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ABSTRACT

Experience replay, which enables the agents to remember and reuse experience
from the past, has played a significant role in the success of off-policy reinforcement
learning (RL). To utilize the experience replay efficiently, the existing sampling
methods allow selecting out more meaningful experiences by imposing priorities
on them based on certain metrics (e.g. TD-error). However, they may result in
sampling highly biased, redundant transitions since they compute the sampling
rate for each transition independently, without consideration of its importance
in relation to other transitions. In this paper, we aim to address the issue by
proposing a new learning-based sampling method that can compute the relative
importance of transition. To this end, we design a novel permutation-equivariant
neural architecture that takes contexts from not only features of each transition
(local) but also those of others (global) as inputs. We validate our framework,
which we refer to as Neural Experience Replay Sampler (NERS)1, on multiple
benchmark tasks for both continuous and discrete control tasks and show that it can
significantly improve the performance of various off-policy RL methods. Further
analysis confirms that the improvements of the sample efficiency indeed are due to
sampling diverse and meaningful transitions by NERS that considers both local
and global contexts.

1 INTRODUCTION

Experience replay (Mnih et al., 2015), which is a memory that stores the past experiences to reuse
them, has become a popular mechanism for reinforcement learning (RL), since it stabilizes training
and improves the sample efficiency. The success of various off-policy RL algorithms largely attributes
to the use of experience replay (Fujimoto et al., 2018; Haarnoja et al., 2018a;b; Lillicrap et al., 2016;
Mnih et al., 2015). However, most off-policy RL algorithms usually adopt a unique random sampling
(Fujimoto et al., 2018; Haarnoja et al., 2018a; Mnih et al., 2015), which treats all past experiences
equally, so it is questionable whether this simple strategy would always sample the most effective
experiences for the agents to learn.

Several sampling policies have been proposed to address this issue. One of the popular directions is
to develop rule-based methods, which prioritize the experiences with pre-defined metrics (Isele &
Cosgun, 2018; Jaderberg et al., 2016; Novati & Koumoutsakos, 2019; Schaul et al., 2016). Notably,
since TD-error based sampling has improved the performance of various off-policy RL algorithms
(Hessel et al., 2018; Schaul et al., 2016) by prioritizing more meaningful samples, i.e., high TD-error,
it is one of the most frequently used rule-based methods. Here, TD-error measures how unexpected
the returns are from the current value estimates (Schaul et al., 2016).

However, such rule-based sampling strategies can lead to sampling highly biased experiences. For
instance, Figure 1 shows randomly selected 10 transitions among 64 transitions sampled using certain

1Code is available at https://github.com/youngmin0oh/NERS
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(a) TD-error (b) Q-value (c) RANDOM

Figure 1: Sampled transitions on Pendulum-v0 from various sampling strategies: (a) Sampling by TD-error, (b)
Sampling by Q-value, (c) Sampling uniformly at random. Samples highlighted in black, orange, and cyan boxes
denote that their state has the rod in downward, upright, and horizontal positions with appropriate amount of
actions, respectively. Samples in red boxes have excessively large actions.

metrics/rules under a policy-based learning, soft actor critic (SAC) (Haarnoja et al., 2018a), on
Pendulum-v0 after 30,000 timesteps, which goal is to balance the pendulum to make it stay in the
upright position. We observe that sampling by the TD-error alone mostly selects initial transitions
(see Figure 1(a)), where the rods are in the downward position, since it is difficult to estimate Q-value
on them. Conversely, the sampled transitions by Q-value describe rods in the upright position (see
Figure 1(b)), which will provide high returns to agents. Both can largely contribute to the update of
the actor and critic since the advantage term and mean-square of TD-errors are large. Yet, due to the
bias, the agent trained in such a manner will mostly learn what to do in a specific state, but will not
learn about others that should be experienced for proper learning of the agent. Therefore, such biased
(and redundant) transitions may not lead to increased sample efficiency, even though each sampled
transition may be individually meaningful.

On the other hand, focusing only on the diversity of samples also has an issue. For instance, sampling
uniformly at random is able to select out diverse transitions including intermediate states such as those
in the red boxes of Figure 1(c), where the rods are in the horizontal positions which are necessary
for training the agents as they provide the trajectory between the two types of states. However, the
transitions are occasionally irrelevant for training both the policy and the Q networks. Indeed, states
in the red boxes of Figure 1(c) possess both lowQ-values and TD-errors. Their low TD-errors suggest
that they are not meaningful for the update of Q networks. Similarly, low Q-values cannot be used to
train the policy what good actions are.

Motivated by the aforementioned observations, we aim to develop a method to sample both diverse
and meaningful transitions. To cache both of them, it is crucial to measure the relative importance
among sampled transitions since the diversity should be considered in them, not all in the buffer. To
this end, we propose a novel neural sampling policy, which we refer to Neural Experience Replay
Sampler (NERS). Our method learns to measure the relative importance among sampled transitions
by extracting local and global contexts from each of them and all sampled ones, respectively. In
particular, NERS is designed to take a set of each experience’s features as input and compute its
outputs in an equivariant manner with respect to the permutation of the set. Here, we consider various
features of transition such as TD-error, Q-value and the raw transition, e.g., expecting to sample
intermediate transitions as those in blue boxes of Figure 1(c)) efficiently.

To verify the effectiveness of NERS, we validate the experience replay with various off-policy RL
algorithms such as soft actor-critic (SAC) (Haarnoja et al., 2018a) and twin delayed deep deterministic
(TD3) (Fujimoto et al., 2018) for continuous control tasks (Brockman et al., 2016; Todorov et al.,
2012), and Rainbow (Hessel et al., 2018) for discontinuous control tasks (Bellemare et al., 2013). Our
experimental results show that NERS consistently (and often significantly for complex tasks having
high-dimensional state and action spaces) outperforms both the existing the rule-based (Schaul et al.,
2016) and learning-based (Zha et al., 2019) sampling methods for experience replay.

In summary, our contribution is threefold:

• To the best of our knowledge, we first investigate the relative importance of sampled
transitions for the efficient design of experience replays.

• For the purpose, we design a novel permutation-equivariant neural sampling architecture
that utilizes contexts from the individual (local) and the collective (global) transitions with
various features to sample not only meaningful but also diverse experiences.

• We validate the effectiveness of our neural experience replay on diverse continuous and
discrete control tasks with various off-policy RL algorithms, on which it consistently
outperforms both existing rule-based and learning-based sampling methods.
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2 NEURAL EXPERIENCE REPLAY SAMPLER

We consider a standard reinforcement learning (RL) framework, where an agent interacts with an
environment over discrete timesteps. Formally, at each timestep t, the agent receives a state st from
the environment and selects an action at based on its policy π. Then, the environment returns a
reward rt, and the agent transitions to the next state st+1. The goal of the agent is to learn the policy
π that maximizes the return Rt =

∑∞
k=0 γ

krt+k, which is the discounted cumulative reward from
the timestep t with a discount factor γ ∈ [0, 1), at each state st. Throughout this section, we focus on
off-policy actor-critic RL algorithms with a buffer B, which consist of the policy πψ(a|s) (i.e., actor)
and Q-function Qθ(s, a) (i.e., critic) with parameters ψ and θ, respectively.

2.1 OVERVIEW OF NERS

We propose a novel neural sampling policy f with parameter φ, called Neural Experience Replay
Sampler (NERS). It is trained for learning to select important transitions from the experience replay
buffer for maximizing the actual cumulative rewards. Specifically, at each timestep, NERS receives
a set of off-policy transitions’ features, which are proportionally sampled in the buffer B based on
priorities evaluated in previous timesteps. Then it outputs a set of new scores from the set, in order
for the priorities to be updated. Further, both the sampled transitions and scores are used to optimize
the off-policy policy πψ(a|s) and action-value function Qθ(s, a). Note that the output of NERS
should be equivariant of the permutation of the set, so we design its neural architecture to satisfy
the property. Next, we define the reward rre as the actual performance gain, which is defined as
the difference of the expectation of the sum of rewards between the current and previous evaluation
policies, respectively. Figure 2 shows an overview of the proposed framework, which learns to sample
from the experience replay. In the following section, we describe our method of learning the sampling
policy for experience replay and the proposed network architecture in detail.
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Figure 2: An overview of our neural experience replay sampler (NERS) framework. We first sample transitions
proportionally to scores previously calculated. Then, our neural sampling policy evaluates them. Specifically,
NERS consists of three networks fl, fg and fs. The first two networks obtain local and global contexts by
considering various features, respectively. Then the last network evaluates the relative importance (score) by
fs. The importance set is used when to sample transitions later and train the agent. This design satisfies the
permutation-equivariant property.

2.2 DETAILED COMPONENTS OF NERS

Input observations. Throughout this paper, we denote the set {1, · · · , n} by [n] for positive integer
n. Without loss of generality, suppose that the replay buffer B stores the following information as
its i-th transition Bi =

(
sκ(i), aκ(i), rκ(i), sκ(i)+1

)
where κ (i) is a function from the index of B to a

corresponding timestep. We use a set of priorities PB =
{
σ1, · · · , σ|B|

}
that is updated whenever

sampling transitions for training the actor and critic. One can sample an index set I in [|B|] with the
probability pi of i-th transition as follows:

pi =
σαi∑

k∈[|B|] σ
α
k

, (1)
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Algorithm 1 Training NERS: batch size m and sample size n
Initialize NERS parameters φ, a replay buffer B ← ∅, priority set PB ← ∅, and index set I ← ∅
for each timestep t do

Choose at from the actor and collect a sample (st, at, rt, st+1) from the environment
Update replay buffer B ← B ∪ {(st, at, rt, st+1)} and priority set PB ← PB ∪ {1.0}
for each gradient step do

Sample an index I by the given set PB and Eq. (1) with |I| = m
Calculate a score set {σk}k∈I and weights {wi}i∈I by Eq. (4) and Eq. (5), respectively
Train the actor and critic using batch {Bi}i∈I ⊂ B and corresponding weights {wi}i∈I
Collect I ← I

⋃
I and update PB (I) by the score set {σk}k∈I

end for
for the end of an episode do

Choose a subset Itrain from I uniformly at random such that |Itrain| = n
Calculate rre as in Eq. (6)
Update sampling policy φ using the gradient (7) with respect to Itrain
Empty I, i.e., I ← ∅

end for
end for

with a hyper-parameter α > 0. Then, we define the following sequence of features for {Bi}i∈I :

D (B, I) =
{
sκ(i), aκ(i), rκ(i), sκ(i)+1, κ(i), δκ(i), rκ(i) + γmax

a
Qθ̂
(
sκ(i) + a

)}
i∈I

, (2)

where γ is a discount factor, θ̂ is the target network parameter, and δκ(i) is the TD-error defined as
follows:

δκ(i) = rκ(i) + γmax
a

Qθ̂
(
sκ(i)+1, a

)
−Qθ

(
sκ(i), aκ(i)

)
.

The TD-error indicates how ‘surprising’ or ‘unexpected’ the transition is (Schaul et al., 2016). Note
that the input D (B, I) contains various features including both exact values (i.e., states, actions,
rewards, next states, and timesteps) and predicted values in the long-term perspective (i.e., TD-errors
and Q-values). We abbreviate the notation D (B, I) = D (I) for simplicity. Utilizing various
information is crucial in selecting diverse and important transitions (see Section 3).

Architecture and action spaces. Now we explain the neural network structure of NERS f . Basically,
f takes D (I) as an input and generate their scores, where these values are used to sample transitions
proportionally. Specifically, f consists of fl, fg, and fs called learnable local, global and score
networks with output dimensions dl, dg, and 1. The local network is used to capture attributes in each
transition by fl (D (I)) =

{
fl,1 (D (I)) , · · · fl,|I| (D (I))

}
∈ R|I|×dl , where fl,k (D (I)) ∈ Rdl

(k ∈ [|I|]). The global network is used to aggregate collective information of transitions by taking
fg

avg (D (I)) =
∑
fg(D(I))
|I| ∈ R1×dg , where fg (D (I)) ∈ R|I|×dg . Then by concatenating them,

one can make an input for the score network fs as follows:

Dcat(I) :=
{
fl,1 (D (I))⊕ fgavg (D (I)) , · · · , fl,|I| (D (I))⊕ fgavg (D (I))

}
∈ R|I|×(dl+dg),

(3)
where ⊕ denotes concatenation. Finally, the score network generates a score set:

fs (D
cat(I)) = {σi}i∈I ∈ R|I|. (4)

One can easily observe that fs is permutation-equivariant with respect to input D (I). The set {σi}i∈I
is used to update the priorities set P for transitions corresponding to I by Eq. (1) and to compute
importance-sampling weights for updating the critic, compensating the bias of probabilities (Schaul
et al., 2016)):

wi =

(
1

|B|p(i)

)β
, (5)

where β > 0 is a hyper-parameter. Then the agent and critic receive training batch D (I) and
corresponding weights {wi}i∈I for training, i.e., the learning rate for training sample Bi is set to
be proportional to wi. Due to this structure satisfying the permutation-equivariant property, one
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can evaluate the relative importance of each transition by observing not only itself but also other
transitions.

Reward function and optimizing sampling policy. We update NERS at each evaluation step. To
optimize our sampling policy, we define the replay reward rre of the current evaluation as follows:
for policies π and π′ used in the current and previous evaluations as in (Zha et al., 2019),

rre := Eπ

 ∑
t∈{timesteps in an episode}

rt

− Eπ′

 ∑
t∈{timesteps in an episode}

rt

 . (6)

The replay reward is interpreted as measuring how much actions of the sampling policy help the
learning of the agent for each episode. Notice that rre only observes the difference of the mean of
cumulative rewards between the current and previous evaluation policies since NERS needs to choose
transitions without knowing which samples will be added and how well agents will be trained in the
future. To maximize the sample efficiency for learning the agent’s policy, we propose to train the
sampling policy to selects past transitions in order to maximize rre. To train NERS, one can choose
Itrain that is a subset of a index set I for totally sampled transitions in the current episode. Then we
use the following formula by REINFORCE (Williams, 1992):

∇φEItrain [rre] = EItrain

[
rre

∑
i∈Itrain

∇φ log pi (D (Itrain))

]
, (7)

where pi is defined in Eq. (1). The detailed description is provided in Algorithm 1.

While ERO Zha et al. (2019) uses a similar replay-reward (Eq. 6), there are a number of fundamental
differences between it and our method. First of all, ERO does not consider the relative importance
between the transitions as NERS does, but rather learns an individual sampling rate for each transition.
Moreover, they consider only three types of features, namely TD-error, reward, and the timestep, while
NERS considers a larger set of features by considering more informative features that are not used by
ERO, such as raw features, Q-values, and actions. However, the most important difference between
the two is that ERO performs two-stage sampling, where they first sample with the individually
learned Bernoulli sampling probability for each transition, and further perform random sampling from
the subset of sampled transitions. However, with such a strategy, the first-stage sampling is highly
inefficient even with moderate size experience replays, since it should compute the sampling rate for
each individual instance. Accordingly, its time complexity of the first-stage sampling depends finally
on the capacity of the buffer B, i.e., O (|B|). On the contrary, NERS uses a sum-tree structure as in
(Schaul et al., 2016) to sample transitions with priorities, so that its time complexity for sampling
depends highly on O (log |B|). Secondly, since the number of experiences selected from the first stage
sampling is large, it may have little or no effect, making it to behave similarly to random sampling.
Moreover, ERO updates its network with the replay reward and experiences that are not sampled
from two-stage samplings but sampled by the uniform sampling at random (see Algorithm 2 in Zha
et al. (2019)). In other words, samples that are never selected affect the training of ERO, while NERS
updates its network solely based on the transitions that are actually selected by itself.

3 EXPERIMENTS

In this section, we conduct experiments to answer the following questions:

• Can the proposed sampling method improve the performances of various off-policy RL
algorithms for both continuous and discrete control tasks?

• Is it really effective to sample diverse and meaningful samples by considering the relative
importance with various contexts?

3.1 EXPERIMENTAL SETUP

Environments. In this section, we measure the performances of off-policy RL algorithms opti-
mized with various sampling methods on the following standard continuous control environments
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(a) Pendulum* (TD3) (b) LunarLander-v2 (TD3) (c) BipedalWalker-v3 (TD3)

(d) Pendulum* (SAC) (e) LunarLander-v2 (SAC) (f) BipedalWalker-v3 (SAC)

Figure 3: Learning curves of off-policy RL algorithms with various sampling methods on classical and
Box2D continuous control tasks. The solid line and shaded regions represent the mean and standard deviation,
respectively, across five runs with random seeds.

with simulated robots (e.g., Ant-v3, Walker2D-v3, and Hopper-v3) from the MuJoCo physics en-
gine (Todorov et al., 2012) and classical and Box2D continuous control tasks (i.e., Pendulum∗2,
LunarLanderContinuous-v2, and BipedalWalker-v3) from OpenAI Gym (Brockman et al., 2016). We
also consider a subset of the Atari games (Bellemare et al., 2013) to validate the effect of our experi-
ence sampler on the discrete control tasks (see Table 2). The detailed description for environments is
explained in supplementary material.

Off-policy RL algorithms. We apply our sampling policy to state-of-the-art off-policy RL algo-
rithms, such as Twin delayed deep deterministic (TD3) (Fujimoto et al., 2018), and soft actor-critic
(SAC) (Haarnoja et al., 2018a), for continuous control tasks. For discrete control tasks, instead of the
canonical Rainbow (Hessel et al., 2018), we use a data-efficient variant of it as introduced in (van
Hasselt et al., 2019). Notice that Rainbow already adopts PER. To compare sampling methods, we
replaced it by NERS, RANDOM, and ERO in Rainbow, respectively. Due to space limitation, we
provide more experimental details in the supplementary material.

Baselines. We compare our neural experience replay sampler (NERS) with the following baselines:

• RANDOM: Sampling transitions uniformly at random.
• PER (Prioritized Experience Replay): Rule-based sampling of the transitions with high

temporal difference errors (TD-errors) (Schaul et al., 2016)
• ERO (Experience Replay Optimization): Learning-based sampling method (Zha et al.,

2019), which computes the sampling score for each transition independently, using TD-error,
timestep, and reward as features.

3.2 COMPARATIVE EVALUATION

Figure 3 shows learning curves of each off-policy RL algorithm during training on classical and
Box2D continuous control tasks, respectively. Furthermore, Table 1 and Table 2 show the mean of
cumulative rewards on MuJoCo and Atari environments after 500,000 and 100,000 training steps,

2Pendulum∗: We slightly modify the original Pendulum that openAI Gym supports to distinguishing
performances of sampling methods more clearly by making rewards sparser. Its detailed description is given in
the supplementary material.
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Environments NERS RANDOM PER ERO

TD3
Ant-v3 4193.69 (+677.81) 2824.42 2723.57 3515.88
Walker2D-v3 3938.59 (+378.62) 3559.97 2797.86 3394.74
Hopper-v3 3062.32 (+451.92) 2152.82 1693.32 2610.40

SAC
Ant-v3 2913.54 (+678.20) 2235.34 1402.67 1844.99
Walker2D-v3 3720.11 (+323.12) 3035.31 3396.99 1057.61
Hopper-v3 2763.69 (+354.18) 2409.51 2223.08 2255.67

Table 1: Average of cumulative rewards under SAC and TD3 on MuJoCo Environments after 500,000
training steps across five instances with random seeds. Bold values represent the highest results,
and the number in a bracket indicates the improvement due to NERS, compared to that of the best
baseline on each environment.

Environments NERS RANDOM PER ERO

Alien 1125.18 (+281.16) 787.49 844.02 810.41
Amidar 167.50 (+18.85) 148.65 125.23 118.30
Assualt 516.52 (+26.46) 490.06 466.06 463.39
Asterix 679.00 (+80.90) 598.10 587.20 534.89
BattleZone 18584.99 (+1500.19) 14643.43 13870.98 17084.80
Boxing 2.51 (+4.83) -3.07 -2.32 -3.25
ChopperCommand 878.73 (+125.87) 696.34 752.86 727.45
Freeway 28.96 (+0.12) 28.09 28.37 28.84
Frostbite 1707.10 (+280.88) 794.50 1426.22 832.45
KungFuMaster 10925.59 (+2971.23) 7215.50 7527.96 7954.36
MsPacman 1579.27 (+432.45) 1070.19 1146.82 1001.87
Pong -18.36 (+0.26) -18.62 -19.08 -18.76
PrivateEye 91.68 (+13.16) 69.84 78.52 56.13
Qbert 1037.58 (+136.34) 824.15 901.24 895.49
RoadRunner 9689.30 (+2596.17) 6382.82 7093.13 6199.88
Seaquest 386.80 (+30.52) 356.28 343.97 338.79

Table 2: Average of cumulative rewards under Rainbow on each Atari environments after 100,000
training steps across five instances. Bold values represent the highest results, and the number in
a bracket indicates the improvement due to NERS, compared to that of the best baseline on each
environment.

respectively, over five runs with random seeds, respectively.3 We observe that NERS consistently
outperforms baseline sampling methods in all tested cases. In particular, It significantly improves the
performance of all off-policy RL algorithms on various tasks, which come with high-dimensional
state and action spaces. These results imply that sampling good off-policy data is crucial in improving
the performance of off-policy RL algorithms. Furthermore, they demonstrate the effectiveness of
our method for both continuous and discrete control tasks, as it obtains significant performance
gains on both types of tasks. On the other hand, we observe that PER, which is the rule-based
sampling method, often shows worse performance than uniform random sampling (i.e., RANDOM)
on these continuous control tasks, similarly as observed in (Zha et al., 2019). We suspect that this is
because PER is more appropriate for Q-learning based algorithms than for policy-based learning,
since TD-errors are used to update the Q network. Moreover, even though ERO is a learning-based
sampling method, its performance and sampling behavior is close to that of RANDOM, due to two
reasons. First, it considers the importance of each transition individually by assuming the Bernoulli
distribution, which may result in sampling of redundant transitions. Second, ERO performs two-stage
sampling, where the transitions are first sampled due to their individual importance, and then further
randomly sampled to construct a batch. However, since too many transitions are sampled in the first
stage, the second-stage random sampling is similar to random sampling from the entire experience
replay.

3Learning curves for each environment are provided in the supplementary material.
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(a) BipedalWalker -v3 (SAC) (b) BipedalWalker-v3 (SAC) (c) LunarLander-v2 (SAC)

Figure 4: (a): Comparison of NERS and variants of NERS only with few features (reward, TD-error, and
timestep) and without global context across five instances with random seeds, respectively. (b)-(c): Learning
curves under SAC over five instances with random seeds across five instances with random seeds, respectively.
Here, NERS* denotes that a variant of NERS, where it is trained by the difference of cumulative rewards from
each training episode. Any significant difference between NERS and NERS* is not observable.

(a) BipedalWalker-v3 (SAC) (b) Ant-v3 (SAC) (c) Walker2D-v3 (SAC)

(d) BipedalWalker-v3 (SAC) (e) Ant-v3 (SAC) (f) Walker2D-v3 (SAC)

Figure 5: Curves of the average of Q-values (a/b/c) and Log(TD-errors) (d/e/f) of sampled transitions
across five instances with random seeds, respectively. One can show that NERS basically selects
transitions with high TD-errors in the beginning and both high TD-errors and Q-values finally.

3.3 ANALYSIS OF OUR FRAMEWORK

In this subsection, we first show that each component of NERS is crucial to improve sample efficiency
(Figure 4). Next, we show that NERS really samples not only diverse but also meaningful transitions
to update both actor and critic (Figure 5).

Contribution by each component. We analyze NERS to better understand the effect of each com-
ponent. Figure 4(a) validates the contributions of our suggested techniques, where one can observe
that the performance of NERS is significantly improved when using the full set of features. This
implies that essential transitions for training can be sampled only by considering various aspects of
the past experiences. Using only few features such as reward, TD-error, and timestep does not result
in sampling transitions that yield high expected returns in the future. Figure 4(a) also shows the effect

8



Published as a conference paper at ICLR 2021

Method STDEV of TD-errors STDEV of Q-values AVG of TD-errors AVG of Q-values

NERS 723.01 65.22 87.54 -104.13
RANDOM 528.76 60.46 62.43 -120.15

PER 1256.71 49.78 139.49 -138.05
ERO 560.56 59.16 65.44 -119.03

Table 3: Sampled transitions’ statistical values for Q-values and TD-errors on Pendulum-v0 under
SAC at 10,000 training steps with initially 1,000 random actions. Here, STDEV and AVG mean the
standard deviation and the average, respectively. PER has the highest STDEV of TD-errors but lowest
STDEV of Q-errors. NERS has higher STDEV of both TD-errors and Qvalues than RANDOM and
ERO.

of the relative importance by comparing NERS with and without considering the global context; we
found that the sample efficiency is significantly improved due to consideration of the relative impor-
tance among sampled transitions, via learning the global context. Furthermore, although we have
considered standard environments where evaluations are free, if there exists an environment where
the total number of evaluations is restricted, it may be hard to calculate the replay reward in Eq.(6)
since cumulative rewards at each evaluation should be computed. Due to this reason, we consider a
variance of NERS (NERS*) which computes the difference of cumulative rewards in not evaluations
but training episodes. Figure 4(b) and Figure 4(c) show the performance of NERS* compared
to NERS and other sampling methods under BipedalWalker-v3 and LunearLanderContinuous-v2,
respectively. These figures show that the performance between the two types of replay rewards is not
significantly different.

Analysis on statistics of sampled transitions. We now check if NERS samples both meaningful and
diverse transitions by examining how its sampling behavior changes during the training. To this end,
we plot the TD-errors and Q-values for the sampled transitions during training on BipedalWalker-v3,
Ant-v3, and Walker2D-v3 under SAC in Figure 5. We can observe that NERS learns to focus on
sampling transitions with high TD-errors in the early training steps, while it samples transitions with
both high TD-errors and Q-values (diverse) at later training iterations. In the early training steps, the
critic network for value estimation may not be well trained, rendering the excessive learning of the
agent to be harmful, and thus it is reasonable that NERS selects transitions with high TD-errors to
focus on updating critic networks (Figure 5(d-f)), while it focuses both on transitions with both high
Q-values and TD-errors since both the critic and the actor will be reliable in the later stage (Figure
5(a-c)). Such an adaptive sampling strategy is a unique trait of NERS that contributes to its success,
while other sampling methods, such as PER and ERO, cannot do so. Table 3 denotes the statistical
values for sampled transitions’ TD-errors and Q-values on Pendulum-v3 under SAC at 10,000 steps
(with initially 1,000 random actions). It is observable that NERS has higher standard deviation of
Q-values and TD-errors than RANDOM and ERO. Although PER has the highest standard deviation
of TD-errors than other sampling methods, it has the lowest standard deviation of Q-values instead.
Figure 5 and Table 3 show that NERS learns to sample diverse, which means the NERS’s ability to
sample transitions with different criteria, and meaningful experiences for agents.

4 RELATED WORK

Off-policy algorithms. One of the well-known off-policy algorithms is deep Q-network (DQN)
learning with a replay buffer (Mnih et al., 2015). There are various variants of the DQN learning,
e.g., (Hasselt, 2010; Wang et al., 2015; Hessel et al., 2018). Especially, Rainbow (Hessel et al.,
2018), which is one of the state-of-the-art Q-learning algorithms, was proposed by combining various
techniques to extend the original DQN learning. Moreover, DQN was combined with a policy-based
learning, so that various actor-critic algorithms have appeared. For instance, an actor-critic algorithm,
which is called deep deterministic policy gradient (DDPG) (Lillicrap et al., 2016), specialized for
continuous control tasks was proposed by a combination of DPG (Silver et al., 2014) and deep
Q-learning (Mnih et al., 2015). Since DDPG is easy to brittle for hyper-parameters setting, various
algorithms have been proposed to overcome this issue. For instance, to reduce the the overestimation
of the Q-value in DDPG, twin delayed DDPG (TD3) was proposed (Fujimoto et al., 2018), which
extended DDPG by applying double Q-networks, target policy smoothing, and different frequencies

9



Published as a conference paper at ICLR 2021

to update a policy and Q-networks, respectively. Moreover, another actor-critic algorithm called soft
actor-critic (SAC) (Haarnoja et al., 2018a;b) was developed by adding the entropy measure of an
agent policy to the reward in the actor-critic algorithm to encourage the exploration of the agent.

Sampling method. Due to the ease of applying random sampling, it has been used to various
off-policy algorithms until now. However, it is known that it cannot guarantee optimal results, so that
a prioritized experience replay (PER) (Schaul et al., 2016) that samples transitions proportionally to
the TD-error in DQN learning was proposed. As a result, it showed performance improvements in
Atari environments. Applying PER is also easily applicable to various policy-based algorithms, so
it is one of the most frequently used rule-based sampling methods (Hessel et al., 2018; Hou et al.,
2017; Schaul et al., 2016; Wang & Ross, 2019). Furthermore, since it is reported that the newest
experiences are significant for efficient Q-learning (Zhang & Sutton, 2015), PER generally imposes
the maximum priority on recent transitions to sample them frequently. Based on PER, imposing
weights for recent transitions was also suggested (Brittain et al., 2019) to increase priorities for
them. Instead of TD-error, a different metric can be also used to PER, e.g., the expected return (Isele
& Cosgun, 2018; Jaderberg et al., 2016). Meanwhile, different approaches from PER have been
proposed. For instance, to update the policy in a trust region, computing the importance weight of each
transitions was proposed (Novati & Koumoutsakos, 2019), so far-policy experiences were ignored
when computing the gradient. Another example is backward updating of transitions from a whole
episode (Lee et al., 2019) for deep Q-learning. Although the rule-based methods have shown their
effectiveness on some tasks, they sometimes derive sub-optimal results on other tasks. To overcome
this issue, a neural network for replay buffer sampling was adopted (Zha et al., 2019) and it showed
the validness of their method on some continuous control tasks in the DDPG algorithm. However, its
effectiveness is arguable in other tasks and algorithms (see Section 3), as it only considers transitions
independently and regard few features as timesteps, rewards, and TD-errors (unlike ours). Recently,
Fedus et al. (2020) showed that increasing replay capacity and downweighting the oldest transition in
the buffer generally improves the performance of Q-learning agents on Atari tasks. How to sample
prior experiences is also a crucial issue to model-based RL algorithms, e.g., Dyna Sutton (1991)
which is a classical architecture. There are variants of Dyna that study strategies for search-control,
to selects which states to simulate. For instance, inspired by the fact that a high-frequency space
requires many samples to learn, Dyna-Value Pan et al. (2019) and Dyna-Frequency Pan et al. (2020)
select states with high-frequency hill climbing on value function, and gradient and hessian norm
of it, respectively for generating more samples by the models. In other words, how to prioritize
transitions when sampling is nontrivial, and learning the optimal sampling strategy is critical for the
sample-efficiency of the target off-policy algorithm.

5 CONCLUSION

We proposed NERS, a neural policy network that learns how to select transitions in the replay buffer
to maximize the return of the agent. It predicts the importance of each transition in relation to
others in the memory, while utilizing local and global contexts from various features in the sampled
transitions as inputs. We experimentally validate NERS on benchmark tasks for continuous and
discrete control with various off-policy RL methods, whose results show that it significantly improves
the performance of existing off-policy algorithms, with significant gains over prior rule-based and
learning-based sampling policies. We further show through ablation studies that this success is indeed
due to modeling relative importance with consideration of local and global contexts.
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Supplementary Material:
Learning to Sample with Local and Global Contexts

in Experience Replay Buffer

A ENVIRONMENT DESCRIPTION

A.1 MUJOCO ENVIRONMENTS

Multi-Joint Dynamics with Contact (MuJoCo) Todorov et al. (2012) is a physics engine for robot
simulations supported by openAI gym4. MuJoCo environments provide a robot with multiple joints
and reinforcement learning (RL) agents should control the joints (action) to achieve a given goal.
The observation of each environment basically includes information about the angular velocity and
position for those joints. In this paper, we consider the following environments belonging to MuJoCo.

Hopper(-v3) is a environment to control a one-legged robot. The robot receives a high return if it
hops forward as soon as possible without failure.

Walker2d(-v3) is an environment to make a two-dimensional bipedal legs to walk. Learning to quick
walking without failure ensures a high return.

Ant(-v3) is an environment to control a creature robot with four legs used to move. RL agents should
to learn how to use four legs for moving forward quickly to get a high return.

(a) Hopper (b) Walker2d (c) Ant

Figure A.1: MuJoCo environments

A.2 OTHER CONTINUOUS CONTROL ENVIRONMENTS

Although MuJoCo environments are popular to evaluate RL algorithms, openAI gym also supports
additional continuous control environments which belong to classic or Box2D simulators. We conduct
experiments on the following environments among them.

Pendulum∗ is an environment which objective is to balance a pendulum in the upright position to
get a high return. Each observation represents the angle and angular velocity. An action is a joint
effort which range is [−2, 2]. Pendulum∗ is slightly modified from the original (Pendulum-v0) which
openAI supports. The only difference from the original is that agents receive a reward 1.0 only if the
rod is in sufficiently upright position (between the angle in [−π/3, π/3], where the zero angle means
that the rod is in completely upright position) at least more than 20 steps.

LunarLander(Continuous-v2) is an environment to control a lander. The objective of the lander
is landing to a pad, which is located at coordinates (0, 0), with safety and coming to rest as soon
as possible. There is a penalty if the lander crashes or goes out of the screen. An action is about
parameters to control engines of the lander.

4https://gym.openai.com/
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BipedalWalker(-v3) is an environment to control a robot. The objective is to make the robot move
forward far from the initial state as far as possible. An observation is information about hull angle
speed, angular velocity, vertical speed, horizontal speed, and so on. An action consists of torque or
velocity control for two hips and two knees.

(a) Pendulum (b) LunarLander (c) BipedalWalker

Figure A.2: Other continuous control environments

Table A.1 describes the observation and action spaces and the maximum steps for each episode
(horizon) in MuJoCo and other continuous control environments. Here, R and [−1, 1] denote sets of
real numbers and those between 0 and 1, respectively.

Environment Observation space Action space Horizon

Hopper R11

[−1, 1]3 1000

Walker2d R17

[−1, 1]6 1000

Ant R111

[−1, 1]8 1000

Pendulum∗ R3

[−1, 1]1 200

LunarLander R8

[−1, 1]2 1000

BipedalWalker R24

[−1, 1]4 1600

Table A.1: Dimensions of observation and action spaces for continuous control environments
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A.3 DISCRETE CONTROL ENVIRONMENT

To evaluate sampling methods under Rainbow Hessel et al. (2018), we consider the following Atari
environments. RL agents should learn their policy by observing the RGB screen to acheive high
scores for each game.

Alien(NoFrameskip-v4) is a game where player should destroy all alien eggs in the RGB screen
with escaping three aliens. The player has a weapon which paralyzes aliens.

Amidar(NoFrameskip-v4) is a game which format is similar to MsPacman. RL agents control a
monkey in a fixed rectilinear lattice to eat pellets as much as possible while avoiding chasing masters.
The monkey loses one life if it contacts with monsters. The agents can go to the next stage by visiting
a certain location in the screen.

Assault(NoFrameskip-v4) is a game where RL agents control a spaceship. The spaceship is able to
move on the bottom of the screen and shoot motherships which deploy smaller ships to attack the
agents. The objective is to eliminate the enemies.

Asterix(NoFrameskip-v4) is a game to control a tornado. The objective of RL agents is to eat
hamburgers in the screen with avoiding dynamites.

(a) Alien (b) Amidar (c) Assault (d) Asterix

BattleZone(NoFrameskip-v4) is a tank combat game. This game provides a first-person perspective
view. RL agents control a tank to destroy other tanks. The agent should avoid other tanks or missile
attacks. It is also possible to hide from various obstacles and avoid enemy attacks.

Boxing(NoFrameskip-v4) is a game about the sport of boxing. There are two boxers with a top-
down view and RL agents should control one of them. They get one point if their punches hit from a
long distance and two points if their punches hit from a close range. A match is finished after two
minues or 100 punches hitted to the opponent.

ChopperCommand(NoFrameskip-v4) is a game to control a helicopter in a desert. The helicopter
should destroy all enemy aircrafts and helicopters while protecting a convoy of trucks.

(e) BattleZone (f) Boxing (g) ChopperCommand

Freeway(NoFrameskip-v4) is a game where RL agents control chickens to run across a ten-lane
highway with traffic. They are only allowed to move up or down. The objective is to get across as
possible as they can until two minutes.
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Frostbite(NoFrameskip-v4) is a game to control a man who should collect ice blocks to make his
igloo. The bottom two thirds of the screen consists of four rows of horizontal ice blocks. He can
move from the current row to another and obtain an ice block by jumping. RL agents are required to
collect 15 ice blocks while avoiding some opponents, e.g., crabs and birds.

KungFuMaster(NoFrameskip-v4) is a game to control a fighter to save his girl friend. He can use
two types of attacks (punch and kick) and move/crunch/jump actions.

MsPacman(NoFrameskip-v4) is a game where RL agents control a pacman in given mazes for
eatting pellets as much as possible while avoiding chasing masters. The pacman loses one life if it
contacts with monsters.

(h) Freeway (i) Frostbite (j) KungFuMaster (k) MsPacman

Pong(NoFrameskip-v4) is a game about table tennis. RL agents control an in-game paddle to hit a
ball back and forth. The objective is to gain 11 points before the opponent. The agents earn each
point when the opponent fails to return the ball.

PrivateEye(NoFrameskip-v4) is a game mixing action, adventure, and memorizationm which
control a private eye. To solve five cases, the private eye should find and return items to suitable
places.

Qbert(NoFrameskip-v4) is a game where RL agents control a character under a pyramid made of
28 cubes. The character should change the color of all cubes while avoiding obstacles and enemies.

RoadRunner(NoFrameskip-v4) is a game to control a roadrunner (chaparral bird). The roadrunner
runs to the left on the road. RL agents should pick up bird seeds while avoiding a chasing coyote and
obstacles such as cars.

Seaquest(NoFrameskip-v4) is a game to control a submarine to rescue divers. It can also attack
enemies by missiles.

(l) Pong (m) PrivateEye (n) Qbert (o) RoadRunner (p) Seaquest
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B TRAINING DETAILS

Parameter Value

Shared
Batch size (continuous control environments) 128
Batch size (discrete control environments) 32
Buffer size 106

Target smoothing coefficient (τ) for soft update 5× 10−3

Initial prioritized experience replay buffer exponents (α, β) 5 (0.5, 0.4)
Discount factor for the agent reward (γ) 0.99
Number of initial random actions (continuous control environments) 5× 103

Number of initial random actions (discrete control environments) 1, 600
Optimizer Adam Kingma & Ba (2014)
Nonlinearity ReLU
Observation down-sampling for Atari RGB 84× 84 with grey-scaling
CNN channels for Atari environments 32, 64
CNN filter size for Atari environments 5× 5, 5× 5
CNN stride for Atari environments 5, 5

ERO
Hidden units per layer 64, 64
Learning rate 10−4

NERS
Hidden units per layer after flattening the output from CNNs 256, 64, 32
Hidden units per layer in the local and global networks (fl and fg) 256, 512, 256, 128,
Hidden units per layer in the score network (fs) 256, 128, 64
Sampling size to update NERS (n) 128
Learning rate 10−4

TD3
Hidden units per layer 256, 256
Learning rate 5× 10−3

Policy update frequency 2
Gaussian action and target noises 0.1, 0.2
Target noise clip 0.5
Target network update Soft update with interval 1

SAC
Hidden units per layer 256, 256
Learning rate 3× 10−4

Target entropy − dimA (A is action space)
Target network update Soft update with interval 1

Rainbow
Action repetitions and Frame stack 4
Reward clipping True ([−1, 1])
Terminal on loss of life True
Max frames per episode 1.08× 105

Target network update Hard update (every 2,000 updates)
Support of Q-distribution 51
ε for Adam optimizer 1.5× 104

Learning Rate 10−4

Max gradient norm 10
Noisy nets parameter 0.1
Replay period every 1
Multi-step return length 20
Q-network’s hidden units per layer 256

Table B.1: Hyper-parameters

5β increases to 1.0 by the rule β = 0.4η + 1.0(1− η), where η = the current step/the maximum steps.
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(a) Ant (TD3) (b) Walker2D (TD3) (c) Hopper (TD3)

(d) Ant (SAC) (e) Walker2D (SAC) (f) Hopper (SAC)

Figure C.1: Learning curves of off-policy RL algorithms with various sampling methods on MuJoCo tasks.
The solid line and shaded regions represent the mean and standard deviation, respectively, across five instances.

Table B provides hyper-parameters which we used. We basically adopt parameters for Twin delayed
DDPG (TD3) Fujimoto et al. (2018) and Soft actor critic (SAC) Haarnoja et al. (2018a;b) in openAI
baselines 6. Furthermore, we adopt parameters Rainbow as in van Hasselt et al. (2019) to make data
efficient Rainbow for Atari environments. In the case of continuous control environments, we train
five instances of TD3 and SAC, where they perform one evaluation rollout per the maximum steps. In
the case of discrete control environments, we trained five instances of Rainbow, where they perform
10 evaluation rollouts per 1000 steps. During evaluations, we collect cumulative rewards to compute
the replay reward rre.

We follow the hyper-parameters in van Hasselt et al. (2019) for prioritized experience replay (PER).
We also use the hyper-parameters for experience replay optimization (ERO) used in Zha et al. (2019).
Since NERS is interpreted as an extension of PER, it basically shares hyper-parameters in PER,
e.g., α and β. NERS uses various features, e.g., TD-errors and Q-values, but the newest samples
have unknown Q-values and TD-errors before sampling them to update agents policy. Accordingly,
we normalize Q-values and TD-errors by taking the hyperbolic tangent function and set 1.0 for the
newest samples’ TD-errors and Q-values. Furthermore, notice that NERS uses both current and next
states in a transition as features, so that we adopt CNN-layers in NERS for Atari environments as in
van Hasselt et al. (2019). After flattening and reducing the output of the CNN-layers by FC-layers
(256-64-32) , we make a vector by concatenating the reduced output with the other features. Then the
vector is input of both local and global networks fl and fg . In the case of ERO, it does not use states
as features, so that CNN-layers are unneccesary.

Our objective is not to achieve maximal performance but compare sampling methods. Accordingly,
to evaluate sampling methods on Atari environments, we conduct experiments until 100,000 steps as
in van Hasselt et al. (2019) although there is room for better performance if more learning. In the
case of continuous control environments, we conduct experiments until 500,000 steps.

C ADDITIONAL EXPERIMENTAL RESULTS

Figure C.1 shows additional continuous control environments: Ant, Walker2d, and Hopper under TD3
and SAC, respectively. All tasks possess have high-dimensional observation and action spaces (see
Table A.1). One can show that NERS outperforms other sampling methods at most cases. Moreover,
one can observe that RANDOM and ERO have almost similar performance and PER could not show

6https://github.com/openai/baselines
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(a) Alien (b) Amidar (c) Assault (d) Asterix

(e) BattleZone (f) Boxing (g) ChopperCommand (h) Freeway

(i) Frostbite (j) KungFuMaster (k) MsPacman (l) Pong

(m) PrivateEye (n) Qbert (o) RoadRunner (p) Seaquest

Figure C.2: Learning curves on additional Atari environments under Rainbow

better performance to policy-based RL algorithms compared to other sampling methods. Detailed
learning curves of Rainbow for each environment are observable in Figure C.2.

We believe that in spite of the effectiveness of PER under Rainbow, the poor performance of PER
under policy-based RL algorithms results from that it is specialized to update Q-newtorks, so that the
actor networks cannot be efficiently trained.

One can observe that there are high variances in some environments. Indeed, it is known that learning
more about environments in Figure C.1 and Figure C.2 improves performance of algorithms. However,
our focus is not to obtain the high performance but to compare the speed of learning according to the
sampling methods under the same off-policy algorithms, so we will not spend more timesteps.
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