# MULTIPLE-PREDICTION-POWERED INFERENCE

### **Anonymous authors**

Paper under double-blind review

#### **ABSTRACT**

A core challenge in modern AI model development is obtaining high-quality evaluation metrics in a cost-effective way. Such evaluation often involves tradeoffs between expensive, high-quality measurements and a variety of lower-quality proxies. We introduce Multiple-Prediction-Powered Inference (MultiPPI), a general framework for constructing statistically efficient estimates by optimally allocating resources across these diverse data sources. We provide theoretical guarantees about the minimax optimality, finite-sample performance, and asymptotic normality of the MultiPPI estimator. Through experiments across three diverse large language model (LLM) evaluation scenarios, we show that MultiPPI consistently achieves lower estimation error than existing baselines. This advantage stems from its budget-adaptive allocation strategy, which strategically combines subsets of models by learning their complex cost and correlation structures.

## 1 Introduction

Efficiently estimating expectations of random variables under a fixed budget is a fundamental problem in many scientific settings. This paper focuses on the common scenario of choosing between a high-quality, but expensive, measurement process and various cheaper, but lower-quality, proxies. We are specifically motivated by the challenge presented by AI model evaluation, which is a critical, but often resource-intensive, step in model development and maintenance.

More concretely, in the AI model evaluation setting, a variable  $X_1$  might represent a high-quality but expensive metric computed for every model response to an input query, such as a score from a human annotator or a powerful proprietary model used as an "autorater". The remaining variables,  $X_2,\ldots,X_k$ , might represent cheaper evaluation options (e.g., scores from smaller autoraters or rule-based systems), which can be viewed as covariates or proxies for the true score. Given the option to obtain samples of  $X_1,\ldots,X_k$  (either jointly or independently), the primary objective is often to then estimate the mean of the high-quality score,  $\mathbb{E}[X_1]$ . In other cases, we may be interested in the mean difference between two scores, say,  $\mathbb{E}[X_1-X_2]$ . The core difficulty in each case is in determining *which* of these variables to query, how *many times* to query them, and then finally how to *combine* them together to produce a statistically efficient, consistent estimate of the ground truth.

To formalize this, let  $X:=(X_1,\ldots,X_k)$  be a set of random variables with finite variance. We then consider the general problem of efficiently estimating any linear function of the mean of X subject to a total observation budget B. That is, for some  $a\in\mathbb{R}^k$ , we want to estimate  $\theta^*=a^\top\mathbb{E}[X]$  while spending no more than a total budget B on collecting subsets of joint random variables  $X_I=\{X_i\}_{i\in I}$  at cost  $c_I$  for index subsets  $I\subseteq\{1,\ldots,k\}$ . More precisely, if  $n_I$  is the number of times the subset  $X_I$  is observed, we require that the  $n_I$  satisfy a system of linear budget constraints of the form  $\sum_I c_I n_I \leq B$ , where the sum is over all such collected subsets I.

Estimating linear functions of  $\mathbb{E}[X]$  allows for flexibility in how  $\theta^*$  is defined. Given the AI evaluation setting above, for example, measuring  $\mathbb{E}[X_1]$  corresponds to  $a=(1,0,\ldots,0)$ , while measuring  $\mathbb{E}[X_1-X_2]$  corresponds to  $a=(1,-1,0,\ldots,0)$ . The flexibility to observe subsets of X also introduces a key trade-off that is unique with respect to previous related approaches to estimation. As we will show, observing variables jointly can be advantageous by reducing overall estimation variance. This benefit, however, must be weighed against the data acquisition costs,  $c_I$ . We make no assumptions about the structure of these costs (e.g., they may be non-additive over the components in I). For instance, in our AI evaluation setting, obtaining predictions from multiple autoraters can often be parallelized, so the cost of multiple predictions (in latency) is not significantly more than that of

the single slowest one. This is not always true; in medical diagnostics, for example, ordering many tests may become too taxing for a patient, and therefore undesireable or impossible to do jointly.

To solve this cost-optimal, multi-variate estimation problem, we introduce the Multiple-Prediction-Powered Inference (MultiPPI) estimator, which is a cost-aware generalization of the Efficient Prediction-Powered Inference (PPI++) estimator of Angelopoulos et al. (2023b). The MultiPPI estimator constructs a low-variance, consistent estimate of  $\theta^*$  by combining observations from judiciously chosen subsets of X. The core of our method is an optimization procedure that jointly determines the number of samples  $n_I$  to draw from each subset I and the corresponding linear weights  $\lambda_I$  used to form the final estimate. We demonstrate that this allocation problem can be formulated as a second-order cone program (SOCP) for a single budget constraint, and a semidefinite program (SDP) for multiple budget constraints, and thus solved efficiently using standard techniques.

Theoretically, we show that the MultiPPI estimator is minimax optimal when the joint covariance matrix,  $\Sigma = \operatorname{Cov}(X)$ , is known. For the typical case where it is unknown, however, we provide a framework for integrating an initial estimation phase where an approximation of the required covariance matrix,  $\widehat{\Sigma}$ , can be derived from either a small "burn-in" sample or a pre-existing labeled "transfer" dataset (a common scenario in applied settings)—and provide finite-sample bounds on the performance degradation that is incurred by substituting  $\widehat{\Sigma}$  for  $\Sigma$ . Finally, we empirically demonstrate the effectiveness of this approach across three diverse LLM evaluation settings, including choosing between autoraters of different sizes, autoraters with different test-time reasoning configurations, and complex multi-autorater-debate scenarios. In all cases, our method achieves lower mean-squared error and tighter confidence intervals for a given annotation budget than existing baselines. We demonstrate that MultiPPI achieves this by automatically tailoring its strategy to the available budget B: that is, it learns to rely primarily on the cheaper autoraters when the budget is small, and naturally begins to incorporate more expensive, better autoraters as the budget increases. Taken together, our work provides a principled and computationally tractable framework for cost-effective, model-aided statistical inference, in settings with complex cost-versus-performance tradeoffs.

In summary, our main contributions are as follows:

- We introduce the **MultiPPI estimator** and frame the problem of finding the optimal subset sampling strategy and estimator weights as an efficient second-order cone program (SOCP).
- We prove that the MultiPPI estimator is **minimax optimal** when the covariance matrix  $\Sigma$  of  $X_1, \ldots, X_k$  is known, and provide finite-sample performance guarantees for the practical setting where the covariance matrix must first be estimated as a part of the overall inference problem.
- We demonstrate MultiPPI's applicability across multiple LLM evaluation settings, and show
  how it can effectively combine signals from different model sizes, reasoning configurations, and
  multi-agent debates to achieve lower error and tighter confidence intervals for a given budget.

### 2 Related work

Our work builds upon Prediction-Powered Inference (PPI; Angelopoulos et al., 2023a), a statistical framework for efficiently estimating population-level quantities by augmenting a small set of labeled data with predictions from a machine learning (ML) model. We specifically build on PPI++, the efficient extension of PPI introduced in Angelopoulos et al. (2023b), which also further improves variance by optimally reweighting these predictions. We describe PPI in greater depth in Section 3.

PPI is part of a broader class of statistical methods that leverage ML predictions for estimation. Its principles connect to classical control variates and difference estimators (Ripley, 1987; Särndal et al., 1992; Chaganty et al., 2018), which reduce variance by subtracting a correlated random variable with a known mean; the correlated variable in PPI is the ML prediction, whose mean can be (cheaply) estimated on unlabeled data. This approach also shares theoretical foundations with modern semi-parametric inference, particularly methods from the causal inference literature like Augmented Inverse Propensity Weighting (AIPW; Robins & Rotnitzky, 1995), Targeted Maximum Likelihood Estimation (TMLE; van der Laan & Rubin, 2006), and double machine learning (DML; Chernozhukov et al., 2018). Recently, PPI has been applied to Generative AI evaluation, where human annotations (or more generally, annotations from some trusted source) are combined with

cheaper "autorater" outputs for efficient, unbiased estimates of model performance (Boyeau et al., 2024; Chatzi et al., 2024; Fisch et al., 2024; Angelopoulos et al., 2025; Saad-Falcon et al., 2024).

Existing PPI frameworks, however, assume either a single predictor (Angelopoulos et al., 2023a;b) or a fixed set of predictors queried together (Miao et al., 2024). We address the common scenario where multiple predictors (e.g., autoraters) with different cost-performance profiles are available. This introduces a complex budget allocation problem: determining which predictors to query (individually, jointly, or in any joint subset), how often to query them, and how to combine the measurements they provide for a minimum-variance estimate under a fixed budget. Our work partially generalizes Angelopoulos et al. (2025), which optimizes a sampling policy for a single predictor. Unlike that work, however, which focuses on input-conditional policies and expected budget constraints, we find a fixed allocation policy that always satisfies a hard budget constraint for every run.

Our allocation problem is also related to budgeted regression with partially observed features (Cesa-Bianchi et al., 2011; Hazan & Koren, 2012) and active learning or testing (Settles, 2009; Kossen et al., 2021; Zhang & Chaudhuri, 2015). We emphasize, however, that our goal is estimation of a linear function of a population mean (i.e.,  $a^{\top}\mathbb{E}[X]$ ), and not regression (e.g., predicting  $X_1$  from  $X_2,\ldots,X_k$ ). While related, standard approaches to regression, including with partial observations, optimize for sample-wise predictive accuracy rather than for predictive accuracy of a population-level quantity. Our problem also connects to multi-armed bandit allocation for adaptive Monte Carlo estimation (Neufeld et al., 2014). A key difference is that these frameworks often use sequential, input-dependent policies to minimize regret, making it difficult to derive valid confidence intervals (CIs). Our framework, in contrast, computes a fixed allocation policy over predictive models (not individual inputs as in active learning or testing) and guarantees unbiased estimates with valid CIs. Even more broadly, our work shares similar high-level goals with transfer learning and domain adaptation (Pan & Yang, 2010; Ben-David et al., 2010, inter alia)—i.e., leveraging signals of varying quality and potential bias—though the statistical techniques are distinct.

### 3 Preliminaries

In the following section, we introduce the general estimation problem of interest and summarize existing approaches. Suppose that we are interested in the mean of a random variable  $X_1$ , which is dependent upon another random variable  $X_2$  (corresponding to estimating  $a^{\top}\mathbb{E}[X]$  for a=(1,0) as described in §1). For example, in the AI model evaluation setting,  $X_2$  may be an autorater's score for a model output to a user's query, and  $X_1$  may be the ground truth quality of the response as measured by an expert human annotator. Suppose we have access to a small number (n) of i.i.d. samples that contain labels from both the target rater  $(X_1)$  and autorater  $(X_2)$ , and a large number (N) of i.i.d. samples that contain only the autorater predictions  $(\tilde{X}_2)$ . A naïve approach to estimating the mean is to simply take the sample average of  $X_1$  and ignore  $X_2$  entirely, which we denote by  $\hat{\theta}_{\text{classic}} = \frac{1}{n} \sum_{j=1}^{n} X_1^{(j)}$ . When the prediction  $X_2$  is correlated with  $X_1$  and easy to query, however, it is natural to consider the "prediction-powered" PPI estimator (Angelopoulos et al., 2023a;b):

$$\hat{\theta}_{PPI} = \frac{1}{n} \sum_{j=1}^{n} \left( X_1^{(j)} - X_2^{(j)} \right) + \frac{1}{N} \sum_{j=1}^{N} \tilde{X}_2^{(j)}$$
 (1)

When we can afford to take N to be very large, it is clear that the variance of  $\hat{\theta}_{PPI}$  is much smaller than that of  $\hat{\theta}_{classic}$  provided that our model predictions  $X_2$  are close to  $X_1$  in mean-squared error. When that fails, Angelopoulos et al. (2023b) propose adding a linear fit of the form:

$$\hat{\theta}_{\text{PPI++}} = \frac{1}{n} \sum_{i=1}^{n} \left( X_1^{(j)} - \lambda X_2^{(j)} \right) + \frac{1}{N} \sum_{i=1}^{N} \lambda \tilde{X}_2^{(j)}. \tag{2}$$

The parameter  $\lambda$  may be chosen to minimize the variance of  $\hat{\theta}_{PPI++}$  based on the observed labeled data. This strategy yields an estimator which asymptotically improves on  $\hat{\theta}_{classic}$  and  $\hat{\theta}_{PPI}$  in the limit that  $n \to \infty$  and  $N \gg n$ . Toward the setting where n and N may be comparable in size, if one is able to choose to or not to request a label  $X_1^{(j)}$  for every observed unlabeled point  $X_2^{(j)}$ , a modification of  $\hat{\theta}_{PPI++}$  allows one to do so in a cost-optimal way (Angelopoulos et al., 2025).

### 3.1 Multiple predictive models

How should one adapt the preceding setting when one has access to many predictions, rather than just  $X_2$ ? One option is to *stack* all predictions into a vector  $X_{2:k} := (X_2, \ldots, X_k)$  and choose  $\lambda \in \mathbb{R}^{k-1}$  to be a vector in  $\hat{\theta}_{PPI++}$ ; this is the estimator proposed by Miao et al. (2024), and can be written

$$\hat{\theta}_{\text{PPI++ vector}} = \frac{1}{n} \sum_{j=1}^{n} \left( X_1^{(j)} - \lambda^\top X_{2:k} \right) + \frac{1}{N} \sum_{j=1}^{N} \lambda^\top \tilde{X}_{2:k}^{(j)}$$
(3)

But this approach is suboptimal when (as is becoming standard) the best models may be available only for the highest prices: if any of  $X_2, \ldots, X_k$  is expensive to obtain, our ability to sample  $X_{2:k}$  will be limited. This yields suboptimal results, as we show in §6. One may instead decide to perform PPI with just one model  $X_i$ , for whichever  $i \neq 1$  has the best cost/accuracy tradeoff—but it is not clear *a priori* which one this is, or how much worse it may be compared to some combination of a cost-effective subset of X. Alternatively, perhaps it is possible for cheaper models be used to recursively estimate the means of more expensive models, thus creating a PPI++ cascade: for instance, if k=3 and  $(X_1, X_2, X_3)$  are in decreasing order of cost, we might consider

$$\hat{\theta}_{\text{PPI++ cascade}} = \frac{1}{n} \sum_{j=1}^{n} \left( X_1^{(j)} - \lambda X_2^{(j)} \right) + \frac{1}{N} \sum_{j=1}^{N} \left( \lambda \tilde{X}_2^{(j)} - \lambda' \tilde{X}_3^{(j)} \right) + \frac{1}{M} \sum_{j=1}^{M} \lambda' \tilde{\tilde{X}}_3^{(j)}$$
(4)

Each of these strategies can be realized as possible instances of the MultiPPI estimator we propose in the next section. Rather than coarsely limiting ourselves to sampling  $X_{2:k} = (X_2, \dots, X_k)$  together, we allow the flexibility of sampling  $X_I$  for generic index subsets  $I \subseteq \{1, \dots, k\}$ .

## 4 MULTIPLE-PREDICTION-POWERED INFERENCE (MULTIPPI)

As Section 3.1 highlights, it is not obvious how to best allocate a budget across a diverse suite of predictive models, where each model has its own cost and performance tradeoffs. We begin by defining the class of permissible estimators: We require that the number of times,  $n_I$ , that  $X_I$  is sampled satisfies a linear budget constraint, specified by a set of non-negative costs  $c_I \geq 0$  and total budget  $B \geq 0$ , for each index subset  $I \subseteq \{1, \ldots, k\}$ .

**Definition 4.1.** An estimator  $\hat{\theta}$  is **budget-satisfying** if it a measurable function of  $n_I$  i.i.d. samples of  $X_I$ , for each  $I \subseteq \{1, ..., k\}$ , such that  $\sum_I n_I c_I \leq B$ .

To develop a principled search for the best budget-satisfying estimator, we begin by asking a simple question under idealized conditions:

**Question 1.** If the covariance matrix,  $\Sigma = \text{Cov}(X)$ , is exactly known, what is the minimax optimal, budget-satisfying estimator of  $\theta^* = a^\top \mu$  with respect to the mean-squared error,  $\mathbb{E}[(\hat{\theta} - \theta^*)^2]$ ?

The answer to Question 1 will provide us with a set of allocations  $n_I$  and a corresponding budgetsatisfying estimator  $\hat{\theta}_{\text{MultiPPI}}$  which we will evaluate on the  $n_I$  samples of  $X_I$ , for each I. Once we have addressed this question, we address the case of unknown  $\Sigma$  by describing strategies depending on the empirical covariance matrix  $\hat{\Sigma}$ , which may be estimated from data.

It turns out, perhaps surprisingly, that Question 1 reduces to the following tractable alternative:

**Question 2.** If the covariance matrix,  $\Sigma = \text{Cov}(X)$ , is exactly known, what is the minimum variance, <u>linear</u>, <u>unbiased</u> budget-satisfying estimator of  $\theta^* = a^{\top} \mu$ ?

We demonstrate the equivalence of Question 1 and Question 2 in Theorem 4.2. For now, the "oracle" assumption on knowing the covariance matrix  $\Sigma$  allows us to isolate the resource allocation problem from the separate challenge of estimating how closely related  $(X_1, \ldots, X_k)$  are to begin with, and to analyze what a good procedure for leveraging multiple predictive models under cost constraints should look like in theory. All proofs of our theoretical results are deferred to Appendix F.

<sup>&</sup>lt;sup>1</sup>In Appendix B, we extend the methodology to multiple budget constraints.

### 4.1 MultiPPI( $\Sigma$ ): A minimax optimal algorithm

Recalling notation from §1, let  $X \in \mathbb{R}^k$  denote a random vector of finite second moment with distribution  $\mathbb{P}$ . Let  $\mathcal{I} \subseteq 2^{\{1,\dots,k\}}$  denote a collection of index subsets which may be queried, and for any  $I \in \mathcal{I}$ , let  $X_I = \{X_i\}_{i \in I}$  be the corresponding subset of X. Next, let  $\underline{n} = \{n_I\}_{I \in \mathcal{I}}, n_I \in \mathbb{N}$  be an allocation of sample sizes, where  $n_I$  i.i.d. samples are drawn for each subset I, and let  $\underline{\lambda} = \{\lambda_I\}_{I \in \mathcal{I}}, \lambda_I \in \mathbb{R}^{|I|}$  define a corresponding set of weighting vectors for each subset I. Finally, let  $\hat{\theta}(n,\lambda)$  denote the weighted sum of sample means from each non-empty subset, i.e.,

$$\hat{\theta}(\underline{n},\underline{\lambda}) = \sum_{I:n_I > 0} \frac{1}{n_I} \sum_{j=1}^{n_I} \lambda_I^{\top} X_I^{(j)}. \tag{5}$$

The MultiPPI estimator,  $\hat{\theta}_{\text{MultiPPI}}$ , is then defined as the optimal estimator in this class that minimizes the MSE subject to our unbiasedness (U) and budget (B) constraints:

$$\hat{\theta}_{\text{MultiPPI}} = \underset{\hat{\theta}(\underline{n},\underline{\lambda})}{\operatorname{argmin}} \mathbb{E}\left[\left(\hat{\theta}(\underline{n},\underline{\lambda}) - \theta^*\right)^2\right] \quad \text{s.t.} \quad \mathbf{U} \text{ and } \mathbf{B} \text{ hold},$$
 (6)

where the constraints U and B are

$$\mathbf{U} \iff \mathbb{E}[\hat{\theta}(\underline{n},\underline{\lambda})] = \theta^* \text{ for all } \mathbb{P} \text{ of finite second moment} \qquad \text{and} \qquad \mathbf{B} \iff \sum_I n_I c_I \leq B.$$

It can be shown that U reduces to a linear constraint on  $\lambda$ , which makes our optimization convenient.

#### 4.1.1 OPTIMIZATION

Solving Equation (6) is, in general, non-trivial. Since  $\hat{\theta}(\underline{n},\underline{\lambda})$  is linear in X, it can be shown that the optimal  $(\underline{n},\underline{\lambda})$  depend only on the covariance matrix  $\Sigma$  of X, and so we will denote by  $\hat{\theta}_{\mathrm{MultiPPI}(\Sigma)}$  the solution to Equation (6) given any distribution such that  $\Sigma = \mathrm{Cov}(X)$ . Then, it can be further shown (this follows from Theorem 4.2, presented next) that the MSE of  $\hat{\theta}_{\mathrm{MultiPPI}(\Sigma)}$  is

$$\mathcal{V}_{B} = \min_{\substack{\underline{n} : \mathbf{B} \text{ holds} \\ \text{supp}(a) \subseteq \bigcup \{I: n_{I} > 0\}}} a^{\top} S(\underline{n}) a, \qquad S(\underline{n}) = \left(\sum_{I \in \mathcal{I}} n_{I} \Sigma_{I}^{\dagger}\right)^{\dagger}$$
(7)

where  $\Sigma_I$  denotes the principle submatrix of  $\Sigma$  on I, embedded back into  $\mathbb{R}^{k \times k}$ , and  $\dagger$  denotes the Moore-Penrose pseudo-inverse.<sup>2</sup> The minimizing  $\underline{n}$  of the above expression then also determines the optimal  $\lambda_I$  to be the restriction of  $n_I \Sigma_I^{\dagger} S(\underline{n}) a$  to the coordinates I. If the integrality constraints on  $n_I$  are relaxed, we show in the appendix that this reduces to a second-order cone problem in the case of a single budget constraint, and a semi-definite program in the case of multiple budget constraints. This allows for Equation (7) to be solved efficiently using standard techniques (Appendix G).

## 4.1.2 MINIMAX OPTIMALITY

The minimal MSE  $\mathcal{V}_B$  shown in Equation (7) has a more fundamental characterization. Here we show that it is in fact the minimax optimal MSE achievable by **any** budget-satisfying estimator, taken over the set of distributions  $\mathcal{P}$  of covariance  $\Sigma$ . Consequently, the estimator defined by  $\hat{\theta}_{\text{MultiPPI}(\Sigma)}$  is minimax optimal over the set of distributions  $\mathcal{P}_{\Sigma} = \{\text{distribution } P \text{ on } \mathbb{R}^k \colon \text{Cov}(X) = \Sigma \text{ for } X \sim P\}$ . Specifically, given costs  $(c_I)_I$  and a budget B, let  $\Theta_B$  denote the set of budget-satisfying estimators  $\hat{\theta}$  per Definition 4.1. We emphasize that we make **no** restriction on  $\Theta_B$  to include only linear or unbiased estimators. Then the following result holds:

**Theorem 4.2** (Minimax optimality of MultiPPI for known  $\Sigma$ ). For all  $\Sigma \succ 0$ , we have

$$\inf_{\hat{\theta} \in \Theta_B} \sup_{P \in \mathcal{P}_{\Sigma}} \mathbb{E} \left[ (\hat{\theta} - \theta^*)^2 \right] = \operatorname{Var} \left( \hat{\theta}_{\operatorname{MultiPPI}(\Sigma)} \right) = \mathcal{V}_B,$$

where the variance is with respect to any distribution  $P \in \mathcal{P}_{\Sigma}$ .

<sup>&</sup>lt;sup>2</sup>More formally, if  $P_I \in \mathbb{R}^{k \times k}$  denotes the orthogonal projection onto  $\operatorname{span}(I) \subseteq \mathbb{R}^k$ , we define  $\Sigma_I = P_I \Sigma P_I^{\mathsf{T}}$ , and so  $\Sigma_I^{\dagger} := (P_I \Sigma P_I^{\mathsf{T}})^{\dagger}$ .

# 4.2 MultiPPI( $\widehat{\Sigma}$ ): A practical algorithm

 Of course,  $\Sigma$  is rarely known in practice. A natural approach is to estimate it from data; this is what we do in our experiments. Specifically, we use the empirical covariance matrix  $\widehat{\Sigma}$  of some number of *fully-labeled samples* for which the entire joint vector  $X = (X_1, \dots, X_k)$  is observed. Given N such samples, we provide a finite-sample bound on the MSE of our estimator in this setting.

**Theorem 4.3.** Let P be a distribution of covariance  $\Sigma$ , and suppose  $|X_i| \leq 1$  almost surely, for each i. Suppose that  $\Sigma$  has minimum and maximum eigenvalues  $\lambda_{\min}$  and  $\lambda_{\max}$ , respectively. Let  $\sigma^2_{\text{classical}}$  denote the least MSE of any budget-satisfying sample mean of  $a^{\top}X$ . Let  $\widehat{\Sigma}$  denote the empirical covariance matrix determined by N i.i.d. copies of X. Then for an absolute constant c,

$$\mathbb{E}\left[\left(\hat{\theta}_{\mathrm{MultiPPI}(\widehat{\Sigma})} - \theta^*\right)^2\right] \leq \mathcal{V}_B + c\left(\frac{\lambda_{\mathrm{max}}^{1/2}}{\lambda_{\mathrm{min}}}\sqrt{\frac{k}{N}} + \frac{1}{\lambda_{\mathrm{min}}}\frac{k}{N}\right)\sigma_{\mathrm{classical}}^2$$

where the randomness is taken over both the evaluation of  $\hat{\theta}_{\text{MultiPPI}(\widehat{\Sigma})}$  and the N burn-in samples.

Theorem 4.3 holds for bounded X (and subgaussian X; see Appendix E.1). In Appendix E.1 we also provide even stronger results for settings in which X has certain distributional characteristics.

The optimization procedure described above (and to which the finite-sample bounds of Theorem 4.3 apply) relies on an estimate  $\widehat{\Sigma}$  that involves data splitting: the best parameters  $\underline{n},\underline{\lambda}$  for  $\widehat{\theta}_{\underline{n},\underline{\lambda}}$  are *estimated* on a held-out dataset, and then  $\widehat{\theta}_{\underline{n},\underline{\lambda}}$  is *evaluated* on a distinct dataset. In principle, however, we can also evaluate  $\widehat{\theta}_{\underline{n},\underline{\lambda}}$  on the same samples we used to estimate  $\widehat{\Sigma}$ . A similar approach was taken by Angelopoulos et al. (2023b), and we find that it is easy to implement and yields strong empirical results in practice. While doing so introduces bias in finite samples—due in part to the additional dependency of  $\lambda_I$  on  $X_I$  in Equation (5)—it preserves consistency and asymptotic normality in the limit as our budget B and the number of (reused) burn-in samples tend to infinity, as we see next. For this result, we need a technical condition which amounts to Equation 6 having a unique minimizer  $\underline{n}$  as  $B \to \infty$ ; we state it formally in Appendix F.3.

**Theorem 4.4.** Suppose X has finite second moment, and let  $\widehat{\Sigma}$  denote the empirical covariance of X estimated from N i.i.d. samples. Assume that  $\Sigma$  satisfies condition 12. Then for  $\widehat{\theta}_{\text{MultiPPI}(\widehat{\Sigma})}$  arbitrarily dependent on the N samples used to estimate  $\widehat{\Sigma}$ , we have

$$\sqrt{B}\left(\hat{\theta}_{\mathrm{MultiPPI}(\widehat{\Sigma})} - \theta^*\right) \stackrel{d}{\to} \mathcal{N}(0, \mathcal{V}^*)$$

in any limit in which  $B, N \to \infty$ , where  $\mathcal{V}^* = \lim_{B \to \infty} B\mathcal{V}_B$ , and  $\mathcal{V}_B$  is defined in Equation (7).

### 4.2.1 PROCEDURE

We now specify an easy-to-implement procedure that makes use of a burn-in of N fully labeled samples to estimate  $\widehat{\Sigma}$ , and then also reuses the N samples when estimating  $\widehat{\theta}_{\text{MultiPPI}(\widehat{\Sigma})}$ . Specifically, we target the practical setting where we are given N fully-labeled samples a priori, and have no ability to obtain more. This is typical of real-world settings in which we may have no ability to obtain more "gold" labels, and may be encapsulated by the budget constraint  $n_{\{1,\dots,k\}} \leq N$ . While we may not be able to obtain more fully-labeled samples, we may be afforded a separate computational budget for querying model predictions that then augment the N fully-labeled samples; taken together, this setting is represented by a system of budget constraints. In summary, we propose the following:

- 1. Estimate the covariance matrix  $\widehat{\Sigma} \approx \text{Cov}(X)$  on the N fully-labeled samples, which we reuse.
- 2. Solve for the  $n_I$ ,  $\lambda_I$  which minimize Equation (6). We refer to this as MultiAllocate( $\widehat{\Sigma}$ ).
- 3. Sample the  $n_I$ ,  $\forall I \in \mathcal{I}$  additional data points accordingly, and return  $\hat{\theta}_{\text{MultiPPI}(\widehat{\Sigma})}$ .

<sup>&</sup>lt;sup>3</sup>We explain how to solve the optimization problem posed by such systems in Appendix B.

## 5 EXPERIMENTAL SETUP

In each experiment, our goal is to estimate the mean  $\theta^* = \mathbb{E}[X_1]$  of some random variable  $X_1$  to be specified, which we will refer to as the *target*. This corresponds to the choice  $a = (1, 0, \dots, 0)$  in our notation. We will also specify a *model family*  $(X_2, \dots, X_k)$ , together with a *cost structure*  $(c_I)_{I \in \mathcal{I}}$ . In each experiment, we are given some number of samples for which the entire vector  $X = (X_1, \dots, X_k)$  is visible; we refer to such samples as *fully-labeled*. Given these samples, we perform the procedure outlined in Section 4.2.1: we estimate  $\widehat{\Sigma}$  using these samples, sample from the auxiliary models  $(X_2, \dots, X_k)$  according to the allocation specified by MultiAllocate $(\widehat{\Sigma})$ , and return  $\widehat{\theta}_{\text{MultiPPI}(\widehat{\Sigma})}$ , evaluated on both the N fully-labeled samples and the additional auxiliary data.

**Baselines:** In each experiment, we compare to several baselines. First, we compare to classical sampling. Second, we compare to PPI++ with each model included in the family (specified in Equation (2)), and to vector-PPI++ with every model in the family (specified in Equation (3)).

Experiment 1: Estimating Arena win-rates by autorater ensembles. We focus on the Chatbot Arena dataset (Chiang et al., 2024), where of interest is the *win-rate* between a pair of models, which is the probability that a given user prefers the response of one model to that of the other. The randomness is taken over the prompt, the user, and the model responses. Here, we aim to estimate the win-rate between Claude-2.1 and GPT-4-1106-Preview; this is our *target*. Our *model family* consists of autoraters built on Gemini 2.5 Pro (without thinking) and Gemini 2.5 Flash. In our notation, we have  $(X_1, X_2, X_3) =$  (human label, Gemini 2.5 Pro label, Gemini 2.5 Flash label). We draw model *costs* from the Gemini developer API pricing guide (Gemini API), see Appendix I. In this case, the cost of querying both models is simply the sum of the costs of querying each model independently.

Experiment 2: Optimal test-time autorater scaling on ProcessBench. In this experiment, we aim to estimate the fraction of correct solutions in the ProcessBench dataset (Zheng et al., 2024), given a small number of labeled examples. The task is simplified from its original form to a binary classification problem: determining whether a given math proof solution contains a process error, without identifying the specific step. We employ Gemini 2.5 Pro with a variable thinking budget as our autorater. Its accuracy correlates with a variable "thinking budget," measured in thought tokens, with performance gains saturating after approximately 500 words (Figure 9). We create a family of four autoraters by checkpointing the model's thought process at 125, 250, 375, and 500 words. A key aspect of this setup is the non-additive, cascading cost structure. Generating a response from a model with a larger thinking budget makes the outputs of all smaller-budget models available at a marginal cost. Consequently, the total cost for a subset of models S is modeled with two components: an input cost proportional to the sum of the word budgets in S, and an output cost proportional to the maximum word budget in S. Explicitly, for  $S \subseteq \{125, 250, 375, 500\}$ , we set

$$c_S = \text{output\_cost\_per\_word} \cdot \max S + \text{input\_cost\_per\_word} \cdot \sum S$$
 (8)

**Experiment 3: Hybrid factuality evaluation through multi-autorater debate.** Following Du et al. (2023), we evaluate the factual consistency of biographies for 524 computer scientists generated by Gemini 2.5 Pro. For each person  $p \in \mathcal{P}$ , we compare their Gemini-generated biography  $b^p$  against a set of known grounding facts  $\mathcal{F}^p = \{f_1^p, \ldots, f_{m_p}^p\}$  about the person. Our target metric is the proportion of factually consistent pairs (b, f) within the total set  $\mathcal{S} = \{(b^p, f^p) : p \in \mathcal{P}, f^p \in \mathcal{F}^p\}$ . Concretely, we target the proportion  $|\{(b, f) \in \mathcal{S} : (b, f) \text{ is factually consistent}\}| / |\mathcal{S}|$ .

Ground-truth consistency of a pair (b,f) is established by majority voting over five independent judgments from Gemini 2.5 Pro with thinking, a method validated by Du et al. (2023) to have over 95% agreement with human annotators. Our experiment, illustrated in Figure 10, assesses the performance of a more cost-effective model, Gemini 2.0 Flash Lite, as an autorater. To elicit better autoratings from queries to Gemini 2.0 Flash Lite, we bootstrap performance via multi-round debate. For a fixed number of agents  $A \in \{1,2,3\}$ , and a fixed number of maximum rounds  $R \in \{1,2\}$ , we perform the following procedure: In each round,  $R \in \{1,2\}$ , we perform the following procedure: In each round,  $R \in \{1,2\}$ , we perform the following procedure: In each round,  $R \in \{1,2\}$ , we perform the following procedure: In each round,  $R \in \{1,2\}$ , we perform the following procedure: In each round,  $R \in \{1,2\}$ , we perform the following procedure: In each round,  $R \in \{1,2\}$ , we perform the following procedure: In each round,  $R \in \{1,2\}$ , we perform the following procedure: In each round,  $R \in \{1,2\}$ , we perform the following procedure: In each round,  $R \in \{1,2\}$ , and a fixed number of again  $R \in \{1,2\}$ , we perform the following procedure: In each round,  $R \in \{1,2\}$ , and a fixed number of again  $R \in \{1,2\}$ , and a fixed number of again  $R \in \{1,2\}$ , and a fixed number of again  $R \in \{1,2\}$ , and a fixed number of again  $R \in \{1,2\}$ , and a fixed number of maximum rounds  $R \in \{1,2\}$ , and a fixed number of again  $R \in \{1,2\}$ , and a fixed number of again  $R \in \{1,2\}$ , and a fixed number of maximum rounds  $R \in \{1,2\}$ , and a fixed number of number of maximum rounds  $R \in \{1,2\}$ , and a fixed number of num

or *no* is reported with equal probability—since the dataset is balanced, this outcome is fair insofar as it is as good as random guessing. We impose the maximum round restriction to encapsulate our budget constraint. For a given (A, R), the cost is  $A \cdot R$ ; for collections, the cost follows Equation (8).

### 6 EMPIRICAL RESULTS

We plot MultiPPI, and the baselines described in §5, for a budgets between 0 and 2,000 units of cost. We normalize model costs so that one unit of cost always represents exactly one query to our most expensive model. For each fixed budget and each method, we estimate the target, and construct asymptotic 95% confidence intervals  $\mathcal C$  based on Theorem 4.4. We plot (i) coverage,  $\mathbb P(\theta^* \in \mathcal C)$ ; (ii) confidence interval width,  $|\mathcal C|$ ; and (iii) mean-squared error  $\mathbb E[(\hat \theta - \theta^*)^2]$ . We report both the confidence interval width and the mean-squared error as a fraction of what classical sampling achieves (lower is better). In each case, the target is  $\theta^* = \mathbb E[X_1]$ , and  $\mathbb P$  and  $\mathbb E$  are computed with respect to the empirical distribution over the dataset observed (we perform 500k random trials with 250 given labels). Note that these 250 labeled points are evidently enough for all estimators considered to achieve good coverage (in Appendix D.2 we also include additional results with 1000 labeled points).

**Experiment 1:** Chatbot Arena. Results are shown in Figure 1 (top). Observe that different baselines dominate in different budget regimes. In the low-budget regime, scalar PPI++ with Flash is the best baseline, while in the large-budget regime, vector PPI++ with both Pro and Flash is the best baseline. However, we see that MultiPPI improves on all baselines in all regimes. In the appendix, Figure 5 and Figure 2 plot the  $\lambda_I$  and  $n_I$  values learned by MultiPPI across budget regimes. Note that the learned values tend to the specifications for PPI++ with Flash in the low-budget regime, and to the specifications for vector PPI++ in the large-budget regime, a finding that we rigorously prove happens in broader generality in Appendix E.2. Lastly, note that PPI++ with Pro is suboptimal in all regimes. In other words, PPI++ with Pro is not included in the Pareto frontier. This is because, for this task, its correlation with the label is the same as that of PPI++ with Flash, yet it is strictly more expensive.

**Experiment 2: ProcessBench.** Results are shown in Figure 1 (middle). Again, we see that each baseline has a range of budgets for which it outperforms all other baselines. In particular, the cheaper models yield better performance when used in PPI++ in the smaller-budget regimes, while the more-expensive models yield better performance in the higher-budget regimes. In particular, PPI++ Vector, which takes a linear combination of all k-1 models, steadily improves as the budget increases, but only outperforms the other baselines at the highest budgets. This behavior is explained by Figure 9, which shows that predictive performance improves for larger thinking budgets. Thus the more expensive models yield higher correlation with the label and thus yield low-variance rectifiers; on the other hand, their high cost means that this decrease in rectifier variance is outweighed by our inability to draw an adequate number of samples from them in the low-budget regimes.

Of note is the fact that *the models which think for longer are not in general less biased*. This phenomenon is shown in Figure 12, which shows that thinking for longer is not enough to resolve the systematic bias present in the autorater. However, the figure also shows that simple debiasing schemes like PPI resolve this issue. Note that this trend is not reflected in the correlations between these models and the label, because correlation is invariant to addition of constants.

Finally, MultiPPI improves on all baselines methods in all regimes. Interestingly, Figure 3 and Figure 4 show that the parameters  $\lambda_I$  and  $n_I$  learned by MultiPPI transition from emulating PPI++ with the tiny model (which is the best baseline in the low-budget regime) to emulating a *cascaded version of PPI* (see Equation (4)), in which the medium model is used to debias the larger model.

Experiment 3: Biography factuality evaluation. Results are shown in Figure 1 (bottom). Once again, each baseline is dominant over the others in certain regimes; MultiPPI improves on all baselines in all regimes. Of note, however, is the fact that the coverage of all estimators considered, but MultiPPI and PPI++ Vector in particular, degrades slightly in the large-budget regime (i.e., the 95% CI under-covers by  $\approx 1\%$ ). We discuss this interesting phenomenon in Appendix E.4, and find that it does not occur when the number of labeled samples grows in constant proportion with the budget (see, for example, our additional results with N=1000 fully-labeled samples in Appendix D.2).

In terms of the performance-vs-cost profile that MultiPPI leverages: Figure 10 shows that predictive performance increases, across many metrics, as the number of agents and number of rounds in-

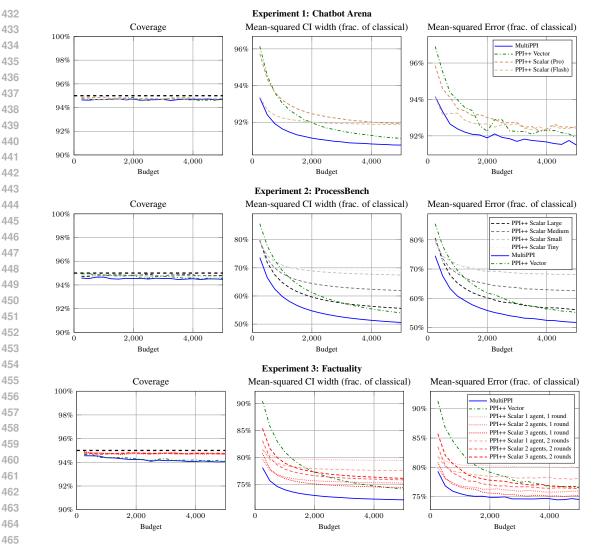


Figure 1: Results by budget for the experiments on Chatbot Arena (a), ProcessBench (b), and Factuality (c). For each estimator (all baselines and MultiPPI), the left column plots the empirical coverage of the 95% CI, the middle column plots the width of the 95% CI, and the right column plots the empirical mean-squared error of the point estimate. The fully-labeled sample size N is 250.

creases. Note, however, that a marginal increase in number of agents yields a greater increase in accuracy than a marginal increase in number of rounds (this is largely because the pooler is more likely to report "uncertain" after the end of the first round than after the end of the second; see Figure 11).

## 7 Conclusion

In this work, we introduce Multiple-Prediction-Powered Inference (MultiPPI), a framework for efficiently estimating expectations under budget constraints by optimally leveraging multiple information sources of varying costs. MultiPPI formulates the optimal allocation of queries across subsets of variables as a second-order cone program in the case of a single budget constraints, or a semi-definite program in the case of multiple—both can be efficiency solved using off-the-shelf tools. We provide theoretical guarantees, including minimax optimality when covariances are known, and demonstrate empirically across diverse LLM evaluation tasks that MultiPPI outperforms existing methods. By adaptively balancing cost and information, MultiPPI achieves lower error for a given budget, automatically shifting its strategy from cheaper proxies to more expensive, accurate predictors as the budget increases, thus offering a principled and practical solution for cost-effective inference.

## 8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a detailed specification of the algorithm in Appendix C. We also include implementation details in Appendix I, and address computational considerations in Appendix G. Finally, all experiments shown in §6 were averaged over 500k trials.

#### REFERENCES

- Anastasios N Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I Jordan, and Tijana Zrnic. Prediction-powered inference. *Science*, 382(6671):669–674, 2023a.
- Anastasios N Angelopoulos, John C Duchi, and Tijana Zrnic. PPI++: Efficient prediction-powered inference. *arXiv preprint arXiv:2311.01453*, 2023b.
- Anastasios N. Angelopoulos, Jacob Eisenstein, Jonathan Berant, Alekh Agarwal, and Adam Fisch. Cost-optimal active ai model evaluation. *arXiv preprint arXiv 2506.07949*, 2025. URL https://arxiv.org/abs/2506.07949.
- Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. A theory of learning from different domains. *Mach. Learn.*, 79(1–2):151–175, May 2010. doi: 10.1007/s10994-009-5152-4. URL https://doi.org/10.1007/s10994-009-5152-4.
- Pierre Boyeau, Anastasios N Angelopoulos, Nir Yosef, Jitendra Malik, and Michael I Jordan. AutoEval done right: Using synthetic data for model evaluation. *arXiv preprint arXiv:2403.07008*, 2024.
- Nicoló Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir. Efficient learning with partially observed attributes. *Journal of Machine Learning Research*, 12(87):2857–2878, 2011. URL http://jmlr.org/papers/v12/cesa-bianchi11a.html.
- Arun Chaganty, Stephen Mussmann, and Percy Liang. The price of debiasing automatic metrics in natural language evaluation. In Iryna Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 643–653, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1060. URL https://aclanthology.org/P18-1060/.
- Ivi Chatzi, Eleni Straitouri, Suhas Thejaswi, and Manuel Gomez Rodriguez. Prediction-powered ranking of large language models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 113096–113133. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper\_files/paper/2024/file/cd47cd67caa87f5b1944e00f6781598f-Paper-Conference.pdf.
- Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for treatment and structural parameters. *The Econometrics Journal*, 21(1):C1–C68, 01 2018. URL https://doi.org/10.1111/ectj.12097.
- Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open platform for evaluating llms by human preference. In *Forty-first International Conference on Machine Learning*, 2024.
- Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality and reasoning in language models through multiagent debate. In *Forty-first International Conference on Machine Learning*, 2023.
- Adam Fisch, Joshua Maynez, R. Alex Hofer, Bhuwan Dhingra, Amir Globerson, and William W. Cohen. Stratified prediction-powered inference for effective hybrid evaluation of language models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=8CBcdDQFDQ.

```
Gemini API. Gemini Developer API Pricing | Gemini API. URL https://ai.google.dev/gemini-api/docs/pricing.
```

Elad Hazan and Tomer Koren. Linear regression with limited observation. In ICML, 2012.

- Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Tom Rainforth. Active testing: Sample-efficient model evaluation. In *ICML*, 2021. URL http://dblp.uni-trier.de/db/conf/icml/icml2021.html#KossenFGR21.
- Jiacheng Miao, Xinran Miao, Yixuan Wu, Jiwei Zhao, and Qiongshi Lu. Assumption-lean and data-adaptive post-prediction inference. *arXiv preprint arXiv 2311.14220*, 2024. URL https://arxiv.org/abs/2311.14220.
- James Neufeld, Andras Gyorgy, Csaba Szepesvari, and Dale Schuurmans. Adaptive monte carlo via bandit allocation. In Eric P. Xing and Tony Jebara (eds.), *Proceedings of the 31st International Conference on Machine Learning*, volume 32 of *Proceedings of Machine Learning Research*, pp. 1944–1952, Bejing, China, 22–24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/neufeld14.html.
- Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. *IEEE Transactions on Knowledge and Data Engineering*, 22:1345–1359, 2010. URL https://api.semanticscholar.org/CorpusID:740063.
- B. D. Ripley. Stochastic simulation. John Wiley & Sons, Inc., New York, NY, USA, 1987. ISBN 0-471-81884-4.
- James M. Robins and Andrea Rotnitzky. Semiparametric efficiency in multivariate regression models with missing data. *Journal of the American Statistical Association*, 90(429):122–129, 1995. ISSN 01621459. URL http://www.jstor.org/stable/2291135.
- Jon Saad-Falcon, Omar Khattab, Christopher Potts, and Matei Zaharia. ARES: An automated evaluation framework for retrieval-augmented generation systems. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 338–354, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.20. URL https://aclanthology.org/2024.naacl-long.20/.
- Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison, 2009. URL http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf.
- Carl-Erik Särndal, Bengt Swensson, and Jan Wretman. Model assisted survey sampling. Springer Series in Statistics, 1992.
- Mark J. van der Laan and Daniel Rubin. Targeted maximum likelihood learning. *The International Journal of Biostatistics*, 2(1), 2006. doi: 10.2202/1557-4679.1008. URL https://www.degruyter.com/document/doi/10.2202/1557-4679.1008/html.
- Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.
- Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge university press, 2019.
- Chicheng Zhang and Kamalika Chaudhuri. Active learning from weak and strong labelers. In *Advances in Neural Information Processing Systems*, 2015.
- Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jingren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning. *arXiv* preprint arXiv:2412.06559, 2024.

## **CONTENTS**

| A | Ethics statement               |                                                          | 13 |
|---|--------------------------------|----------------------------------------------------------|----|
| В | Gen                            | eralization to multiple budget inequalities              | 13 |
| C | Deta                           | iled specification of the algorithm                      | 13 |
|   | <b>C</b> .1                    | The case of a single budget inequality, known $\Sigma$   | 13 |
|   | C.2                            | The case of multiple budget inequalities, known $\Sigma$ | 14 |
|   | C.3                            | The case of unknown $\Sigma$                             | 15 |
| D | Additional experiments         |                                                          |    |
|   | D.1                            | Learned allocations and linear parameters                | 16 |
|   | D.2                            | MultiPPI with a larger number of labeled samples         | 17 |
|   | D.3                            | Autorater accuracy scaling                               | 18 |
| E | Additional theoretical results |                                                          |    |
|   | E.1                            | Finite-sample bounds                                     | 20 |
|   | E.2                            | Behavior of the estimator in the limiting regimes        | 21 |
|   | E.3                            | Rounding in the large budget regime                      | 21 |
|   | E.4                            | Decay of coverage in the large budget regime             | 22 |
| F | Proofs                         |                                                          |    |
|   | F.1                            | Proof of Theorem 4.2                                     | 23 |
|   | F.2                            | Proofs of finite sample results                          | 24 |
|   | F.3                            | Proof of Theorem 4.4                                     | 25 |
|   | F.4                            | Proofs of additional theoretical results                 | 27 |
| G | Computational considerations   |                                                          | 28 |
| Н | The                            | dual problem                                             | 29 |
| I | Exp                            | erimental details                                        | 30 |
|   | I.1                            | Generating model predictions                             | 30 |
|   | I.2                            | Constructing the MultiPPI estimator                      | 32 |

## A ETHICS STATEMENT

 This paper describes fundamental research on techniques for constructing statistically efficient estimates of a target metric by optimally allocating resources across multiple types of proxy measurements. The primary intended use case which is analyzed in this work is the evaluation of generative AI systems, for which reliable evaluation is a core technical challenge. Efficient and precise estimates of model performance can help make AI systems easier to build, deploy, and monitor. We do not speculate about broader impacts that may follow from this technical contribution. Gemini was used for light copy-editing during the writing of this work.

### B GENERALIZATION TO MULTIPLE BUDGET INEQUALITIES

We recall some notation. Fix a set  $\mathcal{I}$  of index subsets  $I \subseteq [k]$ . For each  $I \in \mathcal{I}$ , let  $c_I = (c_I^{(1)}, \ldots, c_I^{(m)}) \in \mathbb{R}^m_{\geq 0}$  denote the vector-valued cost of querying the collection of models indexed by I. Similarly, for each  $I \in \mathcal{I}$ , we let  $n_I \geq 0$  be an integer denoting the number of times that the collection of models indexed by I is queried. We let  $\underline{n} = (n_I)_{I \in \mathcal{I}}$  refer to the associated allocation.

For a vector-valued budget  $B \in \mathbb{R}^m_{\geq 0}$ , we say that the allocation  $\underline{n}$  satisfies the budget B, and write  $\mathbf{B}(\underline{n}, B)$ , if

$$\sum_{I \in \mathcal{I}} n_I c_I^{(1)} \le B^{(1)}, \dots, \sum_{I \in \mathcal{I}} n_I c_I^{(m)} \le B^{(m)},$$

or more succinctly,

$$\sum_{I \in \mathcal{I}} n_I c_I \le B.$$

Similarly, for each  $I \in \mathcal{I}$ , we let  $\lambda_I \in \mathbb{R}^{|I|}$ , and denote by  $\underline{\lambda} = (\lambda_I)_{I \in \mathcal{I}}$  their collection. Let

$$\hat{\theta}_{\underline{n},\underline{\lambda}} = \sum_{I \in \mathcal{I}: n_I > 0} \frac{1}{n_I} \sum_{j=1}^{n_I} \lambda_I^\top X_I^{(I,j)}$$

where  $X^{(I,j)}$  denote independent copies of X for every  $I \in \mathcal{I}$  and  $1 \leq j \leq n_I$ . We say that the unbiased condition holds for  $\underline{n}, \underline{\lambda}$ , and write  $\mathbf{U}$ , if  $\mathbb{E}\hat{\theta}_{\underline{n},\underline{\lambda}} = a^{\top}\mathbb{E}X$  for every distribution of finite second-moment on X.

Note that the variance of  $\hat{\theta}_{n,\lambda}$  depends only upon  $\Sigma = \text{Cov}(X)$ . Thus we let

 $\hat{\theta}_{\text{MultiPPI}(\Sigma)} := \hat{\theta}_{\underline{n},\underline{\lambda}}$  where  $\underline{n},\underline{\lambda}$  are chosen so that the resulting estimator has minimal variance under  $\Sigma$  such that  $\mathbf{B}$  and  $\mathbf{U}$  hold.

### C DETAILED SPECIFICATION OF THE ALGORITHM

In this section, we outline the procedure used in all experiments in greater detail. First, we describe the algorithm for the case of a single budget inequality, for which a more-efficient procedure exists; second, we describe the general case, in which the procedure reduces to a semi-definite program (SDP). We first suppose that  $\Sigma$  is known, and later explain the procedure in the case that it must be estimated from data.

## C.1 The case of a single budget inequality, known $\Sigma$

We suppose that there is a random vector  $X \in \mathbb{R}^k$  with known covariance  $\Sigma$ , and our goal is to estimate  $\theta^* = a^\top \mathbb{E} X$  for some fixed  $a \in \mathbb{R}^k$ . There is some fixed collection  $\mathcal{I}$  of index subsets  $I \subset \{1,\ldots,k\}$  such that we may sample  $X_I := (X_i)_{i \in I}$ . We may sample  $X_I$  a maximum of  $n_I$  times, subject to the constraint that  $\sum_{I \in \mathcal{I}} c_I n_I \leq B$  for some  $c_I \geq 0$  and B > 0.

#### **Step 1:** Solve the SOCP

$$\sup_{y \in \mathbb{R}^k} a^\top y \qquad \text{s.t.} \quad \bigwedge_{I \in \mathcal{I}} \left\{ y_I^\top \Sigma_I y_I \le c_I^{-1} \right\}$$

and obtain the solution  $y_I^{\star}$  and the multipliers  $\alpha_I^{\star} \geq 0$  for each  $I \in \mathcal{I}$ .

Step 2: Set

$$\lambda_I^{\star} = 2\alpha_I^{\star} \Sigma_I^{-1} y_I^{\star}$$

$$n_I^{\star} = \left[ \left( \frac{B}{c_I} \right) \frac{\sqrt{c_I (\lambda_I^{\star})^{\top} \Sigma_I \lambda_I^{\star}}}{\sum_{J \in \mathcal{I}} \sqrt{c_J (\lambda_I^{\star})^{\top} \Sigma_J \lambda_J^{\star}}} \right]$$

for each  $I \in \mathcal{I}$ .

**Step 3:** For each  $I \in \mathcal{I}$ , independently sample  $X_I$   $n_I^{\star}$  times, and compute the sample mean  $\overline{\lambda_I^{\star} \cdot X_I}$ . Return

$$\hat{\theta}_{\mathrm{MultiPPI}(\Sigma)} = \sum_{I \in \mathcal{I}} \overline{\lambda_I^\star \cdot X_I}$$

with  $(1 - \alpha)$ -confidence intervals given by

$$\mathcal{C} = \hat{\theta}_{\text{MultiPPI}(\Sigma)} \pm z_{1-\alpha/2} \sqrt{\sum_{I \in \mathcal{I}} \frac{1}{n_I^{\star}} \widehat{\sigma^2}_{\lambda_I^{\star} \cdot X_I}}$$

where  $\widehat{\sigma^2}_{\lambda_I^\star \cdot X_I}$  denotes the sample variance of  $\lambda_I^\star \cdot X_I$ , and  $z_p$  denotes the  $p^{\text{th}}$  quantile of the standard normal distribution.

### C.2 The case of multiple budget inequalities, known $\Sigma$

We again suppose that there is a random vector  $X \in \mathbb{R}^k$  with known covariance  $\Sigma$ , and our goal is to estimate  $\theta^* = a^\top \mathbb{E} X$  for some fixed  $a \in \mathbb{R}^k$ . We may now sample  $X_I$  a maximum of  $n_I$  times, subject to the constraints that  $\sum_{I \in \mathcal{I}} c_I^{(\ell)} n_I \leq B^{(\ell)}$  for some  $c_I^{(\ell)} \geq 0$  and  $B^{(\ell)} > 0$ , with  $1 \leq \ell \leq m$ .

### **Step 1:** Solve the SDP

$$\begin{split} \sup_{t \in \mathbb{R}} t \quad \text{s.t.} \quad & \left( \frac{\sum_{I \in \mathcal{I}} n_I P_I^\top \sum_I^{-1} P_I \quad a}{a^\top} \right) \succeq 0, \\ & n_I \geq 0 \qquad \qquad \forall I \in \mathcal{I} \\ & \sum_{I \in \mathcal{I}} c_I^{(\ell)} n_I \leq B^{(\ell)} \qquad \qquad \forall \ell \leq m \end{split}$$

for real valued  $n_I$ , and obtain solutions  $n_{I \text{ frac}}^{\star}$ .

## Step 2: Set

$$\begin{split} n_I^\star &= \left\lfloor n_{I, \text{frac}}^\star \right\rfloor \\ \lambda_I^\star &= n_I^\star \Sigma_I^{-1} P_I \left( \sum_{I \in \mathcal{I}} n_I^\star P_I^\top \Sigma_I^{-1} P_I \right)^\dagger a \end{split}$$

for all  $I \in \mathcal{I}$ .

**Step 3:** As in the previous section, for each  $I \in \mathcal{I}$ , independently sample  $X_I$   $n_I^{\star}$  times, and compute the sample mean  $\overline{\lambda_I^{\star} \cdot X_I}$ . Return

$$\hat{\theta}_{\mathrm{MultiPPI}(\Sigma)} = \sum_{I \in \mathcal{I}} \overline{\lambda_I^{\star} \cdot X_I}$$

with  $(1 - \alpha)$ -confidence intervals given by

$$\mathcal{C} = \hat{\theta}_{\text{MultiPPI}(\Sigma)} \pm z_{1-\alpha/2} \sqrt{\sum_{I \in \mathcal{I}} \frac{1}{n_I^{\star}} \widehat{\sigma^2}_{\lambda_I^{\star} \cdot X_I}}$$

where  $\widehat{\sigma^2}_{\lambda_I^\star \cdot X_I}$  denotes the sample variance of  $\lambda_I^\star \cdot X_I$ , and  $z_p$  denotes the  $p^{\text{th}}$  quantile of the standard normal distribution.

C.3 The case of unknown  $\Sigma$ 

In general, the approach is to construct an estimate  $\widehat{\Sigma}$  of  $\Sigma$  from data, and use this estimate for  $\Sigma$  in the steps outlined above. In principle, it is possible to recycle the data used to construct  $\widehat{\Sigma}$  in step 3 of the above procedures; this preserves asymptotic normality as a consequence of Theorem 4.4. Below, we detail one approach to doing this—the approach used in our experiments, and the approach outlined in Section 4.2.

Suppose that  $a=(1,0,\dots,0)$ , and we have some hard limit N on the number of samples available from  $X_1$ . This typically represents a "gold" label which is invaluable in some sense. We also suppose that these labeled samples are fully labeled—that is, that the entire vector  $X=(X_1,\dots,X_k)$  is visible in each case—or alternatively, that N is small enough that they are relatively inexpensive to obtain model predictions for.

- **Step 1:** Construct the empirical covariance matrix  $\widehat{\Sigma}$  from the N fully-labeled samples.
- **Step 2:** Take  $\mathcal{I}$  to be all subsets of models—that is, all subsets of  $\{2, \ldots, k\}$ —together with the set of all indices  $\{1, \ldots, k\}$ . Formally,  $\mathcal{I} = \{\{1, \ldots, k\}\} \cup 2^{\{2, \ldots, k\}}$ .
- **Step 3:** Run § C.2 with any existing budget constraints, together with the constraint that  $n_{\{1,...,k\}} \leq N$ , and obtain allocations  $n_I^{\star}, \lambda_I^{\star}$ .
- **Step 4:** Sample accordingly, with the guarantee that the number of fully labeled samples  $X_{\{1,\dots,k\}}$  queried won't exceed the number available, N. These samples from step 1 may be reused for this.
- **Step 5:** Return the resulting estimator, as described in § C.2.

## D ADDITIONAL EXPERIMENTS

#### D.1 LEARNED ALLOCATIONS AND LINEAR PARAMETERS

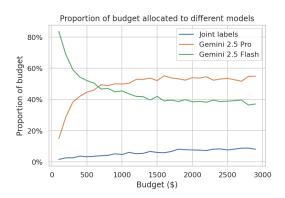


Figure 2: Proportion of budget allocated to different models in Experiment 1: ChatBot Arena. Gemini 2.5 Flash, the cheapest model, is most sampled in the low-budget regime, while the proportion of budget allocated to the joint (both models combined) increases monotonically with budget.

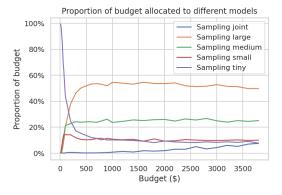


Figure 3: Proportion of budget allocated to different models in Experiment 2: ProcessBench. Tiny (125 word thinking budget) is most sampled in the low-budget regime, while the proportion of budget allocated to the joint (all models combined) increases monotonically with budget.

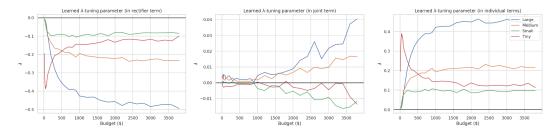


Figure 4: Linear parameters  $\lambda_I$  learned across budget regimes in Experiment 2: ProcessBench. While only the tiny model (125 word thinking budget) has a nonzero linear parameter in the low-budget regime, a *cascading* behavior is learned in the large-budget regime: the cheaper models are prescribed the opposite sign from the more-expensive models in the joint term.

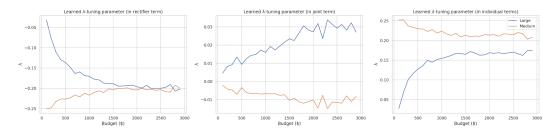


Figure 5: Linear parameters  $\lambda_I$  learned across budget regimes in Experiment 1: ChatBot Arena. While only Gemini 2.5 Pro has a nonzero linear parameter in the low-budget regime, a *cascading* behavior is learned in the large-budget regime: the cheaper model (Gemini 2.5 Flash) is prescribed the opposite sign from the more-expensive model (Gemini 2.5 Pro) in the joint term.

### D.2 MULTIPPI WITH A LARGER NUMBER OF LABELED SAMPLES

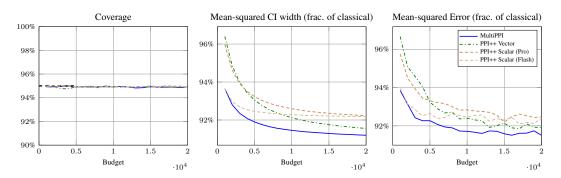


Figure 6: Results by budget, Experiment 2: Chatbot Arena. 1,000 labeled samples are provided.

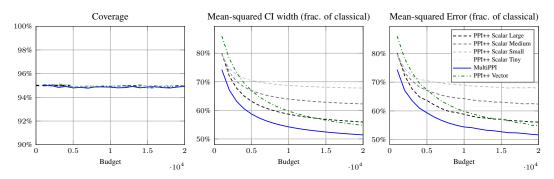


Figure 7: Results by budget, Experiment 2: ProcessBench. 1,000 labeled samples are provided.

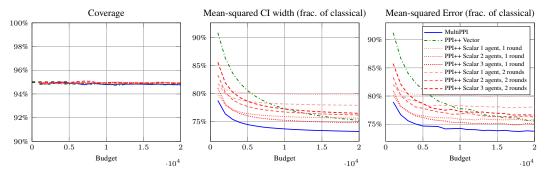


Figure 8: Results by budget, Experiment 3: Factuality. 1,000 labeled samples are provided.

## D.3 AUTORATER ACCURACY SCALING

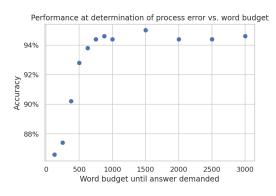


Figure 9: Performance at determination of process error vs. word budget. This is calculated via the procedure described in Appendix I. The majority of the improvement observed due to thinking occurs once 500 words of thought is reached, and plateaus around 1,000 words of thought.

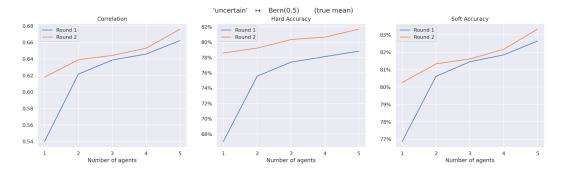


Figure 10: Performance at factuality evaluation with increasing number of agents and rounds of debate. Soft accuracy awards half a point to reporting an uncertain answer, while hard accuracy awards nothing.

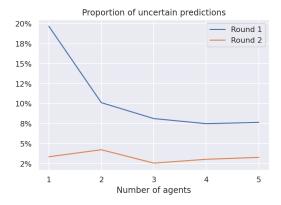


Figure 11: Proportion of uncertain predictions by number of agents and rounds of debate. An increased number of agents leads to fewer uncertain predictions, and almost all predictions are certain by the end of the second round of debate.

## 95% confidence intervals

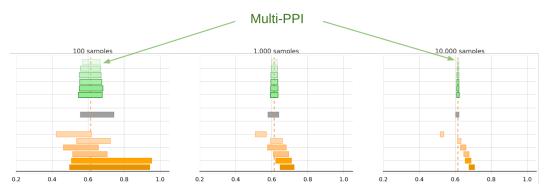


Figure 12: Different schemes for evaluation with autoraters on the ProcessBench dataset. Gray: classical sampling—no autoraters. Orange: pure autoraters, in decreasing order of thinking budget—note that the bias is increasingly pronounced with thinking budget. Green: various schemes for debiasing autoraters, including MultiPPI (top).

## E ADDITIONAL THEORETICAL RESULTS

#### E.1 FINITE-SAMPLE BOUNDS

We consider the setting of Appendix B, in which we may have several budget constraints. For the time being, we fix  $a=(1,0,\dots,0)$  as in all experiments. Let  $I^0\in\mathcal{I}$  contain 1. A procedure which is similar to classical sampling is the following: Consider the choice  $\underline{n}^0,\underline{\lambda}^0$  defined such that  $n_I^0=0$  if  $I\neq I^0$ , and let  $n_{I^0}^0$  be the maximal choice afforded by the budget (i.e.  $n_{I^0}^0=\max_{1\leq\ell\leq m}\left\lfloor B^{(\ell)}/c_{I^0}^{(\ell)}\right\rfloor$ ). Then setting  $\lambda_I^0=0$  if  $I\neq I^0$ , and  $\lambda_{I^0}^0$  to be a restricted to  $I^0$ , we recover the classical estimator

$$\frac{1}{n_{I^0}^0} \sum_{j=1}^{n_{I^0}^0} X_1^{(j)}$$

which has MSE  $\sigma_1^2/n_{I^0}^0$ , where  $\sigma_1^2 = \Sigma_{11}$ . We let  $\sigma_{\text{classical}}^2 := \sigma_1^2/n_{I^0}^0$  denote this quantity.

We will compare  $\hat{\theta}_{\text{MultiPPI}}$  to this in finite samples. Let  $\widehat{\Sigma}_N$  denote the empirical covariance matrix constructed from N i.i.d. samples from P, and let  $\widehat{\underline{n}}, \widehat{\underline{\lambda}}$  denote the solution to MultiAllocate( $\widehat{\Sigma}_N$ ), i.e. the minimizer of

$$\widehat{R}_N(\underline{n},\underline{\lambda}) = \sum_{I \in \mathcal{I}: n_I > 0} \frac{1}{n_I} \lambda_I^{\top} \widehat{\Sigma}_N \lambda_I$$

such that  $\mathbf{U}$  and  $\mathbf{B}$  hold. On the other hand, let  $\underline{n}^*, \underline{\lambda}^*$  denote the solution to MultiAllocate( $\Sigma$ ), i.e. the minimizer of

$$R(\underline{n},\underline{\lambda}) = \sum_{I \in \mathcal{I}: n_I > 0} \frac{1}{n_I} \lambda_I^\top \Sigma \lambda_I$$

such that U and B hold. In this section, we bound

$$R(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) - R(\underline{n}^*, \underline{\lambda}^*).$$

**Theorem E.1.** Let  $\gamma_{\min}$  denote the minimal eigenvalue of  $\Sigma$ , and  $\delta = \|\Sigma - \widehat{\Sigma}_N\|_{op}$ . Then for all  $\delta \leq \gamma_{\min}/2$ ,

$$R(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) \leq R(\underline{n}^*, \underline{\lambda}^*) + 4 \frac{\delta}{\gamma_{\min}} \cdot \sigma_{\text{classical}}^2$$

**Corollary E.2.** Suppose that  $X_i \in [0,1]$  almost surely. Then with high probability,

$$R(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) \leq R(\underline{n}^*, \underline{\lambda}^*) + c \left( \frac{\gamma_{\max}^{1/2}}{\gamma_{\min}} \sqrt{\frac{k \log k}{N}} + \frac{1}{\gamma_{\min}} \frac{k \log k}{N} \right) \sigma_{\text{classical}}^2$$

for a universal constant c, and so

$$\mathbb{E}R(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) \leq R(\underline{n}^*, \underline{\lambda}^*) + c' \left( \frac{\gamma_{\max}^{1/2}}{\gamma_{\min}} \sqrt{\frac{k}{N}} + \frac{1}{\gamma_{\min}} \frac{k}{N} \right) \sigma_{\text{classical}}^2$$

for another constant c', where the expectation is taken over the N labeled samples used to construct  $\widehat{\Sigma}_N$ .

**Corollary E.3.** Suppose that X is a subgaussian with variance proxy K. Then

$$\mathbb{E}R(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) \le R(\underline{n}^*, \underline{\lambda}^*) + c'K^2 \left(\sqrt{\frac{k}{N}} + \frac{k}{N}\right) \sigma_{\text{classical}}^2$$

In the AR(1) model, and with bounded observations, choosing  $N \gg k$  in the limit  $k, N \to \infty$  is enough that  $\mathbb{E}R(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) \to R(\underline{n}^*, \underline{\lambda}^*)$ . This follows as a special case of the following result.

**Corollary E.4.** Suppose, in addition to the conditions of Theorem 4.3, that  $X_1, X_2, \ldots$  is a stochastic process such that  $\operatorname{Var} X_t > c$  for all t, and  $\operatorname{Corr}(X_t, X_s) \leq (1-\rho)\rho^{|t-s|}$  for some  $0 < c, \rho < 1$ . Then we have

$$\mathbb{E}R(\underline{\widehat{n}},\underline{\widehat{\lambda}}) = R(\underline{n},\underline{\lambda}) + o(1)$$

whenever k/N = o(1).

#### E.2 Behavior of the estimator in the limiting regimes

In this section, we explain a certain limiting behavior of the estimator in the regime of very low budget. Let  $X=(X_1,\ldots,X_k)$  be a random vector of bounded second moment. We take  $a=(1,0,\ldots,0)$ , so that our target is  $\mathbb{E}[X_1]$ . We consider the setting (as is the case in all experiments) in which  $\mathcal{I}=\{1,\ldots,k\}\cup\mathcal{I}_{\text{models}}$ , where for each  $I\in\mathcal{I}_{\text{models}}$  we have  $1\not\in I$ .

As in the experiments, we consider the budget model in which we have a fixed number of

For  $I \in \mathcal{I}_{\text{models}}$ ,  $\rho_I$  denote the multiple correlation coefficient of  $X_I$  with  $X_1$ ; that is, let  $\rho_I = \text{Cov}_I^\top \Sigma_I^{-1} \text{Cov}_I$ , where we define  $\text{Cov}_I := (\text{Cov}(X_i, X_1))_{i \in I}$ . The following result shows that, in the low-budget regime, MultiAllocate( $\Sigma$ ) returns  $n_I$  such that the only  $I \in \mathcal{I}_{\text{models}}$  for which  $n_I \neq 0$  is the one which minimizes the correlation/cost ratio  $\rho_I/c_I$ .

**Theorem E.5.** Fix B > 0 and consider the limit as  $n_{[k]} \to \infty$ . For each  $I \in \mathcal{I}$ , let  $\alpha_I := \rho_I/c_I$ . Suppose that  $I^*$  uniquely minimizes  $\alpha_I$  over  $I \in \mathcal{I}_{models}$ . Then the solution to MultiAllocate( $\Sigma$ ) satisfies

$$n_I \longrightarrow \frac{B}{c_I} \cdot \begin{cases} 1 & I = I^* \\ 0 & I \neq I^* \end{cases}$$

### E.3 ROUNDING IN THE LARGE BUDGET REGIME

In this section, we consider the suboptimality of the rounding scheme in the large budget regime. We consider the general setup in which we optimize

$$V_B(\underline{n}) = a^{\top} \left( \sum_{I} n_I P_I^{\top} \Sigma_I^{-1} P_I \right)^{\dagger} a \quad \text{s.t.} \quad n_I \ge 0, \ \sum_{I} c_I n_I \le B, \ \text{supp}(a) \subseteq \bigcup \{I : n_I > 0\}$$

We let  $\underline{n}_{\text{frac}}^*$  denote the solution to this problem over all  $\underline{n} \in \mathbb{R}_{\geq 0}^{|\mathcal{I}|}$ , and  $\underline{n}_{\text{int}}^*$  denote the solution over all  $\underline{n} \in \mathbb{Z}_{\geq 0}^{|\mathcal{I}|}$ . Let  $\underline{n}_{\text{round}}$  denote the component-wise floor of  $\underline{n}_{\text{frac}}^*$ . Here we show that

$$\lim_{B \to \infty} \frac{V_B(\underline{n}_{\text{frac}})}{V_B(\underline{n}_{\text{int}}^*)} = 1$$

This follows from the fact that

$$V_B(\underline{n}_{\text{frac}}^*) \le V_B(\underline{n}_{\text{int}}^*) \le V_B(\underline{n}_{\text{round}})$$

and the limit  $V_B(\underline{n}_{\mathrm{frac}}^*)/V_B(\underline{n}_{\mathrm{round}}) \to 1$ , to be proven next. Consider the difference vector  $\underline{\delta} = \underline{n}_{\mathrm{frac}}^* - \underline{n}_{\mathrm{round}} \in [0,1]^{|\mathcal{I}|}$ . Now observe that there is some  $\underline{\nu}^* \in \mathbb{R}_{>0}^{|\mathcal{I}|}$  such that

$$BV_B(\underline{n}_{frac}^*) = V_1(\underline{\nu}^*)$$

for all B, and equality holds if we take  $\underline{n}^*_{\mathrm{frac}} = B\underline{\nu}^*$ . In particular, since we must have  $\bigcup\{I: n^*_{\mathrm{frac},I} > 0\} \supseteq \mathrm{supp}(a)$ , we may take the same to hold for  $\underline{\nu}^*$ . We therefore have

$$BV_B(\underline{n}_{\text{round}}) = Ba^{\top} \left( B \sum_{I} \nu_I P_I^{\top} \Sigma_I^{-1} P_I + \sum_{I} \delta_I P_I^{\top} \Sigma_I^{-1} P_I \right)^{\dagger} a$$
$$= a^{\top} \left( \sum_{I} \nu_I P_I^{\top} \Sigma_I^{-1} P_I + \frac{1}{B} \sum_{I} \delta_I P_I^{\top} \Sigma_I^{-1} P_I \right)^{\dagger} a$$

Now since  $\bigcup \{I : \nu_I^* > 0\} \supseteq \operatorname{supp}(a)$ , we may apply continuity of the inverse to conclude that

$$\lim_{B \to \infty} BV_B(\underline{n}_{\text{round}}) = a^\top \left( \sum_I \nu_I^* P_I^\top \Sigma_I^{-1} P_I \right)^\dagger a = V_1(\underline{\nu}^*)$$

and the limit is proven.

#### E.4 DECAY OF COVERAGE IN THE LARGE BUDGET REGIME

In this section, we discuss the phenomenon of decaying coverage as  $B \to \infty$ . Note that this is not unique to MultiPPI: it can be seen occurring to all baselines we compare to, and is especially pronounced for PPI++ vector. After discussing the phenomenon, we describe one way to avoid it.

Since, to the best of our knowledge, this phenomenon has not been observed in other works concerning PPI++, we focus our discussion on the PPI++ estimator and explain why it happens in that setting. Recall from Equation 2 the PPI++ estimator

$$\hat{\theta}_{\text{PPI++}} = \frac{1}{n} \sum_{i=1}^{n} \left( Y_i - \widehat{\lambda} X_i \right) + \frac{1}{N} \sum_{i=1}^{N} \widehat{\lambda} \widetilde{X}_j$$

where  $\{(X_i,Y_i)\}_{i\leq n}$  are i.i.d. according to some joint distribution  $\mathbb{P}$ , and  $\{\tilde{X}_j\}_{j\leq N}$  are i.i.d.  $\mathbb{P}_X$ .

Angelopoulos et al. (2023b) (as well as many works before, in the context of control variates) propose a choice of  $\widehat{\lambda}$  which depends on  $\{(X_i, Y_i)\}_{i \le n}$ ; namely, they let

$$\widehat{\lambda} = \frac{N}{n+N} \frac{\widehat{Cov}(X_{1:n}, Y_{1:n})}{\widehat{Var}(X_{1:n})}$$

where  $\widehat{\mathrm{Cov}}(X_{1:n},Y_{1:n})$  and  $\widehat{\mathrm{Var}}(X_{1:n})$  are the relevant empirical covariance and variance computed from  $\{(X_i,Y_i)\}_{i\leq n}$ . This choice introduces bias in finite samples, and MultiPPI exhibits a similar behavior, as discussed in §4. In the limit theorems provided in this work, c.f. Theorem 4.4, and in Angelopoulos et al. (2023b), it is assumed that the number of labeled samples (here, denoted n) tends to infinity. But this is not the situation presented in our experimental results.

Here we consider the bias of  $\hat{\theta}_{PPI++}$  for fixed n as  $N \to \infty$ . This bias is exactly

$$\operatorname{bias}(\widehat{\theta}_{\operatorname{PPI}++}) := \left| \mathbb{E}[\widehat{\theta}_{\operatorname{PPI}++}] - \mathbb{E}[Y] \right| = \left| \mathbb{E}[\widehat{\lambda}(X_1 - \widetilde{X}_1)] \right| = \frac{N}{n+N} \left| \operatorname{Cov}\left(X_1, \frac{\widehat{\operatorname{Cov}}(X_{1:n}, Y_{1:n})}{\widehat{\operatorname{Var}}(X_{1:n})} \right) \right|$$

by independence of  $\widehat{\lambda}$  and  $\widetilde{X}_1$ . Now for fixed n, and  $N \to \infty$ , the right-hand side converges upward precisely to the covariance of  $X_1$  with the sample regression slope of Y onto X, which is not in general zero. Therefore, the bias will increase but stay bounded as  $N \to \infty$ , as observed.

Note that this analysis does not apply to the setting in which the ratio N/n is bounded. We find, accordingly, that this decay is unobserved in our experiments in which the number of labeled samples is in constant proportion with the budget.

## F PROOFS

Unless explicitly stated otherwise, we prove results for the generalized setup outlined in Appendix B.

#### F.1 PROOF OF THEOREM 4.2

For  $\Sigma \in \mathbb{R}^{k \times k}$  symmetric positive-definite, let  $\mathcal{P}_{\Sigma}$  denote the set of distributions on  $\mathbb{R}^k$  with covariance  $\Sigma$ . For a fixed collection of index subsets  $\mathcal{I}$  with associated costs  $c_I$ , let  $\Theta_B$  denote the set of budget satisfying estimators  $\hat{\theta}$ , i.e. the estimators  $\hat{\theta}$  which are measurable functions of  $n_I$  independent copies of  $X_I = (X_i)_{i \in I}$ , for each  $I \in \mathcal{I}$ , such that  $\mathbf{B}(\underline{n})$  holds. We emphasize that we make no explicit restriction to linear estimators.

**Theorem F.1** (Minimax optimality for general budget constraints). We have

$$\inf_{\hat{\theta} \in \Theta_B} \sup_{P \in \mathcal{P}_{\Sigma}} \mathbb{E}\left[ (\hat{\theta} - \theta^*)^2 \right] = \operatorname{Var}\left( \hat{\theta}_{\textit{Multi-allocate}(\Sigma)} \right) = \mathcal{V}_B$$

where the variance is with respect to any distribution  $P \in \mathcal{P}_{\Sigma}$ .

*Proof of Theorem F.1.* We first reduce to the case of known and fixed  $\underline{n}$ .

**Lemma F.2.** Let  $\Theta^{(\underline{n})}$  denote the set of measurable functions  $\hat{\theta}$  which are functions of  $n_I$  independent copies of  $X_I$ , for each  $I \in \mathcal{I}$ . Then if  $\operatorname{supp}(a) \subseteq \bigcup \{I : n_I > 0\}$ ,

$$\inf_{\hat{\theta} \in \Theta^{(\underline{n})}} \sup_{P \in \mathcal{P}_{\Sigma}} \mathbb{E} \left[ (\hat{\theta} - \theta^*)^2 \right] = \min_{\underline{\lambda} : \mathbf{U}(\underline{n},\underline{\lambda})} \sum_{I: n_I > 0} \frac{1}{n_I} \lambda_I^{\top} \Sigma_I \lambda_I;$$

otherwise,  $\sup_{P \in \mathcal{P}_{\Sigma}} \mathbb{E}\left[ (\hat{\theta} - \theta^*)^2 \right]$  is unbounded for all  $\hat{\theta} \in \Theta_B$ .

We now reduce the conjecture to this lemma. Observe that

$$\Theta_B = \bigcup_{\underline{n} : \mathbf{B}(\underline{n})} \Theta^{(n)}$$

and so the left hand-side of the conjecture is equal to

$$\inf_{\underline{n}: \mathbf{B}(\underline{n})} \inf_{\hat{\theta} \in \Theta(\underline{n})} \sup_{P \in \mathcal{P}_{\Sigma}} \mathbb{E}\left[ (\hat{\theta} - \theta^*)^2 \right] = \inf_{\underline{n}: \mathbf{B}(\underline{n})} \min_{\underline{\lambda}: \mathbf{U}(\underline{n}, \underline{\lambda})} \sum_{I: n_I > 0} \frac{1}{n_I} \lambda_I^{\top} \Sigma_I \lambda_I =: \operatorname{Var}(\hat{\theta}_{\text{Multi-allocate}(\Sigma)})$$

since  $U(\underline{n}, \underline{\lambda})$  is feasible for  $\underline{\lambda}$  if and only if  $\mathrm{supp}(a) \subseteq \bigcup \{I : n_I > 0\}$ . It now suffices to prove the lemma.

Proof of Lemma F.2. The claim that  $\sup_{P \in \mathcal{P}_{\Sigma}} \mathbb{E}\left[ (\hat{\theta} - \theta^*)^2 \right]$  is unbounded for all  $\hat{\theta} \in \Theta_B$  if  $\sup_{I}(a) \not\subseteq \bigcup_{I} \{I: n_I > 0\}$  follows from the observation that if  $i \in \sup_{I}(a) \setminus \bigcup_{I} \{I: n_I > 0\}$ , there exist distributions  $P \in \mathcal{P}_{\Sigma}$  such that  $\theta_i^* = \mathbb{E}[X_i]$  may be made arbitrary large, while  $\hat{\theta}$  cannot depend on such  $X_i$ .

Therefore, in what follows, we assume  $\operatorname{supp}(a) \subseteq \bigcup \{I : n_I > 0\}$ . The upper bound is clear from that fact that

$$\{\hat{\theta}_{\underline{n},\underline{\lambda}}:\,\mathbf{U}(\underline{n},\underline{\lambda})\}\subseteq\Theta^{(\underline{n})}$$

i.e., the set of unbiased linear estimators depending on  $\underline{n}$  samples is a subset of the set of all estimators depending on  $\underline{n}$  samples; and from the fact that  $\operatorname{Var}(\hat{\theta}_{\underline{n},\underline{\lambda}}) = \sum_{I:n_I>0} \frac{1}{n_I} \lambda_I^\top \Sigma_I \lambda_I$  for every  $P \in \mathcal{P}_{\Sigma}$ , hence the minimal MSE of such estimators is precisely the right-hand side.

We now prove the lower bound. Since the Bayes risk for any prior  $\mu$  lower bounds the minimax risk, it suffices to construct a sequence of priors  $\mu$  for which the risk of the Bayes estimator tends upward to our claimed lower bound. Let us choose the distribution  $X \sim \mathcal{N}(\mu, \Sigma)$ , and supply the prior  $\mu \sim \mathcal{N}(0, \tau^2 \mathrm{Id}_k)$  for  $\tau > 0$  arbitrary; we will later take  $\tau \to \infty$ . Note that we then have  $X_I = P_I X \sim \mathcal{N}(P_I \mu, P_I \Sigma P_I^\top)$ .

By construction, any estimator  $\hat{\theta} \in \Theta^{(\underline{n})}$  depends on the independent set  $\bigcup_{I \in \mathcal{I}} \{X_I^{(j)}\}_{1 \leq j \leq n_I}$  where each  $X_I^{(j)}$  is distributed according to  $\mathcal{N}(\mu_I, \Sigma_I)$ . The posterior<sup>4</sup> is then

$$\mu \mid \bigcup_{I \in \mathcal{I}} \{X_I^{(j)}\}_{1 \le j \le n_I} \sim \mathcal{N}(m_\tau, S_\tau)$$

$$S_\tau = \left(\frac{1}{\tau^2} \mathrm{Id}_k + \sum_{I \in \mathcal{I}} n_I P_I^\top \Sigma_I^{-1} P_I\right)^{-1}$$

$$m_\tau = S_\tau \left(\sum_I n_I P_I^\top \Sigma_I^{-1} \overline{X}_I\right)$$

The Bayes risk of estimating  $\theta = a^{\top} \mu$  is then  $a^{\top} S_{\tau} a$ . Letting  $\tau \to \infty$ , we have shown that the minimax risk is at least<sup>5</sup>

$$a^{\top}Sa$$
,  $S = \left(\sum_{I \in \mathcal{I}} n_I P_I^{\top} \Sigma_I^{-1} P_I\right)^{\dagger}$ .

It remains to show that this risk is achievable by the  $\hat{\theta}_{\underline{n},\underline{\lambda}}$  for some choice of  $\underline{\lambda}$  satisfying  $\mathbf{U}(\underline{n},\underline{\lambda})$ . We quickly verify this below:

Putting<sup>6</sup>

$$\lambda_I = \left( n_I \Sigma_I^{-1} P_I \right) Sa$$

we see that indeed  $U(\underline{n}, \underline{\lambda})$  holds. Moreover, we calculate

$$\operatorname{Var}(\hat{\theta}_{\underline{n},\underline{\lambda}}) = \sum_{I} n_{I} a^{\top} S P_{I}^{\top} \Sigma_{I}^{-1} \Sigma_{I} \Sigma_{I}^{-1} P_{I} S a = a^{\top} S \left( \sum_{I:n_{I}>0} n_{I} P_{I}^{\top} \Sigma_{I}^{-1} P_{I} \right) S a = a^{\top} S a$$

as desired. This concludes the proof.

### F.2 PROOFS OF FINITE SAMPLE RESULTS

*Proof of theorem E.1.* We have

$$R(\underline{\widehat{n}}, \underline{\widehat{\lambda}}) - R(\underline{n}^*, \underline{\lambda}^*) = R(\underline{\widehat{n}}, \underline{\widehat{\lambda}}) - \widehat{R}_N(\underline{\widehat{n}}, \underline{\widehat{\lambda}}) + \underbrace{\widehat{R}_N(\underline{\widehat{n}}, \underline{\widehat{\lambda}}) - \widehat{R}_N(\underline{n}^*, \underline{\lambda}^*)}_{\leq 0} + \widehat{R}_N(\underline{n}^*, \underline{\lambda}^*) - R(\underline{n}^*, \underline{\lambda}^*)$$

$$(9)$$

and so it suffices to bound  $|R(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) - \widehat{R}_N(\widehat{\underline{n}}, \widehat{\underline{\lambda}})|$  and  $|\widehat{R}_N(\underline{\underline{n}}^*, \underline{\lambda}^*) - R(\underline{\underline{n}}^*, \underline{\lambda}^*)|$ . Define

$$\Delta_{N}(\underline{n},\underline{\lambda}) = |R(\underline{n},\underline{\lambda}) - \widehat{R}_{N}(\underline{n},\underline{\lambda})|$$

$$= \left| \sum_{I \in \mathcal{I}: n_{I} > 0} \frac{1}{n_{I}} \lambda_{I}^{\top} (\Sigma - \widehat{\Sigma}_{N}) \lambda_{I} \right|$$

$$\leq \|\Sigma - \widehat{\Sigma}_{N}\| \sum_{I \in \mathcal{I}: n_{I} > 0} \frac{1}{n_{I}} \|\lambda_{I}\|_{2}^{2}$$
(10)

<sup>&</sup>lt;sup>4</sup>Morally, we are done at this point: the posterior mean is linear in  $(\overline{X}_I)_I$ , and the Multi-PPI estimator is the best such linear estimator. However, this does not yet directly imply the result. See next page for calculation of the posterior.

<sup>&</sup>lt;sup>5</sup>Here we use the assumption that  $\operatorname{supp}(a) \subseteq \bigcup \{I: n_I > 0\}$ , and thus a lies in the range of  $\sum_I n_I P_I^\top \sum_I^{-1} P_I$ .

<sup>&</sup>lt;sup>16</sup>To find this choice organically, one may solve an infimal norm convolution with Lagrange multipliers.

Now since  $n^0$ ,  $\lambda^0$  satisfies **U** and **B**, we have

$$R(\underline{n}^*, \underline{\lambda}^*) \le R(\underline{n}^0, \underline{\lambda}^0), \qquad \widehat{R}_N(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) \le \widehat{R}_N(\underline{n}^0, \underline{\lambda}^0)$$

from which it follows that

$$\sigma_1^2/n_{I^0}^0 \ge \sum_{I \in \mathcal{I}: n_I^* > 0} \frac{1}{n_I^*} (\lambda_I^*)^\top \Sigma(\lambda_I^*) \ge \gamma_{\min}(\Sigma) \sum_{I \in \mathcal{I}: n_I^* > 0} \frac{1}{n_I^*} \|\lambda_I^*\|_2^2$$
(11)

and similarly

$$\widehat{\sigma_1^2}/n_{I^0}^0 \geq \sum_{I \in \mathcal{I}: \widehat{n}_I > 0} \frac{1}{\widehat{n}_I} \widehat{\lambda}_I^\top \widehat{\Sigma}_N \widehat{\lambda}_I \geq \gamma_{\min}(\widehat{\Sigma}_N) \sum_{I \in \mathcal{I}: \widehat{n}_I > 0} \frac{1}{\widehat{n}_I} \|\widehat{\lambda}_I\|_2^2,$$

where  $\gamma_{\min}(A)$  denotes the minimum eigenvalue of the matrix A. We deduce that

$$\begin{split} & \sum_{I \in \mathcal{I}: n_I^* > 0} \frac{1}{n_I^*} \|\lambda_I^*\|_2^2 \leq \frac{\Sigma_{11}}{n_{I^0}^0 \gamma_{\min}(\Sigma)} \\ & \sum_{I \in \mathcal{I}: \widehat{n}_I > 0} \frac{1}{\widehat{n}_I} \|\widehat{\lambda}_I\|_2^2 \leq \frac{\widehat{\Sigma}_{N,11}}{n_{I^0}^0 (\gamma_{\min}(\Sigma) - \delta)} \leq \frac{\Sigma_{11} + \delta}{n_{I^0}^0 (\gamma_{\min}(\Sigma) - \delta)} \end{split}$$

by Weyl's inequality, where we let  $\delta = \|\Sigma - \widehat{\Sigma}_N\|$ . Coupled with Equation 10, we have

$$\begin{split} \Delta_N(\underline{n}^*, \underline{\lambda}^*) &\leq \delta \frac{\Sigma_{11}}{n_{I^0}^0 \gamma_{\min}(\Sigma)} \\ \Delta_N(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) &\leq \delta \frac{\Sigma_{11} + \delta}{n_{I^0}^0 (\gamma_{\min}(\Sigma) - \delta)} \end{split}$$

Taken together with Equation 9 and the definition of  $\Delta_N$ , we conclude that

$$R(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) \le R(\underline{n}^*, \underline{\lambda}^*) + 4 \frac{\delta}{\gamma_{\min}(\Sigma)} \cdot \frac{\sigma_1^2}{n_{I_0}^0}$$

for all  $\delta \leq \gamma_{\min}(\Sigma)/2$ .

*Proof of Corollary E.2.* This follows immediately from the preceding theorem and Corollary 6.20 of Wainwright (2019). □

*Proof of Corollary E.3.* This follows immediately from the preceding theorem and Theorem 4.7.1 of Vershynin (2018).

Proof of Corollary E.4. This follows immediately from the Gershgorin circle theorem, as  $\sum_{t\neq s} \operatorname{Cov}(X_t, X_s) \leq \sqrt{\operatorname{Var}(X_t)\operatorname{Var}(X_s)} < c$ , and so  $\lambda_{\min}(\Sigma)$  is bounded below for all k. On the other hand,  $\lambda_{\max}(\Sigma)$  is bounded above on account of the same argument and the assumption that  $X_i$  are bounded.

### F.3 PROOF OF THEOREM 4.4

We prove a generalization of Theorem 4.4 in which we allow for multiple budget inequalities.

Fix a vector  $B_0 \in \mathbb{R}^m_{>0}$ . We consider the limit in which our budget is  $B = t \cdot B_0$  and let  $t \to \infty$ . Suppose that  $\widehat{\Sigma} \xrightarrow{p} \Sigma$  in the operator norm, potentially dependent on the variables sampled  $X_I$ .

We assume the following condition: Suppose that the following problem has a unique minimizer  $\nu$ :

$$\underline{\nu}^* = \operatorname{argmin}_{\underline{\nu}} V(\underline{\nu}) := a^{\top} \left( \sum_{I} \nu_I P_I^{\top} \Sigma_I^{-1} P_I \right)^{\dagger} a$$
s.t.  $\underline{\nu} \ge 0$ ,  $\sum_{I} \nu_I c_I \le B_0$ ,  $\operatorname{supp}(a) \subseteq \bigcup \{I : \nu_I > 0\}$ 

**Theorem F.3** (Generalized asymptotic normality). Suppose that condition 12 holds. Then we have

$$\sqrt{t} \left( \hat{\theta}_{\textit{MultiPPI}(\widehat{\Sigma})} - \theta^* \right) \overset{d}{\rightarrow} \mathcal{N}(0, V(\underline{\nu}^*)).$$

While  $\hat{\theta}_{\mathrm{MultiPPI}(\Sigma)}$  is minimax optimal in the setting of fixed and known covariance  $\Sigma$ , it is in general not efficient, and the variance  $\mathcal V$  can in general be improved by slowly concatenating onto X nonlinear functions of its components. It may be that such a version of  $\hat{\theta}_{\mathrm{MultiPPI}(\Sigma)}$ , in which k is increased slowly by adding appropriate nonlinear transformations of the components of X, is semiparametrically efficient if this is done at such a rate that  $k \ll B^{1/2}, N^{1/2}$ .

*Proof of Theorem F.3.* Let  $\hat{\theta} = \hat{\theta}_{\text{MultiPPI}(\widehat{\Sigma})}$ . Note that 12 is simply a rounded version of the optimization problem which is solved by  $\hat{\theta}_{\text{MultiPPI}(\widehat{\Sigma})}$ . Let  $\widehat{\underline{\nu}}$  denote the solution to 12 with  $\Sigma$  replaced by  $\widehat{\Sigma}$ .

We first show that, as a result of the assumed condition, we have  $\hat{\nu}_I \to \nu_I^*$  whenever  $\widehat{\Sigma} \to \Sigma$ ; that rounded solutions are optimal in the limit  $t \to \infty$  is justified by § E.3. Since a lies in the range of  $\sum_I \nu_I^* P_I^\top \Sigma_I^{-1} P_I$ , the objective function is continuous in  $(\nu, \Sigma)$  at  $\nu^*$ .

The allocation  $\underline{\hat{n}}$  and weights  $\underline{\hat{\lambda}}$  are chosen to minimize the variance under  $\widehat{\Sigma}$  subject to the budget  $B=tB_0$ . Let  $\hat{\nu}_I=\hat{n}_I/t$ . As  $t\to\infty$ , the optimal proportions  $\underline{\hat{\nu}}$  converge to the solution  $\underline{\nu}^*$  of the continuous optimization problem 12. The convergence  $\underline{\hat{\nu}} \xrightarrow{p} \underline{\nu}^*$  follows from  $\widehat{\Sigma} \xrightarrow{p} \Sigma$  and Berge's Maximum Theorem, as the objective function is continuous and the feasible set is compact. By the continuous mapping theorem, we similarly have  $\widehat{\lambda}_I \xrightarrow{p} \lambda_I^*$ .

We can write  $\sqrt{t}(\hat{\theta} - \theta^*) = \sum_{I \in \mathcal{I}} \hat{\lambda}_I^{\top} \sqrt{\frac{t}{\hat{n}_I}} W_{I,\hat{n}_I}$ , where  $W_{I,\hat{n}_I} = \frac{1}{\sqrt{\hat{n}_I}} \sum_{j=1}^{\hat{n}_I} (X_I^{(I,j)} - \mu_I)$ . For indices I with  $\nu_I^* > 0$ , we have  $\hat{n}_I \stackrel{p}{\to} \infty$ . Define  $n_I^* = \lfloor t \nu_I^* \rfloor$ , and let

$$W_I^* := \frac{1}{\sqrt{n_I^*}} \sum_{i=1}^{n_I^*} (X_I^{(I,j)} - \mu_I)$$

It is now enough to show that  $W_{I,\hat{n}_I} - W_I^* \stackrel{\mathcal{P}}{\to} 0$ , and this will follow from Kolmogorov's inequality. To simplify notation, let us focus on a single subset I, and define  $Y_j = X_I^{(I,j)} - \mu_I$ . Let us also define  $S_m = \sum_{j=1}^m Y_j$ . We must show that

$$\frac{S_{\hat{n}}}{\sqrt{\hat{n}}} - \frac{S_{n^*}}{\sqrt{n^*}} \stackrel{p}{\to} 0$$

where we have dropped dependence on I for convenience. We decompose

$$\frac{S_{\hat{n}}}{\sqrt{\hat{n}}} - \frac{S_{n^*}}{\sqrt{n^*}} = \underbrace{\frac{S_{\hat{n}} - S_{n^*}}{\sqrt{n^*}}}_{A} + \underbrace{\frac{S_{\hat{n}}}{\sqrt{\hat{n}}} \left(1 - \sqrt{\hat{n}/n^*}\right)}_{B}$$

Fix  $0 < \delta < 1$ . We work on the event  $E_{\delta}(t) = \{|\hat{n} - n^*| \le \delta t\}$ , which holds with high probability.

We first control A. On  $E_{\delta}(t)$ ,  $\sqrt{n^*}|A|$  is a sum of at most  $\delta t+1$  i.i.d. copies of  $Y_j$ . Kolmogorov's inequality then yields

$$\mathbb{P}(A > \epsilon) \le \frac{\delta t + 1}{\epsilon^2 n^*} \le 4 \frac{\delta}{\epsilon^2}$$

because  $n^* = |t\nu^*|$ . Taking  $\delta \to 0$  yields that  $A \stackrel{p}{\to} 0$ .

We next control B. Working again on  $E_{\delta}(t)$ , we have

$$\frac{S_{\hat{n}}}{\sqrt{\hat{n}}} \le \frac{1}{\sqrt{1-\delta}} \left( \underbrace{\frac{S_{n^*}}{\sqrt{n^*}}}_{O_p(1)} + \underbrace{\frac{S_{\hat{n}} - S_{n^*}}{\sqrt{n^*}}}_{A} \right)$$

Recognizing the second term as  $A \stackrel{p}{\to} 0$ , and the first term as tight by the central limit theorem, we conclude that  $S_{\hat{n}}/\sqrt{\hat{n}}$  is tight. Now we conclude that  $B \stackrel{p}{\to} 0$  because  $\hat{n}/n^* \stackrel{p}{\to} 1$ .

Having proven  $W_{I,\hat{n}_I} - W_I^* \stackrel{p}{\to} 0$ , we conclude that

$$\sqrt{t}(\hat{\theta} - \theta^*) = \sum_{I:\nu_I^* > 0} \frac{1}{n_I^*} \sum_{j=1}^{n_I^*} (\lambda_I^*)^\top (X_I^{(I,j)} - \mu_I) + o_p(1)$$

But this is precisely the desired result, since this is the solution to the continuous optimization problem, and we are done.  $\Box$ 

### F.4 PROOFS OF ADDITIONAL THEORETICAL RESULTS

*Proof.* Note: For the purpose of this proof only, we slightly change notation, letting m denote the number of labeled samples rather than n. This just has the purpose of clarifying the potential conflict with the notation  $n_I$ .

Let us introduce the notation that  $P_I$  is the orthogonal projection onto coordinates I, and thus  $P_I^{\top} \lambda_I$  shares its values with  $\lambda_I$  on coordinates I, and is 0 elsewhere. As a result, note that we have required

$$\sum_{I:n_I>0} P_I^{\top} \lambda_I = \mu.$$

Now we aim to minimize

$$\frac{1}{m} \left( \sigma_Y^2 - 2\mu^\top \operatorname{Cov} + \mu^\top \Sigma \mu \right) + \sum_{I: n_I > 0} \frac{1}{n_I} \lambda_I^\top \Sigma_I \lambda_I$$

or, expanding,

$$V(n,\lambda) := \frac{1}{m} \left( \sigma_Y^2 - 2 \sum_{I:n_I > 0} \lambda_I^\top \operatorname{Cov}_I + \sum_{I,J:n_I,n_J > 0} \lambda_I^\top \Sigma_{IJ} \lambda_J \right) + \sum_{I:n_I > 0} \frac{1}{n_I} \lambda_I^\top \Sigma_I \lambda_I$$

We are interested in minimizing  $V(n,\lambda)$  over all  $\lambda$  (by which we mean  $(\lambda_I)_{I\in\mathcal{I}}$ ) and n satisfying the budget constraint  $\sum_I c_I n_I \leq C$ . We will first minimize over  $\lambda$  for fixed n: define  $U(n) := \min_{\lambda} V(n,\lambda)$ . But

$$V(n,\lambda) = \lambda^{\top} \begin{pmatrix} \left(\frac{1}{m} + \frac{1}{n_{I_{1}}}\right) \Sigma_{I_{1}} \mathbb{1}_{n_{I} > 0} & \dots & \frac{1}{m} \Sigma_{I_{1} I_{k}} \mathbb{1}_{n_{I_{1}}, n_{I_{k}} > 0} \\ \vdots & \ddots & \vdots \\ \frac{1}{m} \Sigma_{I_{k} I_{1}} \mathbb{1}_{n_{I_{k}}, n_{I_{1}} > 0} & \dots & \left(\frac{1}{m} + \frac{1}{n_{I_{1}}}\right) \Sigma_{I_{1}} \mathbb{1}_{n_{I} > 0} \end{pmatrix} \lambda - 2\lambda^{\top} \begin{pmatrix} \frac{1}{m} \operatorname{Cov}_{I_{1}} \mathbb{1}_{n_{I_{1}} > 0} \\ \vdots \\ \frac{1}{m} \operatorname{Cov}_{I_{k}} \mathbb{1}_{n_{I_{k}} > 0} \end{pmatrix} + \frac{\sigma_{Y}^{2}}{m}$$

is a quadratic form in  $\lambda$ , where we define  $\Sigma_{IJ} = (\Sigma_{ij})_{i \in I, j \in J} = P_I \Sigma P_J^{\top}$ . This is of the form

$$V(n,\lambda) = \lambda^{\top} \left( \frac{1}{m} S_1 + S_2 \right) \lambda - 2 \frac{1}{m} \lambda^{\top} T + d$$

where

$$S_1 = \left(\Sigma_{IJ}\mathbb{1}_{n_I,n_J>0}\right)_{I,J\in\mathcal{I}}, \qquad S_2 = \mathrm{block\_diag}\left(\frac{1}{n_I}\Sigma_I\mathbb{1}_{n_I>0}\right)_{I\in\mathcal{I}}, \qquad T = \left(\mathrm{Cov}_I\,\mathbb{1}_{n_I>0}\right)_{I\in\mathcal{I}}$$

and d is constant in  $n, \lambda$ . It is known that the minimum value of such a quadratic form is

$$U(n) = \min_{\lambda} V(n, \lambda) = -\frac{1}{m^2} T^{\top} \left( \frac{1}{m} S_1 + S_2 \right)^{+} T.$$

This is because T lies in the range of  $\frac{1}{m}S_1 + S_2$ . To see this, let us introduce the notation that  $\mathcal{I}^+ = \{I \in \mathcal{I} : n_I > 0\}$  and let  $\mathcal{I}^0$  be its complement. Reorder  $\mathcal{I}$  if necessary so that  $\mathcal{I}^+$  strictly precedes  $\mathcal{I}^0$ . Then  $\frac{1}{m}S_1 + S_2$  takes the block form

$$\frac{1}{m}\begin{pmatrix} (\Sigma_{IJ})_{I,J\in\mathcal{I}^+} & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} \operatorname{block\_diag}(\Sigma_I/n_I)_{I\in\mathcal{I}^+} & 0 \\ 0 & 0 \end{pmatrix}.$$

Now, both  $(\Sigma_{IJ})_{I,J\in\mathcal{I}^+}$  and block\_diag $(\Sigma_I/n_I)_{I\in\mathcal{I}^+}$  are symmetric positive-definite, hence invertible, on the coordinates  $\mathcal{I}^+$ , and T has support in the span of the coordinates  $\mathcal{I}^+$ .

Given the block form shown above, we see that

$$\left(\frac{1}{m}S_1 + S_2\right)^+ = \begin{pmatrix} \left(\frac{1}{m}(\Sigma_{IJ})_{I,J\in\mathcal{I}^+} + \text{block\_diag}(\Sigma_I/n_I)_{I\in\mathcal{I}^+}\right)^{-1} & 0 \\ 0 & 0 \end{pmatrix}$$

again in the coordinates in which  $\mathcal{I}^+$  precedes  $\mathcal{I}^0$ .

Continuity of the inverse is now enough to conclude that

$$\lim_{m \to 0} m^2 U(n) = -T^\top \texttt{block\_diag} \left( n_I \Sigma_I^{-1} \right)_{I \in \mathcal{I}} T = -\sum_{I \in \mathcal{I}} n_I \operatorname{Cov}_I^\top \Sigma_I^{-1} \operatorname{Cov}_I =: L(n)$$

But now this is a linear function L(n) in n. Consider minimizing this in n, subject to the (simplex) budget constraint  $n_I \ge 0$ ,  $\sum_I c_I n_I \le C$ . The minimum is achieved on a vertex of the simplex, and the minimizer is unique except in the unlikely situation that

$$\frac{\operatorname{Cov}_I^{\top} \Sigma_I^{-1} \operatorname{Cov}_I}{c_I} = \text{constant in } I$$

assuming that  $Cov_I \neq 0$  for some I.

Now we claim that  $m^2U(n) \to L(n)$  uniformly in n subject to the budget constraint. For this, it suffices to show that

$$\left(\frac{1}{m}(\Sigma_{IJ})_{I,J\in\mathcal{I}^+} + \texttt{block\_diag}(\Sigma_I/n_I)_{I\in\mathcal{I}^+}\right)^{-1} \to \texttt{block\_diag}(\Sigma_I/n_I)_{I\in\mathcal{I}^+}^{-1}$$

in the operator norm, uniformly in n. The Woodbury matrix identity implies that the difference is exactly

$$\texttt{block\_diag}(n_I \Sigma_I^{-1})_{I \in \mathcal{I}^+} (I + m \texttt{block\_diag}(\Sigma_I^{-1}/n_I)_{\mathcal{I}^+} (\Sigma_{IJ})_{I,J \in \mathcal{I}^+})^{-1}$$

Now, we have  $0 < n_I \le C/c_I$  for all  $I \in \mathcal{I}^+$  by the constraint. The operator norm is submultiplicative, and the first factor is bounded in norm by a constant multiple of  $1/\min_I c_I$ . Similarly, we have

$$I + m \texttt{block\_diag}(\Sigma_I^{-1}/n_I)_{\mathcal{I}^+}(\Sigma_{IJ})_{I,J \in \mathcal{I}^+} \succ I + \frac{mC}{\min_I c_I} \texttt{block\_diag}(\Sigma_I^{-1})_{\mathcal{I}^+}(\Sigma_{IJ})_{I,J \in \mathcal{I}^+}$$

The operator norm of the right-hand side goes to  $\infty$  uniformly in n, so the operator norm of its inverse goes to 0 uniformly as well. In conclusion, we have uniform convergence. Therefore, we have

$$n^*(m) := \mathop{\rm argmin}_n \min_{\lambda} V(n,\lambda) \xrightarrow[m \to \infty]{} n^*$$

### G COMPUTATIONAL CONSIDERATIONS

Here we show that the Multi-Allocate procedure reduces to a SOCP in the case of a single budget constraint, and to an SDP in the general case. The proof of Proposition H.1 shows that the minimization problem over  $\underline{n}, \underline{\lambda}$  may be reduced to one only over  $\underline{\lambda}$  via the Cauchy-Schwartz inequality. This minimization over  $\underline{\lambda}$  is the dual of an SOCP, as shown by Proposition H.2, and the KKT conditions hold. This is

$$\sup_{-} a^{\top} x$$

where the supremum is taken over all  $x \in \mathbb{R}^k$  such that  $x_I^\top \Sigma_I x_I \leq c_I^{-1}$  for all  $I \in \mathcal{I}$ . This SOCP is simple to implement in the Python package cvxpy.

In the general case, Theorem 4.2 shows that the optimal choice of  $\underline{n}$  is

$$\operatorname{argmin}_{\underline{n}: \mathbf{B}(\underline{n})} a^{\top} \left( \sum_{I \in \mathcal{I}} n_I P_I^{\top} \Sigma_I^{-1} P_I \right)^{\dagger} a$$

Let us denote

  $M(\underline{n}) = \sum_{I \in \mathcal{T}} n_I P_I^{\top} \Sigma_I^{-1} P_I$ 

so that our goal is to solve

 $\min t$ 

subject to the constraints that

$$a^{\top}M(n)^{\dagger}a \geq t$$

and  $\mathbf{B}(\underline{n})$ , which denotes a set of linear constraints on  $\underline{n}$ . But this is equivalent to the SDP

 $\min t$ 

subject to the constraint that

$$\begin{pmatrix} M(\underline{n}) & a \\ a^\top & t \end{pmatrix} \succeq 0$$

and linear constraints on  $\underline{n}$ . Once again, this is straightforward to implement in cvxpy.

### H THE DUAL PROBLEM

We briefly recall the setup. Let  $\Sigma \in \mathbb{R}^{k \times k}$  be SPD, let  $\mathcal{I}$  denote a collection of index subsets  $I \subseteq \{1,\ldots,k\}$ , and let  $c_I$  be a positive scalar defined for every  $I \in \mathcal{I}$ . It will be convenient to define, for every  $I \in \mathcal{I}$ , a vector  $\lambda_I \in \mathbb{R}^{|I|}$ . We denote the concatenation of such vectors by  $\underline{\lambda} \in \Lambda = \prod_{I \in \mathcal{I}} \mathbb{R}^{|I|}$ . We further recall that  $P_I : \mathbb{R}^k \longrightarrow \mathbb{R}^{|I|}$  is the orthogonal projection onto the coordinates indexed by I, and set  $\Sigma_I = P_I \Sigma P_I^{\top}$ . We define the norm  $\|v\|_{\Sigma_I} = \sqrt{v^{\top} \Sigma_I v}$  on  $\mathbb{R}^{|I|}$ ; this induces the seminorms  $\|y\|_{\Sigma_I} = \|P_I y\|_{\Sigma_I}$  on  $\mathbb{R}^k$ , and  $\|\underline{\lambda}\|_{\Sigma_I} = \|\lambda_I\|_{\Sigma_I}$  on  $\Lambda$ . Lastly, we employ

$$A: \Lambda \to \mathbb{R}^k, \quad A(\underline{\lambda}) = \sum_{I \in \mathcal{I}} P_I^\top \lambda_I$$

to enforce the linear (unbiasedness) constraint  $A(\lambda) = a$ , for some fixed  $a \neq 0 \in \mathbb{R}^k$ .

Our first step will be to show how to alleviate the budget constraint. To do so, we first briefly recall this constraint. To describe the budget, recall that we define  $\underline{n}=(n_I)_{I\in\mathcal{I}}\in\mathbb{Z}_{\geq 0}^{|\mathcal{I}|}$ , and employ a budget constraint of the form  $\sum_{I\in\mathcal{I}}n_Ic_I\leq B$  for a fixed B>0. Denoting  $\underline{c}=(c_I)_{I\in\mathcal{I}}\in\mathbb{R}_{>0}^{|\mathcal{I}|}$ , our budget constraint may be written  $\underline{c}^{\top}\underline{n}\leq B$ . With all of this said, recall that our original problem of interest is

$$V(a) = \min_{\underline{n}, \underline{\lambda}} \sum_{I \in \mathcal{I}: n_I > 0} \frac{1}{n_I} \lambda_I^{\top} \Sigma_I \lambda_I \qquad \text{s.t.} \quad \sum_{I \in \mathcal{I}: n_I > 0} P_I^{\top} \lambda_I = a, \quad \underline{c}^{\top} \underline{n} \le B$$
 (13)

We begin by deriving tractable methods to solve Equation 13. Let us assume for the moment that  $\underline{n} \in \mathbb{R}^{|\mathcal{I}|}_{\geq 0}$ ; we will later construct the final budget allocation by rounding. Our first step is to remove the dependence on  $\underline{n}$ : we show that the above problem is equivalent to the following:

$$U(a) = \min_{\underline{\lambda} \in \Lambda} \sum_{I \in \mathcal{I}} \sqrt{c_I} \|\lambda_I\|_{\Sigma_I} \quad \text{s.t.} \quad A\underline{\lambda} = a$$
 (14)

We next show that this is equivalent to the dual problem

$$U(a) = \sup_{y \in \mathbb{R}^k} a^{\top} y \qquad \text{s.t.} \quad \bigwedge_{I \in \mathcal{I}} \left\{ \|y\|_{\Sigma_I}^2 \le c_I \right\}$$
 (15)

Finally, this is a second order cone program, and can be solved with off-the-shelf tools. After we have shown these things, we describe how to convert solutions to Equation 15 into solutions to Equation 13.

**Proposition H.1.** The problems described in Equation 13 and Equation 14 yield the same optimum  $V = U^2/B$ .

**Proposition H.2.** The problems described in Equation 14 and Equation 15 yield the same optimum U.

*Proof of proposition H.1.* We now begin the proof.

(2)  $\leq$  (3): Let  $A\lambda = a$ . Define n by  $^7$ 

$$n_I := \left(\frac{B}{c_I}\right) \frac{\sqrt{c_I} \|\lambda_I\|_{\Sigma_I}}{\sum_{J \in \mathcal{I}} \sqrt{c_J} \|\lambda_J\|_{\Sigma_J}}$$

It is clear that  $\underline{c}^{\top}\underline{n} = B$  by construction, and we have

$$BV(a) \leq \sum_{I:n_I > 0} \frac{B}{n_I} \lambda_I^\top \Sigma_I \lambda_I = \sum_{I:\lambda_I \neq 0} \sqrt{c_I} \|\lambda_I\|_{\Sigma_I} \sum_J \sqrt{c_J} \|\lambda_J\|_{\Sigma_J} = \left(\sum_{I \in \mathcal{I}} \sqrt{c_I} \|\lambda_I\|_{\Sigma_I}\right)^2$$

(3)  $\leq$  (2): Let  $\underline{n}, \underline{\lambda}$  satisfy the constraints of Equation 13. Consider the vectors  $\underline{c}^{1/2} \odot \underline{n}^{1/2} = (\sqrt{c_I n_I})_{I \in \mathcal{I}}$  and  $\left(\mathbbm{1}_{n_I > 0} n_I^{-1/2} \|\lambda_I\|_{\Sigma_I}\right)_{I \in \mathcal{I}}$  in  $\mathbb{R}^{|\mathcal{I}|}$ . The Cauchy-Schwartz inequality yields that the product of their squared norms is

$$\left(\sum_{I} c_{I} n_{I}\right) \left(\sum_{I: n_{I} > 0} \frac{1}{n_{I}} \|\lambda_{I}\|_{\Sigma_{I}}^{2}\right) \ge \left(\sum_{I: n_{I} > 0} \sqrt{c_{I}} \|\lambda_{I}\|_{\Sigma_{I}}\right)^{2}$$

Now let us define  $\underline{\tilde{\lambda}}$  by  $\tilde{\lambda}_I = \lambda_I$  if  $n_I > 0$ , and  $\tilde{\lambda}_I = 0$  otherwise. Then we have

$$A\underline{\tilde{\lambda}} = \sum_{I} P_{I}^{\top} \tilde{\lambda_{I}} = \sum_{I: n_{I} > 0} P_{I}^{\top} \lambda_{I} = a$$

by assumption, and

$$U(a)^2 \le \left(\sum_{I} \sqrt{c_I} \|\tilde{\lambda_I}\|_{\Sigma_I}\right)^2 = \left(\sum_{I: n_I > 0} \sqrt{c_I} \|\lambda_I\|_{\Sigma_I}\right)^2 \le BV(a)$$

and we are done.

**Remark H.3.** Note that in general, many  $n_I$  will be zero.

Proof of proposition H.2. Let  $\iota_{\{a\}}$  denote the indicator  $b\mapsto \begin{cases} 0 & a=b\\ \infty & a\neq b \end{cases}$ . Then Equation 14 is alternatively written

$$V(a) = \min_{\underline{\lambda} \in \Lambda} g(\underline{\lambda}) + \iota_{\{a\}}(A\underline{\lambda})$$

where  $g(\underline{\lambda}) = \sum_I g_I(\lambda_I)$  and  $g_I(\lambda_I) = \sqrt{c_I} \|\lambda_I\|_{\Sigma_I}$ . We now apply the Fenchel duality theorem. Note that  $\iota_{\{a\}}^*(y) = a^\top y$ , and  $g^*(A^\top y) = \sum_I g_I^*(P_I^\top y) = \sum_I \iota_{\{\|y_I\|_{\Sigma_I} \le c_I\}} = \iota_{\bigwedge_I \|y_I\|_{\Sigma_I}^2 \le c_I}$ .  $\square$ 

## I EXPERIMENTAL DETAILS

Here we detail the experimental setup used. We do so in two parts: first, we explain the details for generating the model predictions  $(X_2,\ldots,X_k)$  in each experiment; second, we explain the details for constructing the proposed estimator,  $\hat{\theta}_{\text{MultiPPI}}$ , and the baselines from such predictions.

#### I.1 GENERATING MODEL PREDICTIONS

#### I.1.1 EXPERIMENT 1: CHATBOT ARENA

We follow the implementation of Angelopoulos et al. (2025) to request autoratings from Gemini 2.5 Pro and Gemini 2.5 Flash. See section E of Angelopoulos et al. (2025) for implementation details.

<sup>&</sup>lt;sup>7</sup>This is defined as long as  $\lambda_J \neq 0$  for some J; if this fails then  $\lambda = 0$  and  $A\lambda = 0$  yields a contradiction.

| Model collection | Cost   |
|------------------|--------|
| Gemini 2.5 Pro   | \$1.25 |
| Gemini 2.5 Flash | \$0.30 |
| Both             | \$1.55 |

Table 1: Cost structure for experiment 1.

In the following, you will see a math problem and an attempted solution. There may or may not be an error in the attempted solution. Your task is to review the attempted solution and decide whether or not it is correct. Report your answer as "correct" or "incorrect" in \boxed{}. Problem:

Find the smallest number  $n\$  such that there exist polynomials  $f_{1}, f_{2}, \ldots, f_{n}\$  with rational coefficients satisfying

```
 x^{2}+7=f_{1}(x)^{2}+f_{2}(x)^{2}+\cdot cdots+f_{n}(x)^{2} .
```

#### Attempted solution:

To find the smallest number \\( n \\), we start by considering the given equation:  $\( x^2 + 7 = f_1(x)^2 + f_2(x)^2 + \color= f_n(x)^2 \)$ . Notice that \\( x^2 + 7 \\) is always greater than or equal to 7 for any real value of \\( x \\). [...]

Therefore, the smallest number  $\(n \)$  is  $\(\boxed{4}\)$ .

Now decide whether or not the attempted solution is correct. Be sure to report your answer as "correct" or "incorrect" in \boxed{}. For example, if you believe that the attempted solution is correct, then you should respond "\boxed{correct}"; if you believe that the attempted solution is incorrect, then you should respond "\boxed{incorrect}". You must respond in exactly this format and include no other text in your response. If you include any additional text in your response, you will be disqualified.

```
Gemini 2.5 Pro: [Thinking...]
```

— after B words of thought have been produced —

```
Gemini 2.5 Pro: So, the answer is: \boxed{correct}.
```

Figure 13: Prompt used to generate autoratings for Experiment 2.

#### I.1.2 EXPERIMENT 2: PROCESSBENCH

We evaluate our method on 500 samples from the OlympiadBench subset of the ProcessBench dataset (Zheng et al., 2024). Binary labels are determined according to whether or not a process error occurred in the given (problem, attempted solution) pair.

To generate autoratings, we use Gemini 2.5 Pro and truncate its reasoning process at various checkpoints. Specifically, using the prompt shown in Figure 13, we instruct the model to think for up to 3,000 tokens but interrupt it and demand an answer after B words of thought have been produced, for  $B \in \{125, 250, 375, 500\}$ , as described in §5. To elicit a definite judgement at each checkpoint, we provide "So, the answer is:" as the assistant and attempt to extract an answer from the subsequent 20 tokens of output with our template.

#### I.1.3 EXPERIMENT 3: BIOGRAPHY FACTUALITY

We consider evaluating the factuality of a set of biographies generated by Gemini 2.5 Pro. We replicate the setting of Du et al. (2023): Gemini 2.5 Pro is asked to generate biographies for 524 computer

scientists, and we evaluate the factual consistency of such biographies with a set of grounding facts collected by Du et al. (2023).

More specifically, for every person  $p \in \mathcal{P}$ , we associate a Gemini-generated biography  $b^p$  and a set of collected grounding facts  $\mathcal{F}^p = \{f_1^p, \ldots, f_{m_p}^p\}$  about the person. Following Du et al. (2023), we estimate the proportion of factually consistent pairs  $(b^p, f_i^p)$  of generated biographies  $b^p$  with each of the collected grounding facts  $f_i^p$ . Concretely, given the set of all pairs

$$\mathcal{S} = \{(b^p, f^p) : p \in \mathcal{P}, f^p \in \mathcal{F}^p\}$$

we target the proportion of factually consistent pairs

$$\frac{\#\{(b,f)\in\mathcal{S}:(b,f)\text{ is factually consistent}\}}{\#\mathcal{S}}$$

We determine the factual consistency, or lack thereof, of a pair (b,f) by majority voting over 5 independent judgments from Gemini 2.5 Pro with thinking. Du et al. (2023) found that judgments by ChatGPT achieved over 95% agreement with human labelers on a set of 100 samples. This level of agreement is evidently not achieved by certain cheaper models, as we proceed to demonstrate experimentally. In Figure 10, we explore using Gemini 2.0 Flash Lite as an autorater for evaluating the factuality consistency of pairs  $(b,f) \in \mathcal{S}$ .

To elicit better autoratings from queries to Gemini 2.0 Flash Lite, we bootstrap performance via multi-round debate. For a fixed number of agents  $A \in \{1, \ldots, 5\}$ , and a fixed number of maximum rounds  $R \in \{1, 2\}$ , we perform the following procedure:

- 1. A instances of Flash Lite are independently prompted to consider the factual consistency of pairs  $(b, f) \in \mathcal{S}$ , and provide an explanation for their reasoning.
- 2. A "pooler" instance of Flash Lite is then asked to review the pair (b, f) and the responses generated by each of the A other instances, and output a judgment in the form of a single word: yes, no, or uncertain.
  - (a) If the pooler outputs "yes" or "no," the judgment is final.
  - (b) If the pooler outputs "uncertain" and the number of maximum rounds R has not yet been reached, the A instances of Flash Lite are independently shown their prior responses, and the prior responses of each other, and prompted to continue reasoning given this additional information. This procedure continues until either the pooler no longer reports "uncertain," or the maximum number of rounds R has been reached.
  - (c) If the pooler outputs "uncertain" and the maximum number of rounds R has been reached, a fair coin is flipped and "yes" or "no" are reported with equal probability.

Since the dataset is balanced, the outcome described in (c) is fair insofar as it is as good as random guessing. We impose the maximum round restriction to encapsulate our budget constraint. To reduce randomness, we generate all autoratings twice, so that the resulting dataset has an effective size of 1048.

**Target:** Proportion of factually-consistent pairs,  $\#\{(b, f) \in \mathcal{S} : (b, f) \text{ is factually consistent}\}/\#\mathcal{S}$  **Model family:** {The output of the above procedure given  $(A, R) : A \in \{1, ..., 5\}, R \in \{1, 2\}\}$ } **Cost structure:** For a given (A, R), the cost is  $A \cdot R$ . For collections of models, the cost is additive.

### I.2 Constructing the MultiPPI estimator

For the results shown in §6, we draw 250 fully-labeled samples from each dataset above. We then follow the procedure described in §C.3 for N=250, using the empirical distribution over each dataset as our source of randomness. In § D.2, we replicate the study over a range of values of N.

Biography of Richard Hamming:

- \* Worked on the Manhattan Project, contributing to computations on early computing devices.
- \* Joined Bell Labs in 1945, working on relay calculators and early digital computers like the IBM 650.
- \* Developed Hamming codes, a fundamental set of error detection and correction codes for digital data.
- \* Introduced the concept of Hamming distance, a metric for comparing two binary strings.

Fact: Richard Hamming was a mathematician who made contributions in computer engineering and communications. Gemini 2.5 Pro judgement: Factually consistent.

Fact: Hamming worked on the Manhattan Project before joining Bell Telephone Laboratories in 1946 Gemini 2.5 Pro judgement: Factually inconsistent.

Figure 14: Depiction of biography-fact pairs (b, f) as in Experiment 3. Judgements about factual consistency of (b, f) are made by a language model.