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ABSTRACT

A core challenge in modern Al model development is obtaining high-quality eval-
uation metrics in a cost-effective way. Such evaluation often involves tradeoffs be-
tween expensive, high-quality measurements and a variety of lower-quality prox-
ies. We introduce Multiple-Prediction-Powered Inference (MultiPPI), a general
framework for constructing statistically efficient estimates by optimally allocat-
ing resources across these diverse data sources. We provide theoretical guarantees
about the minimax optimality, finite-sample performance, and asymptotic nor-
mality of the MultiPPI estimator. Through experiments across three diverse large
language model (LLM) evaluation scenarios, we show that MultiPPI consistently
achieves lower estimation error than existing baselines. This advantage stems
from its budget-adaptive allocation strategy, which strategically combines subsets
of models by learning their complex cost and correlation structures.

1 INTRODUCTION

Efficiently estimating expectations of random variables under a fixed budget is a fundamental prob-
lem in many scientific settings. This paper focuses on the common scenario of choosing between
a high-quality, but expensive, measurement process and various cheaper, but lower-quality, proxies.
We are specifically motivated by the challenge presented by Al model evaluation, which is a critical,
but often resource-intensive, step in model development and maintenance.

More concretely, in the Al model evaluation setting, a variable X; might represent a high-quality
but expensive metric computed for every model response to an input query, such as a score from a
human annotator or a powerful proprietary model used as an "autorater". The remaining variables,
Xo, ..., X}, might represent cheaper evaluation options (e.g., scores from smaller autoraters or
rule-based systems), which can be viewed as covariates or proxies for the true score. Given the op-
tion to obtain samples of X1, ..., X}, (either jointly or independently), the primary objective is often
to then estimate the mean of the high-quality score, E[X]. In other cases, we may be interested
in the mean difference between two scores, say, E[X; — X3]. The core difficulty in each case is in
determining which of these variables to query, how many times to query them, and then finally how
to combine them together to produce a statistically efficient, consistent estimate of the ground truth.

To formalize this, let X := (X7, ..., X}) be a set of random variables with finite variance. We then
consider the general problem of efficiently estimating any linear function of the mean of X subject
to a total observation budget B. That is, for some a € R*, we want to estimate §* = aTE[X ]
while spending no more than a total budget B on collecting subsets of joint random variables
X7 = {X}ier at cost ¢; for index subsets I C {1,...,k}. More precisely, if n; is the number of
times the subset X is observed, we require that the n; satisfy a system of linear budget constraints
of the form ), ¢;n; < B, where the sum is over all such collected subsets 1.

Estimating linear functions of E[X] allows for flexibility in how 6* is defined. Given the Al evalua-
tion setting above, for example, measuring E[ X ] corresponds to @ = (1,0, ..., 0), while measuring
E[X; — X5] corresponds to @ = (1,—1,0,...,0). The flexibility to observe subsets of X also intro-
duces a key trade-off that is unique with respect to previous related approaches to estimation. As we
will show, observing variables jointly can be advantageous by reducing overall estimation variance.
This benefit, however, must be weighed against the data acquisition costs, c;. We make no assump-
tions about the structure of these costs (e.g., they may be non-additive over the components in I).
For instance, in our Al evaluation setting, obtaining predictions from multiple autoraters can often
be parallelized, so the cost of multiple predictions (in latency) is not significantly more than that of



the single slowest one. This is not always true; in medical diagnostics, for example, ordering many
tests may become too taxing for a patient, and therefore undesireable or impossible to do jointly.

To solve this cost-optimal, multi-variate estimation problem, we introduce the Multiple-Prediction-
Powered Inference (MultiPPI) estimator, which is a cost-aware generalization of the Efficient
Prediction-Powered Inference (PPI++) estimator of Angelopoulos et al. (2023b). The MultiPPI
estimator constructs a low-variance, consistent estimate of §* by combining observations from
judiciously chosen subsets of X . The core of our method is an optimization procedure that jointly de-
termines the number of samples n; to draw from each subset I and the corresponding linear weights
Ar used to form the final estimate. We demonstrate that this allocation problem can be formulated
as a second-order cone program (SOCP) for a single budget constraint, and a semidefinite program
(SDP) for multiple budget constraints, and thus solved efficiently using standard techniques.

Theoretically, we show that the MultiPPI estimator is minimax optimal when the joint covariance
matrix, ¥ = Cov(X), is known. For the typical case where it is unknown, however, we provide
a framework for integrating an initial estimation phase where an approximation of the required
covariance matrix, 3, can be derived from either a small "burn-in" sample or a pre-existing labeled
"transfer" dataset (a common scenario in applied settings)—and provide finite-sample bounds on the
performance degradation that is incurred by substituting S for . Finally, we empirically demon-
strate the effectiveness of this approach across three diverse LLM evaluation settings, including
choosing between autoraters of different sizes, autoraters with different test-time reasoning con-
figurations, and complex multi-autorater-debate scenarios. In all cases, our method achieves lower
mean-squared error and tighter confidence intervals for a given annotation budget than existing base-
lines. We demonstrate that MultiPPI achieves this by automatically tailoring its strategy to the avail-
able budget B: that is, it learns to rely primarily on the cheaper autoraters when the budget is small,
and naturally begins to incorporate more expensive, better autoraters as the budget increases. Taken
together, our work provides a principled and computationally tractable framework for cost-effective,
model-aided statistical inference, in settings with complex cost-versus-performance tradeofts.

In summary, our main contributions are as follows:

* We introduce the MultiPPI estimator and frame the problem of finding the optimal subset sam-
pling strategy and estimator weights as an efficient second-order cone program (SOCP).

* We prove that the MultiPPI estimator is minimax optimal when the covariance matrix ¥ of
X1,..., X} is known, and provide finite-sample performance guarantees for the practical setting
where the covariance matrix must first be estimated as a part of the overall inference problem.

* We demonstrate MultiPPI’s applicability across multiple LLM evaluation settings, and show
how it can effectively combine signals from different model sizes, reasoning configurations, and
multi-agent debates to achieve lower error and tighter confidence intervals for a given budget.

2 RELATED WORK

Our work builds upon Prediction-Powered Inference (PPI; Angelopoulos et al., 2023a), a statistical
framework for efficiently estimating population-level quantities by augmenting a small set of labeled
data with predictions from a machine learning (ML) model. We specifically build on PPI++, the
efficient extension of PPI introduced in Angelopoulos et al. (2023b), which also further improves
variance by optimally reweighting these predictions. We describe PPI in greater depth in Section 3.

PPI is part of a broader class of statistical methods that leverage ML predictions for estimation.
Its principles connect to classical control variates and difference estimators (Ripley, 1987; Sirndal
et al.,, 1992; Chaganty et al., 2018), which reduce variance by subtracting a correlated random
variable with a known mean; the correlated variable in PPI is the ML prediction, whose mean can
be (cheaply) estimated on unlabeled data. This approach also shares theoretical foundations with
modern semi-parametric inference, particularly methods from the causal inference literature like
Augmented Inverse Propensity Weighting (AIPW; Robins & Rotnitzky, 1995), Targeted Maximum
Likelihood Estimation (TMLE; van der Laan & Rubin, 2006), and double machine learning (DML;
Chernozhukov et al., 2018). Recently, PPI has been applied to Generative Al evaluation, where
human annotations (or more generally, annotations from some trusted source) are combined with



cheaper "autorater" outputs for efficient, unbiased estimates of model performance (Boyeau et al.,
2024; Chatzi et al., 2024; Fisch et al., 2024; Angelopoulos et al., 2025; Saad-Falcon et al., 2024).

Existing PPI frameworks, however, assume either a single predictor (Angelopoulos et al., 2023a;b)
or a fixed set of predictors queried together (Miao et al., 2024). We address the common scenario
where multiple predictors (e.g., autoraters) with different cost-performance profiles are available.
This introduces a complex budget allocation problem: determining which predictors to query (in-
dividually, jointly, or in any joint subset), how often to query them, and how to combine the mea-
surements they provide for a minimum-variance estimate under a fixed budget. Our work partially
generalizes Angelopoulos et al. (2025), which optimizes a sampling policy for a single predictor.
Unlike that work, however, which focuses on input-conditional policies and expected budget con-
straints, we find a fixed allocation policy that always satisfies a hard budget constraint for every run.

Our allocation problem is also related to budgeted regression with partially observed features (Cesa-
Bianchi et al., 2011; Hazan & Koren, 2012) and active learning or testing (Settles, 2009; Kossen
et al., 2021; Zhang & Chaudhuri, 2015). We emphasize, however, that our goal is estimation of a
linear function of a population mean (i.e., a "E[X]), and not regression (e.g., predicting X; from
Xo, ..., Xk). While related, standard approaches to regression, including with partial observations,
optimize for sample-wise predictive accuracy rather than for predictive accuracy of a population-
level quantity. Our problem also connects to multi-armed bandit allocation for adaptive Monte Carlo
estimation (Neufeld et al., 2014). A key difference is that these frameworks often use sequential,
input-dependent policies to minimize regret, making it difficult to derive valid confidence intervals
(CIs). Our framework, in contrast, computes a fixed allocation policy over predictive models (not
individual inputs as in active learning or testing) and guarantees unbiased estimates with valid Cls.
Even more broadly, our work shares similar high-level goals with transfer learning and domain
adaptation (Pan & Yang, 2010; Ben-David et al., 2010, inter alia)—i.e., leveraging signals of
varying quality and potential bias—though the statistical techniques are distinct.

3 PRELIMINARIES

In the following section, we introduce the general estimation problem of interest and summarize
existing approaches. Suppose that we are interested in the mean of a random variable X, which is
dependent upon another random variable X, (corresponding to estimating a ' E[X] for a = (1,0)
as described in §1). For example, in the Al model evaluation setting, X may be an autorater’s
score for a model output to a user’s query, and X; may be the ground truth quality of the response
as measured by an expert human annotator. Suppose we have access to a small number (n) of i.i.d.
samples that contain labels from both the target rater (X;) and autorater (X5), and a large number
(N) of i.i.d. samples that contain only the autorater predictions (X3). A naive approach to estimat-
1ng the mean is to simply take the sample average of X; and ignore X5 entirely, which we denote by
Hclasm =1 Z =1 X, () When the prediction X is correlated with X and easy to query, however,
itis natural to cons1der the “prediction-powered” PPI estimator (Angelopoulos et al., 2023a;b):
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When we can afford to take N to be very large, it is clear that the variance of éppl is much smaller

than that of éclassic provided that our model predictions X5 are close to X; in mean-squared error.
When that fails, Angelopoulos et al. (2023b) propose adding a linear fit of the form:
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The parameter A may be chosen to minimize the variance of éppl++ based on the observed labeled

data. This strategy yields an estimator which asymptotically improves on éclassic and éppl in the

limit that n — oo and N >> n. Toward the setting where n and N may be comparable in size, if
one is able to choose to or not to request a label X 1(‘7) for every observed unlabeled point X2('7), a

modification of épp[H_ allows one to do so in a cost-optimal way (Angelopoulos et al., 2025).



3.1 MULTIPLE PREDICTIVE MODELS

How should one adapt the preceding setting when one has access to many predictions, rather than
just X5? One option is to stack all predictions into a vector Xo. := (X3, ..., X)) and choose A €

R*~1 to be a vector in épp[.H_; this is the estimator proposed by Miao et al. (2024), and can be written
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But this approach is suboptimal when (as is becoming standard) the best models may be available
only for the highest prices: if any of Xs,..., X} is expensive to obtain, our ability to sample
X1 will be limited. This yields suboptimal results, as we show in §6. One may instead decide to
perform PPI with just one model X;, for whichever ¢ # 1 has the best cost/accuracy tradeoff—but it
is not clear a priori which one this is, or how much worse it may be compared to some combination
of a cost-effective subset of X. Alternatively, perhaps it is possible for cheaper models be used
to recursively estimate the means of more expensive models, thus creating a PPI++ cascade: for
instance, if K = 3 and (X7, X5, X3) are in decreasing order of cost, we might consider
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Each of these strategies can be realized as possible instances of the MultiPPI estimator we propose
in the next section. Rather than coarsely limiting ourselves to sampling Xo.p, = (Xo,..., X)
together, we allow the flexibility of sampling X for generic index subsets I C {1,...,k}.

4  MULTIPLE-PREDICTION-POWERED INFERENCE (MULTIPPI)

As Section 3.1 highlights, it is not obvious how to best allocate a budget across a diverse suite of
predictive models, where each model has its own cost and performance tradeoffs. We begin by
defining the class of permissible estimators: We require that the number of times, ny, that X7 is
sampled satisfies a linear budget constraint, specified by a set of non-negative costs c; > 0 and total
budget B > 0, for each index subset I C {1,...,k}.!

Definition 4.1. An estimator 0 is budget-satisfying if it a measurable function of ny i.i.d. samples
of X1, foreach I C{1,...,k}, suchthat )" nrc; < B.

To develop a principled search for the best budget-satisfying estimator, we begin by asking a simple
question under idealized conditions:

Question 1. If the covariance matrix, ¥ = Cov(X), is exactly known, what is the minimax optimal,
budget-satisfying estimator of 0* = a ju with respect to the mean-squared error, E[(6 — 6%)?]?

The answer to Question 1 will provide us with a set of allocations n; and a corresponding budget-
satisying estimator éMultippl which we will evaluate on the n; samples of X7, for each I. Once we
have addressed this question, we address the case of unknown ¥ by describing strategies depending
on the empirical covariance matrix EA], which may be estimated from data.

It turns out, perhaps surprisingly, that Question 1 reduces to the following tractable alternative:

Question 2. [f the covariance matrix, . = Cov(X), is exactly known, what is the minimum vari-
ance, linear, unbiased budget-satisfying estimator of 0* = a ' j1.?

We demonstrate the equivalence of Question 1 and Question 2 in Theorem 4.2. For now, the "oracle"
assumption on knowing the covariance matrix X allows us to isolate the resource allocation problem
from the separate challenge of estimating how closely related (X7, ..., X}) are to begin with, and
to analyze what a good procedure for leveraging multiple predictive models under cost constraints
should look like in theory. All proofs of our theoretical results are deferred to Appendix F.

'In Appendix B, we extend the methodology to multiple budget constraints.



4.1 MULTIPPI(X): A MINIMAX OPTIMAL ALGORITHM

Recalling notation from §1, let X € R* denote a random vector of finite second moment with
distribution P. Let Z C 2t1*} denote a collection of index subsets which may be queried, and for
any I € Z, let X; = {X;};es be the corresponding subset of X. Next, let n = {n;};cz, ny € N
be an allocation of sample sizes, where ny i.i.d. samples are drawn for each subset I, and let
A={Ar}rez, A1 € R define a corresponding set of weighting vectors for each subset /. Finally,

let 8(n, A) denote the weighted sum of sample means from each non-empty subset, i.e.,
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The MultiPPI estimator, éMu]tippl, is then defined as the optimal estimator in this class that minimizes
the MSE subject to our unbiasedness (U) and budget (B) constraints:

N N 2
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0(n, )
where the constraints U and B are

U < E[d(n,\)] = 0" for all P of finite second moment and B — Z nrer < B.
T

It can be shown that U reduces to a linear constraint on A, which makes our optimization convenient.

4.1.1 OPTIMIZATION

Solving Equation (6) is, in general, non-trivial. Since é(@ ) is linear in X, it can be shown that the
optimal (n, \) depend only on the covariance matrix 3 of X, and so we will denote by éMultippI(Z)
the solution to Equation (6) given any distribution such that 3 = Cov(X). Then, it can be further
shown (this follows from Theorem 4.2, presented next) that the MSE of éMultipPI(E) is

A
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where Y7 denotes the principle submatrix of ¥ on /, embedded back into RA>k and 1 denotes the
Moore-Penrose pseudo-inverse.> The minimizing n of the above expression then also determines the

optimal A to be the restriction of n [Z}S(ﬂ)a to the coordinates I. If the integrality constraints on
n are relaxed, we show in the appendix that this reduces to a second-order cone problem in the case
of a single budget constraint, and a semi-definite program in the case of multiple budget constraints.
This allows for Equation (7) to be solved efficiently using standard techniques (Appendix G).

4.1.2 MINIMAX OPTIMALITY

The minimal MSE Vg shown in Equation (7) has a more fundamental characterization. Here we
show that it is in fact the minimax optimal MSE achievable by any budget-satisfying estimator, taken

over the set of distributions P of covariance >.. Consequently, the estimator defined by éMuhippl(E) is

minimax optimal over the set of distributions Ps, = {distribution P on R¥: Cov(X) = X for X ~
P}. Specifically, given costs (c¢); and a budget B, let ©p denote the set of budget-satisfying

estimators 6 per Definition 4.1. We emphasize that we make no restriction on © g to include only
linear or unbiased estimators. Then the following result holds:

Theorem 4.2 (Minimax optimality of MultiPPI for known ). For all 32 > 0, we have
Ainf sup E {(é - 9*)2} = Var (éMultiPPI(E)) = VB,
6cOp PcPs

where the variance is with respect to any distribution P € Px.

*More formally, if P; € R¥** denotes the orthogonal projection onto span(l) C R, we define Xy =
PiYP], and so X = (P2 P )T



4.2 MULTIPPI(fJ): A PRACTICAL ALGORITHM

Of course, X is rarely known in practice. A natural approach is to estimate it from data; this is what

we do in our experiments. Specifically, we use the empirical covariance matrix S of some number
of fully-labeled samples for which the entire joint vector X = (X1, ..., X}) is observed. Given N
such samples, we provide a finite-sample bound on the MSE of our estimator in this setting.

Theorem 4.3. Let P be a distribution of covariance %, and suppose |X;| < 1 almost surely, for
each i. Suppose that 33 has minimum and maximum eigenvalues iy and Ay ax, respectively. Let

02, sica) denote the least MSE of any budget-satisfying sample mean of a' X. Let X denote the
empirical covariance matrix determined by N i.i.d. copies of X. Then for an absolute constant c,

A N\ 2 MNZ e 1 k)
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where the randomness is taken over both the evaluation of 6

MultiPPI(S) and the N burn-in samples.

Theorem 4.3 holds for bounded X (and subgaussian X; see Appendix E.1). In Appendix E.1 we
also provide even stronger results for settings in which X has certain distributional characteristics.

The optimization procedure described above (and to which the finite-sample bounds of Theorem 4.3
apply) relies on an estimate ¥ that involves data splitting: the best parameters n, A for 9n ) are
estimated on a held-out dataset, and then Gn A 18 evaluated on a distinct dataset. In principle,
however, we can also evaluate Gn  on the same samples we used to estimate S. A similar approach
was taken by Angelopoulos et al. (2023b), and we find that it is easy to implement and yields
strong empirical results in practice. While doing so introduces bias in finite samples—due in part
to the additional dependency of A\; on X in Equation (5)—it preserves consistency and asymptotic
normality in the limit as our budget B and the number of (reused) burn-in samples tend to infinity,
as we see next. For this result, we need a technical condition which amounts to Equation 6 having
a unique minimizer n as B — co; we state it formally in Appendix F.3.

Theorem 4.4. Suppose X has finite second moment, and let S denote the empirical covariance of

X estimated from N i.i.d. samples. Assume that X satisfies condition 12. Then for 9Mu1t1PPI(E)

arbitrarily dependent on the N samples used to estimate S, we have
N * d *
VB (eMultiPPI(i) -0 ) = N(0,V7)
in any limit in which B, N — oo, where V* = limp_, o, BV, and Vg is defined in Equation (7).

4.2.1 PROCEDURE

‘We now specify an easy-to-implement procedure that makes use of a burn-in of [V fully labeled sam-
ples to estimate i, and then also reuses the /N samples when estimating éMuhiPPI(i)' Specifically, we
target the practical setting where we are given N fully-labeled samples a priori, and have no ability
to obtain more. This is typical of real-world settings in which we may have no ability to obtain more
"gold" labels, and may be encapsulated by the budget constraint gy, x; < N. While we may not
be able to obtain more fully-labeled samples, we may be afforded a separate computational budget
for querying model predictions that then augment the N fully-labeled samples; taken together, this
setting is represented by a system of budget constraints.® In summary, we propose the following:

1. Estimate the covariance matrix 3 ~ Cov(X) on the N fully-labeled samples, which we reuse.
2. Solve for the ny, A\; which minimize Equation (6). We refer to this as MultiAllocate(f]).

3. Sample the n;, VI € T additional data points accordingly, and return éMumPPI(i).

3We explain how to solve the optimization problem posed by such systems in Appendix B.



5 EXPERIMENTAL SETUP

In each experiment, our goal is to estimate the mean 6* = E[X] of some random variable X; to
be specified, which we will refer to as the farget. This corresponds to the choice a = (1,0,...,0)
in our notation. We will also specify a model family (X, ..., X}), together with a cost structure
(cr)rez- In each experiment, we are given some number of samples for which the entire vector
X = (Xy,...,X}) is visible; we refer to such samples as fully-labeled. Given these samples, we

perform the procedure outlined in Section 4.2.1: we estimate ¥ using these samples, sample from

~

the auxiliary models (X, ..., X}) according to the allocation specified by MultiAllocate(X), and

return 0y oo ) evaluated on both the NV fully-labeled samples and the additional auxiliary data.

Baselines: In each experiment, we compare to several baselines. First, we compare to classical
sampling. Second, we compare to PPI++ with each model included in the family (specified in
Equation (2)), and to vector-PPI++ with every model in the family (specified in Equation (3)).

Experiment 1: Estimating Arena win-rates by autorater ensembles. We focus on the Chatbot
Arena dataset (Chiang et al., 2024), where of interest is the win-rate between a pair of models,
which is the probability that a given user prefers the response of one model to that of the other. The
randomness is taken over the prompt, the user, and the model responses. Here, we aim to estimate the
win-rate between Claude-2.1 and GPT-4-1106-Previews; this is our target. Our model family consists
of autoraters built on Gemini 2.5 Pro (without thinking) and Gemini 2.5 Flash. In our notation, we
have (X7, X3, X5) = (human label, Gemini 2.5 Pro label, Gemini 2.5 Flash label). We draw model
costs from the Gemini developer API pricing guide (Gemini API), see Appendix I. In this case, the
cost of querying both models is simply the sum of the costs of querying each model independently.

Experiment 2: Optimal test-time autorater scaling on ProcessBench. In this experiment, we
aim to estimate the fraction of correct solutions in the ProcessBench dataset (Zheng et al., 2024),
given a small number of labeled examples. The task is simplified from its original form to a binary
classification problem: determining whether a given math proof solution contains a process error,
without identifying the specific step. We employ Gemini 2.5 Pro with a variable thinking budget as
our autorater. Its accuracy correlates with a variable "thinking budget," measured in thought tokens,
with performance gains saturating after approximately 500 words (Figure 9). We create a family of
four autoraters by checkpointing the model’s thought process at 125, 250, 375, and 500 words. A key
aspect of this setup is the non-additive, cascading cost structure. Generating a response from a model
with a larger thinking budget makes the outputs of all smaller-budget models available at a marginal
cost. Consequently, the total cost for a subset of models S is modeled with two components: an
input cost proportional to the sum of the word budgets in S, and an output cost proportional to the
maximum word budget in S. Explicitly, for S C {125, 250, 375,500}, we set

¢g = output_cost_per_word-max S + input_cost_per_word - Z S ®)

Experiment 3: Hybrid factuality evaluation through multi-autorater debate. Following Du
et al. (2023), we evaluate the factual consistency of biographies for 524 computer scientists gener-
ated by Gemini 2.5 Pro. For each person p € P, we compare their Gemini-generated biography b”
against a set of known grounding facts 77 = {f¥ ..., f};y} about the person. Our target metric is

the proportion of factually consistent pairs (b, f) within the total set S = {(b?, fP) : p € P, fP €
FP}. Concretely, we target the proportion |{(b, f) € S : (b, f) is factually consistent}| / |S].

Ground-truth consistency of a pair (b, f) is established by majority voting over five independent
judgments from Gemini 2.5 Pro with thinking, a method validated by Du et al. (2023) to have
over 95% agreement with human annotators. Our experiment, illustrated in Figure 10, assesses
the performance of a more cost-effective model, Gemini 2.0 Flash Lite, as an autorater. To elicit
better autoratings from queries to Gemini 2.0 Flash Lite, we bootstrap performance via multi-round
debate. For a fixed number of agents A € {1,2,3}, and a fixed number of maximum rounds
R € {1,2}, we perform the following procedure: In each round, A instances of Flash Lite are
independently prompted to provide a reasoned judgment on the consistency of a pair (b, f) € S. A
"pooler" instance of Flash Lite then consolidates these responses into a single yes, no, or uncertain
output. A definitive yes or no concludes the process. If the pooler outputs uncertain, and the
number of maximum rounds R has not yet been reached, the A agents review all prior responses and
continue their debate in a new round. If the output remains uncertain after the final round, either yes



or no is reported with equal probability—since the dataset is balanced, this outcome is fair insofar
as it is as good as random guessing. We impose the maximum round restriction to encapsulate our
budget constraint. For a given (A, R), the cost is A- R; for collections, the cost follows Equation (8).

6 EMPIRICAL RESULTS

We plot MultiPPI, and the baselines described in §5, for a budgets between 0 and 2,000 units of
cost. We normalize model costs so that one unit of cost always represents exactly one query to our
most expensive model. For each fixed budget and each method, we estimate the target, and construct
asymptotic 95% confidence intervals C based on Theorem 4.4. We plot (i) coverage, P(60* € C); (ii)

confidence interval width, |C|; and (iii) mean-squared error E[(§ — 6*)2]. We report both the con-
fidence interval width and the mean-squared error as a fraction of what classical sampling achieves
(lower is better). In each case, the target is 6* = E[X], and P and E are computed with respect to the
empirical distribution over the dataset observed (we perform 500k random trials with 250 given la-
bels). Note that these 250 labeled points are evidently enough for all estimators considered to achieve

good coverage (in Appendix D.2 we also include additional results with 1000 labeled points).

Experiment 1: Chatbot Arena. Results are shown in Figure 1 (top). Observe that different base-
lines dominate in different budget regimes. In the low-budget regime, scalar PPI++ with Flash is
the best baseline, while in the large-budget regime, vector PPI++ with both Pro and Flash is the best
baseline. However, we see that MultiPPI improves on all baselines in all regimes. In the appendix,
Figure 5 and Figure 2 plot the A; and n; values learned by MultiPPI across budget regimes. Note
that the learned values tend to the specifications for PPI++ with Flash in the low-budget regime, and
to the specifications for vector PPI++ in the large-budget regime, a finding that we rigorously prove
happens in broader generality in Appendix E.2. Lastly, note that PPI++ with Pro is suboptimal in all
regimes. In other words, PPI++ with Pro is not included in the Pareto frontier. This is because, for
this task, its correlation with the label is the same as that of PPI++ with Flash, yet it is strictly more
expensive.

Experiment 2: ProcessBench. Results are shown in Figure 1 (middle). Again, we see that each
baseline has a range of budgets for which it outperforms all other baselines. In particular, the cheaper
models yield better performance when used in PPI++ in the smaller-budget regimes, while the more-
expensive models yield better performance in the higher-budget regimes. In particular, PPI++ Vec-
tor, which takes a linear combination of all £ — 1 models, steadily improves as the budget increases,
but only outperforms the other baselines at the highest budgets. This behavior is explained by Fig-
ure 9, which shows that predictive performance improves for larger thinking budgets. Thus the more
expensive models yield higher correlation with the label and thus yield low-variance rectifiers; on
the other hand, their high cost means that this decrease in rectifier variance is outweighed by our
inability to draw an adequate number of samples from them in the low-budget regimes.

Of note is the fact that the models which think for longer are not in general less biased. This
phenomenon is shown in Figure 12, which shows that thinking for longer is not enough to resolve
the systematic bias present in the autorater. However, the figure also shows that simple debiasing
schemes like PPI resolve this issue. Note that this trend is not reflected in the correlations between
these models and the label, because correlation is invariant to addition of constants.

Finally, MultiPPI improves on all baselines methods in all regimes. Interestingly, Figure 3 and
Figure 4 show that the parameters \; and n; learned by MultiPPI transition from emulating PPI++
with the tiny model (which is the best baseline in the low-budget regime) to emulating a cascaded
version of PPI (see Equation (4)), in which the medium model is used to debias the larger model.

Experiment 3: Biography factuality evaluation. Results are shown in Figure 1 (bottom). Once
again, each baseline is dominant over the others in certain regimes; MultiPPI improves on all base-
lines in all regimes. Of note, however, is the fact that the coverage of all estimators considered, but
MultiPPI and PPI++ Vector in particular, degrades slightly in the large-budget regime (i.e., the 95%
CT under-covers by ~ 1%). We discuss this interesting phenomenon in Appendix E.4, and find that
it does not occur when the number of labeled samples grows in constant proportion with the budget
(see, for example, our additional results with N = 1000 fully-labeled samples in Appendix D.2).

In terms of the performance-vs-cost profile that MultiPPI leverages: Figure 10 shows that predictive
performance increases, across many metrics, as the number of agents and number of rounds in-
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Figure 1: Results by budget for the experiments on Chatbot Arena (a), ProcessBench (b), and Fac-
tuality (c). For each estimator (all baselines and MultiPPI), the left column plots the empirical cov-
erage of the 95% CI, the middle column plots the width of the 95% CI, and the right column plots
the empirical mean-squared error of the point estimate. The fully-labeled sample size NV is 250.

creases. Note, however, that a marginal increase in number of agents yields a greater increase in ac-
curacy than a marginal increase in number of rounds (this is largely because the pooler is more likely
to report "uncertain" after the end of the first round than after the end of the second; see Figure 11).

7 CONCLUSION

In this work, we introduce Multiple-Prediction-Powered Inference (MultiPPI), a framework for effi-
ciently estimating expectations under budget constraints by optimally leveraging multiple informa-
tion sources of varying costs. MultiPPI formulates the optimal allocation of queries across subsets of
variables as a second-order cone program in the case of a single budget constraints, or a semi-definite
program in the case of multiple—both can be efficiency solved using off-the-shelf tools. We provide
theoretical guarantees, including minimax optimality when covariances are known, and demonstrate
empirically across diverse LLM evaluation tasks that MultiPPI outperforms existing methods. By
adaptively balancing cost and information, MultiPPI achieves lower error for a given budget, au-
tomatically shifting its strategy from cheaper proxies to more expensive, accurate predictors as the
budget increases, thus offering a principled and practical solution for cost-effective inference.



8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a detailed specification of the algorithm in Appendix C. We
also include implementation details in Appendix I, and address computational considerations in
Appendix G. Finally, all experiments shown in §6 were averaged over 500k trials.
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A ETHICS STATEMENT

This paper describes fundamental research on techniques for constructing statistically efficient esti-
mates of a target metric by optimally allocating resources across multiple types of proxy measure-
ments. The primary intended use case which is analyzed in this work is the evaluation of generative
Al systems, for which reliable evaluation is a core technical challenge. Efficient and precise esti-
mates of model performance can help make Al systems easier to build, deploy, and monitor. We do
not speculate about broader impacts that may follow from this technical contribution. Gemini was
used for light copy-editing during the writing of this work.

B GENERALIZATION TO MULTIPLE BUDGET INEQUALITIES

We recall some notation. Fix a set Z of index subsets I C [k]. For each I € Z, let ¢; =
(cgl), e cgm)) € RY, denote the vector-valued cost of querying the collection of models indexed
by I. Similarly, for each I € Z, we let n; > 0 be an integer denoting the number of times that the

collection of models indexed by I is queried. We let n = (ny) ¢z refer to the associated allocation.

For a vector-valued budget B € RY;, we say that the allocation n satisfies the budget B, and write

B(n, B), if
ancgl) <BW ... Zn;cgm) < Bm,
Iez Iez
or more succinctly,
ZTL]C] S B.
IeT

Similarly, for each I € Z, we let A\; € RI’I, and denote by A = (A1) 1e7 their collection. Let

. 1 X )
for = Z — Z )\}ngLJ)
1€Tm;>0 1 =1

where X (/7)) denote independent copies of X for every I € Z and 1 < j < nj. We say that the

unbiased condition holds for n, A, and write U, if EHA& » = a EX for every distribution of finite
second-moment on X.
Note that the variance of A27  depends only upon ¥ = Cov(X). Thus we let
éMuhiPPI(E) = A& A Wwhere n, ) are chosen so that the resulting estimator
has minimal variance under 3 such that B and U hold.

C DETAILED SPECIFICATION OF THE ALGORITHM

In this section, we outline the procedure used in all experiments in greater detail. First, we describe
the algorithm for the case of a single budget inequality, for which a more-efficient procedure exists;
second, we describe the general case, in which the procedure reduces to a semi-definite program
(SDP). We first suppose that > is known, and later explain the procedure in the case that it must be
estimated from data.

C.1 THE CASE OF A SINGLE BUDGET INEQUALITY, KNOWN X

We suppose that there is a random vector X € R with known covariance ¥, and our goal is to
estimate 0* = o' EX for some fixed a € R*. There is some fixed collection Z of index subsets
I C {1,...,k} such that we may sample X; := (X;);c;. We may sample X; a maximum of n;
times, subject to the constraint that ZIeI ciny < B for some ¢y > 0 and B > 0.

Step 1:  Solve the SOCP

sup a'y s.t. /\ {yITEIyI < cl_l}
yeR* IeT

and obtain the solution y7 and the multipliers a7 > 0 for each I € Z.
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Step 2:  Set

A = 20157y

._|(B cr(A)) TErA]
. K) S rer VerOn T
foreach I € 7.
Step 3: For each I € Z, independently sample X; n} times, and compute the sample mean
A7 - X1. Return
éMultiPPI(E) = ZW

IeT
with (1 — «)-confidence intervals given by
. 1 —
C = Onaippics) & 21-a/2, [ D 0N X
1ez I

where o2 AE-X; denotes the sample variance of A\7- X7, and 2, denotes the pth quantile of the standard
normal distribution.

C.2 THE CASE OF MULTIPLE BUDGET INEQUALITIES, KNOWN X

We again suppose that there is a random vector X € R* with known covariance ¥, and our goal
is to estimate #* = a'EX for some fixed a € R¥. We may now sample X; a maximum of n;

times, subject to the constraints that ), 7 cgé)n ;1 < B® for some cy) > 0 and B® > 0, with
1<l <m.

Step 1:  Solve the SDP

Tyl
supt  s.t. (ZIEI”I% b a) =0,

teR a 3
ny >0 Viel
che)nl < BW Ve <m

IeT
for real valued 7, and obtain solutions 17 g,

Step 2:  Set

nr= Ln;,t'racJ

)
N =S, py <Z n;PI2;1P,> a

IeT

=
Il

forall I € T.

Step 3: As in the previous section, for each / € Z, independently sample X; n} times, and
compute the sample mean A} - X;. Return

éMultiPPI(E) = Z AT X

Iez
with (1 — a)-confidence intervals given by
. 1~
C = Omuippi(s) T 21-a/2 Z EUz,\;.XI
ez 1

where 02+ x, denotes the sample variance of A7+ X7, and z, denotes the p™ quantile of the standard
normal distribution.
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C.3 THE CASE OF UNKNOWN X

In general, the approach is to construct an estimate X of X from data, and use this estimate for X in
the steps outlined above. In principle, it is possible to recycle the data used to construct Sin step 3 of
the above procedures; this preserves asymptotic normality as a consequence of Theorem 4.4. Below,
we detail one approach to doing this—the approach used in our experiments, and the approach
outlined in Section 4.2.

Suppose that ¢ = (1,0, ...,0), and we have some hard limit NV on the number of samples available
from X;. This typically represents a “gold” label which is invaluable in some sense. We also sup-
pose that these labeled samples are fully labeled—that is, that the entire vector X = (X1,..., Xx)
is visible in each case—or alternatively, that IV is small enough that they are relatively inexpensive
to obtain model predictions for.

Step 1:  Construct the empirical covariance matrix S from the N fully-labeled samples.

Step 2: Take 7 to be all subsets of models—that is, all subsets of {2,..., k}—together with the
set of all indices {1,...,k}. Formally, Z = {{1,..., k}} U 2{2k}

Step 3: Run § C.2 with any existing budget constraints, together with the constraint that
nyi,..ky < N, and obtain allocations ny, A7.

Step 4:  Sample accordingly, with the guarantee that the number of fully labeled samples X . i}
queried won’t exceed the number available, N. These samples from step 1 may be reused for this.

Step 5:  Return the resulting estimator, as described in § C.2.
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D ADDITIONAL EXPERIMENTS
D.1 LEARNED ALLOCATIONS AND LINEAR PARAMETERS

Proportion of budget allocated to different models
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Figure 2: Proportion of budget allocated to different models in Experiment 1: ChatBot Arena. Gem-
ini 2.5 Flash, the cheapest model, is most sampled in the low-budget regime, while the proportion
of budget allocated to the joint (both models combined) increases monotonically with budget.
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Figure 3: Proportion of budget allocated to different models in Experiment 2: ProcessBench. Tiny

(125 word thinking budget) is most sampled in the low-budget regime, while the proportion of
budget allocated to the joint (all models combined) increases monotonically with budget.
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Figure 4: Linear parameters \; learned across budget regimes in Experiment 2: ProcessBench.
While only the tiny model (125 word thinking budget) has a nonzero linear parameter in the low-
budget regime, a cascading behavior is learned in the large-budget regime: the cheaper models are
prescribed the opposite sign from the more-expensive models in the joint term.
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Figure 5: Linear parameters A; learned across budget regimes in Experiment 1: ChatBot Arena.
While only Gemini 2.5 Pro has a nonzero linear parameter in the low-budget regime, a cascading
behavior is learned in the large-budget regime: the cheaper model (Gemini 2.5 Flash) is prescribed
the opposite sign from the more-expensive model (Gemini 2.5 Pro) in the joint term.

D.2 MULTIPPI WITH A LARGER NUMBER OF LABELED SAMPLES
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Figure 6: Results by budget, Experiment 2: Chatbot Arena. 1,000 labeled samples are provided.
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Figure 7: Results by budget, Experiment 2: ProcessBench. 1,000 labeled samples are provided.
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Figure 8: Results by budget, Experiment 3: Factuality. 1,000 labeled samples are provided.
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D.3 AUTORATER ACCURACY SCALING

Performance at determination of process error vs. word budget

94% s

92%

90%

Accuracy

88%

0 500 1000 1500 2000 2500 3000
Word budget until answer demanded

Figure 9: Performance at determination of process error vs. word budget. This is calculated via
the procedure described in Appendix I. The majority of the improvement observed due to thinking
occurs once 500 words of thought is reached, and plateaus around 1,000 words of thought.

‘uncertain’ +~ Bern(0.5) (true mean)
Correlation Hard Accuracy Soft Accuracy
0.68 82%
—— Round 1 — Round 1 — Round 1
Round 2 Round 2 = 83% Round 2
0.66 80%
82%
0.64 78%
, 81%
0.62 76%
74% 80%
0.60
2% 79%
0.58
70% .
0.56 8%
68%
054 77%
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Number of agents Number of agents Number of agents

Figure 10: Performance at factuality evaluation with increasing number of agents and rounds of
debate. Soft accuracy awards half a point to reporting an uncertain answer, while hard accuracy
awards nothing.
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Figure 11: Proportion of uncertain predictions by number of agents and rounds of debate. An in-
creased number of agents leads to fewer uncertain predictions, and almost all predictions are certain
by the end of the second round of debate.



95% confidence intervals

Multi-PPI
100 samole 1.000 samole 10.000 sample:
I | | 1
 E— 0 i
 — O i
— O 0
] | |
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Figure 12: Different schemes for evaluation with autoraters on the ProcessBench dataset. Gray: clas-
sical sampling—no autoraters. Orange: pure autoraters, in decreasing order of thinking budget—
note that the bias is increasingly pronounced with thinking budget. Green: various schemes for
debiasing autoraters, including MultiPPI (top).
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E ADDITIONAL THEORETICAL RESULTS

E.1 FINITE-SAMPLE BOUNDS

We consider the setting of Appendix B, in which we may have several budget constraints. For the
time being, we fix a = (1,0,...,0) as in all experiments. Let I° € 7 contain 1. A procedure

which is similar to classical sampling is the following: Consider the choice n?, A defined such
that n? =0if I # 1 0, and let n?o be the maximal choice afforded by the budget (i.e. n?o =
maxi<¢<m LB“)/C%)J). Then setting AN =0if ] #* 19, and /\(I)0 to be a restricted to 1%, we
recover the classical estimator

1 w ()
. XV

which has MSE o7 /n%,, where 0} = 1. We let 02, = 07/n% denote this quantity.

We will compare éMumppI to this in finite samples. Let Xy denote the empirical covariance matrix

constructed from N i.i.d. samples from P, and let 7, X denote the solution to MultiAllocate(fE N)s
i.e. the minimizer of

~ 1 ~
RN(QyA) = Z 7)\}—21\[)\]
I€eZ:n;>0

such that U and B hold. On the other hand, let n*, \* denote the solution to MultiAllocate(X), i.e.
the minimizer of

1
R = —\
A= > AT
I€ET:n>0
such that U and B hold. In this section, we bound
R(@, A) — R(n*, \").

Theorem E.1. Let i, denote the minimal eigenvalue of ¥, and 6 = ||X — iNHOp. Then for all

5 S ’Ymin/Z
é

Ymin
Corollary E.2. Suppose that X; € [0, 1] almost surely. Then with high probability,

1/2
~ 7 K\ K “Ymax k log k 1 k& 10g k
R(@a A) < R(ﬂ aA ) +c <’Ymin \/7 + Yomin N aglassical

for a universal constant c, and so

R(1, ) < R(n*, A*) + 4

* Oclassical

1/2
PUES v vk Ymax | K 1 k
ER(@7 A) S R(ﬂ 7)‘ ) + C/ (f}/min N + Yemin N) Uglassical

for another constant ¢/, where the expectation is taken over the N labeled samples used to construct
YN
Corollary E.3. Suppose that X is a subgaussian with variance proxy K. Then

. N E ok
]ER(ﬂv )‘) < R(@*’A ) + CIKQ < N + N) aglassical
In the AR(1) model, and with bounded observations, choosing N > k in the limit k, N — oo is
enough that ER(n, A\) — R(n*, ™). This follows as a special case of the following result.

Corollary E4. Suppose, in addition to the conditions of Theorem 4.3, that X, X, . .. is a stochas-
tic process such that Var X; > cfor all t, and Corr(Xy, X) < (1—p)plt=! for some 0 < ¢, p < 1.
Then we have .

ER(@,A) = R(n, A) + o(1)
whenever k/N = o(1).
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E.2 BEHAVIOR OF THE ESTIMATOR IN THE LIMITING REGIMES

In this section, we explain a certain limiting behavior of the estimator in the regime of very low
budget. Let X = (X3,...,X}) be a random vector of bounded second moment. We take a =
(1,0,...,0), so that our target is E[X;]. We consider the setting (as is the case in all experiments)
inwhichZ = {1, ..., k} U Zpodes, where for each I € Z04e1s we have 1 & 1.

As in the experiments, we consider the budget model in which we have a fixed number of

For I € Zyode1s, pr denote the multiple correlation coefficient of X; with X;; that is, let p; =
Cov?E;lCov 1, where we define Cov; := (Cov(X;, X1))icr. The following result shows that, in
the low-budget regime, MultiAllocate(X) returns n; such that the only I € Zyyoge1s for whichny # 0
is the one which minimizes the correlation/cost ratio p;/c;.

Theorem E.S. Fix B > 0 and consider the limit as nj — oc. For each I € I, let oy = pr/cr.
Suppose that I* uniquely minimizes oy over I € Lyogers. Then the solution to MultiAllocate(Y)
satisfies

B {1 I1=1rI

M0 T

E.3 ROUNDING IN THE LARGE BUDGET REGIME

In this section, we consider the suboptimality of the rounding scheme in the large budget regime.
We consider the general setup in which we optimize

+
Vi(n) = al <Zn1PITEIlP[> a st. ny>0, Zc;n; < B, supp(a) C U{I :ny > 0}
I I;

We let nj,. denote the solution to this problem over all n € R‘g(l), and nj;, denote the solution over

alln € Z|>Z(‘J. Let n,,,nq denote the component-wise floor of nf,, .. Here we show that

lim VB (ﬂfrac)

=1
B—oo VB (ﬂ:n)

This follows from the fact that

Vi (@Frac) <Vp (ﬂ;t) <Vs (ﬂround)

and the limit Vi (n{,.)/VB(1oume) — 1. to be proven next. Consider the difference vector § =
N — Moua € [0, 1]%1. Now observe that there is some v* € RLI(‘) such that

BVg (ﬂlzkrac) =V (Z*>

for all B, and equality holds if we take ng,. = Bvr*. In particular, since we must have U{I :
Niae,r > 0} 2 supp(a), we may take the same to hold for v*. We therefore have

.
BV (1youna) = Ba " (B > wiP S P+ 6P 211P1> a
I I

T
1
—a’ (Z viPI ST P+ 5 Za,ﬁz;ﬁ%) a
I T
Now since [ J{I : v; > 0} D supp(a), we may apply continuity of the inverse to conclude that
T
BILIHOO BVB(ﬂround) =a' <z[: V;PITZI_IPI> a="Vi(r")
and the limit is proven.
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E.4 DECAY OF COVERAGE IN THE LARGE BUDGET REGIME

In this section, we discuss the phenomenon of decaying coverage as B — oo. Note that this is
not unique to MultiPPI: it can be seen occuring to all baselines we compare to, and is especially
pronounced for PPI++ vector. After discussing the phenomenon, we describe one way to avoid it.

Since, to the best of our knowledge, this phenomenon has not been observed in other works con-
cerning PPI++, we focus our discussion on the PPI++ estimator and explain why it happens in that
setting. Recall from Equation 2 the PPI++ estimator

n N
- 1 ~ 1 ~~
9PPI++ = - Z <Yz - )\Xi) + N ZAXj
i j=1
where {(X;,Y;)}i<n are i.i.d. according to some joint distribution P, and { X} ;< are i.i.d. Px.
Angelopoulos et al. (2023b) (as well as many works before, in the context of control variates) pro-
pose a choice of A which depends on {(X;,Y;)};<,; namely, they let

N 6(;7(-)(1:7%7}/1:71)
n+N  Var(Xy.,)

X =

where Cov(X1.y, Y1.,,) and Var(X7.,,) are the relevant empirical covariance and variance computed
from {(X;,Y;)}i<n. This choice introduces bias in finite samples, and MultiPPI exhibits a similar
behavior, as discussed in §4. In the limit theorems provided in this work, c.f. Theorem 4.4, and
in Angelopoulos et al. (2023b), it is assumed that the number of labeled samples (here, denoted n)
tends to infinity. But this is not the situation presented in our experimental results.

Here we consider the bias of épp[++ for fixed n as N — oo. This bias is exactly

bias(Opprss) = |E[Opprss] — E[Y]’ = ‘E[X(Xl — Xl)]‘ = nJrLN

Cov <X1, COV(Xl:n7Yi:n)>

\//a;‘(Xlzn)

by independence of Xand X 1. Now for fixed n, and N — oo, the right-hand side converges upward
precisely to the covariance of X; with the sample regression slope of Y onto X, which is not in
general zero. Therefore, the bias will increase but stay bounded as N — oo, as observed.

Note that this analysis does not apply to the setting in which the ratio N/n is bounded. We find,
accordingly, that this decay is unobserved in our experiments in which the number of labeled samples
is in constant proportion with the budget.
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F PROOFS

Unless explicitly stated otherwise, we prove results for the generalized setup outlined in Appendix B.

F.1 PROOF OF THEOREM 4.2

For ¥ € R*** symmetric positive-definite, let Ps, denote the set of distributions on R* with co-
variance Y. For a fixed collection of index subsets 7 with associated costs ¢y, let © g denote the
set of budget satlsfymg estimators 0, i.e. the estimators § which are measurable functions of n;
independent copies of X; = (X;);cy, for each I € Z, such that B(n) holds. We emphasize that we
make no explicit restriction to linear estimators.

Theorem F.1 (Minimax optimality for general budget constraints). We have
inf sup E [(é - 9*)2} = Var (éMulti-allocate(E)> =VB
6cOp PePs

where the variance is with respect to any distribution P € Px.

Proof of Theorem F.1. We first reduce to the case of known and fixed n.

Lemma F.2. Let ©®) denote the set of measurable functions 6 which are functions of ny indepen-
dent copies of X1, for each I € . Then if supp(a) C |J{I : n; > 0},

. 1
inf sup E { 0— 6" 2} = min — X\ T
fco(®) pePy ( ) A:U(n,A) I:%;o nr L

otherwise, suppcp,. E [(é — 9*)2] is unbounded for all 6 € O p.

We now reduce the conjecture to this lemma. Observe that

U o)

n:B(n)

and so the left hand-side of the conjecture is equal to

~ 1 ~
inf  inf sup E [ 0— 6" 2} = inf min =} 2\ =: Var(Oyuti-atiocate
1 B(n) o0t ey ( ) ﬂ=B(ﬂ)A:U(2,A)I:;>0n r=rit (vt atoce())

since U(n, A) is feasible for A if and only if supp(a) C |J{I : n; > 0}. It now suffices to prove the
lemma. O

Proof of Lemma F.2. The claim that suppcp, E [(é - 0*)2} is unbounded for all # € Op if

supp(a) € U{I : n; > 0} follows from the observation that if ¢ € supp(a) \ U{I : nr > 0},

there exist distributions P € Py, such that 87 = E[X;] may be made arbitrary large, while 6 cannot
depend on such Xj.

Therefore, in what follows, we assume supp(a) C |J{I : n; > 0}. The upper bound is clear from
that fact that .

{0n2: U(n, )} C OW
i.e., the set of unbiased linear estimators depending on n samples is a subset of the set of all esti-

mators depending on n samples; and from the fact that Var(éﬂv A) =2 Iy >0 n%)\ITE 11 for every
P € Ps, hence the minimal MSE of such estimators is precisely the right-hand side.

We now prove the lower bound. Since the Bayes risk for any prior p lower bounds the minimax
risk, it suffices to construct a sequence of priors w for which the risk of the Bayes estimator tends
upward to our claimed lower bound. Let us choose the distribution X ~ N(u,Y), and supply the
prior 1 ~ N(0,721d,) for 7 > 0 arbitrary; we will later take 7 — o0o. Note that we then have
XI = PIX NN(P[,LL,P[EPIT).
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By construction, any estimator § € ©™ depends on the independent set | J; . - { X }j < j<n, Where

each X ;j ) is distributed according to N'(p1, ¥7). The posterior* is then

w| U hsisn ~ Nme, S5)

IeT

-1
1 -
ST = (TQIdk—i_ZnIPITEI 1P[>

Iel

mr = S‘r (ZTL[PITZIlX]>

1

The Bayes risk of estimating @ = a 'y is then a' S,a. Letting 7 — 0o, we have shown that the

minimax risk is at least’

;
a'Sa, S= <Zn,P,T§:IlPI> .

Iel

It remains to show that this risk is achievable by the éﬂ, » for some choice of A satisfying U(n, A).

We quickly verify this below:

Putting®
)\] = (nIZflPI) Sa

we see that indeed U(n, \) holds. Moreover, we calculate

Var(f,2) = > nra' SPIY 'S8 PrSa=a'S ( > PR P
I I:n;>0

as desired. This concludes the proof.

F.2 PROOFS OF FINITE SAMPLE RESULTS

Proof of theorem E.1. We have

~ ~

R(A,\) — R(n*,\") = R(@, A) — Ry (1, M)

and so it suffices to bound |R(7i, A) — Ry (@i, A)| and |Ry (n*, ") — R(n*, ")

An(n,A) = [R(n, }) - Ry (n, )|

1 ~

= Ej — )\ (Z=3N)A;
ny

I€T:n;>0

PN 1
S EDIM Y TTH)\IH%
I€T:n;>0 I

> Sa=a'Sa
O
9
. Define
(10

*Morally, we are done at this point: the posterior mean is linear in (X )7, and the Multi-PPI estimator is the
best such linear estimator. However, this does not yet directly imply the result. See next page for calculation of

the posterior.

Here we use the assumption that supp(a) € U{I : nr > 0}, and thus a lies in the range of

S, niPl ST Py

5To find this choice organically, one may solve an infimal norm convolution with Lagrange multipliers.
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Now since n?, A\ satisfies U and B, we have
R, A) < R@°)\°),  Rn(@,2) < Ry(n’, ")
from which it follows that
1 * * 1 *
of/nfo> D S ODTEOD 2 mm(D) D NI (11)
IeT:ni>0 1 IeT:n;>0 1
and similarly
-5 1l ~rn — BN 1 ~
o?/nb > Z TIA}—ZN/\I > Ymin(XN) Z /ﬁ7||)\1||§7
IeZ:n;>0 IeZ:n;>0
where Ymin (A4) denotes the minimum eigenvalue of the matrix A. We deduce that
Y11

1
— X3 € 77—
IEI:;I* >0 n} n?Omein(Z)

S L Svin ___ Sutd
n 2 Tl(j)o ('Vmin(z) - 6) - n(}o (Fymin(z) - 5)

IeZ:n;>0

by Weyl’s inequality, where we let 6 = | X — Sn ||. Coupled with Equation 10, we have

X1
Ay(n*, \) <d——"——
N(i ) n?o')/min(z)
~ by 0
AN(ﬁ, ) 11+

A) <
o n?O (7min(2) - 6)
Taken together with Equation 9 and the definition of Ay, we conclude that
o o?
'Ymin(E) n?o
for all & < Ymin(X2)/2. O

R(1,A) < R(n*, \*) +4

Proof of Corollary E.2. This follows immediately from the preceding theorem and Corollary 6.20
of Wainwright (2019). O

Proof of Corollary E.3. This follows immediately from the preceding theorem and Theorem 4.7.1
of Vershynin (2018). O]

Proof of Corollary E.4. This follows immediately from the Gershgorin circle theorem, as
Zt;és Cov(Xs, Xs) < \/Var(Xt) Var(X;) < ¢, and 80 A\pin(X) is bounded below for all k. On

the other hand, A\« (2) is bounded above on account of the same argument and the assumption that
X, are bounded. O

F.3 PROOF OF THEOREM 4.4

We prove a generalization of Theorem 4.4 in which we allow for multiple budget inequalities.

Fix a vector By € RY;. We consider the limit in which our budgetis B = ¢ - By and let t — oo.
Suppose that X 2 % in the operator norm, potentially dependent on the variables sampled X7.

We assume the following condition: Suppose that the following problem has a unique minimizer v:

i
vr :argminKV(g) =al <Z VIPFZ;1P1> a
I (12)

st. v>0, ZV]C] < By, supp(a)C U{I cvp > 0}
T
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Theorem F.3 (Generalized asymptotic normality). Suppose that condition 12 holds. Then we have

Vi (éMultiPPI(i) - 9*) o N(0, V().

While éMultiPpI(E) is minimax optimal in the setting of fixed and known covariance %, it is in
general not efficient, and the variance V can in general be improved by slowly concatenating onto
X nonlinear functions of its components. It may be that such a version of éMultiPPI(Z), in which
k is increased slowly by adding appropriate nonlinear transformations of the components of X, is
semiparametrically efficient if this is done at such a rate that k < B'/2, N1/2,

Proof of Theorem F.3. Let 6 = éMumPPI@). Note that 12 is simply a rounded version of the opti-

mization problem which is solved by [) Let  denote the solution to 12 with ¥ replaced by

~

3.

MultiPPI(5)*

We first show that, as a result of the assumed condition, we have 7y — v whenever PO 3; that

rounded solutions are optimal in the limit £ — oo is justified by § E.3. Since a lies in the range of
« DT v—1 . . . . . . %

>, vi P/ X7 Py, the objective function is continuous in (v, ¥) at v*.

The allocation . and weights ) are chosen to minimize the variance under ) subject to the budget
B =tBy. Let oy = ny/t. Ast — oo, the optimal proportions  converge to the solution v* of the

continuous optimization problem 12. The convergence © 2, v* follows from $ 4 Yand Berge’s
Maximum Theorem, as the objective function is continuous and the feasible set is compact. By the

continuous mapping theorem, we similarly have A B AL

We can write /(0 — 6*) = DoreT A4/ ﬁ%WI#ﬁI’ where Wr 5, = \/171 Z?il(Xy’j) — pr). For

indices I with v} > 0, we have 7i; 2+ co. Define n} = [tv} |, and let

1 g (1.5)
o Z(XI ’ — jur)

\/7? i=1

It is now enough to show that Wy 5, — W7 2, 0, and this will follow from Kolmogorov’s inequality.

Wi =

To simplify notation, let us focus on a single subset I, and define Y; = X}I’j) — pr. Let us also
define S, = 377" | Y;. We must show that

Sﬁ Sn*

where we have dropped dependence on I for convenience. We decompose

Sy Spe Sp — Sp+ Sa -

2n - 2 (1 SR

Vi vn* Vn* * n ( n/m )
A

B
Fix 0 < § < 1. We work on the event Es(t) = {|i — n*| < dt}, which holds with high probability.

We first control A. On Es(t), v/n*|A| is a sum of at most 6¢ + 1 i.i.d. copies of Y;. Kolmogorov’s
inequality then yields

t+1 5
P(A>¢) < <4
( €) < 2ot =2
because n* = |tv*|. Taking § — 0 yields that A 2 0.
We next control B. Working again on Es(t), we have
Sh P S n Si — Spr
Vi T VI=6 | Vn* vn*
—~——  N——
O, (1) A
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Recognizing the second term as A % 0, and the first term as tight by the central limit theorem, we
conclude that S, /+/7 is tight. Now we conclude that B % 0 because 71/n* % 1.

Having proven Wy 5, — W; % 0, we conclude that
1
N * 1,5
VIO -0 = 3 =3O T — )+ 0,(1)
Lwvi>0 1 j=1
But this is precisely the desired result, since this is the solution to the continuous optimization
problem, and we are done. O

F.4 PROOFS OF ADDITIONAL THEORETICAL RESULTS

Proof. Note: For the purpose of this proof only, we slightly change notation, letting m denote the
number of labeled samples rather than n. This just has the purpose of clarifying the potential conflict
with the notation n ;.

Let us introduce the notation that P; is the orthogonal projection onto coordinates I, and thus P;' A
shares its values with A\; on coordinates I, and is 0 elsewhere. As a result, note that we have required

Z P/ A = .
I:n;>0

Now we aim to minimize

1 1
o (012/ —2u" Cov —|—,uTE,u) + Z n—l)\ITE[)\I
I'my>0

or, expanding,

_ 1 2 T T Lo
V(nA) = — | o} —2 YN Covi+ Y NS+ D) PR
I'm;>0 I,J:ny,mny;>0 I:ny>0
We are interested in minimizing V' (n, A) over all A (by which we mean (A;)re7) and n satisfying

the budget constraint yerny < C. We will first minimize over A for fixed n: define U (n) :=
miny V(n, A). But

1 1 1
(E + 77”1) 211 ]1n1>0 Ezjllk]l’rul,'ruk>0 %ncovll ]]'"Il>0

Vin,A) = AT : : A—2AT ; +7X

1
%E}k[11n1k7n11>0 (%4’&) 211]]-111>0 ECOVIk ]]‘"Ik>0
is a quadratic form in A, where we define X7, = (3;;)ier,jes = PrSP; . This is of the form
1 1
V(n,A) =T (51 + 52) A—2-\"T+d
m m
where

1
St = (E]J]].nhn‘]>0)[ JeT> Sy =block_diag (n211n1>0) s T = (COV] ]]'"1>0)IEI
' I Iez

and d is constant in n, A. It is known that the minimum value of such a quadratic form is
1 1 *
. T
Un) =minV(n,\) = ——T <Sl + Sg) T.
A m m

This is because 7' lies in the range of %Sl + S5. To see this, let us introduce the notation that

It ={I € T :n; > 0} and let Z° be its complement. Reorder Z if necessary so that Z* strictly
precedes Z°. Then %S 1 + S5 takes the block form

l (E]J)LJGIJr 0 n blOCk_diag(Z[/n[)]ez+ 0
0 0 0/

m 0
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Now, both (X77)r,ez+ and block_diag(X/nr)rez+ are symmetric positive-definite, hence
invertible, on the coordinates Z+, and T has support in the span of the coordinates Z+.

Given the block form shown above, we see that

+ . -1
(;LSI 4 S2> —_ ((:’1(2].])[7‘]61+ +bloc(})<_dlag(21/n1)161+) 8)

again in the coordinates in which Z" precedes Z°.

Continuity of the inverse is now enough to conclude that

T=- Zn; Cov; %7! Covy =: L(n)
Iez

: 2 _ T . —1
7}ngnom U(n) = =T "block_diag (n;%] )IeI

But now this is a linear function L(n) in n. Consider minimizing this in n, subject to the (simplex)
budget constraint ny > 0, > ;crny < C. The minimum is achieved on a vertex of the simplex, and
the minimizer is unique except in the unlikely situation that

T y—1
Cov; X7 Covy

Cr

= constant in I

assuming that Cov; # 0 for some I.

Now we claim that m2U(n) — L(n) uniformly in n subject to the budget constraint. For this, it
suffices to show that

-1
1 ) ) _
<m(ZIJ)]’J61+ + block_dlag(EI/n1)1€I+> — block_dlag(ZI/n[)16114r

in the operator norm, uniformly in n. The Woodbury matrix identity implies that the difference is
exactly
block_diag(nr¥; ") er+ (I + mblock_diag(S; ! /nr)r+ (Sr5)rrer+) "

Now, we have 0 < ny < C/¢; for all T € Z7T by the constraint. The operator norm is sub-
multiplicative, and the first factor is bounded in norm by a constant multiple of 1/ min; ¢;. Similarly,
we have

I-l—mblock_diag(E;1/n1)14r (X1g)1,gez+ = 1+ m?:lICCI block_diaq(zfl)pr (X17)1,5eT+
The operator norm of the right-hand side goes to oo uniformly in n, so the operator norm of its
inverse goes to 0 uniformly as well. In conclusion, we have uniform convergence. Therefore, we
have
n*(m) := argmin, min V(n,\) —— n*
A m—00

G COMPUTATIONAL CONSIDERATIONS

Here we show that the Multi-Allocate procedure reduces to a SOCP in the case of a single budget
constraint, and to an SDP in the general case. The proof of Proposition H.1 shows that the minimiza-
tion problem over n, A may be reduced to one only over A via the Cauchy-Schwartz inequality. This
minimization over ) is the dual of an SOCP, as shown by Proposition H.2, and the KKT conditions
hold. This is

supa'

x

where the supremum is taken over all z € R¥ such that x}rZ xr < cfl forall I € Z. This SOCP is
simple to implement in the Python package cvxpy.

In the general case, Theorem 4.2 shows that the optimal choice of n is

t
argmin,, . g(y,) a’ (Z nIPITEI_1PI> a
IeZ
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Let us denote
M(n)=> nP/ S Pr
IeT
so that our goal is to solve
mint
subject to the constraints that
a'M(n)ta>t
and B(n), which denotes a set of linear constraints on n. But this is equivalent to the SDP

mint

(30 )

and linear constraints on n. Once again, this is straightforward to implement in cvxpy.

subject to the constraint that

H THE DUAL PROBLEM

We briefly recall the setup. Let ¥ € R¥** be SPD, let T denote a collection of index subsets
I C {1,...,k}, and let ¢; be a positive scalar defined for every I € Z. It will be convenient
to define, for every I € 7, a vector A\; € RII, We denote the concatenation of such vectors by
A € A = [[;er R We further recall that P; : R¥ — RI| is the orthogonal projection onto
the coordinates indexed by I, and set ¥; = P;YX P, . We define the norm ||v||s, = /v ;v on
RI!; this induces the seminorms ||y||s, = || Pry|ls, on R¥, and ||A||s, = |[Az]|s, on A. Lastly, we
employ
A:A=RE AQ) =) Pl
IeT
to enforce the linear (unbiasedness) constraint A()\) = a, for some fixed a # 0 € R*.

Our first step will be to show how to alleviate the budget constraint. To do so, we first briefly recall

this constraint. To describe the budget, recall that we define n = (ny)rez € Z@, and employ a
budget constraint of the form Zlel nrer < B fora fixed B > 0. Denoting ¢ = (¢j)ez € RLI(‘),

our budget constraint may be written ¢ n < B. With all of this said, recall that our original problem
of interest is

) 1

Via) = r;uén Z —I)\}—EI)\I s.t. Z PIT)\I =a, ¢'n<B (13)
I€Z:n;>0 I€Z:n;>0

We begin by deriving tractable methods to solve Equation 13. Let us assume for the moment that

ne RLI('); we will later construct the final budget allocation by rounding. Our first step is to remove
the dependence on n: we show that the above problem is equivalent to the following:

U(G/):Amel}\lz\/a“A[HEI st. Ad=a (14)
I€T
We next show that this is equivalent to the dual problem
Ula)= sup a'y s.t. /\ {lIyll%, <er} (15)
yER® ez

Finally, this is a second order cone program, and can be solved with off-the-shelf tools. After we
have shown these things, we describe how to convert solutions to Equation 15 into solutions to
Equation 13.

Proposition H.1. The problems described in Equation 13 and Equation 14 yield the same optimum

V =U?/B.
Proposition H.2. The problems described in Equation 14 and Equation 15 yield the same optimum
U.

Proof of proposition H.1. We now begin the proof.
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(2) < (3): Let A\ = a. Define n by’

nr .= < ) VCJH)\JHEI
I - -
CI ZJEZ V CJ ||>\J HEJ

Itis clearthatc'n = B by construction, and we have

2
BV(a)< ) nEVZMIZ > Verllls, Y verllislls, = (Z\/EAIEI>

Im>0 1 A1 0 J I€T

(3) < (2): Let n, ) satisfy the constraints of Equation 13. Consider the vectors c'/? ® n'/? =
(v/ernr) ez and (]lm>0n1_1/2||)\1||g,> in RIZI. The Cauchy-Schwartz inequality yields that
IeT

the product of their squared norms is

(Zn) ( > nlIuAIn%,) > ( > mmz,)g

I'n;>0 I'my>0

Now let us define iby 5\1 = A;ifny >0, and XI = 0 otherwise. Then we have
AEZZPITX]: ZPITA[:CL
I Iin>0

by assumption, and

Ua)* < <Z ¢c7||Xz||z,> = ( > \/anxfuz,) < BV (a)

I:n;>0

and we are done. O

Remark H.3. Note that in general, many ny will be zero.

0 a=

o atb Then Equation 14 is

Proof of proposition H.2. Let 14} denote the indicator b {

alternatively written
V(a) =ming(d) + ¢(a}(42)

where g(A) = >, gr(Ar) and gr(Ar) = /crl|Ar||s,. We now apply the Fenchel duality theorem.
Note that E{*a} (y)=a"y,and g*(ATy) =3, 95 (Py) =, Yllyrlls, <ery = LA, llurlz, <er- O

I EXPERIMENTAL DETAILS

Here we detail the experimental setup used. We do so in two parts: first, we explain the details for
generating the model predictions (X5, ..., X}) in each experiment; second, we explain the details

for constructing the proposed estimator, fyiy14ipp1, and the baselines from such predictions.

1.1 GENERATING MODEL PREDICTIONS
1.1.1 EXPERIMENT 1: CHATBOT ARENA

We follow the implementation of Angelopoulos et al. (2025) to request autoratings from Gemini 2.5
Pro and Gemini 2.5 Flash. See section E of Angelopoulos et al. (2025) for implementation details.

"This is defined as long as Ay # 0 for some .J; if this fails then A = 0 and A\ = 0 yields a contradiction.
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Model collection | Cost
Gemini 2.5 Pro | $1.25
Gemini 2.5 Flash | $0.30
Both $1.55

Table 1: Cost structure for experiment 1.

4 N

In the following, you will see a math problem and an attempted solution. There may or may not be an error in
the attempted solution. Your task is to review the attempted solution and decide whether or not it is correct.
Report your answer as "correct" or "incorrect" in \boxed{}.

Problem:

Find the smallest number $n$ such that there exist polynomials $f {1}, f {2}, \ldots, f {n}$ with rational
coefficients satisfying

$$

M2 +T7=f {132} +f {2} (x)M {2} +\cdots+f {n}(x)"{2} .

$$

Attempted solution:

To find the smallest number \\( n \\), we start by considering the given equation: \\( x"2 + 7 =f 1(x)"2 +
f 2(x)"2 +\\cdots + f n(x)"2 \\). Notice that \\( X2 + 7 \\) is always greater than or equal to 7 for any real
value of \\( x \\).

[...]
Therefore, the smallest number \\( n \\) is \\(\\boxed {4 }\\).

Now decide whether or not the attempted solution is correct. Be sure to report your answer as "correct" or
"incorrect" in \boxed{}. For example, if you believe that the attempted solution is correct, then you should
respond "\boxed{correct}"; if you believe that the attempted solution is incorrect, then you should respond
"\boxed{incorrect}". You must respond in exactly this format and include no other text in your response. If

you include any additional text in your response, you will be disqualified.

N J

[ Gemini 2.5 Pro: [Thinking...] ]

— after B words of thought have been produced —

[ Gemini 2.5 Pro: So, the answer is: \boxed{correct}. ]

Figure 13: Prompt used to generate autoratings for Experiment 2.

1.1.2 EXPERIMENT 2: PROCESSBENCH

We evaluate our method on 500 samples from the OlympiadBench subset of the ProcessBench
dataset (Zheng et al., 2024). Binary labels are determined according to whether or not a process
error occurred in the given (problem, attempted solution) pair.

To generate autoratings, we use Gemini 2.5 Pro and truncate its reasoning process at various check-
points. Specifically, using the prompt shown in Figure 13, we instruct the model to think for up to
3,000 tokens but interrupt it and demand an answer after B words of thought have been produced,
for B € {125,250, 375,500}, as described in §5. To elicit a definite judgement at each checkpoint,
we provide “So, the answer is:” as the assistant and attempt to extract an answer from the subsequent
20 tokens of output with our template.

1.1.3 EXPERIMENT 3: BIOGRAPHY FACTUALITY

We consider evaluating the factuality of a set of biographies generated by Gemini 2.5 Pro. We repli-
cate the setting of Du et al. (2023): Gemini 2.5 Pro is asked to generate biographies for 524 computer
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scientists, and we evaluate the factual consistency of such biographies with a set of grounding facts
collected by Du et al. (2023).

More specifically, for every person p € P, we associate a Gemini-generated biography b” and a set
of collected grounding facts F? = {f¥, ..., fﬁlp} about the person. Following Du et al. (2023), we

estimate the proportion of factually consistent pairs (b?, f¥) of generated biographies b? with each
of the collected grounding facts f. Concretely, given the set of all pairs

S={®" f"):peP, [ € F'}
we target the proportion of factually consistent pairs

#{(b, f) € S : (b, f) is factually consistent}
#S

We determine the factual consistency, or lack thereof, of a pair (b, f) by majority voting over 5
independent judgments from Gemini 2.5 Pro with thinking. Du et al. (2023) found that judgments
by ChatGPT achieved over 95% agreement with human labelers on a set of 100 samples. This level
of agreement is evidently not achieved by certain cheaper models, as we proceed to demonstrate
experimentally. In Figure 10, we explore using Gemini 2.0 Flash Lite as an autorater for evaluating
the factuality consistency of pairs (b, f) € S.

To elicit better autoratings from queries to Gemini 2.0 Flash Lite, we bootstrap performance via
multi-round debate. For a fixed number of agents A € {1,...,5}, and a fixed number of maximum
rounds R € {1, 2}, we perform the following procedure:

1. A instances of Flash Lite are independently prompted to consider the factual consistency
of pairs (b, f) € S, and provide an explanation for their reasoning.

2. A “pooler” instance of Flash Lite is then asked to review the pair (b, f) and the responses
generated by each of the A other instances, and output a judgment in the form of a single
word: yes, no, or uncertain.

(a) If the pooler outputs “yes” or “no,” the judgment is final.

(b) If the pooler outputs “uncertain” and the number of maximum rounds R has not yet
been reached, the A instances of Flash Lite are independently shown their prior re-
sponses, and the prior responses of each other, and prompted to continue reasoning
given this additional information. This procedure continues until either the pooler no
longer reports “uncertain,” or the maximum number of rounds R has been reached.

(c) If the pooler outputs “uncertain” and the maximum number of rounds R has been
reached, a fair coin is flipped and “yes” or “no” are reported with equal probability.

Since the dataset is balanced, the outcome described in (c) is fair insofar as it is as good as random
guessing. We impose the maximum round restriction to encapsulate our budget constraint. To reduce
randomness, we generate all autoratings twice, so that the resulting dataset has an effective size of
1048.

Target: Proportion of factually-consistent pairs, #{(b, f) € S : (b, f) is factually consistent}/#S
Model family: {The output of the above procedure given (A, R) : A € {1,...,5}, R € {1,2}}
Cost structure: For a given (A, R), the cost is A - R. For collections of models, the cost is additive.

[.2  CONSTRUCTING THE MULTIPPI ESTIMATOR
For the results shown in §6, we draw 250 fully-labeled samples from each dataset above. We then

follow the procedure described in §C.3 for N = 250, using the empirical distribution over each
dataset as our source of randomness. In § D.2, we replicate the study over a range of values of V.
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Biography of Richard Hamming;

* Worked on the Manhattan Project, contributing to computations on early computing devices.

* Joined Bell Labs in 1945, working on relay calculators and early digital computers like the IBM 650.
* Developed Hamming codes, a fundamental set of error detection and correction codes for digital data.
* Introduced the concept of Hamming distance, a metric for comparing two binary strings.

Fact: Richard Hamming was a mathematician who made contributions in computer engineering and communications.
Gemini 2.5 Pro judgement: Factually consistent.

Fact: Hamming worked on the Manhattan Project before joining Bell Telephone Laboratories in 1946
Gemini 2.5 Pro judgement: Factually inconsistent.

Figure 14: Depiction of biography-fact pairs (b, f) as in Experiment 3. Judgements about factual
consistency of (b, f) are made by a language model.
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