹ , Ũ as follows:

M :=

(
A B
C D

)
, Ỹ :=

(
Z

Ŷ

)
, Ũ :=

(
X
U

)
The condition Ỹ = MŨ characterizes the implicit models that match both the state and
outputs of the baseline model. We then solve a convex problem to find another well-posed
model, with a desired task in mind, with the matching condition Ỹ = MŨ :

min
A,B,C,D

f(A,B,C,D) (2a)

s.t. Z = AX +BU, (2b)

Ŷ = CX +DU, (2c)

‖A‖∞ ≤ κ. (2d)

Here, f is an user-designed objective function chosen for a desired task, such as encouraging
sparsity, and κ ∈ (0, 1) is a hyper-parameter. Note that for a given input matrix U ∈ Rp×m,

we have generically UTU � 0, when m > p. The matrix equation Ỹ = MŨ involves (n+p)m
scalar equations in (n + p)(n + q) variables, it is thus natural to require that n > m − p,
which is generally true for over-parameterized models.

The state-matching constraint (2b) ensures that the implicit model determined by the weight
matrices A,B,C,D achieves the same representational power as the baseline model N by
having the same internal state. The outputs-matching constraint (2c) ensures that the model
achieves the same predictive performance by obtaining the same predictions as N . Finally,
the well-posedness constraint (2d) is added to ensure that the well-posedness condition is
satisfied.

For a given baseline layered neural network model, we can always rescale the state matrices
X,Z by Theorem (2.4), so that the problem is strictly feasible. Denoting by W` the network’s
matrix corresponding to layer `, we divide it by the largest max-row-sum norm of the weights
among all the layers:

W ′` =
W`

γ ·max` ‖W`‖∞
, ` ∈ [L], γ > 1,

where L is the total number of layers and γ is a scaling factor. The corresponding state
matrices X,Z will then be appropriately rescaled after running a single forward pass.

3.1 State-driven Training Problem

SIM is a general training scheme and various kinds of tasks can be achieved by including an
appropriately designed objective and setup. We show two such possibilities: one aims for
improved sparsity and the other for improved robustness.

Training for sparsity. To learn a sparse implicit model, we consider the SIM training
problem where we sparsify the weight matrix M by minimizing its cardinality, while satisfying
Ỹ = MŨ :

min
M

‖M‖0 : (2b)-(2d). (3)

In general, solving the optimization problem (3) directly is not computationally efficient,
and therefore a common alternative is to consider a convex relaxation. We consider the
perspective relaxation that is a significantly stronger approximation (Frangioni & Gentile,
2006; Atamtürk & Gómez, 2019; Atamturk et al., 2021) than the popular `1-norm relaxation,
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and has recently been used for pruning neural networks (Cacciola et al., 2022). This leads to
the following training problem:

min
M,t

∑
ij

M2
ij

tij
+
∑
ij

tij : (2b)-(2d), tij ∈ [0, 1]. (4)

The perspective terms
M2

ij

tij
are typically replaced with auxiliary variables sij along with

rotated cone constraints M2
ij ≤ sij · tij (Aktürk et al., 2009), leading to a second-order cone

problem:

min
M,t,s

α
∑
ij

sij : (2b)-(2d), tij ∈ [0, 1],M2
ij ≤ sij · tij , sij ≥ 0, (5)

where α is a hyper-parameter that controls the degree of sparsity. Problem (5) can be easily
solved with conic quadratic solvers.

Training for robustness. To promote robustness, we consider regularizing the `1-norm
of the weight matrix M . The use of norm-based regularization (e.g. `2 or `1-norm) for
training neural networks has been widely adopted. It has also been shown that there exists
an intrinsic relationship between regularizing the `1-norm of the weight matrices and their
robustness against `∞-bounded perturbations (Guo et al., 2018; Alizadeh et al., 2020). The
set of `∞-bounded perturbations yields the worst-case scenario since it includes all other
`p-bounded perturbations. Controlling the `1-norm, therefore, guarantees robustness to
`∞-perturbations and thereby to all other `p-bounded perturbations. Note that we are
minimizing the vectorized `1-norm of M , i.e.

∑
ij |Mij |, instead of the matrix operator norm.

The resulting training problem:

min
M

∑
ij

|Mij | : (2b)-(2d), (6)

is convex and can be solved efficiently by a standard optimization solver.

Relax state and outputs matching. For the state-matching and output-matching
constraints (2b) and (2c), it is not necessary to insist on an exact match. This allows us to
relax (2b) and (2c) by introducing penalty terms into the objective function:

min
M

f(M) + λ1 ‖Z − (AX +BU)‖2F + λ2

∥∥∥Ŷ − (CX +DU)
∥∥∥2

F
: (2d), C, (7)

where f and C are a user-defined objective function and constraint set on model parameters.
λ1 and λ2 are hyper-parameters that control the degree of state- and output-matching.

Parallel training. The SIM training problem can be decomposed into a series of parallel,
smaller problems, each involving a single row, or a block of rows, if f is decomposable. This
is usually the case, including in the sparsity and robustness examples seen before. For a
single row (aT , bT ) of (A,B), and with zT the corresponding row in Z, the problem takes
the form of a basis pursuit problem:

Find vectors a, b : z =
(
XT UT

)(a
b

)
, ‖a‖1 ≤ κ. (8)

where ‖a‖1 ≤ κ is the well-posedness condition since ‖A‖∞ is separable in terms of rows.
The problem of finding C,D is independent of that relative to A,B and takes the same form
as problem (8) without the well-posedness condition:

Find vectors c, d : ŷ =
(
XT UT

)(c
d

)
. (9)

The decomposibility is applicable to the perspective relaxation and the `1-norm objective
that we consider, with appropriate constraint set C. The parallel SIM training algorithm is
summarized in Algorithm 1. More implementation details on parallel training can be found
in the appendices.
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Algorithm 1 Parallel State-driven Implicit Modeling (SIM)

Input: Input feature matrix U ; A standard (layered) neural network or a pre-trained
implicit model N : R× R→ R× R; Well-posedness hyper-parameter κ.
Design choices: Convex minimization objective f ; Convex constraint set C; Hyper-
parameters for f .
Output: Weight matrices A, B, C, D.

1: if N is a standard (layered) neural network then

2: Run a single forward pass on N with U to obtain outputs Ŷ , i.e., Ŷ = N (U).
3: Collect all intermediate layers before and after passing through the activation φ.
4: Construct Z and X by stacking all intermediate layers.
5: else
6: Run fix-point iteration until converge for (1a) to obtain X and Z.

7: Run prediction equation (1b) to obatin Ŷ .
8: end if
9: Put X,U into shared memory.

begin parallel training
10: Let A← 0 ∈ Rn×n, B ← 0 ∈ Rn×p

C ← 0 ∈ Rq×n, D ← 0 ∈ Rq×p.
11: Distribute rows of Z or Ŷ to each processor.
12: for each processor, in parallel do
13: Solve one of the following convex optimization problems (or the relaxed version shown

in Eq. (7)):

min
a,b

f(a, b) : z =
(
XT UT

)(a
b

)
, ‖a‖1 ≤ κ, C

min
c,d

f(c, d) : ŷ =
(
XT UT

)(c
d

)
, C

14: end for
15: Update rows of A,B or C,D

4 Numerical Experiments

We demonstrate the effectiveness of SIM in training an implicit model from a standard
(layered) network for the following two tasks: 1) parameter reduction and 2) robust training.
We test our method on both image and text classification datasets. These experiments were
performed on 60 Intel Xeon processors and solved using Mosek (ApS, 2022) optimization
solvers. The test set performance is reported. More details on the numerical experiments
can be found in the appendices.

4.1 Training for parameter reduction

In these experiments, we solve the SIM training problem using the perspective relaxation
and `1-norm objectives with relaxed state and output matching penalties as in problem
(7), allowing us to control the trade-off between parameter reduction, state-matching, and
outputs-matching through hyper-parameters. Throughout the rest of the paper, we use the
following hyper-parameters for experiments if not explicitly specified: κ = 0.99 for well-
posedness condition, λ1 = λ2 = 0.1 for state- and output-matching condition, α = 1× 10−3

for sparsity. To evaluate the performance, we define sparsity as follows:

Sparsity (%) :=

(
1−
‖M‖0
‖N‖0

)
× 100

where ‖ · ‖0 is the total number of non-zero parameters.
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Figure 2: Trade-off curve for sparsity and test accuracy drop for CIFAR-100 and 20NewsGroup
datasets. Perspective relaxation performs better than `1-norm at parameter reduction.

Our experiments were evaluated on both image classification and text classification tasks. We
use CIFAR-100 (Krizhevsky, 2009), a 32×32 colour images in 10 classes, and 20NewsGroup
dataset1, a public dataset consisting of 20 different newsgroups. For CIFAR-100, we use a
ResNet-20 convolutional neural network, denoted as Nres, to construct the state matrices
X,Z and the outputs Ŷ . We follow the hyper-parameter settings in Devries & Taylor (2017)
with a mini-batch size of 128. The model is trained for 200 epochs, with a 75.8% test
performance. For 20NewsGroup dataset, we use a DistilBERT model2 (Sanh et al., 2019),
denoted as Nbert, to construct the state matrices and outputs. The model is for trained 100
epochs, with 82% F1 score on the test set3.

Figure 2 shows the trade-off curve for sparsity and test accuracy drop for both datasets.
The experiments show that using perspective relaxation as objective yields a 41% and 17%
reduction of the parameters with no accuracy drop for CIFAR-100 and 20NewsGroup datasets
respectively. Although `1-norm is a more widely used objective for learning sparse models,
it is less effective as compared to the perspective relaxation, which is a stronger relaxation
for `0. Moreover, the perspective relaxation further increases the test performance on both
dataset while reducing around 10% and 6% of the parameters.

In solving the problem (7), the input matrix U ∈ Rp×m does not have to be the full training
dataset. We test how many numbers of samples are required to sufficiently train a sparse
implicit model. Figure 3 shows the effect of the number of samples on sparsity for both
datasets. A higher percentage of total training samples means higher m for input matrix U .
Negative sparsity means that the trained implicit models contain more parameters than the
baseline model. For CIFAR-100, when learned with perspective relaxation, we can reduce
10% of the parameters by using only 20% of the total training data without sacrificing the
test accuracy. We observe a similar result for 20NewsGroup data, where our method achieves
17% fewer parameters using less than 15% of the total training data with no test accuracy
loss. The results indicate that the state matrix X is a high-quality representation that
captures a large number of the underlying information, and hence it is sufficient to train a
model with significantly fewer training samples. Although the state matrix X is obtained
from a standard neural network, we see that in Figure 2 we are still able to increase the
test performance further with fewer parameters using implicit models. This suggests that
implicit models could provide a better representation as compared to a standard layered
neural network.

Finally, we compare our method (denoted as SIM) on CIFAR-100 with other parameter
reduction methods, including SSS (Huang & Wang, 2018), SPR (Cacciola et al., 2022),
and MLA (Hu et al., 2019). SSS and SPR both formulate the task as a sparse regularized
optimization problem similar to ours, where SSS uses `1-relaxation and SPR uses perspective
relaxation. MLA considers aligning the semantic information of the intermediate outputs and
overall performance of the baseline model and the sparse model by introducing a feature and

1http://qwone.com/~jason/20Newsgroups/
2https://huggingface.co/docs/transformers/model_doc/distilbert
3Both models are trained on a single Nvidia Titan V GPU.
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Figure 3: The effect of the number of samples on sparsity for FashionMNIST and CIFAR-100
datasets. Perspective relaxation outperforms the `1-norm at parameter reduction for the
same number of samples.

semantic correlation loss and a classification loss, similar to our state- and outputs-matching
conditions. SSS and SPR both use ResNet-20 and MLA uses ResNet-18. We report the
results of each method as they were reported in the original papers. For SSS, we use the
results reported by Cacciola et al. (2022), where the data points are approximated from
figures 3(c) of the paper and denoted as P1 and P2. Table 1 shows that SIM achieves less
accuracy drop while reducing a larger amount of parameters. With around 30% of sparsity,
SIM has a much lower accuracy drop as compared to MLA and maintains a similar accuracy
drop as SPR. With around 45% of sparsity, SIM outperforms all three methods with a lower
accuracy drop and more reduced parameters. It is also likely that additional parameter
tuning may lead to more competitive results.

Table 1: Comparison with other parameter reduction methods on CIFAR-100.

Method Setting Acc. Drop (%) Sparsity (%)

SSS P1 Fig. 3(c) -3.7 44.4
SSS P2 Fig. 3(c) -1.3 14.8
SPR λ = 1.0, α = 0.1 -2.3 45.9
SPR λ = 1.3, α = 0.3 -0.2 31.5
MLA ResNet-18 -3.0 50.0
MLA ResNet-18 -2.5 30.0

SIM Perspective -1.0 48.1
SIM Perspective -0.2 29.7

4.2 Training for robustness.

To test for robustness, we perform `∞ attacks using the fast gradient sign method (FGSM),
presented by Goodfellow et al. (2015), on the FashionMNIST dataset (Xiao et al., 2017).
We choose a 4-layer fully-connected network of size 784× 64× 32× 16× 10, denoted as Nfc,
to construct the state matrices and outputs. A mini-batch of size 64 was used for training
Nfc, achieving an 80% test set accuracy4.

FGSM generates adversarial examples, ǔ, by taking a step of size ε in the direction of the
sign of its gradient taken with respect to the input, ǔ = u + ε · sgn(∇Nfc(u)). In our
experiments, we set ε = 0.004 or ε = 0.008. For each batch of the test set, we perturb 50%
of pixels and leave 50% unperturbed. We evaluate model’s robustness using the prediction
accuracy on adversarial examples, Eǔ,y(1y=sgn(f(ǔ))), which measures the ability of a model
resisting them. Figure 4 illustrates the adversarial robustness with respect to different weight
sparsity. In both cases, we observe that `1-norm leads to a more robust model as compared to
perspective relaxation, and continues to maintain robustness with approximately 45% fewer
parameters. Moreover, the `1-norm approach exhibits more robustness than the original

4The baseline model is trained on a single Nvidia Tesla K80 GPU
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baseline network Nfc with higher model sparsity, until the sparsity reaches an over-sparsified
threshold that leads to an inevitable capacity degradation.
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Figure 4: Trade-off curve for robustness with varying weight sparsity. The `1-norm is more
robust under adversarial attack than the perspective relaxation and the baseline model.

5 Related Work

Recent works (Bai et al., 2019; Chen et al., 2018; El Ghaoui et al., 2021; Winston & Kolter,
2020) have proposed an emerging “implicitly-defined” structure in deep learning, where
the intermediate hidden states are defined via a “equilibrium” (fixed-point) equation, and
the outputs are determined only implicitly by the equilibrium solution of such underlying
equilibrium equation. Researchers have developed different classes of implicit models and
demonstrated their potential in graph neural networks (Gu et al., 2020), differential equation
models (Chen et al., 2018), physical control (de Avila Belbute-Peres et al., 2018), and many
others (Amos et al., 2018). Recent work has shown that these implicitly defined models can
be successfully sparsified, reducing their training and inference complexity (Ta et al., 2022).
This leads to a more efficient model that operates in the same high-dimensional feature space
but with a reduced representational complexity. One of the popular approaches in parameter
reduction is to remove parameters with the smallest magnitude, a technique called magnitude
pruning (Han et al., 2015; Zhu & Gupta, 2018; Molchanov et al., 2017). Magnitude pruning
eliminates weights based on a learned magnitude or criterion of parameters with an a priori
threshold (Yeom et al., 2019), which requires trial-and-error or heuristics. Others have
considered a more principled way of determining the importance of parameters, including
structured pruning (Sui et al., 2021; Chen et al., 2021) and directional pruning (Chao et al.,
2020). Recent works have also view the problem from the perspective of optimization, such
as convex pruning (Aghasi et al., 2020) or the perspective reformulation technique (Frangioni
& Gentile, 2006; Atamtürk & Gómez, 2020). In addition, starting with Szegedy et al. (2014),
a large number of works have shown that deep neural networks (DNNs) are vulnerable to
adversarial samples (Goodfellow et al., 2015; Kurakin et al., 2017; Papernot et al., 2016a).
The vulnerability of DNNs has motivated the study of building models that are robust to
such perturbations (Madry et al., 2018; Papernot et al., 2016b; Raghunathan et al., 2018;
Gowal et al., 2018). Defense strategies against adversarial examples have primarily focused
on training with adversarial examples (Tramèr et al., 2017; Madry et al., 2018) or with a
carefully designed penalty loss (Qin et al., 2019; Dhillon et al., 2018).

6 Conclusion

In this work, we present state-driven implicit modeling, a flexible convex optimization scheme
for training an implicit model without expensive implicit differentiation, based on fixing the
internal state and outputs from a given baseline model. We describe the convex training
problem and parallel algorithms for training. By introducing an appropriate objective and
setup, we demonstrate how state-driven implicit modeling can be applied to train sparse
models that are consistently more robust under adversarial attacks. Our results validate
the effectiveness of our approach and highlight promising directions for research that bring
convex optimization, sparsity, and robustness-inducing techniques into implicit models.
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nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf.

Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Multiscale deep equilibrium mod-
els. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 5238–5250. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
3812f9a59b634c2a9c574610eaba5bed-Paper.pdf.

Abraham Berman and Robert J. Plemmons. Nonnegative Matrices in the Mathematical Sci-
ences. Society for Industrial and Applied Mathematics, 1994. doi: 10.1137/1.9781611971262.
URL https://epubs.siam.org/doi/abs/10.1137/1.9781611971262.

Matteo Cacciola, Antonio Frangioni, Xinlin Li, and Andrea Lodi. Deep neural networks
pruning via the structured perspective regularization. arXiv:2206.14056 [cs.LG], June
2022. URL https://arxiv.org/pdf/2206.14056.pdf.

Shih-Kang Chao, Zhanyu Wang, Yue Xing, and Guang Cheng. Directional pruning of
deep neural networks. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates
Inc. ISBN 9781713829546.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.
cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

10

https://arxiv.org/abs/2002.07520
https://proceedings.neurips.cc/paper/2018/file/ba6d843eb4251a4526ce65d1807a9309-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/ba6d843eb4251a4526ce65d1807a9309-Paper.pdf
https://docs.mosek.com/latest/pythonapi/index.html
https://docs.mosek.com/latest/pythonapi/index.html
http://jmlr.org/papers/v22/18-745.html
https://proceedings.neurips.cc/paper/2019/file/01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3812f9a59b634c2a9c574610eaba5bed-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3812f9a59b634c2a9c574610eaba5bed-Paper.pdf
https://epubs.siam.org/doi/abs/10.1137/1.9781611971262
https://arxiv.org/pdf/2206.14056.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf


Under review as a conference paper at ICLR 2024

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang,
Yixin Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training
and pruning framework. In Advances in Neural Information Processing Systems, 2021.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J. Zico
Kolter. End-to-end differentiable physics for learning and control. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 31, 2018. URL https://proceedings.neurips.
cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf.

Terrance Devries and Graham W. Taylor. Improved regularization of convolutional neural
networks with cutout. CoRR, abs/1708.04552, 2017. URL http://arxiv.org/abs/1708.
04552.

Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi, Aran
Khanna, Zachary C. Lipton, and Animashree Anandkumar. Stochastic activation pruning
for robust adversarial defense. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=H1uR4GZRZ.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in
Neural Information Processing Systems, 32, 2019.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit
deep learning. SIAM Journal on Mathematics of Data Science, 3(3):930–958, 2021. doi:
10.1137/20M1358517. URL https://doi.org/10.1137/20M1358517.

Antonio Frangioni and Claudio Gentile. Perspective cuts for a class of convex 0–1 mixed
integer programs. Mathematical Programming, 106:225–236, 2006.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training
implicit models. Advances in Neural Information Processing Systems, 34:24247–24260,
2021.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6572.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,
Jonathan Uesato, Relja Arandjelovic, Timothy A. Mann, and Pushmeet Kohli. On the
effectiveness of interval bound propagation for training verifiably robust models. CoRR,
abs/1810.12715, 2018. URL http://arxiv.org/abs/1810.12715.

Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit
graph neural networks. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates
Inc. ISBN 9781713829546.

Yiwen Guo, Chao Zhang, Changshui Zhang, and Yurong Chen. Sparse dnns with improved
adversarial robustness. In Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/
file/4c5bde74a8f110656874902f07378009-Paper.pdf.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connec-
tions for efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/
file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

Yiming Hu, Siyang Sun, Jianquan Li, Jiagang Zhu, Xingang Wang, and Qingyi Gu. Multi-
loss-aware channel pruning of deep networks. 2019 IEEE International Conference on
Image Processing (ICIP), pp. 889–893, 2019.

11

https://proceedings.neurips.cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1708.04552
https://openreview.net/forum?id=H1uR4GZRZ
https://doi.org/10.1137/20M1358517
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1810.12715
https://proceedings.neurips.cc/paper/2018/file/4c5bde74a8f110656874902f07378009-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/4c5bde74a8f110656874902f07378009-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf


Under review as a conference paper at ICLR 2024

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural
networks. ECCV, 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. Red Hook, NY, USA, 2012. Curran Associates Inc.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=HJGU3Rodl.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=rJzIBfZAb.

Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial and
Applied Mathematics, USA, 2000. ISBN 0898714540.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolu-
tional neural networks for resource efficient inference. In 5th International Conference on
Learning Representations, (ICLR) 2017, 2017.

Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In IEEE
European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,
March 21-24, 2016, pp. 372–387. IEEE, 2016a. doi: 10.1109/EuroSP.2016.36. URL
https://doi.org/10.1109/EuroSP.2016.36.

Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
Distillation as a defense to adversarial perturbations against deep neural networks. In
IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26,
2016, pp. 582–597. IEEE Computer Society, 2016b. doi: 10.1109/SP.2016.41. URL
https://doi.org/10.1109/SP.2016.41.

Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham,
Alhussein Fawzi, Soham De, Robert Stanforth, and Pushmeet Kohli. Adversarial robustness
through local linearization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
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A Proofs

Proof of Theorem 2.3 We first prove the existence of a solution x ∈ Rn to the equation
x = φ(Ax + b) if λpf < 1. Since φ satisfies Assumption (2.1), we have that for t ≥ 1, the
picard iteration

xt+1 = φ(Axt + b), x0 = 0, t = 0, 1, · · ·
satisfies

|xt+1 − xt| = |φ(Axt + b)− φ(Axt−1 + b)|
≤ |A(xt − xt−1)| ≤ |A||xt − xt−1|
≤ |A|t|x1 − x0|.

Hence, for every t, τ ≥ 1, we have

|xt+τ − xt| =

∣∣∣∣∣
t+τ∑
i=t+1

(xi − xi−1)

∣∣∣∣∣ ≤
t+τ∑
k=t

|A|k|x1 − x0|

≤ |A|t
τ∑
k=0

|A|k|x1 − x0| ≤ |A|t
∞∑
k=0

|A|k|x1 − x0|

= |A|t(I − |A|)−1|x1 − x0|.

The inverse of I − |A| exists as λpf(|A|) < 1. Since limt→∞ |A|t = 0, we have

0 ≤ lim
t→∞

|xt+τ − xt| ≤ lim
t→∞

|A|t(I − |A|)−1|x1 − x0| = 0.

We obtain that xt is a Cauchy sequence, and thus the sequence converges to some limit
point, x∞, which by continuity of φ can be obtained by x∞ = φ(Ax∞ + b), thus establishes
the existence of a solution to x = φ(Ax+ b).

For uniqueness, consider two solutions xa, xb ∈ Rn+ to the equation, the following inequality
holds,

0 ≤ |xa − xb| ≤ |A||xa − xb| ≤ |A|k|xa − xb|.
As k →∞, we have that |A|k → 0, and it follows that xa = xb, which establishes the unicity
of the solution.

Proof of Theorem 2.4 Consider a neural network N in its equivalent implicit form
(AN , BN , CN , DN , φ), since the matrix |AN | is strictly upper triangular, all of its eigenvalues
are zeros, automatically satisfying the PF sufficient condition for well-posedness. From the
Collatz-Wielandt formula (Meyer, 2000), the PF eigenvalue of a well-posed implicit model
can be represented as

λpf(|A|) = inf
s>0

∥∥diag(s)|A|diag(s)−1
∥∥
∞ .

The scaling factor s such that
∥∥diag(s)|A|diag(s)−1

∥∥
∞ < 1 can be obtained by solving

si = 1 +

n∑
j=i+1

|Ai,j |sj , i ∈ [n],

which can then be solved by backward substitution. The new model matrices
(A′, B′, C ′, D′, φ), are obtained by(

A′ B′

C ′ D′

)
=

(
SAS−1 SB

CS−1 D

)
where S = diag(s), with s > 0 a PF eigenvalue of |A|. More generally, provided that
λpf(|A|) < 1, we simply set s = (I − |A|)−11, which can be obtained as the limit point of
fixed-point iterations.
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B More on Parallel Training

Data structure. Fitting all the weight matrices into memory requires a substantial amount
of storage space. However, we can leverage the high-sparsity property of the problem to
reduce the memory consumption when storing the weight matrices. In the high-sparsity
regime, schemes known from high-performance computing such as compressed sparse row
(CSR) and compressed sparse column (CSC) can store indices of matrices, respectively. Since
in this problem, we operate in a row-wise fashion, we choose to store the weight matrices in
CSR format. CSR represents the indices in an n = nr × nc matrix using row and column
index arrays. The row array is of length nr and store the offsets of each row in the value
array in dlog2me bits, where m is the number of non-zero elements. The column array is of
length m and stores the column indices of each value in dlog2 nce bits. The total storage
space required is therefore nr × dlog2me+m× dlog2 nce.

Multiprocessing. Given state matrices from a neural network, the basis pursuit problem
of (8) and (9) can be paralleled, each involving a single or a block of rows. Each block
is trained independently by a child processor with an auxiliary objective, and returns the
solutions back to the main processor. We implement our parallel training algorithm with
the multiprocessing package using Python. The multiprocessing package5 supports
spawning processes and offers both local and remote concurrency. In Python, its Global
Interpreter Lock (GIL) only allows one thread to be run at a time under the interpreter,
which means we are unable to leverage the benefit of multi-threading. However, with
multiprocessing, each process has its own interpreter and the instructions are executed by
its own interpreter, which allows multiple processes to be run in parallel, side-stepping
the GIL by using sub-processes instead of threads. In multiprocessing, a process is a
program loaded into memory to run and does not share its memory with other processes.
The decomposability of the training problem can be viewed as data parallelism where the
execution of a function, i.e. solving the convex optimization problem, is parallelized, and
the input values are distributed across processes. We use the Pool object to offer a means
of defining a function in a module so that child processes can each import the module and
execute it independently.

Memory sharing. In multiprocessing, data in the arguments are pickled and passed
to the child processors by default. In the basis pursuit problem, the state matrix X and the
input data matrix U remain unchanged during task execution across all the processors, and
thus only need read-only access to X and U . Passing X and U to each processor whenever
a new task is scheduled consumes a significant amount of memory space and increases the
communication time. As a result, instead of treating them as data input to the function, we
put X and U into a shared memory, providing direct access of the shared resources across
processes.

Ray. We also implement our parallel algorithm using Ray6, an open-source and general-
purpose distributed compute framework for machine learning and deep learning applications.
By transforming the execution of the convex training problems into ray actors, we are
able to distribute the input values to multiple ray actors to run on multiple ray nodes.
Similar to the memory sharing in the multiprocessing approach, we use ray.put() to save
objects into the ray object store, saving memory bandwidth by only passing the object ids
around. We run our experiments on the Cori clusters7 hosted by National Energy Research
Scientific Computing (NERSC) Center and use the slurm-ray-cluster scripts8 for running
multi-nodes.

Performance benchmark. Figure 5 show the run-time for our serial and parallel im-
plementation using both multiprocessing and Ray. We observe that multiprocessing

5https://docs.python.org/3/library/multiprocessing.html
6https://www.ray.io/
7https://docs.nersc.gov/systems/cori/
8https://github.com/NERSC/slurm-ray-cluster
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provides the best speedup as compared to Ray. We hypothesize that since Ray is a general-
purpose distributed compute framework, it contains more overhead than solving the training
problem directly using multiprocessing.
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Figure 5: Performance benchmark for serial, multiprocessing (parallel), and Ray (parallel)
implementation on FashionMNIST dataset using 8 processors.

C More on Numerical Experiments

Table 2 and Table 3 shows the number of training samples, hyper-parameters, and adversarial
test accuracy for perspective relaxation and `1-norm objective functions with state and
outputs matching penalties as in problem (7). For perceptive relaxation, we solve the
following problem:

min
M,t,s

α
∑
ij

sij + λ1 ‖Z − (AX +BU)‖2F (10a)

+ λ2

∥∥∥Ŷ − (CX +DU)
∥∥∥2

F
(10b)

s.t. (2d), tij ∈ [0, 1],M2
ij ≤ sij · tij , sij ≥ 0. (10c)

For the `1-norm problem, we solve the following problem:

min
M

β
∑
ij

|Mij |+ λ1 ‖Z − (AX +BU)‖2F (11a)

+ λ2

∥∥∥Ŷ − (CX +DU)
∥∥∥2

F
: (2d), (11b)

where β controls the degree of regularizing for robustness.

Table 2: Experimental settings for perspective relaxation on Fashion-MNIST.

Test Acc. (%)

# Train Samples Sparsity (%) λ1 λ2 α ε = 0.004 ε = 0.008

700 15 0.1 0.1 0.01 78.7 75.4
500 23 0.1 0.1 0.01 77.3 73.8
400 28 0.1 0.1 0.01 76.6 72.8
300 36 0.1 0.1 0.01 74.9 72.4
200 54 0.1 0.1 0.01 73.7 70.1
100 77 0.1 0.1 0.01 57.2 49.5
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Table 3: Experimental settings for `1-norm on Fashion-MNIST.

Test Acc. (%)

# Train Samples Sparsity (%) λ1 λ2 β ε = 0.004 ε = 0.008

600 20 0.1 0.1 0.001 79.6 76.2
1000 47 0.01 0.01 0.001 79.3 76.2
500 26 0.01 0.01 0.01 78.3 75.0
2000 6 0.01 0.01 0.01 77.6 74.6
900 65 0.01 0.01 0.001 74.9 69.9
400 76 0.01 0.01 0.001 72.3 68.4
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