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ABSTRACT

A core challenge in modern AI model development is obtaining high-quality eval-
uation metrics in a cost-effective way. Such evaluation often involves tradeoffs be-
tween expensive, high-quality measurements and a variety of lower-quality prox-
ies. We introduce Multiple-Prediction-Powered Inference (MultiPPI), a general
framework for constructing statistically efficient estimates by optimally allocat-
ing resources across these diverse data sources. We provide theoretical guarantees
about the minimax optimality, finite-sample performance, and asymptotic nor-
mality of the MultiPPI estimator. Through experiments across three diverse large
language model (LLM) evaluation scenarios, we show that MultiPPI consistently
achieves lower estimation error than existing baselines. This advantage stems
from its budget-adaptive allocation strategy, which strategically combines subsets
of models by learning their complex cost and correlation structures.

1 INTRODUCTION

Efficiently estimating expectations of random variables under a fixed budget is a fundamental prob-
lem in many scientific settings. This paper focuses on the common scenario of choosing between a
high-quality, but expensive, measurement process and various cheaper, but lower-quality, proxies.
We are specifically motivated by the challenge presented by AI model evaluation, which is a critical,
but often resource-intensive, step in model development and maintenance.

More concretely, in the AI model evaluation setting, a variable X1 might represent a high-quality
but expensive metric computed for every model response to an input query, such as a score from a
human annotator or a powerful proprietary model used as an "autorater". The remaining variables,
X2, . . . , Xk, might represent cheaper evaluation options (e.g., scores from smaller autoraters or
rule-based systems), which can be viewed as covariates or proxies for the true score. Given the op-
tion to obtain samples of X1, . . . , Xk (either jointly or independently), the primary objective is often
to then estimate the mean of the high-quality score, E[X1]. In other cases, we may be interested
in the mean difference between two scores, say, E[X1 −X2]. The core difficulty in each case is in
determining which of these variables to query, how many times to query them, and then finally how
to combine them together to produce a statistically efficient, consistent estimate of the ground truth.

To formalize this, let X := (X1, . . . , Xk) be a set of random variables with finite variance. We then
consider the general problem of efficiently estimating any linear function of the mean of X subject
to a total observation budget B. That is, for some a ∈ Rk, we want to estimate θ∗ = a⊤E[X]
while spending no more than a total budget B on collecting subsets of joint random variables
XI = {Xi}i∈I at cost cI for index subsets I ⊆ {1, . . . , k}. More precisely, if nI is the number of
times the subset XI is observed, we require that the nI satisfy a system of linear budget constraints
of the form

∑
I cInI ≤ B, where the sum is over all such collected subsets I .

Estimating linear functions of E[X] allows for flexibility in how θ∗ is defined. Given the AI evalua-
tion setting above, for example, measuring E[X1] corresponds to a = (1, 0, . . . , 0), while measuring
E[X1−X2] corresponds to a = (1,−1, 0, . . . , 0). The flexibility to observe subsets of X also intro-
duces a key trade-off that is unique with respect to previous related approaches to estimation. As we
will show, observing variables jointly can be advantageous by reducing overall estimation variance.
This benefit, however, must be weighed against the data acquisition costs, cI . We make no assump-
tions about the structure of these costs (e.g., they may be non-additive over the components in I).
For instance, in our AI evaluation setting, obtaining predictions from multiple autoraters can often
be parallelized, so the cost of multiple predictions (in latency) is not significantly more than that of
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the single slowest one. This is not always true; in medical diagnostics, for example, ordering many
tests may become too taxing for a patient, and therefore undesireable or impossible to do jointly.

To solve this cost-optimal, multi-variate estimation problem, we introduce the Multiple-Prediction-
Powered Inference (MultiPPI) estimator, which is a cost-aware generalization of the Efficient
Prediction-Powered Inference (PPI++) estimator of Angelopoulos et al. (2023b), and extends it to
optimally leverage multiple types of predictions to power inference. The MultiPPI estimator
constructs a low-variance, consistent estimate of θ⋆ by combining observations from judiciously
chosen subsets of X . The core of our method is an optimization procedure that jointly determines
the number of samples nI to draw from each subset I and the corresponding linear weights λI

used to form the final estimate. We demonstrate that this allocation problem can be formulated as
a second-order cone program (SOCP) for a single budget constraint, and a semidefinite program
(SDP) for multiple budget constraints, and thus solved efficiently using standard techniques.

Theoretically, we show that the MultiPPI estimator is minimax optimal when the joint covariance
matrix, Σ = Cov(X), is known. For the typical case where it is unknown, however, we provide
a framework for integrating an initial estimation phase where an approximation of the required
covariance matrix, Σ̂, can be derived from either a small "burn-in" sample or a pre-existing labeled
"transfer" dataset (a common scenario in applied settings)—and provide finite-sample bounds on the
performance degradation that is incurred by substituting Σ̂ for Σ. Finally, we empirically demon-
strate the effectiveness of this approach across three diverse LLM evaluation settings, including
choosing between autoraters of different sizes, autoraters with different test-time reasoning con-
figurations, and complex multi-autorater-debate scenarios. In all cases, our method achieves lower
mean-squared error and tighter confidence intervals for a given annotation budget than existing base-
lines. We demonstrate that MultiPPI achieves this by automatically tailoring its strategy to the avail-
able budget B: that is, it learns to rely primarily on the cheaper autoraters when the budget is small,
and naturally begins to incorporate more expensive, better autoraters as the budget increases. Taken
together, our work provides a principled and computationally tractable framework for cost-effective,
model-aided statistical inference, in settings with complex cost-versus-performance tradeoffs.

In summary, our main contributions are as follows:

• We introduce the MultiPPI estimator and frame the problem of finding the optimal subset sam-
pling strategy and estimator weights as an efficient second-order cone program (SOCP).

• We prove that the MultiPPI estimator is minimax optimal when the covariance matrix Σ of
X1, . . . , Xk is known, and provide finite-sample performance guarantees for the practical setting
where the covariance matrix must first be estimated as a part of the overall inference problem.

• We demonstrate MultiPPI’s applicability across multiple LLM evaluation settings, and show
how it can effectively combine signals from different model sizes, reasoning configurations, and
multi-agent debates to achieve lower error and tighter confidence intervals for a given budget.

2 RELATED WORK

Our work builds upon Prediction-Powered Inference (PPI; Angelopoulos et al., 2023a), a statistical
framework for efficiently estimating population-level quantities by augmenting a small set of labeled
data with predictions from a machine learning (ML) model. We specifically build on PPI++, the
efficient extension of PPI introduced in Angelopoulos et al. (2023b), which also further improves
variance by optimally reweighting these predictions. We describe PPI in greater depth in Section 3.

PPI is part of a broader class of statistical methods that leverage ML predictions for estimation.
Its principles connect to classical control variates and difference estimators (Ripley, 1987; Särndal
et al., 1992; Chaganty et al., 2018), which reduce variance by subtracting a correlated random
variable with a known mean; the correlated variable in PPI is the ML prediction, whose mean can
be (cheaply) estimated on unlabeled data. This approach also shares theoretical foundations with
modern semi-parametric inference, particularly methods from the causal inference literature like
Augmented Inverse Propensity Weighting (AIPW; Robins & Rotnitzky, 1995), Targeted Maximum
Likelihood Estimation (TMLE; van der Laan & Rubin, 2006), and double machine learning (DML;
Chernozhukov et al., 2018). Recently, PPI has been applied to Generative AI evaluation, where
human annotations (or more generally, annotations from some trusted source) are combined with
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cheaper "autorater" outputs for efficient, unbiased estimates of model performance (Boyeau et al.,
2024; Chatzi et al., 2024; Fisch et al., 2024; Angelopoulos et al., 2025; Saad-Falcon et al., 2024).

Existing PPI frameworks, however, assume either a single predictor (Angelopoulos et al., 2023a;b)
or a fixed set of predictors queried together (Miao et al., 2024). We address the common scenario
where multiple predictors (e.g., autoraters) with different cost-performance profiles are available.
This introduces a complex budget allocation problem: determining which predictors to query (in-
dividually, jointly, or in any joint subset), how often to query them, and how to combine the mea-
surements they provide for a minimum-variance estimate under a fixed budget. Our work partially
generalizes Angelopoulos et al. (2025), which optimizes a sampling policy for a single predictor.
Unlike that work, however, which focuses on input-conditional policies and expected budget con-
straints, we find a fixed allocation policy that always satisfies a hard budget constraint for every run.

Our allocation problem is also related to budgeted regression with partially observed features (Cesa-
Bianchi et al., 2011; Hazan & Koren, 2012) and active learning or testing (Settles, 2009; Kossen
et al., 2021; Zhang & Chaudhuri, 2015). We emphasize, however, that our goal is estimation of a
linear function of a population mean (i.e., a⊤E[X]), and not regression (e.g., predicting X1 from
X2, . . . , Xk). While related, standard approaches to regression, including with partial observations,
optimize for sample-wise predictive accuracy rather than for predictive accuracy of a population-
level quantity. Our problem also connects to multi-armed bandit allocation for adaptive Monte Carlo
estimation (Neufeld et al., 2014). A key difference is that these frameworks often use sequential,
input-dependent policies to minimize regret, making it difficult to derive valid confidence intervals
(CIs). Our framework, in contrast, computes a fixed allocation policy over predictive models (not
individual inputs as in active learning or testing) and guarantees unbiased estimates with valid CIs.
Even more broadly, our work shares similar high-level goals with transfer learning and domain
adaptation (Pan & Yang, 2010; Ben-David et al., 2010, inter alia)—i.e., leveraging signals of
varying quality and potential bias—though the statistical techniques are distinct.

3 PRELIMINARIES

In the following section, we introduce the general estimation problem of interest and summarize
existing approaches. Suppose that we are interested in the mean of a random variable X1, which is
dependent upon another random variable X2 (corresponding to estimating a⊤E[X] for a = (1, 0)
as described in §1). For example, in the AI model evaluation setting, X2 may be an autorater’s
score for a model output to a user’s query, and X1 may be the ground truth quality of the response
as measured by an expert human annotator. Suppose we have access to a small number (n) of i.i.d.
samples that contain labels from both the target rater (X1) and autorater (X2), and a large number
(N ) of i.i.d. samples that contain only the autorater predictions (X̃2). A naïve approach to estimat-
ing the mean is to simply take the sample average of X1 and ignore X2 entirely, which we denote by
θ̂classic =

1
n

∑n
j=1 X

(j)
1 . When the prediction X2 is correlated with X1 and easy to query, however,

it is natural to consider the "prediction-powered" PPI estimator (Angelopoulos et al., 2023a;b):

θ̂PPI =
1

n

n∑
j=1

(
X

(j)
1 −X

(j)
2

)
+

1

N

N∑
j=1

X̃
(j)
2 (1)

When we can afford to take N to be very large, it is clear that the variance of θ̂PPI is much smaller
than that of θ̂classic provided that our model predictions X2 are close to X1 in mean-squared error.
When that fails, Angelopoulos et al. (2023b) propose adding a linear fit of the form:

θ̂PPI++ =
1

n

n∑
j=1

(
X

(j)
1 − λX

(j)
2

)
+

1

N

N∑
j=1

λX̃
(j)
2 . (2)

The parameter λ may be chosen to minimize the variance of θ̂PPI++ based on the observed labeled
data. This strategy yields an estimator which asymptotically improves on θ̂classic and θ̂PPI in the
limit that n → ∞ and N ≫ n. Toward the setting where n and N may be comparable in size, if
one is able to choose to or not to request a label X(j)

1 for every observed unlabeled point X(j)
2 , a

modification of θ̂PPI++ allows one to do so in a cost-optimal way (Angelopoulos et al., 2025).
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3.1 MULTIPLE PREDICTIVE MODELS

How should one adapt the preceding setting when one has access to many predictions, rather than
just X2? One option is to stack all predictions into a vector X2:k := (X2, . . . , Xk) and choose λ ∈
Rk−1 to be a vector in θ̂PPI++; this is the estimator proposed by Miao et al. (2024), and can be written

θ̂PPI++ vector =
1

n

n∑
j=1

(
X

(j)
1 − λ⊤X2:k

)
+

1

N

N∑
j=1

λ⊤X̃
(j)
2:k (3)

But this approach is suboptimal when (as is becoming standard) the best models may be available
only for the highest prices: if any of X2, . . . , Xk is expensive to obtain, our ability to sample
X2:k will be limited. This yields suboptimal results, as we show in §6. One may instead decide to
perform PPI with just one model Xi, for whichever i ̸= 1 has the best cost/accuracy tradeoff—but it
is not clear a priori which one this is, or how much worse it may be compared to some combination
of a cost-effective subset of X . Alternatively, perhaps it is possible for cheaper models be used
to recursively estimate the means of more expensive models, thus creating a PPI++ cascade: for
instance, if k = 3 and (X1, X2, X3) are in decreasing order of cost, we might consider

θ̂PPI++ cascade =
1

n

n∑
j=1

(
X

(j)
1 − λX

(j)
2

)
+

1

N

N∑
j=1

(
λX̃

(j)
2 − λ′X̃

(j)
3

)
+

1

M

M∑
j=1

λ′ ˜̃X
(j)
3 (4)

Each of these strategies can be realized as possible instances of the MultiPPI estimator we propose
in the next section. Rather than coarsely limiting ourselves to sampling X2:k = (X2, . . . , Xk)
together, we allow the flexibility of sampling XI for generic index subsets I ⊆ {1, . . . , k}.

4 MULTIPLE-PREDICTION-POWERED INFERENCE (MULTIPPI)

As Section 3.1 highlights, it is not obvious how to best allocate a budget across a diverse suite of
predictive models, where each model has its own cost and performance tradeoffs. We begin by
defining the class of permissible estimators: We require that the number of times, nI , that XI is
sampled satisfies a linear budget constraint, specified by a set of non-negative costs cI ≥ 0 and total
budget B ≥ 0, for each index subset I ⊆ {1, . . . , k}.1

Definition 4.1. An estimator θ̂ is budget-satisfying if it a measurable function of nI i.i.d. samples
of XI , for each I ⊆ {1, . . . , k}, such that

∑
I nIcI ≤ B.

To develop a principled search for the best budget-satisfying estimator, we begin by asking a simple
question under idealized conditions:

Question 1. If the covariance matrix, Σ = Cov(X), is exactly known, what is the minimax optimal,
budget-satisfying estimator of θ∗ = a⊤µ with respect to the mean-squared error, E[(θ̂ − θ∗)2]?

The answer to Question 1 will provide us with a set of allocations nI and a corresponding budget-
satisying estimator θ̂MultiPPI which we will evaluate on the nI samples of XI , for each I . Once we
have addressed this question, we address the case of unknown Σ by describing strategies depending
on the empirical covariance matrix Σ̂, which may be estimated from data.

It turns out, perhaps surprisingly, that Question 1 reduces to the following tractable alternative:

Question 2. If the covariance matrix, Σ = Cov(X), is exactly known, what is the minimum vari-
ance, linear, unbiased budget-satisfying estimator of θ∗ = a⊤µ?

We demonstrate the equivalence of Question 1 and Question 2 in Theorem 4.2. For now, the "oracle"
assumption on knowing the covariance matrix Σ allows us to isolate the resource allocation problem
from the separate challenge of estimating how closely related (X1, . . . , Xk) are to begin with, and
to analyze what a good procedure for leveraging multiple predictive models under cost constraints
should look like in theory. All proofs of our theoretical results are deferred to Appendix F.

1In Section B, we extend the methodology to multiple budget constraints.
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4.1 MULTIPPI(Σ): A MINIMAX OPTIMAL ALGORITHM

Recalling notation from Section 1, let X ∈ Rk denote a random vector of finite second moment
with distribution P. Let I ⊆ 2{1,...,k} denote a collection of index subsets which may be queried,
and for any I ∈ I, let XI = {Xi}i∈I be the corresponding subset of X . Next, let n = {nI}I∈I ,
nI ∈ N be an allocation of sample sizes, where nI i.i.d. samples are drawn for each subset I , and
let λ = {λI}I∈I , λI ∈ R|I| define a corresponding set of weighting vectors for each subset I .
Finally, let θ̂(n, λ) denote the weighted sum of sample means from each non-empty subset, i.e.,

θ̂(n, λ) =
∑

I:nI>0

1

nI

nI∑
j=1

λ⊤
I X

(j)
I . (5)

The MultiPPI estimator, θ̂MultiPPI, is then defined as the optimal estimator in this class that minimizes
the MSE subject to our unbiasedness (U) and budget (B) constraints:

θ̂MultiPPI = argmin
θ̂(n,λ)

E
[(

θ̂(n, λ)− θ∗
)2]

s.t. U and B hold, (6)

where the constraints U and B are

U ⇐⇒ E[θ̂(n, λ)] = θ∗ for all P of finite second moment and B ⇐⇒
∑
I

nIcI ≤ B.

It can be shown that U reduces to a linear constraint on λ, which makes our optimization convenient.

As previously discussed, the estimators of Equation (3) and Equation (4) can be viewed as special
cases of this setup. For instance, it is not hard to see that Equation (3) corresponds to imposing the
additional restriction that λI = 0 for all I ∈ 2{1,...,k} except for I = {1, . . . , k} and I = {2, . . . , k};
Equation (4) corresponds to the additional restriction that λI = 0 for all I except for {1, 2}, {2, 3}
and {3}. NEW

4.1.1 OPTIMIZATION

Solving Equation (6) is, in general, non-trivial. Since θ̂(n, λ) is linear in X , it can be shown that the
optimal (n, λ) depend only on the covariance matrix Σ of X , and so we will denote by θ̂MultiPPI(Σ)

the solution to Equation (6) given any distribution such that Σ = Cov(X). Then, it can be further
shown (this follows from Theorem 4.2, presented next) that the MSE of θ̂MultiPPI(Σ) is

VB = min
n : B holds

supp(a)⊆
⋃
{I:nI>0}

a⊤S(n)a, S(n) =

(∑
I∈I

nIΣ
†
I

)†

(7)

where ΣI denotes the principle submatrix of Σ on I , embedded back into Rk×k, and † denotes the
Moore-Penrose pseudo-inverse.2 The minimizing n of the above expression then also determines the
optimal λI to be the restriction of nIΣ

†
IS(n)a to the coordinates I . If the integrality constraints on

nI are relaxed, we show in the appendix that this reduces to a second-order cone problem in the case
of a single budget constraint, and a semi-definite program in the case of multiple budget constraints.
This allows for Equation (7) to be solved efficiently using standard techniques (Section G).

4.1.2 MINIMAX OPTIMALITY

The minimal MSE VB shown in Equation (7) has a more fundamental characterization. Here we
show that it is in fact the minimax optimal MSE achievable by any budget-satisfying estimator, taken
over the set of distributions P of covariance Σ. Consequently, the estimator defined by θ̂MultiPPI(Σ) is
minimax optimal over the set of distributions PΣ = {distribution P on Rk : Cov(X) = Σ for X ∼
P}. Specifically, given costs (cI)I and a budget B, let ΘB denote the set of budget-satisfying
estimators θ̂ per Theorem 4.1. We emphasize that we make no restriction on ΘB to include only
linear or unbiased estimators. Then the following result holds:

2More formally, if PI ∈ Rk×k denotes the orthogonal projection onto span(I) ⊆ Rk, we define ΣI =

PIΣP
⊤
I , and so Σ†

I := (PIΣP
⊤
I )†.

5
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Theorem 4.2 (Minimax optimality of MultiPPI for known Σ). For all Σ ≻ 0, we have

inf
θ̂∈ΘB

sup
P∈PΣ

E
[
(θ̂ − θ∗)2

]
= Var

(
θ̂MultiPPI(Σ)

)
= VB ,

where the variance is with respect to any distribution P ∈ PΣ.

4.2 MULTIPPI(Σ̂): A PRACTICAL ALGORITHM

In practice, Σ is rarely known and must be approximated by an estimated covariance matrix Σ̂. In
general, there are many methods for constructing an estimate Σ̂ of Σ, and many of the theoretical
properties of MultiPPI are agnostic to the particular choice made.The following theorem shows NEW
that, for any Σ̂ which converges in probability to Σ as our budget tends to infinity, the MultiPPI
estimator is asymptotically normal and achieves the optimal variance of Theorem 4.2. For this
result, we need a technical condition which amounts to Equation (6) having a unique minimizer n
as B → ∞; we state it formally in Section F.3.

Theorem 4.3. Suppose X ∈ Rk has finite second moment, and suppose that Σ = Cov(X) satisfies
condition 12. Suppose that Σ̂

p→ Σ in the operator norm as B → ∞. Then for θ̂MultiPPI(Σ̂)

arbitrarily dependent on any potential samples used to estimate Σ̂, we have
√
B
(
θ̂MultiPPI(Σ̂) − θ∗

)
d→ N (0,V∗)

as B → ∞, where V∗ = limB→∞ BVB , and VB is defined in Equation (7).

It is important to note that the estimator θ̂MultiPPI(Σ̂) continues to enjoy unbiasedness, budget

satisfaction, and asymptotic normality regardless of mis-specification in Σ̂.

A natural question concerns the level of suboptimality of θ̂MultiPPI(Σ̂) as a function of the degree of

mis-specification of Σ̂ in finite samples. Below, we present a meta-result which serves to quantify
the sensitivity of our procedure to errors in the specification of Σ̂.

Theorem 4.4 (Stability of MultiPPI). Let P be a distribution of covariance Σ, and suppose that Σ
has minimum eigenvalue γmin. Let σ2

classical denote the least MSE of any budget-satisfying sample
mean of θ∗. Let Σ̂ denote any non-random symmetric positive-definite matrix. Then we have

E
[(

θ̂MultiPPI(Σ̂) − θ∗
)2]

≤ VB +
4σ2

classical

γmin
∥Σ̂− Σ∥F .

whenever ∥Σ̂− Σ∥F ≤ γmin/2, where ∥ · ∥F denotes the Frobenius norm.

In general, there are many methods for constructing an estimate Σ̂ of Σ, and Theorem 4.4 is agnostic
to the particular choice made. In Section E.1, we show how to apply the meta-result above to derive
a family of finite-sample bounds in a variety of distributional settings and for a variety of methods
of constructing Σ̂.

In practice, we estimate Σ from data, and find the Ledoit-Wolf estimator Σ̂ of the covariance matrix
Σ to perform best in our experiments. This is consistent with the fact that the Ledoit-Wolf estimate
is designed to minimize E∥Σ̂− Σ∥F , and Theorem 4.4 shows that the error of θ̂MultiPPI(Σ̂) is con-

trolled by ∥Σ̂−Σ∥F . In Theorem D.1, we apply Theorem 4.4 to provide finite-sample performance
guarantees on MultiPPI when the Ledoit-Wolf estimator is used to estimate covariance. NEW

In our experiments, we evaluate θ̂n,λ on the same samples we used to estimate Σ̂. A similar
approach was taken by Angelopoulos et al. (2023b) for PPI++, and we find that it is easy to
implement and yields strong empirical results in practice. While doing so introduces bias in finite
samples—due in part to the additional dependency of λI on XI in Equation (5)—it preserves
consistency and asymptotic normality in the limit as our budget B and the number of (reused)
burn-in samples tend to infinity.

6
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4.2.1 PROCEDURE

We now specify an easy-to-implement procedure that makes use of a burn-in of N fully labeled
samples to estimate Σ̂, and then also reuses the N samples when estimating θ̂MultiPPI(Σ̂). Specifically,
we target the practical setting where we are given N fully-labeled samples a priori, and have no
ability to obtain more. This is typical of real-world settings in which we are given, or have already
collected, a fixed dataset of "gold" labels that we are then trying to augment with PPI related
techniques—and may be encapsulated by the budget constraint n{1,...,k} ≤ N . While we may not
be able to obtain more fully-labeled samples, we may be afforded a separate computational budget
for querying model predictions that then augment the N fully-labeled samples; taken together, this
setting is represented by a system of budget constraints.3 In summary, we propose the following:

1. Estimate the covariance matrix Σ̂ ≈ Cov(X) on the N fully-labeled samples, which we reuse.

2. Solve for the nI , λI which minimize Equation (6). We refer to this as MultiAllocate(Σ̂).

3. Sample the nI , ∀I ∈ I additional data points accordingly, and return θ̂MultiPPI(Σ̂).

5 EXPERIMENTAL SETUP

In each experiment, our goal is to estimate the mean θ∗ = E[X1] of some random variable X1 to
be specified, which we will refer to as the target. This corresponds to the choice a = (1, 0, . . . , 0)
in our notation. We will also specify a model family (X2, . . . , Xk), together with a cost structure
(cI)I∈I . In each experiment, we are given some number of samples for which the entire vector
X = (X1, . . . , Xk) is visible; we refer to such samples as fully-labeled. Given these samples, we
perform the procedure outlined in Section 4.2.1: we estimate Σ̂ using these samples, sample from
the auxiliary models (X2, . . . , Xk) according to the allocation specified by MultiAllocate(Σ̂), and
return θ̂MultiPPI(Σ̂), evaluated on both the N fully-labeled samples and the additional auxiliary data.

Baselines: In each experiment, we compare to several baselines. First, we compare to classical
sampling. Second, we compare to PPI++ with each model included in the family (specified in
Equation (2)), and to vector PPI++ with every model in the family (specified in Equation (3)).

Experiment 1: Estimating Arena win-rates by autorater ensembles. We focus on the Chatbot
Arena dataset (Chiang et al., 2024), where of interest is the win-rate between a pair of models,
which is the probability that a given user prefers the response of one model to that of the other. The
randomness is taken over the prompt, the user, and the model responses. Here, we aim to estimate the
win-rate between Claude-2.1 and GPT-4-1106-Preview; this is our target. Our model family consists
of autoraters built on Gemini 2.5 Pro (without thinking) and Gemini 2.5 Flash. In our notation, we
have (X1, X2, X3) = (human label,Gemini 2.5 Pro label,Gemini 2.5 Flash label). We draw model
costs from the Gemini developer API pricing guide (Gemini API), see Section I. In this case, the
cost of querying both models is simply the sum of the costs of querying each model independently.

Experiment 2: Optimal test-time autorater scaling on ProcessBench. In this experiment, we
aim to estimate the fraction of correct solutions in the ProcessBench dataset (Zheng et al., 2024),
given a small number of labeled examples. The task is simplified from its original form to a binary
classification problem: determining whether a given math proof solution contains a process error,
without identifying the specific step. We employ Gemini 2.5 Pro with a variable thinking budget
as our autorater. Its accuracy correlates with the number of words expended in the thought, with
performance gains saturating after approximately 500 words (see Figure 14 in the appendix). We
create a family of four autoraters by checkpointing the model’s thought process at 125, 250, 375,
and 500 words. A key aspect of this setup is the non-additive, cascading cost structure. Generating a
response from a model with a larger thinking budget makes the outputs of all smaller-budget models
available at a marginal cost. Consequently, the total cost for a subset of models S is modeled with
two components: an input cost proportional to the sum of the word budgets in S, and an output cost
proportional to the maximum word budget in S. Explicitly, for S ⊆ {125, 250, 375, 500}, we set

cS = output_cost_per_word ·maxS + input_cost_per_word ·
∑

S (8)

3We explain how to solve the optimization problem posed by such systems in Appendix B.
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Experiment 3: Hybrid factuality evaluation through multi-autorater debate. Following Du
et al. (2023), we evaluate the factual consistency of biographies for 524 computer scientists gener-
ated by Gemini 2.5 Pro. For each person p ∈ P , we compare their Gemini-generated biography bp

against a set of known grounding facts Fp = {fp
1 , . . . , f

p
mp

} about the person. Our target metric is
the proportion of factually consistent pairs (b, f) within the total set S = {(bp, fp) : p ∈ P, fp ∈
Fp}. Concretely, we target the proportion |{(b, f) ∈ S : (b, f) is factually consistent}| / |S|.
Ground-truth consistency of a pair (b, f) is established by majority voting over five independent
judgments from Gemini 2.5 Pro with thinking, a method validated by Du et al. (2023) to have
over 95% agreement with human annotators. Our experiment, illustrated in Figure 15, assesses
the performance of a more cost-effective model, Gemini 2.0 Flash Lite, as an autorater. To elicit
better autoratings from queries to Gemini 2.0 Flash Lite, we bootstrap performance via multi-round
debate. For a fixed number of agents A ∈ {1, 2, 3}, and a fixed number of maximum rounds
R ∈ {1, 2}, we perform the following procedure: In each round, A instances of Flash Lite are
independently prompted to provide a reasoned judgment on the consistency of a pair (b, f) ∈ S. A
"pooler" instance of Flash Lite then consolidates these responses into a single yes, no, or uncertain
output. A definitive yes or no concludes the process. If the pooler outputs uncertain, and the
number of maximum rounds R has not yet been reached, the A agents review all prior responses and
continue their debate in a new round. If the output remains uncertain after the final round, either yes
or no is reported with equal probability—since the dataset is balanced, this outcome is fair insofar
as it is as good as random guessing. We impose the maximum round restriction to encapsulate our
budget constraint. For a given (A,R), the cost is A ·R; for collections, the cost follows Equation (8).

6 EMPIRICAL RESULTS

We plot MultiPPI, and the baselines described in Section 5, for a budgets between 0 and 2,000
units of cost. We normalize model costs so that one unit of cost always represents exactly one
query to our most expensive model. For each fixed budget and each method, we estimate the target,
and construct asymptotic 95% confidence intervals C based on Theorem 4.3. We plot (i) coverage,
P(θ∗ ∈ C); (ii) confidence interval width, |C|; and (iii) mean-squared error E[(θ̂ − θ∗)2]. We
report both the confidence interval width and the mean-squared error as a fraction of what classical
sampling achieves (lower is better). In each case, the target is θ∗ = E[X1], and P and E are computed
with respect to the empirical distribution over the dataset observed (we perform 500k random trials
with 250 given labels). Note that these 250 labeled points are evidently enough for all estimators
considered to achieve good coverage (in Section D.2 we also include additional results with 1000
labeled points). We implement the optimization scheme in cvxpy, and use CVXOPT as our choice
of optimizer. NEW

Experiment 1: Chatbot Arena. Results are shown in Figure 1 (top). Observe that different
baselines dominate in different budget regimes. In the low-budget regime, scalar PPI++ with
Flash is the best baseline, while in the large-budget regime, vector PPI++ with both Pro and Flash
is the best baseline. However, we see that MultiPPI improves on all baselines in all regimes.
In the appendix, Figure 5 and Figure 2 plot the λI and nI values learned by MultiPPI across
budget regimes. Note that the learned values tend to the specifications for PPI++ with Flash in the
low-budget regime, and to the specifications for vector PPI++ in the large-budget regime, a finding
that we rigorously prove happens in broader generality in Section E.2. Lastly, note that PPI++
with Pro is suboptimal in all regimes. In other words, PPI++ with Pro is not included in the Pareto
frontier. This is because, for this task, its correlation with the label is the same as that of PPI++
with Flash, yet it is strictly more expensive.

Experiment 2: ProcessBench. Results are shown in Figure 1 (middle). Again, we see that each
baseline has a range of budgets for which it outperforms all other baselines. In particular, the
cheaper models yield better performance when used in PPI++ in the smaller-budget regimes, while
the more-expensive models yield better performance in the higher-budget regimes. In particular,
vector PPI++ Vector, which uses all k−1 models, steadily improves as the budget increases, but only
outperforms the other baselines at the highest budgets. This behavior is explained by Figure 14 in
the appendix, which shows that predictive performance improves for larger thinking budgets. Thus
the more expensive models yield higher correlation with the label and thus yield low-variance rec-
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tifiers; on the other hand, their high cost means that this decrease in rectifier variance is outweighed
by our inability to draw an adequate number of samples from them in the low-budget regimes.

Of note is the fact that the models which think for longer are not in general less biased. This
phenomenon is shown in Figure 17, which shows that thinking for longer is not enough to resolve
the systematic bias present in the autorater. However, the figure also shows that simple debiasing
schemes like PPI resolve this issue. Note that this trend is not reflected in the correlations between
these models and the label, because correlation is invariant to addition of constants.

Finally, MultiPPI improves on all baselines methods in all regimes. Interestingly, Figure 3 and
Figure 4 show that the parameters λI and nI learned by MultiPPI transition from emulating PPI++
with the tiny model (which is the best baseline in the low-budget regime) to emulating a cascaded
version of PPI (see Equation (4)), in which the medium model is used to debias the larger model.

Experiment 3: Biography factuality evaluation. Results are shown in Figure 1 (bottom). Once
again, each baseline is dominant over the others in certain regimes; MultiPPI improves on all base-
lines in all regimes. Of note, however, is the fact that the coverage of all estimators considered, but
MultiPPI and vector PPI++ in particular, degrades slightly in the large-budget regime (i.e., the 95%
CI under-covers by ≈ 1%). We discuss this interesting phenomenon in Section E.4, and find that it
does not occur when the number of labeled samples grows in constant proportion with the budget
(see, for example, our additional results with N = 1000 fully-labeled samples in Section D.2).

In terms of the performance-vs-cost profile that MultiPPI leverages: Figure 15 shows that predictive
performance increases, across many metrics, as the number of agents and number of rounds in-
creases. Note, however, that a marginal increase in number of agents yields a greater increase in ac-
curacy than a marginal increase in number of rounds (this is largely because the pooler is more likely
to report "uncertain" after the end of the first round than after the end of the second; see Figure 16).

7 CONCLUSION

In this work, we introduce Multiple-Prediction-Powered Inference (MultiPPI), a framework for effi-
ciently estimating expectations under budget constraints by optimally leveraging multiple informa-
tion sources of varying costs. MultiPPI formulates the optimal allocation of queries across subsets of
variables as a second-order cone program in the case of a single budget constraints, or a semi-definite
program in the case of multiple—both can be efficiency solved using off-the-shelf tools. We provide
theoretical guarantees, including minimax optimality when covariances are known, and demonstrate
empirically across diverse LLM evaluation tasks that MultiPPI outperforms existing methods. By
adaptively balancing cost and information, MultiPPI achieves lower error for a given budget, au-
tomatically shifting its strategy from cheaper proxies to more expensive, accurate predictors as the
budget increases, thus offering a principled and practical solution for cost-effective inference.

9
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Experiment 1: Chatbot Arena
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Experiment 2: ProcessBench
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Experiment 3: Factuality
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Figure 1: Results by budget for the experiments on Chatbot Arena (a), ProcessBench (b), and Fac-
tuality (c). For each estimator (all baselines and MultiPPI), the left column plots the empirical cov-
erage of the 95% CI, the middle column plots the width of the 95% CI, and the right column plots
the empirical mean-squared error of the point estimate. The fully-labeled sample size N is 250.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a detailed specification of the algorithm in Section C. We also
include implementation details in Section I, and address computational considerations in Section G.
Finally, all experiments shown in §6 were averaged over 500k trials.
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A ETHICS STATEMENT

This paper describes fundamental research on techniques for constructing statistically efficient esti-
mates of a target metric by optimally allocating resources across multiple types of proxy measure-
ments. The primary intended use case which is analyzed in this work is the evaluation of generative
AI systems, for which reliable evaluation is a core technical challenge. Efficient and precise esti-
mates of model performance can help make AI systems easier to build, deploy, and monitor. We do
not speculate about broader impacts that may follow from this technical contribution. Gemini was
used for light copy-editing during the writing of this work.

B GENERALIZATION TO MULTIPLE BUDGET INEQUALITIES

We recall some notation. Fix a set I of index subsets I ⊆ [k]. For each I ∈ I, let cI =

(c
(1)
I , . . . , c

(m)
I ) ∈ Rm

≥0 denote the vector-valued cost of querying the collection of models indexed
by I . Similarly, for each I ∈ I, we let nI ≥ 0 be an integer denoting the number of times that the
collection of models indexed by I is queried. We let n = (nI)I∈I refer to the associated allocation.

For a vector-valued budget B ∈ Rm
≥0, we say that the allocation n satisfies the budget B, and write

B(n,B), if ∑
I∈I

nIc
(1)
I ≤ B(1), . . . ,

∑
I∈I

nIc
(m)
I ≤ B(m),

or more succinctly, ∑
I∈I

nIcI ≤ B.

Similarly, for each I ∈ I, we let λI ∈ R|I|, and denote by λ = (λI)I∈I their collection. Let

θ̂n,λ =
∑

I∈I:nI>0

1

nI

nI∑
j=1

λ⊤
I X

(I,j)
I

where X(I,j) denote independent copies of X for every I ∈ I and 1 ≤ j ≤ nI . We say that the
unbiased condition holds for n, λ, and write U, if Eθ̂n,λ = a⊤EX for every distribution of finite
second-moment on X .

Note that the variance of θ̂n,λ depends only upon Σ = Cov(X). Thus we let

θ̂MultiPPI(Σ) := θ̂n,λ where n, λ are chosen so that the resulting estimator
has minimal variance under Σ such that B and U hold.

C DETAILED SPECIFICATION OF THE ALGORITHM

In this section, we outline the procedure used in all experiments in greater detail. First, we describe
the algorithm for the case of a single budget inequality, for which a more-efficient procedure exists;
second, we describe the general case, in which the procedure reduces to a semi-definite program
(SDP). We first suppose that Σ is known, and later explain the procedure in the case that it must be
estimated from data.

C.1 THE CASE OF A SINGLE BUDGET INEQUALITY, KNOWN Σ

We suppose that there is a random vector X ∈ Rk with known covariance Σ, and our goal is to
estimate θ∗ = a⊤EX for some fixed a ∈ Rk. There is some fixed collection I of index subsets
I ⊂ {1, . . . , k} such that we may sample XI := (Xi)i∈I . We may sample XI a maximum of nI

times, subject to the constraint that
∑

I∈I cInI ≤ B for some cI ≥ 0 and B > 0.

Step 1: Solve the SOCP

sup
y∈Rk

a⊤y s.t.
∧
I∈I

{
y⊤I ΣIyI ≤ c−1

I

}
and obtain the solution y⋆I and the multipliers α⋆

I ≥ 0 for each I ∈ I.
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Step 2: Set

λ⋆
I = 2α⋆

IΣ
−1
I y⋆I

n⋆
I =

⌊(
B

cI

) √
cI(λ⋆

I)
⊤ΣIλ⋆

I∑
J∈I

√
cJ(λ⋆

I)
⊤ΣJλ⋆

J

⌋
for each I ∈ I.

Step 3: For each I ∈ I, independently sample XI n⋆
I times, and compute the sample mean

λ⋆
I ·XI . Return

θ̂MultiPPI(Σ) =
∑
I∈I

λ⋆
I ·XI

with (1− α)-confidence intervals given by

C = θ̂MultiPPI(Σ) ± z1−α/2

√∑
I∈I

1

n⋆
I

σ̂2
λ⋆
I ·XI

where σ̂2
λ⋆
I ·XI

denotes the sample variance of λ⋆
I ·XI , and zp denotes the pth quantile of the standard

normal distribution.

C.2 THE CASE OF MULTIPLE BUDGET INEQUALITIES, KNOWN Σ

We again suppose that there is a random vector X ∈ Rk with known covariance Σ, and our goal
is to estimate θ∗ = a⊤EX for some fixed a ∈ Rk. We may now sample XI a maximum of nI

times, subject to the constraints that
∑

I∈I c
(ℓ)
I nI ≤ B(ℓ) for some c

(ℓ)
I ≥ 0 and B(ℓ) > 0, with

1 ≤ ℓ ≤ m.

Step 1: Solve the SDP

sup
t∈R

t s.t.
(∑

I∈I nIP
⊤
I Σ−1

I PI a
a⊤ t

)
⪰ 0,

nI ≥ 0 ∀I ∈ I∑
I∈I

c
(ℓ)
I nI ≤ B(ℓ) ∀ℓ ≤ m

for real valued nI , and obtain solutions n⋆
I,frac.

Step 2: Set

n⋆
I =

⌊
n⋆
I,frac

⌋
λ⋆
I = n⋆

IΣ
−1
I PI

(∑
I∈I

n⋆
IP

⊤
I Σ−1

I PI

)†

a

for all I ∈ I.

Step 3: As in the previous section, for each I ∈ I, independently sample XI n⋆
I times, and

compute the sample mean λ⋆
I ·XI . Return

θ̂MultiPPI(Σ) =
∑
I∈I

λ⋆
I ·XI

with (1− α)-confidence intervals given by

C = θ̂MultiPPI(Σ) ± z1−α/2

√∑
I∈I

1

n⋆
I

σ̂2
λ⋆
I ·XI

where σ̂2
λ⋆
I ·XI

denotes the sample variance of λ⋆
I ·XI , and zp denotes the pth quantile of the standard

normal distribution.
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C.3 THE CASE OF UNKNOWN Σ

In general, the approach is to construct an estimate Σ̂ of Σ from data, and use this estimate for Σ in
the steps outlined above. In principle, it is possible to recycle the data used to construct Σ̂ in step
3 of the above procedures; this preserves asymptotic normality as a consequence of ??. Below, we
detail one approach to doing this—the approach used in our experiments, and the approach outlined
in Section 4.2.

Suppose that a = (1, 0, . . . , 0), and we have some hard limit N on the number of samples available
from X1. This typically represents a “gold” label which is invaluable in some sense. We also sup-
pose that these labeled samples are fully labeled—that is, that the entire vector X = (X1, . . . , Xk)
is visible in each case—or alternatively, that N is small enough that they are relatively inexpensive
to obtain model predictions for.

Step 1: Construct the empirical covariance matrix Σ̂ from the N fully-labeled samples.

Step 2: Take I to be all subsets of models—that is, all subsets of {2, . . . , k}—together with the
set of all indices {1, . . . , k}. Formally, I = {{1, . . . , k}} ∪ 2{2,...,k}.

Step 3: Run § C.2 with any existing budget constraints, together with the constraint that
n{1,...,k} ≤ N , and obtain allocations n⋆

I , λ
∗
I .

Step 4: Sample accordingly, with the guarantee that the number of fully labeled samples X{1,...,k}
queried won’t exceed the number available, N . These samples from step 1 may be reused for this.

Step 5: Return the resulting estimator, as described in § C.2.
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D ADDITIONAL EXPERIMENTS

D.1 LEARNED ALLOCATIONS AND LINEAR PARAMETERS

Figure 2: Proportion of budget allocated to different models in Experiment 1: ChatBot Arena. Gem-
ini 2.5 Flash, the cheapest model, is most sampled in the low-budget regime, while the proportion
of budget allocated to the joint (both models combined) increases monotonically with budget.

Figure 3: Proportion of budget allocated to different models in Experiment 2: ProcessBench. Tiny
(125 word thinking budget) is most sampled in the low-budget regime, while the proportion of
budget allocated to the joint (all models combined) increases monotonically with budget.

Figure 4: Linear parameters λI learned across budget regimes in Experiment 2: ProcessBench.
While only the tiny model (125 word thinking budget) has a nonzero linear parameter in the low-
budget regime, a cascading behavior is learned in the large-budget regime: the cheaper models are
prescribed the opposite sign from the more-expensive models in the joint term.
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Figure 5: Linear parameters λI learned across budget regimes in Experiment 1: ChatBot Arena.
While only Gemini 2.5 Pro has a nonzero linear parameter in the low-budget regime, a cascading
behavior is learned in the large-budget regime: the cheaper model (Gemini 2.5 Flash) is prescribed
the opposite sign from the more-expensive model (Gemini 2.5 Pro) in the joint term.

D.2 MULTIPPI WITH A LARGER NUMBER OF LABELED SAMPLES
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Figure 6: Results by budget, Experiment 2: Chatbot Arena. 1,000 labeled samples are provided.
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Figure 7: Results by budget, Experiment 2: ProcessBench. 1,000 labeled samples are provided.

0 0.5 1 1.5 2

·104

90%

92%

94%

96%

98%

100%

Budget

Coverage

0 0.5 1 1.5 2

·104

75%

80%

85%

90%

Budget

Mean-squared CI width (frac. of classical)

0 0.5 1 1.5 2

·104

75%

80%

85%

90%

Budget

Mean-squared Error (frac. of classical)

MultiPPI
PPI++ Vector
PPI++ Scalar 1 agent, 1 round
PPI++ Scalar 2 agents, 1 round
PPI++ Scalar 3 agents, 1 round
PPI++ Scalar 1 agent, 2 rounds
PPI++ Scalar 2 agents, 2 rounds
PPI++ Scalar 3 agents, 2 rounds

Figure 8: Results by budget, Experiment 3: Factuality. 1,000 labeled samples are provided.
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Experiment 1: Chatbot Arena
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Experiment 2: ProcessBench
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Experiment 3: Factuality
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Figure 9: Results given only N = 10 labeled examples. Results are shown by budget for the
experiments on Chatbot Arena (a), ProcessBench (b), and Factuality (c). For each estimator (all
baselines and MultiPPI), the left column plots the empirical coverage of the 95% CI, the middle
column plots the width of the 95% CI, and the right column plots the empirical mean-squared error
of the point estimate.

D.3 MULTIPPI BY VARYING NUMBER OF LABELED SAMPLES

In this section, we compare results of MultiPPI for number of fully-labeled samples between N =
10 and N = 200. MultiPPI continues to achieve smaller MSE than all baselines in all settings
considered. This is shown for the case N = 10 in Figure 9. In Figure 10, we plot the performance
of MultiPPI over varying number of fully-labeled samples.

Even for N = 10, we find that MultiPPI improves on all baselines in MSE. It is important to note
that, for all methods, including the baselines, the coverage is significantly below 95% due to the
small sample size. Nevertheless, even in this extreme setting, MultiPPI performs best in MSE.

D.4 THE IMPACT OF SHRINKAGE COVARIANCE ESTIMATION

In this section, we discuss the impact of shrinkage covariance estimation on MultiPPI. We provide
finite-sample bounds on the induced performance, and empirical results.

For more general results on sensitivity to mis-specification, please refer to Theorem 4.4.
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Experiment 1: Chatbot Arena

Experiment 2: ProcessBench

Experiment 3: Factuality

Figure 10: MultiPPI with varying number of fully labeled examples.

In Figure 11, we compare performance of MultiPPI with covariance estimation via (a) the empirical
covariance matrix, and (b) the Ledoit-Wolf estimated covariance matrix. The following theorem
provides finite-sample bounds for the latter.

Theorem D.1 (Finite-sample bounds specialized to Ledoit-Wolf shrinkage). Let Σ̂LW
N denote the

Ledoit-Wolf shrinkage estimator of Σ based on N samples. Let γmin denote the minimum eigenvalue
of Σ, and suppose that X ∈ Rk is sub-Gaussian with proxy K. Lastly, suppose that Σ is not a
multiple of the identity. Then for absolute constants c1, c2, we have

E
[(

θ̂MultiPPI(Σ̂) − θ∗
)2]

≤ VB +
4σ2

classical

γmin

1√
N

√
c1K4γ2

maxk
2 + c2K8γmaxk3/a2

where a2 := 1
k

∥∥∥Σ− I · tr(Σ)
k

∥∥∥2
F

.

For a proof of this fact, see Section D.6.

D.5 SCALABILITY AND COMPUTATIONAL TRACTABILITY OF THE ESTIMATOR

SOCPs and SDPs are known to run in polynomial time in the number of contraints, which is, in our
formulation, |I|. In the preceding sections we have made the choice I = 2{1,...,k}, but we show
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Experiment 1: ChatBot Arena
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Experiment 2: ProcessBench
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Experiment 3: Factuality
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Figure 11: Comparison of results with different techniques for covariance estimation, for N = 50.
We find that Ledoit-Wolf shrinkage covariance estimation yields best performance in all regimes.
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Experiment 1: ChatBot Arena
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Experiment 2: ProcessBench
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Experiment 3: Factuality
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Figure 12: Comparison of MultiPPI for I = 2{1,...,k} (default settings) with MultiPPI (Restricted),
as defined in Section D.5.

in this section that we may recover much of the same performance with a choice of I ⊆ 2{1,...,k}

which grows only linearly in k. Specifically, we take I = {{1, . . . , k}, {2, . . . , k}, {2}, . . . , {k}},
which corresponds to including terms for each model individually, as well as for their joint. We
label the version of MultiPPI induced by this choice “MultiPPI (Restricted).” Figure 12 shows that
the results of this method are very comparable to those of standard MultiPPI, in which we take I to
be the collection of all subsets of {1, . . . , k}.

D.6 PROOFS OF ADDITIONAL THEORETICAL RESULTS

Proof of Theorem D.1. The result follows immediate from Theorem E.1 after the following lemma.

Lemma D.2. Suppose that Σ is not a multiple of the identity, and that X ∈ Rk is sub-Gaussian with
proxy K. Let γmax denote the maximum eigenvalue of Σ. Then the Ledoit-Wolf shrinkage estimator
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Σ̂LW
N satisfies the bound

E∥Σ̂LW
N − Σ∥op ≤ 1√

N

√
c1K4γ2

maxk
2 + c2K8γmaxk3/a2

where a2 := 1
k

∥∥∥Σ− I · tr(Σ)
k

∥∥∥2
F

.

Proof. Let Σ̂N denote the empirical covariance matrix. Recall that by definition

Σ̂LW
N = (1− δ̂)Σ̂N + δ̂m̂I

where m̂ = tr(Σ̂N )/k, and δ̂ = b̂2/d̂2; we have b2 = E∥Σ̂N −Σ∥2F /k and d2 = a2 + b2, and b̂ and
d̂ are such that b̂ → b and d̂ → d in quartic mean. Our strategy will be to employ the observation
that

∥Σ̂LW
N − Σ∥2F = ∥(1− δ̂)(Σ̂N − Σ) + δ̂(Σ−mI)∥2F

≤
(
|1− δ̂|∥Σ̂N − Σ∥F + |δ̂|∥Σ−mI∥F

)2
≤ 6∥Σ̂N − Σ∥2F + 4δ̂2∥Σ−mI∥2F

using the coarse bounds that |1− δ̂| ≤ 1, |δ̂| ≤ 1 and (u+ v)2 ≤ 2u2 + 2v2. It therefore suffices to
bound E∥Σ̂N − Σ∥2F and Eδ̂2.

Since X is sub-Gaussian with proxy K, Σ̂N satisfies

E∥Σ̂N − Σ∥2F ≲
K4

N
γmax(k

2 + k)

by Wainwright (2019). This provides a bound on b2; the estimator b̂ is (after truncation) a average
of N i.i.d. quartic functionals of X of the form ∥XX⊤ − Σ̂N∥2F /k, each of which have finite
second-moment bounded by cK8γ4

maxk
2 by the sub-Gaussian assumption. We conclude that we

may bound

Eb̂2 ≲
K4

N
γmaxk

We proceed by cases to bound Eδ̂2. On the event {d̂2 > a2/2}, we have δ̂ ≤ 2b̂2/a2, so it will
suffices to bound the probability that {d̂2 ≤ a2/2}. Since d̂2 is again an average of N i.i.d. quartics
in X , each of which have second moment bounded by cK8γ4

maxk
2, we have

E(d̂2 − d2)2 ≲
K8

N
γ4
maxp

2

We conclude that by Chebyshev’s inequality, we have

P(d̂2 ≤ a2/2) ≤ c′′
K8

a4N
γ4
maxp

2

Lastly, since 0 ≤ δ̂ ≤ 1 (since b̂ is truncated by d̂), we conclude that in all cases

δ̂2 ≤ δ̂ ≤ 2b̂2

a2
+ 1{d̂2≤a2/2}

and so

Eδ̂2 ≤ 2

a2
Eb̂2 + P(d̂2 ≤ a2/2) ≤ 1

N

(
c′′′K4γ2

max

k

a2
+ c′′′′K8γ4

max

k2

a4

)
Taken together, we have shown that

E∥Σ̂LW
N − Σ∥2F ≤ 1

N

[
c1K

4γ2
maxk

2 + c2K
8γ4

max

k3

a2

]
as desired.

D.7 AUTORATER ACCURACY SCALING
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Figure 13: Performance at determination of process error vs. word budget. This is calculated via
the procedure described in Appendix I. The majority of the improvement observed due to thinking
occurs once 500 words of thought is reached, and plateaus around 1,000 words of thought.

Figure 14: Performance at determination of process error vs. word budget. This is calculated via
the procedure described in Appendix I. The majority of the improvement observed due to thinking
occurs once 500 words of thought is reached, and plateaus around 1,000 words of thought.

Figure 15: Performance at factuality evaluation with increasing number of agents and rounds of
debate. Soft accuracy awards half a point to reporting an uncertain answer, while hard accuracy
awards nothing.
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Figure 16: Proportion of uncertain predictions by number of agents and rounds of debate. An in-
creased number of agents leads to fewer uncertain predictions, and almost all predictions are certain
by the end of the second round of debate.

Figure 17: Different schemes for evaluation with autoraters on the ProcessBench dataset. Gray: clas-
sical sampling—no autoraters. Orange: pure autoraters, in decreasing order of thinking budget—
note that the bias is increasingly pronounced with thinking budget. Green: various schemes for
debiasing autoraters, including MultiPPI (top).
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E ADDITIONAL THEORETICAL RESULTS

E.1 FINITE-SAMPLE BOUNDS

We consider the setting of Appendix B, in which we may have several budget constraints. For the
time being, we fix a = (1, 0, . . . , 0) as in all experiments. Let I0 ∈ I contain 1. A procedure
which is similar to classical sampling is the following: Consider the choice n0, λ0 defined such
that n0

I = 0 if I ̸= I0, and let n0
I0 be the maximal choice afforded by the budget (i.e. n0

I0 =

max1≤ℓ≤m

⌊
B(ℓ)/c

(ℓ)
I0

⌋
). Then setting λ0

I = 0 if I ̸= I0, and λ0
I0 to be a restricted to I0, we

recover the classical estimator

1

n0
I0

n0
I0∑

j=1

X
(j)
1

which has MSE σ2
1/n

0
I0 , where σ2

1 = Σ11. We let σ2
classical := σ2

1/n
0
I0 denote this quantity.

We will compare θ̂MultiPPI to this in finite samples. Let Σ̂N denote the empirical covariance matrix
constructed from N i.i.d. samples from P , and let n̂, λ̂ denote the solution to MultiAllocate(Σ̂N ),
i.e. the minimizer of

R̂N (n, λ) =
∑

I∈I:nI>0

1

nI
λ⊤
I Σ̂NλI

such that U and B hold. On the other hand, let n∗, λ∗ denote the solution to MultiAllocate(Σ), i.e.
the minimizer of

R(n, λ) =
∑

I∈I:nI>0

1

nI
λ⊤
I ΣλI

such that U and B hold. In this section, we bound

R(n̂, λ̂)−R(n∗, λ∗).

Theorem E.1. Let γmin denote the minimal eigenvalue of Σ, and δ = ∥Σ − Σ̂N∥op. Then for all
δ ≤ γmin/2,

R(n̂, λ̂) ≤ R(n∗, λ∗) + 4
δ

γmin
· σ2

classical

Corollary E.2. Suppose that Xi ∈ [0, 1] almost surely. Then with high probability,

R(n̂, λ̂) ≤ R(n∗, λ∗) + c

(
γ
1/2
max

γmin

√
k log k

N
+

1

γmin

k log k

N

)
σ2
classical

for a universal constant c, and so

ER(n̂, λ̂) ≤ R(n∗, λ∗) + c′

(
γ
1/2
max

γmin

√
k

N
+

1

γmin

k

N

)
σ2
classical

for another constant c′, where the expectation is taken over the N labeled samples used to construct
Σ̂N .
Corollary E.3. Suppose that X is a subgaussian with variance proxy K. Then

ER(n̂, λ̂) ≤ R(n∗, λ∗) + c′K2

(√
k

N
+

k

N

)
σ2
classical

In the AR(1) model, and with bounded observations, choosing N ≫ k in the limit k,N → ∞ is
enough that ER(n̂, λ̂) → R(n∗, λ∗). This follows as a special case of the following result.
Corollary E.4. Suppose, in addition to the conditions of ??, that X1, X2, . . . is a stochastic process
such that VarXt > c for all t, and Corr(Xt, Xs) ≤ (1− ρ)ρ|t−s| for some 0 < c, ρ < 1. Then we
have

ER(n̂, λ̂) = R(n, λ) + o(1)

whenever k/N = o(1).
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E.2 BEHAVIOR OF THE ESTIMATOR IN THE LIMITING REGIMES

In this section, we explain a certain limiting behavior of the estimator in the regime of very low
budget. Let X = (X1, . . . , Xk) be a random vector of bounded second moment. We take a =
(1, 0, . . . , 0), so that our target is E[X1]. We consider the setting (as is the case in all experiments)
in which I = {1, . . . , k} ∪ Imodels, where for each I ∈ Imodels we have 1 ̸∈ I .

As in the experiments, we consider the budget model in which we have a fixed number of

For I ∈ Imodels, ρI denote the multiple correlation coefficient of XI with X1; that is, let ρI =
Cov⊤I Σ

−1
I CovI , where we define CovI := (Cov(Xi, X1))i∈I . The following result shows that, in

the low-budget regime, MultiAllocate(Σ) returns nI such that the only I ∈ Imodels for which nI ̸= 0
is the one which minimizes the correlation/cost ratio ρI/cI .

Theorem E.5. Fix B > 0 and consider the limit as n[k] → ∞. For each I ∈ I, let αI := ρI/cI .
Suppose that I∗ uniquely minimizes αI over I ∈ Imodels. Then the solution to MultiAllocate(Σ)
satisfies

nI −→ B

cI
·
{
1 I = I∗

0 I ̸= I∗

E.3 ROUNDING IN THE LARGE BUDGET REGIME

In this section, we consider the suboptimality of the rounding scheme in the large budget regime.
We consider the general setup in which we optimize

VB(n) = a⊤

(∑
I

nIP
⊤
I Σ−1

I PI

)†

a s.t. nI ≥ 0,
∑
I

cInI ≤ B, supp(a) ⊆
⋃

{I : nI > 0}

We let n∗
frac denote the solution to this problem over all n ∈ R|I|

≥0, and n∗
int denote the solution over

all n ∈ Z|I|
≥0. Let nround denote the component-wise floor of n∗

frac. Here we show that

lim
B→∞

VB(nfrac)

VB(n∗
int)

= 1

This follows from the fact that

VB(n
∗
frac) ≤ VB(n

∗
int) ≤ VB(nround)

and the limit VB(n
∗
frac)/VB(nround) → 1, to be proven next. Consider the difference vector δ =

n∗
frac − nround ∈ [0, 1]|I|. Now observe that there is some ν∗ ∈ R|I|

≥0 such that

BVB(n
∗
frac) = V1(ν

∗)

for all B, and equality holds if we take n∗
frac = Bν∗. In particular, since we must have

⋃
{I :

n∗
frac,I > 0} ⊇ supp(a), we may take the same to hold for ν∗. We therefore have

BVB(nround) = Ba⊤

(
B
∑
I

νIP
⊤
I Σ−1

I PI +
∑
I

δIP
⊤
I Σ−1

I PI

)†

a

= a⊤

(∑
I

νIP
⊤
I Σ−1

I PI +
1

B

∑
I

δIP
⊤
I Σ−1

I PI

)†

a

Now since
⋃
{I : ν∗I > 0} ⊇ supp(a), we may apply continuity of the inverse to conclude that

lim
B→∞

BVB(nround) = a⊤

(∑
I

ν∗IP
⊤
I Σ−1

I PI

)†

a = V1(ν
∗)

and the limit is proven.
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E.4 DECAY OF COVERAGE IN THE LARGE BUDGET REGIME

In this section, we discuss the phenomenon of decaying coverage as B → ∞. Note that this is
not unique to MultiPPI: it can be seen occuring to all baselines we compare to, and is especially
pronounced for PPI++ vector. After discussing the phenomenon, we describe one way to avoid it.

Since, to the best of our knowledge, this phenomenon has not been observed in other works con-
cerning PPI++, we focus our discussion on the PPI++ estimator and explain why it happens in that
setting. Recall from Equation 2 the PPI++ estimator

θ̂PPI++ =
1

n

n∑
i=1

(
Yi − λ̂Xi

)
+

1

N

N∑
j=1

λ̂X̃j

where {(Xi, Yi)}i≤n are i.i.d. according to some joint distribution P, and {X̃j}j≤N are i.i.d. PX .

Angelopoulos et al. (2023b) (as well as many works before, in the context of control variates) pro-
pose a choice of λ̂ which depends on {(Xi, Yi)}i≤n; namely, they let

λ̂ =
N

n+N

Ĉov(X1:n, Y1:n)

V̂ar(X1:n)

where Ĉov(X1:n, Y1:n) and V̂ar(X1:n) are the relevant empirical covariance and variance computed
from {(Xi, Yi)}i≤n. This choice introduces bias in finite samples, and MultiPPI exhibits a similar
behavior, as discussed in §4. In the limit theorems provided in this work, c.f. ??, and in Angelopou-
los et al. (2023b), it is assumed that the number of labeled samples (here, denoted n) tends to infinity.
But this is not the situation presented in our experimental results.

Here we consider the bias of θ̂PPI++ for fixed n as N → ∞. This bias is exactly

bias(θ̂PPI++) :=
∣∣∣E[θ̂PPI++]− E[Y ]

∣∣∣ = ∣∣∣E[λ̂(X1 − X̃1)]
∣∣∣ = N

n+N

∣∣∣∣∣Cov
(
X1,

Ĉov(X1:n, Y1:n)

V̂ar(X1:n)

)∣∣∣∣∣
by independence of λ̂ and X̃1. Now for fixed n, and N → ∞, the right-hand side converges upward
precisely to the covariance of X1 with the sample regression slope of Y onto X , which is not in
general zero. Therefore, the bias will increase but stay bounded as N → ∞, as observed.

Note that this analysis does not apply to the setting in which the ratio N/n is bounded. We find,
accordingly, that this decay is unobserved in our experiments in which the number of labeled samples
is in constant proportion with the budget.
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F PROOFS

Unless explicitly stated otherwise, we prove results for the generalized setup outlined in Section B.

F.1 PROOF OF THEOREM 4.2

For Σ ∈ Rk×k symmetric positive-definite, let PΣ denote the set of distributions on Rk with co-
variance Σ. For a fixed collection of index subsets I with associated costs cI , let ΘB denote the
set of budget satisfying estimators θ̂, i.e. the estimators θ̂ which are measurable functions of nI

independent copies of XI = (Xi)i∈I , for each I ∈ I, such that B(n) holds. We emphasize that we
make no explicit restriction to linear estimators.

Theorem F.1 (Minimax optimality for general budget constraints). We have

inf
θ̂∈ΘB

sup
P∈PΣ

E
[
(θ̂ − θ∗)2

]
= Var

(
θ̂Multi-allocate(Σ)

)
= VB

where the variance is with respect to any distribution P ∈ PΣ.

Proof of Theorem F.1. We first reduce to the case of known and fixed n.

Lemma F.2. Let Θ(n) denote the set of measurable functions θ̂ which are functions of nI indepen-
dent copies of XI , for each I ∈ I. Then if supp(a) ⊆

⋃
{I : nI > 0},

inf
θ̂∈Θ(n)

sup
P∈PΣ

E
[
(θ̂ − θ∗)2

]
= min

λ :U(n,λ)

∑
I:nI>0

1

nI
λ⊤
I ΣIλI ;

otherwise, supP∈PΣ
E
[
(θ̂ − θ∗)2

]
is unbounded for all θ̂ ∈ ΘB .

We now reduce the conjecture to this lemma. Observe that

ΘB =
⋃

n :B(n)

Θ(n)

and so the left hand-side of the conjecture is equal to

inf
n :B(n)

inf
θ̂∈Θ(n)

sup
P∈PΣ

E
[
(θ̂ − θ∗)2

]
= inf

n :B(n)
min

λ :U(n,λ)

∑
I:nI>0

1

nI
λ⊤
I ΣIλI =: Var(θ̂Multi-allocate(Σ))

since U(n, λ) is feasible for λ if and only if supp(a) ⊆
⋃
{I : nI > 0}. It now suffices to prove the

lemma.

Proof of Theorem F.2. The claim that supP∈PΣ
E
[
(θ̂ − θ∗)2

]
is unbounded for all θ̂ ∈ ΘB if

supp(a) ̸⊆
⋃
{I : nI > 0} follows from the observation that if i ∈ supp(a) \

⋃
{I : nI > 0},

there exist distributions P ∈ PΣ such that θ∗i = E[Xi] may be made arbitrary large, while θ̂ cannot
depend on such Xi.

Therefore, in what follows, we assume supp(a) ⊆
⋃
{I : nI > 0}. The upper bound is clear from

that fact that
{θ̂n,λ : U(n, λ)} ⊆ Θ(n)

i.e., the set of unbiased linear estimators depending on n samples is a subset of the set of all esti-
mators depending on n samples; and from the fact that Var(θ̂n,λ) =

∑
I:nI>0

1
nI

λ⊤
I ΣIλI for every

P ∈ PΣ, hence the minimal MSE of such estimators is precisely the right-hand side.

We now prove the lower bound. Since the Bayes risk for any prior µ lower bounds the minimax
risk, it suffices to construct a sequence of priors µ for which the risk of the Bayes estimator tends
upward to our claimed lower bound. Let us choose the distribution X ∼ N (µ,Σ), and supply the
prior µ ∼ N (0, τ2Idk) for τ > 0 arbitrary; we will later take τ → ∞. Note that we then have
XI = PIX ∼ N (PIµ, PIΣP

⊤
I ).
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By construction, any estimator θ̂ ∈ Θ(n) depends on the independent set
⋃

I∈I{X
(j)
I }1≤j≤nI

where
each X

(j)
I is distributed according to N (µI ,ΣI). The posterior4 is then

µ

∣∣∣∣ ⋃
I∈I

{X(j)
I }1≤j≤nI

∼ N (mτ , Sτ )

Sτ =

(
1

τ2
Idk +

∑
I∈I

nIP
⊤
I Σ−1

I PI

)−1

mτ = Sτ

(∑
I

nIP
⊤
I Σ−1

I XI

)

The Bayes risk of estimating θ = a⊤µ is then a⊤Sτa. Letting τ → ∞, we have shown that the
minimax risk is at least5

a⊤Sa, S =

(∑
I∈I

nIP
⊤
I Σ−1

I PI

)†

.

It remains to show that this risk is achievable by the θ̂n,λ for some choice of λ satisfying U(n, λ).
We quickly verify this below:

Putting6

λI =
(
nIΣ

−1
I PI

)
Sa

we see that indeed U(n, λ) holds. Moreover, we calculate

Var(θ̂n,λ) =
∑
I

nIa
⊤SP⊤

I Σ−1
I ΣIΣ

−1
I PISa = a⊤S

( ∑
I:nI>0

nIP
⊤
I Σ−1

I PI

)
Sa = a⊤Sa

as desired. This concludes the proof.

F.2 PROOFS OF FINITE SAMPLE RESULTS

Proof of theorem E.1. We have

R(n̂, λ̂)−R(n∗, λ∗) = R(n̂, λ̂)− R̂N (n̂, λ̂)

+ R̂N (n̂, λ̂)− R̂N (n∗, λ∗)︸ ︷︷ ︸
≤0

+ R̂N (n∗, λ∗)−R(n∗, λ∗)

(9)

and so it suffices to bound |R(n̂, λ̂)− R̂N (n̂, λ̂)| and |R̂N (n∗, λ∗)−R(n∗, λ∗)|. Define

∆N (n, λ) = |R(n, λ)− R̂N (n, λ)|

=

∣∣∣∣∣ ∑
I∈I:nI>0

1

nI
λ⊤
I (Σ− Σ̂N )λI

∣∣∣∣∣
≤ ∥Σ− Σ̂N∥

∑
I∈I:nI>0

1

nI
∥λI∥22

(10)

4Morally, we are done at this point: the posterior mean is linear in (XI)I , and the Multi-PPI estimator is the
best such linear estimator. However, this does not yet directly imply the result. See next page for calculation of
the posterior.

5Here we use the assumption that supp(a) ⊆
⋃
{I : nI > 0}, and thus a lies in the range of∑

I nIP
⊤
I Σ−1

I PI .
6To find this choice organically, one may solve an infimal norm convolution with Lagrange multipliers.
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Now since n0, λ0 satisfies U and B, we have

R(n∗, λ∗) ≤ R(n0, λ0), R̂N (n̂, λ̂) ≤ R̂N (n0, λ0)

from which it follows that

σ2
1/n

0
I0 ≥

∑
I∈I:n∗

I>0

1

n∗
I

(λ∗
I)

⊤Σ(λ∗
I) ≥ γmin(Σ)

∑
I∈I:n∗

I>0

1

n∗
I

∥λ∗
I∥22 (11)

and similarly

σ̂2
1/n

0
I0 ≥

∑
I∈I:n̂I>0

1

n̂I
λ̂⊤
I Σ̂N λ̂I ≥ γmin(Σ̂N )

∑
I∈I:n̂I>0

1

n̂I
∥λ̂I∥22,

where γmin(A) denotes the minimum eigenvalue of the matrix A. We deduce that∑
I∈I:n∗

I>0

1

n∗
I

∥λ∗
I∥22 ≤ Σ11

n0
I0γmin(Σ)∑

I∈I:n̂I>0

1

n̂I
∥λ̂I∥22 ≤ Σ̂N,11

n0
I0(γmin(Σ)− δ)

≤ Σ11 + δ

n0
I0(γmin(Σ)− δ)

by Weyl’s inequality, where we let δ = ∥Σ− Σ̂N∥. Coupled with Equation 10, we have

∆N (n∗, λ∗) ≤ δ
Σ11

n0
I0γmin(Σ)

∆N (n̂, λ̂) ≤ δ
Σ11 + δ

n0
I0(γmin(Σ)− δ)

Taken together with Equation 9 and the definition of ∆N , we conclude that

R(n̂, λ̂) ≤ R(n∗, λ∗) + 4
δ

γmin(Σ)
· σ2

1

n0
I0

for all δ ≤ γmin(Σ)/2.

Proof of Theorem E.2. This follows immediately from the preceding theorem and Corollary 6.20 of
Wainwright (2019).

Proof of Theorem E.3. This follows immediately from the preceding theorem and Theorem 4.7.1 of
Vershynin (2018).

Proof of Theorem E.4. This follows immediately from the Gershgorin circle theorem, as∑
t̸=s Cov(Xt, Xs) ≤

√
Var(Xt)Var(Xs) < c, and so λmin(Σ) is bounded below for all k. On

the other hand, λmax(Σ) is bounded above on account of the same argument and the assumption that
Xi are bounded.

F.3 PROOF OF ??

We prove a generalization of ?? in which we allow for multiple budget inequalities.

Fix a vector B0 ∈ Rm
>0. We consider the limit in which our budget is B = t · B0 and let t → ∞.

Suppose that Σ̂
p→ Σ in the operator norm, potentially dependent on the variables sampled XI .

We assume the following condition: Suppose that the following problem has a unique minimizer ν:

ν⋆ =argminν V (ν) := a⊤

(∑
I

νIP
⊤
I Σ−1

I PI

)†

a

s.t. ν ≥ 0,
∑
I

νIcI ≤ B0, supp(a) ⊆
⋃

{I : νI > 0}
(12)
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Theorem F.3 (Generalized asymptotic normality). Suppose that condition 12 holds. Then we have
√
t
(
θ̂MultiPPI(Σ̂) − θ∗

)
d→ N (0, V (ν∗)).

While θ̂MultiPPI(Σ) is minimax optimal in the setting of fixed and known covariance Σ, it is in
general not efficient, and the variance V can in general be improved by slowly concatenating onto
X nonlinear functions of its components. It may be that such a version of θ̂MultiPPI(Σ), in which
k is increased slowly by adding appropriate nonlinear transformations of the components of X , is
semiparametrically efficient if this is done at such a rate that k ≪ B1/2, N1/2.

Proof of Theorem F.3. Let θ̂ = θ̂MultiPPI(Σ̂). Note that 12 is simply a rounded version of the opti-

mization problem which is solved by θ̂MultiPPI(Σ̂). Let ν̂ denote the solution to 12 with Σ replaced by

Σ̂.

We first show that, as a result of the assumed condition, we have ν̂I → ν∗I whenever Σ̂ → Σ; that
rounded solutions are optimal in the limit t → ∞ is justified by § E.3. Since a lies in the range of∑

I ν
∗
IP

⊤
I Σ−1

I PI , the objective function is continuous in (ν,Σ) at ν∗.

The allocation n̂ and weights λ̂ are chosen to minimize the variance under Σ̂ subject to the budget
B = tB0. Let ν̂I = n̂I/t. As t → ∞, the optimal proportions ν̂ converge to the solution ν∗ of the
continuous optimization problem 12. The convergence ν̂

p−→ ν∗ follows from Σ̂
p−→ Σ and Berge’s

Maximum Theorem, as the objective function is continuous and the feasible set is compact. By the
continuous mapping theorem, we similarly have λ̂I

p→ λ∗
I .

We can write
√
t(θ̂ − θ∗) =

∑
I∈I λ̂⊤

I

√
t
n̂I

WI,n̂I
, where WI,n̂I

= 1√
n̂I

∑n̂I

j=1(X
(I,j)
I − µI). For

indices I with ν∗I > 0, we have n̂I
p−→ ∞. Define n∗

I = ⌊tν∗I ⌋, and let

W ∗
I :=

1√
n∗
I

n∗
I∑

i=1

(X
(I,j)
I − µI)

It is now enough to show that WI,n̂I
−W ∗

I

p→ 0, and this will follow from Kolmogorov’s inequality.
To simplify notation, let us focus on a single subset I , and define Yj = X

(I,j)
I − µI . Let us also

define Sm =
∑m

j=1 Yj . We must show that

Sn̂√
n̂
− Sn∗

√
n∗

p→ 0

where we have dropped dependence on I for convenience. We decompose

Sn̂√
n̂
− Sn∗

√
n∗

=
Sn̂ − Sn∗

√
n∗︸ ︷︷ ︸
A

+
Sn̂√
n̂

(
1−

√
n̂/n∗

)
︸ ︷︷ ︸

B

Fix 0 < δ < 1. We work on the event Eδ(t) = {|n̂− n∗| ≤ δt}, which holds with high probability.

We first control A. On Eδ(t),
√
n∗|A| is a sum of at most δt+ 1 i.i.d. copies of Yj . Kolmogorov’s

inequality then yields

P (A > ϵ) ≤ δt+ 1

ϵ2n∗ ≤ 4
δ

ϵ2

because n∗ = ⌊tν∗⌋. Taking δ → 0 yields that A
p→ 0.

We next control B. Working again on Eδ(t), we have

Sn̂√
n̂
≤ 1√

1− δ

 Sn∗
√
n∗︸ ︷︷ ︸

Op(1)

+
Sn̂ − Sn∗

√
n∗︸ ︷︷ ︸
A


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Recognizing the second term as A
p→ 0, and the first term as tight by the central limit theorem, we

conclude that Sn̂/
√
n̂ is tight. Now we conclude that B

p→ 0 because n̂/n∗ p→ 1.

Having proven WI,n̂I
−W ∗

I

p→ 0, we conclude that

√
t(θ̂ − θ∗) =

∑
I:ν∗

I >0

1

n∗
I

n∗
I∑

j=1

(λ∗
I)

⊤(X
(I,j)
I − µI) + op(1)

But this is precisely the desired result, since this is the solution to the continuous optimization
problem, and we are done.

F.4 PROOFS OF ADDITIONAL THEORETICAL RESULTS

Proof. Note: For the purpose of this proof only, we slightly change notation, letting m denote the
number of labeled samples rather than n. This just has the purpose of clarifying the potential conflict
with the notation nI .

Let us introduce the notation that PI is the orthogonal projection onto coordinates I , and thus P⊤
I λI

shares its values with λI on coordinates I , and is 0 elsewhere. As a result, note that we have required∑
I:nI>0

P⊤
I λI = µ.

Now we aim to minimize
1

m

(
σ2
Y − 2µ⊤ Cov+µ⊤Σµ

)
+
∑

I:nI>0

1

nI
λ⊤
I ΣIλI

or, expanding,

V (n, λ) :=
1

m

σ2
Y − 2

∑
I:nI>0

λ⊤
I CovI +

∑
I,J:nI ,nJ>0

λ⊤
I ΣIJλJ

+
∑

I:nI>0

1

nI
λ⊤
I ΣIλI

We are interested in minimizing V (n, λ) over all λ (by which we mean (λI)I∈I) and n satisfying
the budget constraint

∑
I cInI ≤ C. We will first minimize over λ for fixed n: define U(n) :=

minλ V (n, λ). But

V (n, λ) = λ⊤


(

1
m + 1

nI1

)
ΣI11nI>0 . . . 1

mΣI1Ik1nI1
,nIk

>0

...
. . .

...
1
mΣIkI11nIk

,nI1
>0 . . .

(
1
m + 1

nI1

)
ΣI11nI>0

λ−2λ⊤


1
m CovI1 1nI1

>0

...
1
m CovIk 1nIk

>0

+
σ2
Y

m

is a quadratic form in λ, where we define ΣIJ = (Σij)i∈I,j∈J = PIΣP
⊤
J . This is of the form

V (n, λ) = λ⊤
(

1

m
S1 + S2

)
λ− 2

1

m
λ⊤T + d

where

S1 = (ΣIJ1nI ,nJ>0)I,J∈I , S2 = block_diag

(
1

nI
ΣI1nI>0

)
I∈I

, T = (CovI 1nI>0)I∈I

and d is constant in n, λ. It is known that the minimum value of such a quadratic form is

U(n) = min
λ

V (n, λ) = − 1

m2
T⊤
(

1

m
S1 + S2

)+

T.

This is because T lies in the range of 1
mS1 + S2. To see this, let us introduce the notation that

I+ = {I ∈ I : nI > 0} and let I0 be its complement. Reorder I if necessary so that I+ strictly
precedes I0. Then 1

mS1 + S2 takes the block form

1

m

(
(ΣIJ)I,J∈I+ 0

0 0

)
+

(
block_diag(ΣI/nI)I∈I+ 0

0 0

)
.
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Now, both (ΣIJ)I,J∈I+ and block_diag(ΣI/nI)I∈I+ are symmetric positive-definite, hence
invertible, on the coordinates I+, and T has support in the span of the coordinates I+.

Given the block form shown above, we see that(
1

m
S1 + S2

)+

=

((
1
m (ΣIJ)I,J∈I+ + block_diag(ΣI/nI)I∈I+

)−1
0

0 0

)
again in the coordinates in which I+ precedes I0.

Continuity of the inverse is now enough to conclude that

lim
m→0

m2U(n) = −T⊤block_diag
(
nIΣ

−1
I

)
I∈I T = −

∑
I∈I

nI Cov
⊤
I Σ−1

I CovI =: L(n)

But now this is a linear function L(n) in n. Consider minimizing this in n, subject to the (simplex)
budget constraint nI ≥ 0,

∑
I cInI ≤ C. The minimum is achieved on a vertex of the simplex, and

the minimizer is unique except in the unlikely situation that

Cov⊤I Σ−1
I CovI
cI

= constant in I

assuming that CovI ̸= 0 for some I .

Now we claim that m2U(n) → L(n) uniformly in n subject to the budget constraint. For this, it
suffices to show that(

1

m
(ΣIJ)I,J∈I+ + block_diag(ΣI/nI)I∈I+

)−1

→ block_diag(ΣI/nI)
−1
I∈I+

in the operator norm, uniformly in n. The Woodbury matrix identity implies that the difference is
exactly

block_diag(nIΣ
−1
I )I∈I+(I +mblock_diag(Σ−1

I /nI)I+(ΣIJ)I,J∈I+)−1

Now, we have 0 < nI ≤ C/cI for all I ∈ I+ by the constraint. The operator norm is sub-
multiplicative, and the first factor is bounded in norm by a constant multiple of 1/minI cI . Similarly,
we have

I+mblock_diag(Σ−1
I /nI)I+(ΣIJ)I,J∈I+ ≻ I+

mC

minI cI
block_diag(Σ−1

I )I+(ΣIJ)I,J∈I+

The operator norm of the right-hand side goes to ∞ uniformly in n, so the operator norm of its
inverse goes to 0 uniformly as well. In conclusion, we have uniform convergence. Therefore, we
have

n∗(m) := argminn min
λ

V (n, λ) −−−−→
m→∞

n∗

G COMPUTATIONAL CONSIDERATIONS

Here we show that the Multi-Allocate procedure reduces to a SOCP in the case of a single budget
constraint, and to an SDP in the general case. The proof of Theorem H.1 shows that the minimization
problem over n, λ may be reduced to one only over λ via the Cauchy-Schwartz inequality. This
minimization over λ is the dual of an SOCP, as shown by Theorem H.2, and the KKT conditions
hold. This is

sup
x

a⊤x

where the supremum is taken over all x ∈ Rk such that x⊤
I ΣIxI ≤ c−1

I for all I ∈ I. This SOCP is
simple to implement in the Python package cvxpy.

In the general case, Theorem 4.2 shows that the optimal choice of n is

argminn :B(n) a
⊤

(∑
I∈I

nIP
⊤
I Σ−1

I PI

)†

a
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Let us denote
M(n) =

∑
I∈I

nIP
⊤
I Σ−1

I PI

so that our goal is to solve
min t

subject to the constraints that
a⊤M(n)†a ≥ t

and B(n), which denotes a set of linear constraints on n. But this is equivalent to the SDP

min t

subject to the constraint that (
M(n) a
a⊤ t

)
⪰ 0

and linear constraints on n. Once again, this is straightforward to implement in cvxpy.

H THE DUAL PROBLEM

We briefly recall the setup. Let Σ ∈ Rk×k be SPD, let I denote a collection of index subsets
I ⊆ {1, . . . , k}, and let cI be a positive scalar defined for every I ∈ I. It will be convenient
to define, for every I ∈ I, a vector λI ∈ R|I|. We denote the concatenation of such vectors by
λ ∈ Λ =

∏
I∈I R|I|. We further recall that PI : Rk −→ R|I| is the orthogonal projection onto

the coordinates indexed by I , and set ΣI = PIΣP
⊤
I . We define the norm ∥v∥ΣI

=
√
v⊤ΣIv on

R|I|; this induces the seminorms ∥y∥ΣI
= ∥PIy∥ΣI

on Rk, and ∥λ∥ΣI
= ∥λI∥ΣI

on Λ. Lastly, we
employ

A : Λ → Rk, A(λ) =
∑
I∈I

P⊤
I λI

to enforce the linear (unbiasedness) constraint A(λ) = a, for some fixed a ̸= 0 ∈ Rk.

Our first step will be to show how to alleviate the budget constraint. To do so, we first briefly recall
this constraint. To describe the budget, recall that we define n = (nI)I∈I ∈ Z|I|

≥0, and employ a

budget constraint of the form
∑

I∈I nIcI ≤ B for a fixed B > 0. Denoting c = (cI)I∈I ∈ R|I|
>0,

our budget constraint may be written c⊤n ≤ B. With all of this said, recall that our original problem
of interest is

V (a) = min
n,λ

∑
I∈I:nI>0

1

nI
λ⊤
I ΣIλI s.t.

∑
I∈I:nI>0

P⊤
I λI = a, c⊤n ≤ B (13)

We begin by deriving tractable methods to solve Equation 13. Let us assume for the moment that
n ∈ R|I|

≥0; we will later construct the final budget allocation by rounding. Our first step is to remove
the dependence on n: we show that the above problem is equivalent to the following:

U(a) = min
λ∈Λ

∑
I∈I

√
cI∥λI∥ΣI

s.t. Aλ = a (14)

We next show that this is equivalent to the dual problem

U(a) = sup
y∈Rk

a⊤y s.t.
∧
I∈I

{
∥y∥2ΣI

≤ cI
}

(15)

Finally, this is a second order cone program, and can be solved with off-the-shelf tools. After we
have shown these things, we describe how to convert solutions to Equation 15 into solutions to
Equation 13.
Proposition H.1. The problems described in Equation 13 and Equation 14 yield the same optimum
V = U2/B.
Proposition H.2. The problems described in Equation 14 and Equation 15 yield the same optimum
U .

Proof of theorem H.1. We now begin the proof.
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(2) ≤ (3): Let Aλ = a. Define n by7

nI :=

(
B

cI

) √
cI∥λI∥ΣI∑

J∈I
√
cJ∥λJ∥ΣJ

It is clear that c⊤n = B by construction, and we have

BV (a) ≤
∑

I:nI>0

B

nI
λ⊤
I ΣIλI =

∑
I:λI ̸=0

√
cI∥λI∥ΣI

∑
J

√
cJ∥λJ∥ΣJ

=

(∑
I∈I

√
cI∥λI∥ΣI

)2

(3) ≤ (2): Let n, λ satisfy the constraints of Equation 13. Consider the vectors c1/2 ⊙ n1/2 =

(
√
cInI)I∈I and

(
1nI>0n

−1/2
I ∥λI∥ΣI

)
I∈I

in R|I|. The Cauchy-Schwartz inequality yields that

the product of their squared norms is(∑
I

cInI

)( ∑
I:nI>0

1

nI
∥λI∥2ΣI

)
≥

( ∑
I:nI>0

√
cI∥λI∥ΣI

)2

Now let us define λ̃ by λ̃I = λI if nI > 0, and λ̃I = 0 otherwise. Then we have

Aλ̃ =
∑
I

P⊤
I λ̃I =

∑
I:nI>0

P⊤
I λI = a

by assumption, and

U(a)2 ≤

(∑
I

√
cI∥λ̃I∥ΣI

)2

=

( ∑
I:nI>0

√
cI∥λI∥ΣI

)2

≤ BV (a)

and we are done.

Remark H.3. Note that in general, many nI will be zero.

Proof of theorem H.2. Let ι{a} denote the indicator b 7→
{
0 a = b

∞ a ̸= b
. Then Equation 14 is alter-

natively written
V (a) = min

λ∈Λ
g(λ) + ι{a}(Aλ)

where g(λ) =
∑

I gI(λI) and gI(λI) =
√
cI∥λI∥ΣI

. We now apply the Fenchel duality theorem.
Note that ι∗{a}(y) = a⊤y, and g∗(A⊤y) =

∑
I g

∗
I (P

⊤
I y) =

∑
I ι{∥yI∥ΣI

≤cI} = ι∧
I ∥yI∥2

ΣI
≤cI .

I EXPERIMENTAL DETAILS

Here we detail the experimental setup used. We do so in two parts: first, we explain the details for
generating the model predictions (X2, . . . , Xk) in each experiment; second, we explain the details
for constructing the proposed estimator, θ̂MultiPPI, and the baselines from such predictions.

I.1 GENERATING MODEL PREDICTIONS

I.1.1 EXPERIMENT 1: CHATBOT ARENA

We follow the implementation of Angelopoulos et al. (2025) to request autoratings from Gemini 2.5
Pro and Gemini 2.5 Flash. See section E of Angelopoulos et al. (2025) for implementation details.

7This is defined as long as λJ ̸= 0 for some J ; if this fails then λ = 0 and Aλ = 0 yields a contradiction.
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Model collection Cost
Gemini 2.5 Pro $1.25

Gemini 2.5 Flash $0.30
Both $1.55

Table 1: Cost structure for experiment 1.

Gemini 2.5 Pro: [Thinking…]

Gemini 2.5 Pro: So, the answer is: \boxed{correct}.

In the following, you will see a math problem and an attempted solution. There may or may not be an error in 
the attempted solution. Your task is to review the attempted solution and decide whether or not it is correct. 
Report your answer as "correct" or "incorrect" in \boxed{}.
Problem: 

Find the smallest number $n$ such that there exist polynomials $f_{1}, f_{2}, \ldots, f_{n}$ with rational 
coefficients satisfying
$$
x^{2}+7=f_{1}(x)^{2}+f_{2}(x)^{2}+\cdots+f_{n}(x)^{2} .
$$

Attempted solution: 

To find the smallest number \\( n \\), we start by considering the given equation: \\( x^2 + 7 = f_1(x)^2 + 
f_2(x)^2 + \\cdots + f_n(x)^2 \\). Notice that \\( x^2 + 7 \\) is always greater than or equal to 7 for any real 
value of \\( x \\).
[…]
Therefore, the smallest number \\( n \\) is \\(\\boxed{4}\\).

Now decide whether or not the attempted solution is correct. Be sure to report your answer as "correct" or 
"incorrect" in \boxed{}. For example, if you believe that the attempted solution is correct, then you should 
respond "\boxed{correct}"; if you believe that the attempted solution is incorrect, then you should respond 
"\boxed{incorrect}". You must respond in exactly this format and include no other text in your response. If 
you include any additional text in your response, you will be disqualified.

— after B words of thought have been produced —

Figure 18: Prompt used to generate autoratings for Experiment 2.

I.1.2 EXPERIMENT 2: PROCESSBENCH

We evaluate our method on 500 samples from the OlympiadBench subset of the ProcessBench
dataset (Zheng et al., 2024). Binary labels are determined according to whether or not a process
error occurred in the given (problem, attempted solution) pair.

To generate autoratings, we use Gemini 2.5 Pro and truncate its reasoning process at various check-
points. Specifically, using the prompt shown in Figure 18, we instruct the model to think for up to
3,000 tokens but interrupt it and demand an answer after B words of thought have been produced,
for B ∈ {125, 250, 375, 500}, as described in §5. To elicit a definite judgement at each checkpoint,
we provide “So, the answer is:” as the assistant and attempt to extract an answer from the subsequent
20 tokens of output with our template.

I.1.3 EXPERIMENT 3: BIOGRAPHY FACTUALITY

We consider evaluating the factuality of a set of biographies generated by Gemini 2.5 Pro. We repli-
cate the setting of Du et al. (2023): Gemini 2.5 Pro is asked to generate biographies for 524 computer
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scientists, and we evaluate the factual consistency of such biographies with a set of grounding facts
collected by Du et al. (2023).

More specifically, for every person p ∈ P , we associate a Gemini-generated biography bp and a set
of collected grounding facts Fp = {fp

1 , . . . , f
p
mp

} about the person. Following Du et al. (2023), we
estimate the proportion of factually consistent pairs (bp, fp

i ) of generated biographies bp with each
of the collected grounding facts fp

i . Concretely, given the set of all pairs

S = {(bp, fp) : p ∈ P, fp ∈ Fp}

we target the proportion of factually consistent pairs

#{(b, f) ∈ S : (b, f) is factually consistent}
#S

We determine the factual consistency, or lack thereof, of a pair (b, f) by majority voting over 5
independent judgments from Gemini 2.5 Pro with thinking. Du et al. (2023) found that judgments
by ChatGPT achieved over 95% agreement with human labelers on a set of 100 samples. This level
of agreement is evidently not achieved by certain cheaper models, as we proceed to demonstrate
experimentally. In Figure 15, we explore using Gemini 2.0 Flash Lite as an autorater for evaluating
the factuality consistency of pairs (b, f) ∈ S.

To elicit better autoratings from queries to Gemini 2.0 Flash Lite, we bootstrap performance via
multi-round debate. For a fixed number of agents A ∈ {1, . . . , 5}, and a fixed number of maximum
rounds R ∈ {1, 2}, we perform the following procedure:

1. A instances of Flash Lite are independently prompted to consider the factual consistency
of pairs (b, f) ∈ S, and provide an explanation for their reasoning.

2. A “pooler” instance of Flash Lite is then asked to review the pair (b, f) and the responses
generated by each of the A other instances, and output a judgment in the form of a single
word: yes, no, or uncertain.
(a) If the pooler outputs “yes” or “no,” the judgment is final.
(b) If the pooler outputs “uncertain” and the number of maximum rounds R has not yet

been reached, the A instances of Flash Lite are independently shown their prior re-
sponses, and the prior responses of each other, and prompted to continue reasoning
given this additional information. This procedure continues until either the pooler no
longer reports “uncertain,” or the maximum number of rounds R has been reached.

(c) If the pooler outputs “uncertain” and the maximum number of rounds R has been
reached, a fair coin is flipped and “yes” or “no” are reported with equal probability.

Since the dataset is balanced, the outcome described in (c) is fair insofar as it is as good as random
guessing. We impose the maximum round restriction to encapsulate our budget constraint. To reduce
randomness, we generate all autoratings twice, so that the resulting dataset has an effective size of
1048.

Target: Proportion of factually-consistent pairs, #{(b, f) ∈ S : (b, f) is factually consistent}/#S
Model family: {The output of the above procedure given (A,R) : A ∈ {1, . . . , 5}, R ∈ {1, 2}}
Cost structure: For a given (A,R), the cost is A ·R. For collections of models, the cost is additive.

I.2 CONSTRUCTING THE MULTIPPI ESTIMATOR

For the results shown in §6, we draw 250 fully-labeled samples from each dataset above. We then
follow the procedure described in §C.3 for N = 250, using the empirical distribution over each
dataset as our source of randomness. In § D.2, we replicate the study over a range of values of N .
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Figure 19: Depiction of biography-fact pairs (b, f) as in Experiment 3. Judgements about factual
consistency of (b, f) are made by a language model.
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