

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MULTIPLE-PREDICTION-POWERED INFERENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

A core challenge in modern AI model development is obtaining high-quality evaluation metrics in a cost-effective way. Such evaluation often involves tradeoffs between expensive, high-quality measurements and a variety of lower-quality proxies. We introduce Multiple-Prediction-Powered Inference (MultiPPI), a general framework for constructing statistically efficient estimates by optimally allocating resources across these diverse data sources. We provide theoretical guarantees about the minimax optimality, finite-sample performance, and asymptotic normality of the MultiPPI estimator. Through experiments across three diverse large language model (LLM) evaluation scenarios, we show that MultiPPI consistently achieves lower estimation error than existing baselines. This advantage stems from its budget-adaptive allocation strategy, which strategically combines subsets of models by learning their complex cost and correlation structures.

1 INTRODUCTION

Efficiently estimating expectations of random variables under a fixed budget is a fundamental problem in many scientific settings. This paper focuses on the common scenario of choosing between a high-quality, but expensive, measurement process and **various** cheaper, but lower-quality, proxies. We are specifically motivated by the challenge presented by AI model evaluation, which is a critical, but often resource-intensive, step in model development and maintenance.

More concretely, in the AI model evaluation setting, a variable X_1 might represent a high-quality but expensive metric computed for every model response to an input query, such as a score from a human annotator or a powerful proprietary model used as an "autorater". The remaining variables, X_2, \dots, X_k , might represent cheaper evaluation options (e.g., scores from smaller autoraters or rule-based systems), which can be viewed as covariates or proxies for the true score. Given the option to obtain samples of X_1, \dots, X_k (either jointly or independently), the primary objective is often to then estimate the mean of the high-quality score, $\mathbb{E}[X_1]$. In other cases, we may be interested in the mean difference between two scores, say, $\mathbb{E}[X_1 - X_2]$. The core difficulty in each case is in determining *which* of these variables to query, *how many times* to query them, and then finally how to *combine* them together to produce a statistically efficient, consistent estimate of the ground truth.

To formalize this, let $X := (X_1, \dots, X_k)$ be a set of random variables with finite variance. We then consider the general problem of efficiently estimating any linear function of the mean of X subject to a total observation budget B . That is, for some $a \in \mathbb{R}^k$, we want to estimate $\theta^* = a^\top \mathbb{E}[X]$ while spending no more than a total budget B on collecting subsets of joint random variables $X_I = \{X_i\}_{i \in I}$ at cost c_I for index subsets $I \subseteq \{1, \dots, k\}$. More precisely, if n_I is the number of times the subset X_I is observed, we require that the n_I satisfy a system of linear budget constraints of the form $\sum_I c_I n_I \leq B$, where the sum is over all such collected subsets I .

Estimating linear functions of $\mathbb{E}[X]$ allows for flexibility in how θ^* is defined. Given the AI evaluation setting above, for example, measuring $\mathbb{E}[X_1]$ corresponds to $a = (1, 0, \dots, 0)$, while measuring $\mathbb{E}[X_1 - X_2]$ corresponds to $a = (1, -1, 0, \dots, 0)$. The flexibility to observe subsets of X also introduces a key trade-off that is unique with respect to previous related approaches to estimation. As we will show, observing variables jointly can be advantageous by reducing overall estimation variance. This benefit, however, must be weighed against the data acquisition costs, c_I . We make no assumptions about the structure of these costs (e.g., they may be non-additive over the components in I). For instance, in our AI evaluation setting, obtaining predictions from multiple autoraters can often be parallelized, so the cost of multiple predictions (in latency) is not significantly more than that of

054 the single slowest one. This is not always true; in medical diagnostics, for example, ordering many
 055 tests may become too taxing for a patient, and therefore undesirable or impossible to do jointly.
 056

057 To solve this cost-optimal, multi-variate estimation problem, we introduce the Multiple-Prediction-
 058 Powered Inference (MultiPPI) estimator, which is a cost-aware generalization of the Efficient
 059 Prediction-Powered Inference (PPI++) estimator of [Angelopoulos et al. \(2023b\)](#), and extends it to
060 optimally leverage multiple types of predictions to power inference. The MultiPPI estimator
 061 constructs a low-variance, consistent estimate of θ^* by combining observations from judiciously
 062 chosen subsets of X . The core of our method is an optimization procedure that jointly determines
 063 the number of samples n_I to draw from each subset I and the corresponding linear weights λ_I
 064 used to form the final estimate. We demonstrate that this allocation problem can be formulated as
 065 a second-order cone program (SOCP) for a single budget constraint, and a semidefinite program
 066 (SDP) for multiple budget constraints, and thus solved efficiently using standard techniques.
 067

068 Theoretically, we show that the MultiPPI estimator is minimax optimal when the joint covariance
 069 matrix, $\Sigma = \text{Cov}(X)$, is known. For the typical case where it is unknown, however, we provide
 070 a framework for integrating an initial estimation phase where an approximation of the required
 071 covariance matrix, $\hat{\Sigma}$, can be derived from either a small "burn-in" sample or a pre-existing labeled
 072 "transfer" dataset (a common scenario in applied settings)—and provide finite-sample bounds on the
 073 performance degradation that is incurred by substituting $\hat{\Sigma}$ for Σ . Finally, we empirically demon-
 074 strate the effectiveness of this approach across three diverse LLM evaluation settings, including
 075 choosing between autoraters of different sizes, autoraters with different test-time reasoning con-
 076 figurations, and complex multi-autorater-debate scenarios. In all cases, our method achieves lower
 077 mean-squared error and tighter confidence intervals for a given annotation budget than existing base-
 078 lines. We demonstrate that MultiPPI achieves this by automatically tailoring its strategy to the avail-
 079 able budget B : that is, it learns to rely primarily on the cheaper autoraters when the budget is small,
 080 and naturally begins to incorporate more expensive, better autoraters as the budget increases. Taken
 081 together, our work provides a principled and computationally tractable framework for cost-effective,
 082 model-aided statistical inference, in settings with complex cost-versus-performance tradeoffs.
 083

084 In summary, our main contributions are as follows:

- 085 • We introduce the **MultiPPI estimator** and frame the problem of finding the optimal subset sam-
 086 pling strategy and estimator weights as an efficient second-order cone program (SOCP).
- 087 • We prove that the MultiPPI estimator is **minimax optimal** when the covariance matrix Σ of
 X_1, \dots, X_k is known, and provide finite-sample performance guarantees for the practical setting
 088 where the covariance matrix must first be estimated as a part of the overall inference problem.
- 089 • We demonstrate MultiPPI's applicability across multiple LLM evaluation settings, and show
 090 how it can effectively combine signals from different model sizes, reasoning configurations, and
 091 multi-agent debates to achieve **lower error and tighter confidence intervals** for a given budget.

092 2 RELATED WORK

093 Our work builds upon Prediction-Powered Inference (PPI; [Angelopoulos et al., 2023a](#)), a statistical
 094 framework for efficiently estimating population-level quantities by augmenting a small set of labeled
 095 data with predictions from a machine learning (ML) model. We specifically build on PPI++, the
 096 efficient extension of PPI introduced in [Angelopoulos et al. \(2023b\)](#), which also further improves
 097 variance by optimally reweighting these predictions. We describe PPI in greater depth in Section 3.

098 PPI is part of a broader class of statistical methods that leverage ML predictions for estimation.
 099 Its principles connect to classical control variates and difference estimators ([Ripley, 1987](#); [Särndal et al., 1992](#); [Chaganty et al., 2018](#)), which reduce variance by subtracting a correlated random
 100 variable with a known mean; the correlated variable in PPI is the ML prediction, whose mean can
 101 be (cheaply) estimated on unlabeled data. This approach also shares theoretical foundations with
 102 modern semi-parametric inference, particularly methods from the causal inference literature like
 103 Augmented Inverse Propensity Weighting (AIPW; [Robins & Rotnitzky, 1995](#)), Targeted Maximum
 104 Likelihood Estimation (TMLE; [van der Laan & Rubin, 2006](#)), and double machine learning (DML;
 105 [Chernozhukov et al., 2018](#)). Recently, PPI has been applied to Generative AI evaluation, where
 106 human annotations (or more generally, annotations from some trusted source) are combined with
 107

108 cheaper "autorater" outputs for efficient, unbiased estimates of model performance (Boyeau et al.,
 109 2024; Chatzi et al., 2024; Fisch et al., 2024; Angelopoulos et al., 2025; Saad-Falcon et al., 2024).
 110

111 Existing PPI frameworks, however, assume either a single predictor (Angelopoulos et al., 2023a;b)
 112 or a fixed set of predictors queried together (Miao et al., 2024). We address the common scenario
 113 where multiple predictors (e.g., autoraters) with different cost-performance profiles are available.
 114 This introduces a complex budget allocation problem: determining which predictors to query (in-
 115 dividual, jointly, or in any joint subset), how often to query them, and how to combine the mea-
 116 surements they provide for a minimum-variance estimate under a fixed budget. Our work partially
 117 generalizes Angelopoulos et al. (2025), which optimizes a sampling policy for a single predictor.
 118 Unlike that work, however, which focuses on input-conditional policies and expected budget con-
 119 straints, we find a fixed allocation policy that always satisfies a hard budget constraint for every run.
 120

121 Our allocation problem is also related to budgeted regression with partially observed features (Cesa-
 122 Bianchi et al., 2011; Hazan & Koren, 2012) and active learning or testing (Settles, 2009; Kossen
 123 et al., 2021; Zhang & Chaudhuri, 2015). We emphasize, however, that our goal is estimation of a
 124 linear function of a population mean (i.e., $a^\top \mathbb{E}[X]$), and not regression (e.g., predicting X_1 from
 125 X_2, \dots, X_k). While related, standard approaches to regression, including with partial observations,
 126 optimize for sample-wise predictive accuracy rather than for predictive accuracy of a population-
 127 level quantity. Our problem also connects to multi-armed bandit allocation for adaptive Monte Carlo
 128 estimation (Neufeld et al., 2014). A key difference is that these frameworks often use sequential,
 129 input-dependent policies to minimize regret, making it difficult to derive valid confidence intervals
 130 (CIs). Our framework, in contrast, computes a fixed allocation policy over predictive models (not
 131 individual inputs as in active learning or testing) and guarantees unbiased estimates with valid CIs.
 132 Even more broadly, our work shares similar high-level goals with transfer learning and domain
 133 adaptation (Pan & Yang, 2010; Ben-David et al., 2010, *inter alia*)—i.e., leveraging signals of
 134 varying quality and potential bias—though the statistical techniques are distinct.
 135

3 PRELIMINARIES

136 In the following section, we introduce the general estimation problem of interest and summarize
 137 existing approaches. Suppose that we are interested in the mean of a random variable X_1 , which is
 138 dependent upon another random variable X_2 (corresponding to estimating $a^\top \mathbb{E}[X]$ for $a = (1, 0)$
 139 as described in §1). For example, in the AI model evaluation setting, X_2 may be an autorater's
 140 score for a model output to a user's query, and X_1 may be the ground truth quality of the response
 141 as measured by an expert human annotator. Suppose we have access to a small number (n) of i.i.d.
 142 samples that contain labels from both the target rater (X_1) and autorater (X_2), and a large number
 143 (N) of i.i.d. samples that contain only the autorater predictions (\tilde{X}_2). A naïve approach to estimat-
 144 ing the mean is to simply take the sample average of X_1 and ignore X_2 entirely, which we denote by
 145 $\hat{\theta}_{\text{classic}} = \frac{1}{n} \sum_{j=1}^n X_1^{(j)}$. When the prediction X_2 is correlated with X_1 and easy to query, however,
 146 it is natural to consider the "prediction-powered" PPI estimator (Angelopoulos et al., 2023a;b):
 147

$$\hat{\theta}_{\text{PPI}} = \frac{1}{n} \sum_{j=1}^n (X_1^{(j)} - X_2^{(j)}) + \frac{1}{N} \sum_{j=1}^N \tilde{X}_2^{(j)} \quad (1)$$

148 When we can afford to take N to be very large, it is clear that the variance of $\hat{\theta}_{\text{PPI}}$ is much smaller
 149 than that of $\hat{\theta}_{\text{classic}}$ provided that our model predictions X_2 are close to X_1 in mean-squared error.
 150 When that fails, Angelopoulos et al. (2023b) propose adding a linear fit of the form:
 151

$$\hat{\theta}_{\text{PPI++}} = \frac{1}{n} \sum_{j=1}^n (X_1^{(j)} - \lambda X_2^{(j)}) + \frac{1}{N} \sum_{j=1}^N \lambda \tilde{X}_2^{(j)}. \quad (2)$$

152 The parameter λ may be chosen to minimize the variance of $\hat{\theta}_{\text{PPI++}}$ based on the observed labeled
 153 data. This strategy yields an estimator which asymptotically improves on $\hat{\theta}_{\text{classic}}$ and $\hat{\theta}_{\text{PPI}}$ in the
 154 limit that $n \rightarrow \infty$ and $N \gg n$. Toward the setting where n and N may be comparable in size, if
 155 one is able to choose to or not to request a label $X_1^{(j)}$ for every observed unlabeled point $X_2^{(j)}$, a
 156 modification of $\hat{\theta}_{\text{PPI++}}$ allows one to do so in a cost-optimal way (Angelopoulos et al., 2025).
 157

162 3.1 MULTIPLE PREDICTIVE MODELS
163164 How should one adapt the preceding setting when one has access to many predictions, rather than
165 just X_2 ? One option is to *stack* all predictions into a vector $X_{2:k} := (X_2, \dots, X_k)$ and choose $\lambda \in$
166 \mathbb{R}^{k-1} to be a vector in $\hat{\theta}_{\text{PPI++}}$; this is the estimator proposed by [Miao et al. \(2024\)](#), and can be written
167

168
$$\hat{\theta}_{\text{PPI++ vector}} = \frac{1}{n} \sum_{j=1}^n (X_1^{(j)} - \lambda^\top X_{2:k}) + \frac{1}{N} \sum_{j=1}^N \lambda^\top \tilde{X}_{2:k}^{(j)} \quad (3)$$

169
170

171 But this approach is suboptimal when (as is becoming standard) the best models may be available
172 only for the highest prices: if any of X_2, \dots, X_k is expensive to obtain, our ability to sample
173 $X_{2:k}$ will be limited. This yields suboptimal results, as we show in §6. One may instead decide to
174 perform PPI with just one model X_i , for whichever $i \neq 1$ has the best cost/accuracy tradeoff—but it
175 is not clear *a priori* which one this is, or how much worse it may be compared to some combination
176 of a cost-effective subset of X . Alternatively, perhaps it is possible for cheaper models be used
177 to recursively estimate the means of more expensive models, thus creating a *PPI++ cascade*: for
178 instance, if $k = 3$ and (X_1, X_2, X_3) are in decreasing order of cost, we might consider
179

180
$$\hat{\theta}_{\text{PPI++ cascade}} = \frac{1}{n} \sum_{j=1}^n (X_1^{(j)} - \lambda X_2^{(j)}) + \frac{1}{N} \sum_{j=1}^N (\lambda \tilde{X}_2^{(j)} - \lambda' \tilde{X}_3^{(j)}) + \frac{1}{M} \sum_{j=1}^M \lambda' \tilde{X}_3^{(j)} \quad (4)$$

181

182 Each of these strategies can be realized as possible instances of the MultiPPI estimator we propose
183 in the next section. Rather than coarsely limiting ourselves to sampling $X_{2:k} = (X_2, \dots, X_k)$
184 together, we allow the flexibility of sampling X_I for generic index subsets $I \subseteq \{1, \dots, k\}$.
185186 4 MULTIPLE-PREDICTION-POWERED INFERENCE (MULTIPPI)
187188 As Section 3.1 highlights, it is not obvious how to best allocate a budget across a diverse suite of
189 predictive models, where each model has its own cost and performance tradeoffs. We begin by
190 defining the class of permissible estimators: We require that the number of times, n_I , that X_I is
191 sampled satisfies a linear budget constraint, specified by a set of non-negative costs $c_I \geq 0$ and total
192 budget $B \geq 0$, for each index subset $I \subseteq \{1, \dots, k\}$.¹
193194 **Definition 4.1.** An estimator $\hat{\theta}$ is **budget-satisfying** if it a measurable function of n_I i.i.d. samples
195 of X_I , for each $I \subseteq \{1, \dots, k\}$, such that $\sum_I n_I c_I \leq B$.
196197 To develop a principled search for the best budget-satisfying estimator, we begin by asking a simple
198 question under idealized conditions:
199200 **Question 1.** If the covariance matrix, $\Sigma = \text{Cov}(X)$, is exactly known, what is the minimax optimal,
201 budget-satisfying estimator of $\theta^* = a^\top \mu$ with respect to the mean-squared error, $\mathbb{E}[(\hat{\theta} - \theta^*)^2]$?
202203 The answer to Question 1 will provide us with a set of allocations n_I and a corresponding budget-
204 satisfying estimator $\hat{\theta}_{\text{MultiPPI}}$ which we will evaluate on the n_I samples of X_I , for each I . Once we
205 have addressed this question, we address the case of unknown Σ by describing strategies depending
206 on the empirical covariance matrix $\hat{\Sigma}$, which may be estimated from data.
207208 It turns out, perhaps surprisingly, that Question 1 reduces to the following tractable alternative:
209210 **Question 2.** If the covariance matrix, $\Sigma = \text{Cov}(X)$, is exactly known, what is the minimum vari-
211 ance, linear, unbiased budget-satisfying estimator of $\theta^* = a^\top \mu$?
212213 We demonstrate the equivalence of Question 1 and Question 2 in Theorem 4.2. For now, the "oracle"
214 assumption on knowing the covariance matrix Σ allows us to isolate the resource allocation problem
215 from the separate challenge of estimating how closely related (X_1, \dots, X_k) are to begin with, and
216 to analyze what a good procedure for leveraging multiple predictive models under cost constraints
217 should look like in theory. All proofs of our theoretical results are deferred to Appendix F.
218219
220 ¹In Section B, we extend the methodology to multiple budget constraints.

216 4.1 MULTIPPI(Σ): A MINIMAX OPTIMAL ALGORITHM
217

218 Recalling notation from Section 1, let $X \in \mathbb{R}^k$ denote a random vector of finite second moment
219 with distribution \mathbb{P} . Let $\mathcal{I} \subseteq 2^{\{1, \dots, k\}}$ denote a collection of index subsets which may be queried,
220 and for any $I \in \mathcal{I}$, let $X_I = \{X_i\}_{i \in I}$ be the corresponding subset of X . Next, let $\underline{n} = \{n_I\}_{I \in \mathcal{I}}$,
221 $n_I \in \mathbb{N}$ be an allocation of sample sizes, where n_I i.i.d. samples are drawn for each subset I , and
222 let $\underline{\lambda} = \{\lambda_I\}_{I \in \mathcal{I}}$, $\lambda_I \in \mathbb{R}^{|I|}$ define a corresponding set of weighting vectors for each subset I .
223 Finally, let $\hat{\theta}(\underline{n}, \underline{\lambda})$ denote the weighted sum of sample means from each non-empty subset, i.e.,
224

$$225 \hat{\theta}(\underline{n}, \underline{\lambda}) = \sum_{I: n_I > 0} \frac{1}{n_I} \sum_{j=1}^{n_I} \lambda_I^\top X_I^{(j)}. \quad (5)$$

227 The MultiPPI estimator, $\hat{\theta}_{\text{MultiPPI}}$, is then defined as the optimal estimator in this class that minimizes
228 the MSE subject to our unbiasedness (**U**) and budget (**B**) constraints:
229

$$230 \hat{\theta}_{\text{MultiPPI}} = \underset{\hat{\theta}(\underline{n}, \underline{\lambda})}{\operatorname{argmin}} \mathbb{E} \left[\left(\hat{\theta}(\underline{n}, \underline{\lambda}) - \theta^* \right)^2 \right] \quad \text{s.t.} \quad \mathbf{U} \text{ and } \mathbf{B} \text{ hold,} \quad (6)$$

232 where the constraints **U** and **B** are
233

$$234 \mathbf{U} \iff \mathbb{E}[\hat{\theta}(\underline{n}, \underline{\lambda})] = \theta^* \text{ for all } \mathbb{P} \text{ of finite second moment} \quad \text{and} \quad \mathbf{B} \iff \sum_I n_I c_I \leq B. \quad 235$$

236 It can be shown that **U** reduces to a linear constraint on $\underline{\lambda}$, which makes our optimization convenient.
237

238 As previously discussed, the estimators of Equation (3) and Equation (4) can be viewed as special
239 cases of this setup. For instance, it is not hard to see that Equation (3) corresponds to imposing the
240 additional restriction that $\lambda_I = 0$ for all $I \in 2^{\{1, \dots, k\}}$ except for $I = \{1, \dots, k\}$ and $I = \{2, \dots, k\}$;
241 Equation (4) corresponds to the additional restriction that $\lambda_I = 0$ for all I except for $\{1, 2\}$, $\{2, 3\}$
242 and $\{3\}$.
243

NEW

244 4.1.1 OPTIMIZATION

245 Solving Equation (6) is, in general, non-trivial. Since $\hat{\theta}(\underline{n}, \underline{\lambda})$ is linear in X , it can be shown that the
246 optimal $(\underline{n}, \underline{\lambda})$ depend only on the covariance matrix Σ of X , and so we will denote by $\hat{\theta}_{\text{MultiPPI}(\Sigma)}$
247 the solution to Equation (6) given any distribution such that $\Sigma = \text{Cov}(X)$. Then, it can be further
248 shown (this follows from Theorem 4.2, presented next) that the MSE of $\hat{\theta}_{\text{MultiPPI}(\Sigma)}$ is

$$249 \mathcal{V}_B = \min_{\substack{\underline{n} : \mathbf{B} \text{ holds} \\ \text{supp}(\underline{n}) \subseteq \bigcup\{I: n_I > 0\}}} a^\top S(\underline{n}) a, \quad S(\underline{n}) = \left(\sum_{I \in \mathcal{I}} n_I \Sigma_I^\dagger \right)^\dagger \quad (7)$$

253 where Σ_I denotes the principle submatrix of Σ on I , embedded back into $\mathbb{R}^{k \times k}$, and \dagger denotes the
254 Moore-Penrose pseudo-inverse.² The minimizing \underline{n} of the above expression then also determines the
255 optimal λ_I to be the restriction of $n_I \Sigma_I^\dagger S(\underline{n}) a$ to the coordinates I . If the integrality constraints on
256 n_I are relaxed, we show in the appendix that this reduces to a second-order cone problem in the case
257 of a single budget constraint, and a semi-definite program in the case of multiple budget constraints.
258 This allows for Equation (7) to be solved efficiently using standard techniques (Section G).
259

260 4.1.2 MINIMAX OPTIMALITY

261 The minimal MSE \mathcal{V}_B shown in Equation (7) has a more fundamental characterization. Here we
262 show that it is in fact the minimax optimal MSE achievable by **any** budget-satisfying estimator, taken
263 over the set of distributions \mathcal{P} of covariance Σ . Consequently, the estimator defined by $\hat{\theta}_{\text{MultiPPI}(\Sigma)}$ is
264 minimax optimal over the set of distributions $\mathcal{P}_\Sigma = \{\text{distribution } P \text{ on } \mathbb{R}^k : \text{Cov}(X) = \Sigma \text{ for } X \sim P\}$.
265 Specifically, given costs $(c_I)_I$ and a budget B , let Θ_B denote the set of budget-satisfying
266 estimators $\hat{\theta}$ per Theorem 4.1. We emphasize that we make **no** restriction on Θ_B to include only
267 linear or unbiased estimators. Then the following result holds:
268

269 ²More formally, if $P_I \in \mathbb{R}^{k \times k}$ denotes the orthogonal projection onto $\text{span}(I) \subseteq \mathbb{R}^k$, we define $\Sigma_I = P_I \Sigma P_I^\top$, and so $\Sigma_I^\dagger := (P_I \Sigma P_I^\top)^\dagger$.

270 **Theorem 4.2** (Minimax optimality of MultiPPI for known Σ). *For all $\Sigma \succ 0$, we have*

$$272 \quad \inf_{\hat{\theta} \in \Theta_B} \sup_{P \in \mathcal{P}_\Sigma} \mathbb{E} \left[(\hat{\theta} - \theta^*)^2 \right] = \text{Var} \left(\hat{\theta}_{\text{MultiPPI}(\Sigma)} \right) = \mathcal{V}_B,$$

274 *where the variance is with respect to any distribution $P \in \mathcal{P}_\Sigma$.*

276 4.2 MULTIPPI($\hat{\Sigma}$): A PRACTICAL ALGORITHM

279 In practice, Σ is rarely known and must be approximated by an estimated covariance matrix $\hat{\Sigma}$. In
280 general, there are many methods for constructing an estimate $\hat{\Sigma}$ of Σ , and many of the theoretical
281 properties of MultiPPI are agnostic to the particular choice made. The following theorem shows
282 that, for any $\hat{\Sigma}$ which converges in probability to Σ as our budget tends to infinity, the MultiPPI
283 estimator is asymptotically normal and achieves the optimal variance of Theorem 4.2. For this
284 result, we need a technical condition which amounts to Equation (6) having a unique minimizer \underline{n}
285 as $B \rightarrow \infty$; we state it formally in Section F.3.

NEW

286 **Theorem 4.3.** *Suppose $X \in \mathbb{R}^k$ has finite second moment, and suppose that $\Sigma = \text{Cov}(X)$ satisfies
287 condition 12. Suppose that $\hat{\Sigma} \xrightarrow{p} \Sigma$ in the operator norm as $B \rightarrow \infty$. Then for $\hat{\theta}_{\text{MultiPPI}(\hat{\Sigma})}$
288 arbitrarily dependent on any potential samples used to estimate $\hat{\Sigma}$, we have*

$$290 \quad \sqrt{B} \left(\hat{\theta}_{\text{MultiPPI}(\hat{\Sigma})} - \theta^* \right) \xrightarrow{d} \mathcal{N}(0, \mathcal{V}^*)$$

292 *as $B \rightarrow \infty$, where $\mathcal{V}^* = \lim_{B \rightarrow \infty} B\mathcal{V}_B$, and \mathcal{V}_B is defined in Equation (7).*

294 It is important to note that the estimator $\hat{\theta}_{\text{MultiPPI}(\hat{\Sigma})}$ continues to enjoy unbiasedness, budget
295 satisfaction, and asymptotic normality regardless of mis-specification in $\hat{\Sigma}$.

297 A natural question concerns the level of suboptimality of $\hat{\theta}_{\text{MultiPPI}(\hat{\Sigma})}$ as a function of the degree of
298 mis-specification of $\hat{\Sigma}$ in finite samples. Below, we present a meta-result which serves to quantify
299 the sensitivity of our procedure to errors in the specification of $\hat{\Sigma}$.

300 **Theorem 4.4** (Stability of MultiPPI). *Let P be a distribution of covariance Σ , and suppose that Σ
301 has minimum eigenvalue γ_{\min} . Let $\sigma_{\text{classical}}^2$ denote the least MSE of any budget-satisfying sample
302 mean of θ^* . Let $\hat{\Sigma}$ denote any non-random symmetric positive-definite matrix. Then we have*

$$304 \quad \mathbb{E} \left[\left(\hat{\theta}_{\text{MultiPPI}(\hat{\Sigma})} - \theta^* \right)^2 \right] \leq \mathcal{V}_B + \frac{4\sigma_{\text{classical}}^2}{\gamma_{\min}} \|\hat{\Sigma} - \Sigma\|_F.$$

307 *whenever $\|\hat{\Sigma} - \Sigma\|_F \leq \gamma_{\min}/2$, where $\|\cdot\|_F$ denotes the Frobenius norm.*

309 In general, there are many methods for constructing an estimate $\hat{\Sigma}$ of Σ , and Theorem 4.4 is agnostic
310 to the particular choice made. In Section E.1, we show how to apply the meta-result above to derive
311 a family of finite-sample bounds in a variety of distributional settings and for a variety of methods
312 of constructing $\hat{\Sigma}$.

313 In practice, we estimate Σ from data, and find the Ledoit-Wolf estimator $\hat{\Sigma}$ of the covariance matrix
314 Σ to perform best in our experiments. This is consistent with the fact that the Ledoit-Wolf estimate
315 is designed to minimize $\mathbb{E}\|\hat{\Sigma} - \Sigma\|_F$, and Theorem 4.4 shows that the error of $\hat{\theta}_{\text{MultiPPI}(\hat{\Sigma})}$ is
316 controlled by $\|\hat{\Sigma} - \Sigma\|_F$. In Theorem D.1, we apply Theorem 4.4 to provide finite-sample performance
317 guarantees on MultiPPI when the Ledoit-Wolf estimator is used to estimate covariance.

NEW

319 In our experiments, we evaluate $\hat{\theta}_{\underline{n}, \lambda}$ on the same samples we used to estimate $\hat{\Sigma}$. A similar
320 approach was taken by Angelopoulos et al. (2023b) for PPI++, and we find that it is easy to
321 implement and yields strong empirical results in practice. While doing so introduces bias in finite
322 samples—due in part to the additional dependency of λ_I on X_I in Equation (5)—it preserves
323 consistency and asymptotic normality in the limit as our budget B and the number of (reused)
burn-in samples tend to infinity.

324 4.2.1 PROCEDURE
325

326 We now specify an easy-to-implement procedure that makes use of a burn-in of N fully labeled
327 samples to estimate $\hat{\Sigma}$, and then also reuses the N samples when estimating $\hat{\theta}_{\text{MultiPPI}(\hat{\Sigma})}$. Specifically,
328 we target the practical setting where we are given N fully-labeled samples *a priori*, and have no
329 ability to obtain more. This is typical of real-world settings in which we are given, or have already
330 collected, a fixed dataset of "gold" labels that we are then trying to augment with PPI related
331 techniques—and may be encapsulated by the budget constraint $n_{\{1, \dots, k\}} \leq N$. While we may not
332 be able to obtain more fully-labeled samples, we may be afforded a separate computational budget
333 for querying model predictions that then augment the N fully-labeled samples; taken together, this
334 setting is represented by a system of budget constraints.³ In summary, we propose the following:
335

1. Estimate the covariance matrix $\hat{\Sigma} \approx \text{Cov}(X)$ on the N fully-labeled samples, which we reuse.
2. Solve for the n_I, λ_I which minimize Equation (6). We refer to this as $\text{MultiAllocate}(\hat{\Sigma})$.
3. Sample the $n_I, \forall I \in \mathcal{I}$ additional data points accordingly, and return $\hat{\theta}_{\text{MultiPPI}(\hat{\Sigma})}$.

340 5 EXPERIMENTAL SETUP
341

342 In each experiment, our goal is to estimate the mean $\theta^* = \mathbb{E}[X_1]$ of some random variable X_1 to
343 be specified, which we will refer to as the *target*. This corresponds to the choice $a = (1, 0, \dots, 0)$
344 in our notation. We will also specify a *model family* (X_2, \dots, X_k) , together with a *cost structure*
345 $(c_I)_{I \in \mathcal{I}}$. In each experiment, we are given some number of samples for which the entire vector
346 $X = (X_1, \dots, X_k)$ is visible; we refer to such samples as *fully-labeled*. Given these samples, we
347 perform the procedure outlined in Section 4.2.1: we estimate $\hat{\Sigma}$ using these samples, sample from
348 the auxiliary models (X_2, \dots, X_k) according to the allocation specified by $\text{MultiAllocate}(\hat{\Sigma})$, and
349 return $\hat{\theta}_{\text{MultiPPI}(\hat{\Sigma})}$, evaluated on both the N fully-labeled samples and the additional auxiliary data.
350

351 **Baselines:** In each experiment, we compare to several baselines. First, we compare to classical
352 sampling. Second, we compare to PPI++ with each model included in the family (specified in
353 Equation (2)), and to vector PPI++ with every model in the family (specified in Equation (3)).

354 **Experiment 1: Estimating Arena win-rates by autorater ensembles.** We focus on the Chatbot
355 Arena dataset (Chiang et al., 2024), where of interest is the *win-rate* between a pair of models,
356 which is the probability that a given user prefers the response of one model to that of the other. The
357 randomness is taken over the prompt, the user, and the model responses. Here, we aim to estimate the
358 win-rate between Claude-2.1 and GPT-4-1106-Preview; this is our *target*. Our *model family* consists
359 of autoraters built on Gemini 2.5 Pro (without thinking) and Gemini 2.5 Flash. In our notation, we
360 have $(X_1, X_2, X_3) = (\text{human label}, \text{Gemini 2.5 Pro label}, \text{Gemini 2.5 Flash label})$. We draw model
361 *costs* from the Gemini developer API pricing guide (Gemini API), see Section I. In this case, the
362 cost of querying both models is simply the sum of the costs of querying each model independently.

363 **Experiment 2: Optimal test-time autorater scaling on ProcessBench.** In this experiment, we
364 aim to estimate the fraction of correct solutions in the ProcessBench dataset (Zheng et al., 2024),
365 given a small number of labeled examples. The task is simplified from its original form to a binary
366 classification problem: determining whether a given math proof solution contains a process error,
367 without identifying the specific step. We employ Gemini 2.5 Pro with a variable thinking budget
368 as our autorater. Its accuracy correlates with the number of words expended in the thought, with
369 performance gains saturating after approximately 500 words (see Figure 14 in the appendix). We
370 create a family of four autoraters by checkpointing the model’s thought process at 125, 250, 375,
371 and 500 words. A key aspect of this setup is the non-additive, cascading cost structure. Generating a
372 response from a model with a larger thinking budget makes the outputs of all smaller-budget models
373 available at a marginal cost. Consequently, the total cost for a subset of models S is modeled with
374 two components: an input cost proportional to the sum of the word budgets in S , and an output cost
375 proportional to the maximum word budget in S . Explicitly, for $S \subseteq \{125, 250, 375, 500\}$, we set

$$c_S = \text{output_cost_per_word} \cdot \max S + \text{input_cost_per_word} \cdot \sum S \quad (8)$$

376
377 ³We explain how to solve the optimization problem posed by such systems in Appendix B.

378 **Experiment 3: Hybrid factuality evaluation through multi-autorater debate.** Following Du
 379 et al. (2023), we evaluate the factual consistency of biographies for 524 computer scientists
 380 generated by Gemini 2.5 Pro. For each person $p \in \mathcal{P}$, we compare their Gemini-generated biography b^p
 381 against a set of known grounding facts $\mathcal{F}^p = \{f_1^p, \dots, f_{m_p}^p\}$ about the person. Our target metric is
 382 the proportion of *factually consistent pairs* (b, f) within the total set $\mathcal{S} = \{(b^p, f^p) : p \in \mathcal{P}, f^p \in$
 383 $\mathcal{F}^p\}$. Concretely, we target the proportion $|\{(b, f) \in \mathcal{S} : (b, f) \text{ is factually consistent}\}| / |\mathcal{S}|$.

384 Ground-truth consistency of a pair (b, f) is established by majority voting over five independent
 385 judgments from Gemini 2.5 Pro with thinking, a method validated by Du et al. (2023) to have
 386 over 95% agreement with human annotators. Our experiment, illustrated in Figure 15, assesses
 387 the performance of a more cost-effective model, Gemini 2.0 Flash Lite, as an autorater. To elicit
 388 better autoratings from queries to Gemini 2.0 Flash Lite, we bootstrap performance via multi-round
 389 debate. For a fixed number of agents $A \in \{1, 2, 3\}$, and a fixed number of maximum rounds
 390 $R \in \{1, 2\}$, we perform the following procedure: In each round, A instances of Flash Lite are
 391 independently prompted to provide a reasoned judgment on the consistency of a pair $(b, f) \in \mathcal{S}$. A
 392 "pooler" instance of Flash Lite then consolidates these responses into a single *yes*, *no*, or *uncertain*
 393 output. A definitive *yes* or *no* concludes the process. If the pooler outputs *uncertain*, and the
 394 number of maximum rounds R has not yet been reached, the A agents review all prior responses and
 395 continue their debate in a new round. If the output remains *uncertain* after the final round, either *yes*
 396 or *no* is reported with equal probability—since the dataset is balanced, this outcome is fair insofar
 397 as it is as good as random guessing. We impose the maximum round restriction to encapsulate our
 398 budget constraint. For a given (A, R) , the cost is $A \cdot R$; for collections, the cost follows Equation (8).

400 6 EMPIRICAL RESULTS

401 We plot MultiPPI, and the baselines described in Section 5, for a budgets between 0 and 2,000
 402 units of cost. We normalize model costs so that one unit of cost always represents exactly one
 403 query to our most expensive model. For each fixed budget and each method, we estimate the target,
 404 and construct asymptotic 95% confidence intervals \mathcal{C} based on Theorem 4.3. We plot (i) coverage,
 405 $\mathbb{P}(\theta^* \in \mathcal{C})$; (ii) confidence interval width, $|\mathcal{C}|$; and (iii) mean-squared error $\mathbb{E}[(\hat{\theta} - \theta^*)^2]$. We
 406 report both the confidence interval width and the mean-squared error as a fraction of what classical
 407 sampling achieves (lower is better). In each case, the target is $\theta^* = \mathbb{E}[X_1]$, and \mathbb{P} and \mathbb{E} are computed
 408 with respect to the empirical distribution over the dataset observed (we perform 500k random trials
 409 with 250 given labels). Note that these 250 labeled points are evidently enough for all estimators
 410 considered to achieve good coverage (in Section D.2 we also include additional results with 1000
 411 labeled points). **We implement the optimization scheme in cvxpy, and use CVXOPT as our choice**
 412 **of optimizer.**

NEW

413 **Experiment 1: Chatbot Arena.** Results are shown in Figure 1 (top). Observe that different
 414 baselines dominate in different budget regimes. In the low-budget regime, scalar PPI++ with
 415 Flash is the best baseline, while in the large-budget regime, vector PPI++ with both Pro and Flash
 416 is the best baseline. However, we see that MultiPPI improves on all baselines in all regimes.
 417 In the appendix, Figure 5 and Figure 2 plot the λ_I and n_I values learned by MultiPPI across
 418 budget regimes. Note that the learned values tend to the specifications for PPI++ with Flash in the
 419 low-budget regime, and to the specifications for vector PPI++ in the large-budget regime, a finding
 420 that we rigorously prove happens in broader generality in Section E.2. Lastly, note that PPI++
 421 with Pro is suboptimal in all regimes. In other words, PPI++ with Pro is not included in the Pareto
 422 frontier. This is because, for this task, its correlation with the label is the same as that of PPI++
 423 with Flash, yet it is strictly more expensive.

424 **Experiment 2: ProcessBench.** Results are shown in Figure 1 (middle). Again, we see that each
 425 baseline has a range of budgets for which it outperforms all other baselines. In particular, the
 426 cheaper models yield better performance when used in PPI++ in the smaller-budget regimes, while
 427 the more-expensive models yield better performance in the higher-budget regimes. In particular,
 428 vector PPI++ Vector, which uses all $k - 1$ models, steadily improves as the budget increases, but only
 429 outperforms the other baselines at the highest budgets. This behavior is explained by Figure 14 in
 430 the appendix, which shows that predictive performance improves for larger thinking budgets. Thus
 431 the more expensive models yield higher correlation with the label and thus yield low-variance rec-

432 tifiers; on the other hand, their high cost means that this decrease in rectifier variance is outweighed
 433 by our inability to draw an adequate number of samples from them in the low-budget regimes.
 434

435 Of note is the fact that *the models which think for longer are not in general less biased*. This
 436 phenomenon is shown in Figure 17, which shows that thinking for longer is not enough to resolve
 437 the systematic bias present in the autorater. However, the figure also shows that simple debiasing
 438 schemes like PPI resolve this issue. Note that this trend is not reflected in the correlations between
 439 these models and the label, because correlation is invariant to addition of constants.
 440

441 Finally, MultiPPI improves on all baselines methods in all regimes. Interestingly, Figure 3 and
 442 Figure 4 show that the parameters λ_I and n_I learned by MultiPPI transition from emulating PPI++
 443 with the tiny model (which is the best baseline in the low-budget regime) to emulating a *cascaded*
 444 version of PPI (see Equation (4)), in which the medium model is used to debias the larger model.
 445

446 **Experiment 3: Biography factuality evaluation.** Results are shown in Figure 1 (bottom). Once
 447 again, each baseline is dominant over the others in certain regimes; MultiPPI improves on all base-
 448 lines in all regimes. Of note, however, is the fact that the coverage of all estimators considered, but
 449 MultiPPI and vector PPI++ in particular, degrades slightly in the large-budget regime (i.e., the 95%
 450 CI under-covers by $\approx 1\%$). We discuss this interesting phenomenon in Section E.4, and find that it
 451 does not occur when the number of labeled samples grows in constant proportion with the budget
 452 (see, for example, our additional results with $N = 1000$ fully-labeled samples in Section D.2).
 453

454 In terms of the performance-vs-cost profile that MultiPPI leverages: Figure 15 shows that predictive
 455 performance increases, across many metrics, as the number of agents and number of rounds in-
 456 creases. Note, however, that a marginal increase in number of agents yields a greater increase in ac-
 457 curacy than a marginal increase in number of rounds (this is largely because the pooler is more likely
 458 to report "uncertain" after the end of the first round than after the end of the second; see Figure 16).
 459

460 7 CONCLUSION

461 In this work, we introduce Multiple-Prediction-Powered Inference (MultiPPI), a framework for effi-
 462 ciently estimating expectations under budget constraints by optimally leveraging multiple infor-
 463 mation sources of varying costs. MultiPPI formulates the optimal allocation of queries across subsets of
 464 variables as a second-order cone program in the case of a single budget constraints, or a semi-definite
 465 program in the case of multiple—both can be efficiently solved using off-the-shelf tools. We provide
 466 theoretical guarantees, including minimax optimality when covariances are known, and demonstrate
 467 empirically across diverse LLM evaluation tasks that MultiPPI outperforms existing methods. By
 468 adaptively balancing cost and information, MultiPPI achieves lower error for a given budget, au-
 469 tomatically shifting its strategy from cheaper proxies to more expensive, accurate predictors as the
 470 budget increases, thus offering a principled and practical solution for cost-effective inference.
 471

472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485

Figure 1: Results by budget for the experiments on Chatbot Arena (a), ProcessBench (b), and Factuality (c). For each estimator (all baselines and MultiPPI), the left column plots the empirical coverage of the 95% CI, the middle column plots the width of the 95% CI, and the right column plots the empirical mean-squared error of the point estimate. The fully-labeled sample size N is 250.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a detailed specification of the algorithm in Section C. We also include implementation details in Section I, and address computational considerations in Section G. Finally, all experiments shown in §6 were averaged over 500k trials.

REFERENCES

Anastasios N Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I Jordan, and Tijana Zrnic. Prediction-powered inference. *Science*, 382(6671):669–674, 2023a.

Anastasios N Angelopoulos, John C Duchi, and Tijana Zrnic. PPI++: Efficient prediction-powered inference. *arXiv preprint arXiv:2311.01453*, 2023b.

Anastasios N. Angelopoulos, Jacob Eisenstein, Jonathan Berant, Alekh Agarwal, and Adam Fisch. Cost-optimal active ai model evaluation. *arXiv preprint arXiv:2506.07949*, 2025. URL <https://arxiv.org/abs/2506.07949>.

540 Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
 541 man Vaughan. A theory of learning from different domains. *Mach. Learn.*, 79(1–2):151–175,
 542 May 2010. doi: 10.1007/s10994-009-5152-4. URL <https://doi.org/10.1007/s10994-009-5152-4>.

543

544 Pierre Boreau, Anastasios N Angelopoulos, Nir Yosef, Jitendra Malik, and Michael I Jordan. AutoEval done right: Using synthetic data for model evaluation. *arXiv preprint arXiv:2403.07008*,
 545 2024.

546

547 Nicoló Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir. Efficient learning with partially
 548 observed attributes. *Journal of Machine Learning Research*, 12(87):2857–2878, 2011. URL
 549 <http://jmlr.org/papers/v12/cesa-bianchi11a.html>.

550

551 Arun Chaganty, Stephen Mussmann, and Percy Liang. The price of debiasing automatic metrics
 552 in natural language evalaution. In Iryna Gurevych and Yusuke Miyao (eds.), *Proceedings of the*
 553 *56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 554 pp. 643–653, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
 555 10.18653/v1/P18-1060. URL <https://aclanthology.org/P18-1060/>.

556

557 Ivi Chatzi, Eleni Straitouri, Suhas Thejaswi, and Manuel Gomez Rodriguez. Prediction-
 558 powered ranking of large language models. In A. Globerson, L. Mackey, D. Bel-
 559 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-
 560 formation Processing Systems*, volume 37, pp. 113096–113133. Curran Associates, Inc.,
 561 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/cd47cd67caa87f5b1944e00f6781598f-Paper-Conference.pdf.

562

563 Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney
 564 Newey, and James Robins. Double/debiased machine learning for treatment and structural pa-
 565 rameters. *The Econometrics Journal*, 21(1):C1–C68, 01 2018. URL <https://doi.org/10.1111/ectj.12097>.

566

567 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
 568 Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot
 569 arena: An open platform for evaluating llms by human preference. In *Forty-first International*
 570 *Conference on Machine Learning*, 2024.

571

572 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
 573 tuality and reasoning in language models through multiagent debate. In *Forty-first International*
 574 *Conference on Machine Learning*, 2023.

575

576 Adam Fisch, Joshua Maynez, R. Alex Hofer, Bhwan Dhingra, Amir Globerson, and William W.
 577 Cohen. Stratified prediction-powered inference for effective hybrid evaluation of language mod-
 578 els. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
 URL <https://openreview.net/forum?id=8C8cdDQFDQ>.

579

580 Gemini API. Gemini Developer API Pricing | Gemini API. URL <https://ai.google.dev/gemini-api/docs/pricing>.

581

582 Elad Hazan and Tomer Koren. Linear regression with limited observation. In *ICML*, 2012.

583

584 Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Tom Rainforth. Active testing: Sample-efficient
 585 model evaluation. In *ICML*, 2021. URL <http://dblp.uni-trier.de/db/conf/icml/icml2021.html#KossenFGR21>.

586

587 Jiacheng Miao, Xinran Miao, Yixuan Wu, Jiwei Zhao, and Qiongshi Lu. Assumption-lean and
 588 data-adaptive post-prediction inference. *arXiv preprint arXiv 2311.14220*, 2024. URL <https://arxiv.org/abs/2311.14220>.

589

590 James Neufeld, Andras Gyorgy, Csaba Szepesvari, and Dale Schuurmans. Adaptive monte carlo via
 591 bandit allocation. In Eric P. Xing and Tony Jebara (eds.), *Proceedings of the 31st International*
 592 *Conference on Machine Learning*, volume 32 of *Proceedings of Machine Learning Research*, pp.
 593 1944–1952, Beijing, China, 22–24 Jun 2014. PMLR. URL <https://proceedings.mlr.press/v32/neufeld14.html>.

594 Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. *IEEE Transactions on Knowledge*
 595 *and Data Engineering*, 22:1345–1359, 2010. URL <https://api.semanticscholar.org/CorpusID:740063>.

596

597 B. D. Ripley. *Stochastic simulation*. John Wiley & Sons, Inc., New York, NY, USA, 1987. ISBN
 598 0-471-81884-4.

599

600 James M. Robins and Andrea Rotnitzky. Semiparametric efficiency in multivariate regression mod-
 601 els with missing data. *Journal of the American Statistical Association*, 90(429):122–129, 1995.
 602 ISSN 01621459. URL <http://www.jstor.org/stable/2291135>.

603

604 Jon Saad-Falcon, Omar Khattab, Christopher Potts, and Matei Zaharia. ARES: An automated eval-
 605 uation framework for retrieval-augmented generation systems. In Kevin Duh, Helena Gomez,
 606 and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of*
 607 *the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long*
 608 *Papers)*, pp. 338–354, Mexico City, Mexico, June 2024. Association for Computational Linguis-
 609 *tics*. doi: 10.18653/v1/2024.naacl-long.20. URL <https://aclanthology.org/2024-naacl-long.20/>.

610

611 Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, Uni-
 612 versity of Wisconsin–Madison, 2009. URL <http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf>.

613

614 Carl-Erik Särndal, Bengt Swensson, and Jan Wretman. Model assisted survey sampling. *Springer*
 615 *Series in Statistics*, 1992.

616

617 Mark J. van der Laan and Daniel Rubin. Targeted maximum likelihood learning. *The Inter-
 618 national Journal of Biostatistics*, 2(1), 2006. doi: 10.2202/1557-4679.1008. URL <https://www.degruyter.com/document/doi/10.2202/1557-4679.1008/html>.

619

620 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*,
 621 volume 47. Cambridge university press, 2018.

622

623 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cam-
 624 bridge university press, 2019.

625

626 Chicheng Zhang and Kamalika Chaudhuri. Active learning from weak and strong labelers. In
 627 *Advances in Neural Information Processing Systems*, 2015.

628

629 Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu,
 630 Jingren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical rea-
 631 soning. *arXiv preprint arXiv:2412.06559*, 2024.

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648	CONTENTS	
649		
650		
651	A Ethics statement	14
652		
653	B Generalization to multiple budget inequalities	14
654		
655	C Detailed specification of the algorithm	14
656		
657	C.1 The case of a single budget inequality, known Σ	14
658	C.2 The case of multiple budget inequalities, known Σ	15
659	C.3 The case of unknown Σ	16
660		
661		
662	D Additional experiments	17
663		
664	D.1 Learned allocations and linear parameters	17
665	D.2 MultiPPI with a larger number of labeled samples	18
666	D.3 MultiPPI by varying number of labeled samples	19
667	D.4 The impact of shrinkage covariance estimation	19
668	D.5 Scalability and computational tractability of the estimator	20
669	D.6 Proofs of additional theoretical results	22
670	D.7 Autorater accuracy scaling	23
671		
672		
673		
674	E Additional theoretical results	26
675		
676	E.1 Finite-sample bounds	26
677	E.2 Behavior of the estimator in the limiting regimes	27
678	E.3 Rounding in the large budget regime	27
679	E.4 Decay of coverage in the large budget regime	28
680		
681		
682	F Proofs	29
683		
684	F.1 Proof of Theorem 4.2	29
685	F.2 Proofs of finite sample results	30
686	F.3 Proof of ??	31
687	F.4 Proofs of additional theoretical results	33
688		
689		
690	G Computational considerations	34
691		
692	H The dual problem	35
693		
694	I Experimental details	36
695		
696	I.1 Generating model predictions	36
697	I.2 Constructing the MultiPPI estimator	38
698		
699		
700		
701		

702 **A ETHICS STATEMENT**
703

704 This paper describes fundamental research on techniques for constructing statistically efficient esti-
705 mates of a target metric by optimally allocating resources across multiple types of proxy measure-
706 ments. The primary intended use case which is analyzed in this work is the evaluation of generative
707 AI systems, for which reliable evaluation is a core technical challenge. Efficient and precise esti-
708 mates of model performance can help make AI systems easier to build, deploy, and monitor. We do
709 not speculate about broader impacts that may follow from this technical contribution. Gemini was
710 used for light copy-editing during the writing of this work.

712 **B GENERALIZATION TO MULTIPLE BUDGET INEQUALITIES**
713

714 We recall some notation. Fix a set \mathcal{I} of index subsets $I \subseteq [k]$. For each $I \in \mathcal{I}$, let $c_I =$
715 $(c_I^{(1)}, \dots, c_I^{(m)}) \in \mathbb{R}_{\geq 0}^m$ denote the vector-valued cost of querying the collection of models indexed
716 by I . Similarly, for each $I \in \mathcal{I}$, we let $n_I \geq 0$ be an integer denoting the number of times that the
717 collection of models indexed by I is queried. We let $\underline{n} = (n_I)_{I \in \mathcal{I}}$ refer to the associated allocation.

718 For a vector-valued budget $B \in \mathbb{R}_{\geq 0}^m$, we say that the allocation \underline{n} satisfies the budget B , and write
719 $\mathbf{B}(\underline{n}, B)$, if

$$\sum_{I \in \mathcal{I}} n_I c_I^{(1)} \leq B^{(1)}, \dots, \sum_{I \in \mathcal{I}} n_I c_I^{(m)} \leq B^{(m)},$$

720 or more succinctly,

$$\sum_{I \in \mathcal{I}} n_I c_I \leq B.$$

721 Similarly, for each $I \in \mathcal{I}$, we let $\lambda_I \in \mathbb{R}^{|I|}$, and denote by $\underline{\lambda} = (\lambda_I)_{I \in \mathcal{I}}$ their collection. Let

$$\hat{\theta}_{\underline{n}, \underline{\lambda}} = \sum_{I \in \mathcal{I}: n_I > 0} \frac{1}{n_I} \sum_{j=1}^{n_I} \lambda_I^\top X_I^{(I, j)}$$

722 where $X^{(I, j)}$ denote independent copies of X for every $I \in \mathcal{I}$ and $1 \leq j \leq n_I$. We say that the
723 unbiased condition holds for $\underline{n}, \underline{\lambda}$, and write \mathbf{U} , if $\mathbb{E}\hat{\theta}_{\underline{n}, \underline{\lambda}} = a^\top \mathbb{E}X$ for every distribution of finite
724 second-moment on X .

725 Note that the variance of $\hat{\theta}_{\underline{n}, \underline{\lambda}}$ depends only upon $\Sigma = \text{Cov}(X)$. Thus we let

$$\hat{\theta}_{\text{MultiPPI}(\Sigma)} := \hat{\theta}_{\underline{n}, \underline{\lambda}} \quad \text{where } \underline{n}, \underline{\lambda} \text{ are chosen so that the resulting estimator}\\ \text{735 has minimal variance under } \Sigma \text{ such that } \mathbf{B} \text{ and } \mathbf{U} \text{ hold.}$$

738 **C DETAILED SPECIFICATION OF THE ALGORITHM**
739

740 In this section, we outline the procedure used in all experiments in greater detail. First, we describe
741 the algorithm for the case of a single budget inequality, for which a more-efficient procedure exists;
742 second, we describe the general case, in which the procedure reduces to a semi-definite program
743 (SDP). We first suppose that Σ is known, and later explain the procedure in the case that it must be
744 estimated from data.

745 **C.1 THE CASE OF A SINGLE BUDGET INEQUALITY, KNOWN Σ**
746

747 We suppose that there is a random vector $X \in \mathbb{R}^k$ with known covariance Σ , and our goal is to
748 estimate $\theta^* = a^\top \mathbb{E}X$ for some fixed $a \in \mathbb{R}^k$. There is some fixed collection \mathcal{I} of index subsets
749 $I \subset \{1, \dots, k\}$ such that we may sample $X_I := (X_i)_{i \in I}$. We may sample X_I a maximum of n_I
750 times, subject to the constraint that $\sum_{I \in \mathcal{I}} c_I n_I \leq B$ for some $c_I \geq 0$ and $B > 0$.

751 **Step 1:** Solve the SOCP

$$\sup_{y \in \mathbb{R}^k} a^\top y \quad \text{s.t.} \quad \bigwedge_{I \in \mathcal{I}} \{y_I^\top \Sigma_I y_I \leq c_I^{-1}\}$$

752 and obtain the solution y_I^* and the multipliers $\alpha_I^* \geq 0$ for each $I \in \mathcal{I}$.
753

756 **Step 2:** Set

$$\begin{aligned} \lambda_I^* &= 2\alpha_I^* \Sigma_I^{-1} y_I^* \\ n_I^* &= \left[\left(\frac{B}{c_I} \right) \frac{\sqrt{c_I(\lambda_I^*)^\top \Sigma_I \lambda_I^*}}{\sum_{J \in \mathcal{I}} \sqrt{c_J(\lambda_J^*)^\top \Sigma_J \lambda_J^*}} \right] \end{aligned}$$

762 for each $I \in \mathcal{I}$.

763 **Step 3:** For each $I \in \mathcal{I}$, independently sample X_I n_I^* times, and compute the sample mean
764 $\bar{\lambda}_I^* \cdot \bar{X}_I$. Return

$$\hat{\theta}_{\text{MultiPPI}(\Sigma)} = \sum_{I \in \mathcal{I}} \bar{\lambda}_I^* \cdot \bar{X}_I$$

768 with $(1 - \alpha)$ -confidence intervals given by

$$\mathcal{C} = \hat{\theta}_{\text{MultiPPI}(\Sigma)} \pm z_{1-\alpha/2} \sqrt{\sum_{I \in \mathcal{I}} \frac{1}{n_I^*} \widehat{\sigma}_{\lambda_I^* \cdot X_I}^2}$$

772 where $\widehat{\sigma}_{\lambda_I^* \cdot X_I}^2$ denotes the sample variance of $\lambda_I^* \cdot X_I$, and z_p denotes the p^{th} quantile of the standard
773 normal distribution.

775 C.2 THE CASE OF MULTIPLE BUDGET INEQUALITIES, KNOWN Σ

777 We again suppose that there is a random vector $X \in \mathbb{R}^k$ with known covariance Σ , and our goal
778 is to estimate $\theta^* = a^\top \mathbb{E}X$ for some fixed $a \in \mathbb{R}^k$. We may now sample X_I a maximum of n_I
779 times, subject to the constraints that $\sum_{I \in \mathcal{I}} c_I^{(\ell)} n_I \leq B^{(\ell)}$ for some $c_I^{(\ell)} \geq 0$ and $B^{(\ell)} > 0$, with
780 $1 \leq \ell \leq m$.

782 **Step 1:** Solve the SDP

$$\begin{aligned} \sup_{t \in \mathbb{R}} t &\quad \text{s.t.} \quad \begin{pmatrix} \sum_{I \in \mathcal{I}} n_I P_I^\top \Sigma_I^{-1} P_I & a \\ a^\top & t \end{pmatrix} \succeq 0, \\ &\quad n_I \geq 0 \quad \forall I \in \mathcal{I} \\ &\quad \sum_{I \in \mathcal{I}} c_I^{(\ell)} n_I \leq B^{(\ell)} \quad \forall \ell \leq m \end{aligned}$$

789 for real valued n_I , and obtain solutions $n_{I,\text{frac}}^*$.

791 **Step 2:** Set

$$\begin{aligned} n_I^* &= \lfloor n_{I,\text{frac}}^* \rfloor \\ \lambda_I^* &= n_I^* \Sigma_I^{-1} P_I \left(\sum_{I \in \mathcal{I}} n_I^* P_I^\top \Sigma_I^{-1} P_I \right)^\dagger a \end{aligned}$$

797 for all $I \in \mathcal{I}$.

800 **Step 3:** As in the previous section, for each $I \in \mathcal{I}$, independently sample X_I n_I^* times, and
801 compute the sample mean $\bar{\lambda}_I^* \cdot \bar{X}_I$. Return

$$\hat{\theta}_{\text{MultiPPI}(\Sigma)} = \sum_{I \in \mathcal{I}} \bar{\lambda}_I^* \cdot \bar{X}_I$$

804 with $(1 - \alpha)$ -confidence intervals given by

$$\mathcal{C} = \hat{\theta}_{\text{MultiPPI}(\Sigma)} \pm z_{1-\alpha/2} \sqrt{\sum_{I \in \mathcal{I}} \frac{1}{n_I^*} \widehat{\sigma}_{\lambda_I^* \cdot X_I}^2}$$

806 where $\widehat{\sigma}_{\lambda_I^* \cdot X_I}^2$ denotes the sample variance of $\lambda_I^* \cdot X_I$, and z_p denotes the p^{th} quantile of the standard
807 normal distribution.

810 C.3 THE CASE OF UNKNOWN Σ
811812 In general, the approach is to construct an estimate $\hat{\Sigma}$ of Σ from data, and use this estimate for Σ in
813 the steps outlined above. In principle, it is possible to recycle the data used to construct $\hat{\Sigma}$ in step
814 3 of the above procedures; this preserves asymptotic normality as a consequence of ?? . Below, we
815 detail one approach to doing this—the approach used in our experiments, and the approach outlined
816 in Section 4.2.817 Suppose that $a = (1, 0, \dots, 0)$, and we have some hard limit N on the number of samples available
818 from X_1 . This typically represents a “gold” label which is invaluable in some sense. We also sup-
819 pose that these labeled samples are fully labeled—that is, that the entire vector $X = (X_1, \dots, X_k)$
820 is visible in each case—or alternatively, that N is small enough that they are relatively inexpensive
821 to obtain model predictions for.823 **Step 1:** Construct the empirical covariance matrix $\hat{\Sigma}$ from the N fully-labeled samples.
824825 **Step 2:** Take \mathcal{I} to be all subsets of models—that is, all subsets of $\{2, \dots, k\}$ —together with the
826 set of all indices $\{1, \dots, k\}$. Formally, $\mathcal{I} = \{\{1, \dots, k\}\} \cup 2^{\{2, \dots, k\}}$.
827828 **Step 3:** Run § C.2 with any existing budget constraints, together with the constraint that
829 $n_{\{1, \dots, k\}} \leq N$, and obtain allocations n_I^*, λ_I^* .
830831 **Step 4:** Sample accordingly, with the guarantee that the number of fully labeled samples $X_{\{1, \dots, k\}}$
832 queried won’t exceed the number available, N . These samples from step 1 may be reused for this.
833834 **Step 5:** Return the resulting estimator, as described in § C.2.
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **D ADDITIONAL EXPERIMENTS**
865866 **D.1 LEARNED ALLOCATIONS AND LINEAR PARAMETERS**
867

880
881 Figure 2: Proportion of budget allocated to different models in Experiment 1: ChatBot Arena. Gemini
882 2.5 Flash, the cheapest model, is most sampled in the low-budget regime, while the proportion
883 of budget allocated to the joint (both models combined) increases monotonically with budget.
884

897 Figure 3: Proportion of budget allocated to different models in Experiment 2: ProcessBench. Tiny
898 (125 word thinking budget) is most sampled in the low-budget regime, while the proportion of
899 budget allocated to the joint (all models combined) increases monotonically with budget.
900

910 Figure 4: Linear parameters λ_I learned across budget regimes in Experiment 2: ProcessBench.
911 While only the tiny model (125 word thinking budget) has a nonzero linear parameter in the low-
912 budget regime, a *cascading* behavior is learned in the large-budget regime: the cheaper models are
913 prescribed the opposite sign from the more-expensive models in the joint term.
914
915
916
917

Figure 5: Linear parameters λ_I learned across budget regimes in Experiment 1: ChatBot Arena. While only Gemini 2.5 Pro has a nonzero linear parameter in the low-budget regime, a *cascading* behavior is learned in the large-budget regime: the cheaper model (Gemini 2.5 Flash) is prescribed the opposite sign from the more-expensive model (Gemini 2.5 Pro) in the joint term.

D.2 MULTIPIPI WITH A LARGER NUMBER OF LABELED SAMPLES

Figure 6: Results by budget, Experiment 2: Chatbot Arena. 1,000 labeled samples are provided.

Figure 7: Results by budget, Experiment 2: ProcessBench. 1,000 labeled samples are provided.

Figure 8: Results by budget, Experiment 3: Factuality. 1,000 labeled samples are provided.

Figure 9: Results given only $N = 10$ labeled examples. Results are shown by budget for the experiments on Chatbot Arena (a), ProcessBench (b), and Factuality (c). For each estimator (all baselines and MultiPPI), the left column plots the empirical coverage of the 95% CI, the middle column plots the width of the 95% CI, and the right column plots the empirical mean-squared error of the point estimate.

D.3 MULTIPPI BY VARYING NUMBER OF LABELED SAMPLES

In this section, we compare results of MultiPPI for number of fully-labeled samples between $N = 10$ and $N = 200$. MultiPPI continues to achieve smaller MSE than all baselines in all settings considered. This is shown for the case $N = 10$ in Figure 9. In Figure 10, we plot the performance of MultiPPI over varying number of fully-labeled samples.

Even for $N = 10$, we find that MultiPPI improves on all baselines in MSE. It is important to note that, for all methods, including the baselines, the coverage is significantly below 95% due to the small sample size. Nevertheless, even in this extreme setting, MultiPPI performs best in MSE.

D.4 THE IMPACT OF SHRINKAGE COVARIANCE ESTIMATION

In this section, we discuss the impact of shrinkage covariance estimation on MultiPPI. We provide finite-sample bounds on the induced performance, and empirical results.

For more general results on **sensitivity to mis-specification**, please refer to Theorem 4.4.

Figure 10: MultiPPI with varying number of fully labeled examples.

In Figure 11, we compare performance of MultiPPI with covariance estimation via (a) the empirical covariance matrix, and (b) the Ledoit-Wolf estimated covariance matrix. The following theorem provides finite-sample bounds for the latter.

Theorem D.1 (Finite-sample bounds specialized to Ledoit-Wolf shrinkage). *Let $\widehat{\Sigma}_N^{LW}$ denote the Ledoit-Wolf shrinkage estimator of Σ based on N samples. Let γ_{\min} denote the minimum eigenvalue of Σ , and suppose that $X \in \mathbb{R}^k$ is sub-Gaussian with proxy K . Lastly, suppose that Σ is not a multiple of the identity. Then for absolute constants c_1, c_2 , we have*

$$\mathbb{E} \left[\left(\widehat{\theta}_{\text{MultiPPI}(\widehat{\Sigma})} - \theta^* \right)^2 \right] \leq \mathcal{V}_B + \frac{4\sigma_{\text{classical}}^2}{\gamma_{\min}} \frac{1}{\sqrt{N}} \sqrt{c_1 K^4 \gamma_{\max}^2 k^2 + c_2 K^8 \gamma_{\max}^2 k^3 / a^2}$$

where $a^2 := \frac{1}{k} \left\| \Sigma - I \cdot \frac{\text{tr}(\Sigma)}{k} \right\|_F^2$.

For a proof of this fact, see Section D.6.

D.5 SCALABILITY AND COMPUTATIONAL TRACTABILITY OF THE ESTIMATOR

SOCPs and SDPs are known to run in polynomial time in the number of constraints, which is, in our formulation, $|\mathcal{I}|$. In the preceding sections we have made the choice $\mathcal{I} = 2^{\{1, \dots, k\}}$, but we show

Figure 12: Comparison of MultiPPI for $\mathcal{I} = 2^{\{1, \dots, k\}}$ (default settings) with MultiPPI (Restricted), as defined in Section D.5.

in this section that we may recover much of the same performance with a choice of $\mathcal{I} \subseteq 2^{\{1, \dots, k\}}$ which grows only linearly in k . Specifically, we take $\mathcal{I} = \{\{1, \dots, k\}, \{2, \dots, k\}, \{2\}, \dots, \{k\}\}$, which corresponds to including terms for each model individually, as well as for their joint. We label the version of MultiPPI induced by this choice ‘‘MultiPPI (Restricted).’’ Figure 12 shows that the results of this method are very comparable to those of standard MultiPPI, in which we take \mathcal{I} to be the collection of *all* subsets of $\{1, \dots, k\}$.

D.6 PROOFS OF ADDITIONAL THEORETICAL RESULTS

Proof of Theorem D.1. The result follows immediate from Theorem E.1 after the following lemma.

Lemma D.2. *Suppose that Σ is not a multiple of the identity, and that $X \in \mathbb{R}^k$ is sub-Gaussian with proxy K . Let γ_{\max} denote the maximum eigenvalue of Σ . Then the Ledoit-Wolf shrinkage estimator*

1188 $\widehat{\Sigma}_N^{LW}$ satisfies the bound
 1189

$$1190 \mathbb{E}\|\widehat{\Sigma}_N^{LW} - \Sigma\|_{op} \leq \frac{1}{\sqrt{N}} \sqrt{c_1 K^4 \gamma_{\max}^2 k^2 + c_2 K^8 \gamma_{\max}^4 k^3 / a^2}$$

1192 where $a^2 := \frac{1}{k} \left\| \Sigma - I \cdot \frac{\text{tr}(\Sigma)}{k} \right\|_F^2$.
 1193

1194

1195 *Proof.* Let $\widehat{\Sigma}_N$ denote the empirical covariance matrix. Recall that by definition

$$1196 \widehat{\Sigma}_N^{LW} = (1 - \hat{\delta})\widehat{\Sigma}_N + \hat{\delta}\hat{m}I$$

1197 where $\hat{m} = \text{tr}(\widehat{\Sigma}_N)/k$, and $\hat{\delta} = \hat{b}^2/\hat{d}^2$; we have $b^2 = \mathbb{E}\|\widehat{\Sigma}_N - \Sigma\|_F^2/k$ and $d^2 = a^2 + b^2$, and \hat{b} and
 1198 \hat{d} are such that $\hat{b} \rightarrow b$ and $\hat{d} \rightarrow d$ in quartic mean. Our strategy will be to employ the observation
 1199 that

$$1201 \|\widehat{\Sigma}_N^{LW} - \Sigma\|_F^2 = \|(1 - \hat{\delta})(\widehat{\Sigma}_N - \Sigma) + \hat{\delta}(\Sigma - mI)\|_F^2 \\ 1202 \leq \left(|1 - \hat{\delta}| \|\widehat{\Sigma}_N - \Sigma\|_F + |\hat{\delta}| \|\Sigma - mI\|_F \right)^2 \\ 1203 \leq 6\|\widehat{\Sigma}_N - \Sigma\|_F^2 + 4\hat{\delta}^2\|\Sigma - mI\|_F^2$$

1204 using the coarse bounds that $|1 - \hat{\delta}| \leq 1$, $|\hat{\delta}| \leq 1$ and $(u + v)^2 \leq 2u^2 + 2v^2$. It therefore suffices to
 1205 bound $\mathbb{E}\|\widehat{\Sigma}_N - \Sigma\|_F^2$ and $\mathbb{E}\hat{\delta}^2$.
 1206

1207 Since X is sub-Gaussian with proxy K , $\widehat{\Sigma}_N$ satisfies

$$1208 \mathbb{E}\|\widehat{\Sigma}_N - \Sigma\|_F^2 \lesssim \frac{K^4}{N} \gamma_{\max} (k^2 + k)$$

1209 by Wainwright (2019). This provides a bound on b^2 ; the estimator \hat{b} is (after truncation) a average
 1210 of N i.i.d. quartic functionals of X of the form $\|XX^\top - \widehat{\Sigma}_N\|_F^2/k$, each of which have finite
 1211 second-moment bounded by $cK^8\gamma_{\max}^4 k^2$ by the sub-Gaussian assumption. We conclude that we
 1212 may bound

$$1213 \mathbb{E}\hat{b}^2 \lesssim \frac{K^4}{N} \gamma_{\max} k$$

1214 We proceed by cases to bound $\mathbb{E}\hat{\delta}^2$. On the event $\{\hat{d}^2 > a^2/2\}$, we have $\hat{\delta} \leq 2\hat{b}^2/a^2$, so it will
 1215 suffices to bound the probability that $\{\hat{d}^2 \leq a^2/2\}$. Since \hat{d}^2 is again an average of N i.i.d. quartics
 1216 in X , each of which have second moment bounded by $cK^8\gamma_{\max}^4 k^2$, we have

$$1217 \mathbb{E}(\hat{d}^2 - d^2)^2 \lesssim \frac{K^8}{N} \gamma_{\max}^4 p^2$$

1218 We conclude that by Chebyshev's inequality, we have

$$1219 \mathbb{P}(\hat{d}^2 \leq a^2/2) \leq c'' \frac{K^8}{a^4 N} \gamma_{\max}^4 p^2$$

1220 Lastly, since $0 \leq \hat{\delta} \leq 1$ (since \hat{b} is truncated by \hat{d}), we conclude that in all cases

$$1221 \hat{\delta}^2 \leq \hat{\delta} \leq \frac{2\hat{b}^2}{a^2} + \mathbb{1}_{\{\hat{d}^2 \leq a^2/2\}}$$

1222 and so

$$1223 \mathbb{E}\hat{\delta}^2 \leq \frac{2}{a^2} \mathbb{E}\hat{b}^2 + \mathbb{P}(\hat{d}^2 \leq a^2/2) \leq \frac{1}{N} \left(c''' K^4 \gamma_{\max}^2 \frac{k}{a^2} + c'''' K^8 \gamma_{\max}^4 \frac{k^2}{a^4} \right)$$

1224 Taken together, we have shown that

$$1225 \mathbb{E}\|\widehat{\Sigma}_N^{LW} - \Sigma\|_F^2 \leq \frac{1}{N} \left[c_1 K^4 \gamma_{\max}^2 k^2 + c_2 K^8 \gamma_{\max}^4 \frac{k^3}{a^2} \right]$$

1226 as desired. □

1227

1228

1229

1230

1231

1232 **D.7 AUTORATER ACCURACY SCALING**

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

Figure 13: Performance at determination of process error vs. word budget. This is calculated via the procedure described in [Appendix I](#). The majority of the improvement observed due to thinking occurs once 500 words of thought is reached, and plateaus around 1,000 words of thought.

Figure 14: Performance at determination of process error vs. word budget. This is calculated via the procedure described in [Appendix I](#). The majority of the improvement observed due to thinking occurs once 500 words of thought is reached, and plateaus around 1,000 words of thought.

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Figure 15: Performance at factuality evaluation with increasing number of agents and rounds of debate. Soft accuracy awards half a point to reporting an uncertain answer, while hard accuracy awards nothing.

Figure 16: Proportion of uncertain predictions by number of agents and rounds of debate. An increased number of agents leads to fewer uncertain predictions, and almost all predictions are certain by the end of the second round of debate.

Figure 17: Different schemes for evaluation with autoraters on the ProcessBench dataset. Gray: classical sampling—no autoraters. Orange: pure autoraters, in decreasing order of thinking budget—note that the bias is increasingly pronounced with thinking budget. Green: various schemes for debiasing autoraters, including MultiPPI (top).

1350 **E ADDITIONAL THEORETICAL RESULTS**
 1351

1352 **E.1 FINITE-SAMPLE BOUNDS**
 1353

1354 We consider the setting of [Appendix B](#), in which we may have several budget constraints. For the
 1355 time being, we fix $a = (1, 0, \dots, 0)$ as in all experiments. Let $I^0 \in \mathcal{I}$ contain 1. A procedure
 1356 which is similar to classical sampling is the following: Consider the choice $\underline{n}^0, \underline{\lambda}^0$ defined such
 1357 that $n_I^0 = 0$ if $I \neq I^0$, and let $n_{I^0}^0$ be the maximal choice afforded by the budget (i.e. $n_{I^0}^0 =$
 1358 $\max_{1 \leq \ell \leq m} \lfloor B^{(\ell)} / c_{I^0}^{(\ell)} \rfloor$). Then setting $\lambda_I^0 = 0$ if $I \neq I^0$, and $\lambda_{I^0}^0$ to be a restricted to I^0 , we
 1359 recover the classical estimator

1360
$$\frac{1}{n_{I^0}^0} \sum_{j=1}^{n_{I^0}^0} X_1^{(j)}$$

 1361

1363 which has MSE $\sigma_1^2/n_{I^0}^0$, where $\sigma_1^2 = \Sigma_{11}$. We let $\sigma_{\text{classical}}^2 := \sigma_1^2/n_{I^0}^0$ denote this quantity.
 1364

1365 We will compare $\hat{\theta}_{\text{MultiPPI}}$ to this in finite samples. Let $\hat{\Sigma}_N$ denote the empirical covariance matrix
 1366 constructed from N i.i.d. samples from P , and let $\hat{\underline{n}}, \hat{\underline{\lambda}}$ denote the solution to $\text{MultiAllocate}(\hat{\Sigma}_N)$,
 1367 i.e. the minimizer of

1368
$$\hat{R}_N(\underline{n}, \underline{\lambda}) = \sum_{I \in \mathcal{I}: n_I > 0} \frac{1}{n_I} \lambda_I^\top \hat{\Sigma}_N \lambda_I$$

 1369

1370 such that **U** and **B** hold. On the other hand, let $\underline{n}^*, \underline{\lambda}^*$ denote the solution to $\text{MultiAllocate}(\Sigma)$, i.e.
 1371 the minimizer of

1372
$$R(\underline{n}, \underline{\lambda}) = \sum_{I \in \mathcal{I}: n_I > 0} \frac{1}{n_I} \lambda_I^\top \Sigma \lambda_I$$

 1373

1374 such that **U** and **B** hold. In this section, we bound

1375
$$R(\hat{\underline{n}}, \hat{\underline{\lambda}}) - R(\underline{n}^*, \underline{\lambda}^*).$$

 1376

1377 **Theorem E.1.** *Let γ_{\min} denote the minimal eigenvalue of Σ , and $\delta = \|\Sigma - \hat{\Sigma}_N\|_{\text{op}}$. Then for all
 1378 $\delta \leq \gamma_{\min}/2$,*

1379
$$R(\hat{\underline{n}}, \hat{\underline{\lambda}}) \leq R(\underline{n}^*, \underline{\lambda}^*) + 4 \frac{\delta}{\gamma_{\min}} \cdot \sigma_{\text{classical}}^2$$

 1380

1381 **Corollary E.2.** *Suppose that $X_i \in [0, 1]$ almost surely. Then with high probability,*

1382
$$R(\hat{\underline{n}}, \hat{\underline{\lambda}}) \leq R(\underline{n}^*, \underline{\lambda}^*) + c \left(\frac{\gamma_{\max}^{1/2}}{\gamma_{\min}} \sqrt{\frac{k \log k}{N}} + \frac{1}{\gamma_{\min}} \frac{k \log k}{N} \right) \sigma_{\text{classical}}^2$$

 1383

1384 for a universal constant c , and so

1385
$$\mathbb{E} R(\hat{\underline{n}}, \hat{\underline{\lambda}}) \leq R(\underline{n}^*, \underline{\lambda}^*) + c' \left(\frac{\gamma_{\max}^{1/2}}{\gamma_{\min}} \sqrt{\frac{k}{N}} + \frac{1}{\gamma_{\min}} \frac{k}{N} \right) \sigma_{\text{classical}}^2$$

 1386

1387 for another constant c' , where the expectation is taken over the N labeled samples used to construct
 1388 $\hat{\Sigma}_N$.

1389 **Corollary E.3.** *Suppose that X is a subgaussian with variance proxy K . Then*

1390
$$\mathbb{E} R(\hat{\underline{n}}, \hat{\underline{\lambda}}) \leq R(\underline{n}^*, \underline{\lambda}^*) + c' K^2 \left(\sqrt{\frac{k}{N}} + \frac{k}{N} \right) \sigma_{\text{classical}}^2$$

 1391

1392 In the AR(1) model, and with bounded observations, choosing $N \gg k$ in the limit $k, N \rightarrow \infty$ is
 1393 enough that $\mathbb{E} R(\hat{\underline{n}}, \hat{\underline{\lambda}}) \rightarrow R(\underline{n}^*, \underline{\lambda}^*)$. This follows as a special case of the following result.

1394 **Corollary E.4.** *Suppose, in addition to the conditions of ??, that X_1, X_2, \dots is a stochastic process
 1395 such that $\text{Var } X_t > c$ for all t , and $\text{Corr}(X_t, X_s) \leq (1 - \rho) \rho^{|t-s|}$ for some $0 < c, \rho < 1$. Then we
 1396 have*

1397
$$\mathbb{E} R(\hat{\underline{n}}, \hat{\underline{\lambda}}) = R(\underline{n}, \underline{\lambda}) + o(1)$$

 1398

1399 whenever $k/N = o(1)$.

1404 E.2 BEHAVIOR OF THE ESTIMATOR IN THE LIMITING REGIMES
1405

1406 In this section, we explain a certain limiting behavior of the estimator in the regime of very low
1407 budget. Let $X = (X_1, \dots, X_k)$ be a random vector of bounded second moment. We take $a =$
1408 $(1, 0, \dots, 0)$, so that our target is $\mathbb{E}[X_1]$. We consider the setting (as is the case in all experiments)
1409 in which $\mathcal{I} = \{1, \dots, k\} \cup \mathcal{I}_{\text{models}}$, where for each $I \in \mathcal{I}_{\text{models}}$ we have $1 \notin I$.

1410 As in the experiments, we consider the budget model in which we have a fixed number of
1411

1412 For $I \in \mathcal{I}_{\text{models}}$, ρ_I denote the multiple correlation coefficient of X_I with X_1 ; that is, let $\rho_I =$
1413 $\text{Cov}_I^\top \Sigma_I^{-1} \text{Cov}_I$, where we define $\text{Cov}_I := (\text{Cov}(X_i, X_1))_{i \in I}$. The following result shows that, in
1414 the low-budget regime, MultiAllocate(Σ) returns n_I such that the only $I \in \mathcal{I}_{\text{models}}$ for which $n_I \neq 0$
1415 is the one which minimizes the correlation/cost ratio ρ_I/c_I .

1416 **Theorem E.5.** *Fix $B > 0$ and consider the limit as $n_{[k]} \rightarrow \infty$. For each $I \in \mathcal{I}$, let $\alpha_I := \rho_I/c_I$.
1417 Suppose that I^* uniquely minimizes α_I over $I \in \mathcal{I}_{\text{models}}$. Then the solution to MultiAllocate(Σ)
1418 satisfies*

$$1419 \quad n_I \rightarrow \frac{B}{c_I} \cdot \begin{cases} 1 & I = I^* \\ 0 & I \neq I^* \end{cases}$$

1422 E.3 ROUNDING IN THE LARGE BUDGET REGIME
1423

1424 In this section, we consider the suboptimality of the rounding scheme in the large budget regime.
1425 We consider the general setup in which we optimize

$$1427 \quad V_B(\underline{n}) = a^\top \left(\sum_I n_I P_I^\top \Sigma_I^{-1} P_I \right)^\dagger a \quad \text{s.t.} \quad n_I \geq 0, \sum_I c_I n_I \leq B, \text{supp}(a) \subseteq \bigcup\{I : n_I > 0\}$$

1430 We let $\underline{n}_{\text{frac}}^*$ denote the solution to this problem over all $\underline{n} \in \mathbb{R}_{\geq 0}^{|\mathcal{I}|}$, and $\underline{n}_{\text{int}}^*$ denote the solution over
1431 all $\underline{n} \in \mathbb{Z}_{\geq 0}^{|\mathcal{I}|}$. Let $\underline{n}_{\text{round}}$ denote the component-wise floor of $\underline{n}_{\text{frac}}^*$. Here we show that

$$1433 \quad \lim_{B \rightarrow \infty} \frac{V_B(\underline{n}_{\text{frac}}^*)}{V_B(\underline{n}_{\text{int}}^*)} = 1$$

1436 This follows from the fact that

$$1437 \quad V_B(\underline{n}_{\text{frac}}^*) \leq V_B(\underline{n}_{\text{int}}^*) \leq V_B(\underline{n}_{\text{round}})$$

1439 and the limit $V_B(\underline{n}_{\text{frac}}^*)/V_B(\underline{n}_{\text{round}}) \rightarrow 1$, to be proven next. Consider the difference vector $\underline{\delta} =$
1440 $\underline{n}_{\text{frac}}^* - \underline{n}_{\text{round}} \in [0, 1]^{|\mathcal{I}|}$. Now observe that there is some $\underline{\nu}^* \in \mathbb{R}_{\geq 0}^{|\mathcal{I}|}$ such that

$$1442 \quad BV_B(\underline{n}_{\text{frac}}^*) = V_1(\underline{\nu}^*)$$

1443 for all B , and equality holds if we take $\underline{n}_{\text{frac}}^* = B\underline{\nu}^*$. In particular, since we must have $\bigcup\{I :
1444 n_{\text{frac}, I}^* > 0\} \supseteq \text{supp}(a)$, we may take the same to hold for $\underline{\nu}^*$. We therefore have

$$1446 \quad BV_B(\underline{n}_{\text{round}}) = Ba^\top \left(B \sum_I \nu_I P_I^\top \Sigma_I^{-1} P_I + \sum_I \delta_I P_I^\top \Sigma_I^{-1} P_I \right)^\dagger a$$

$$1447 \quad = a^\top \left(\sum_I \nu_I P_I^\top \Sigma_I^{-1} P_I + \frac{1}{B} \sum_I \delta_I P_I^\top \Sigma_I^{-1} P_I \right)^\dagger a$$

1452 Now since $\bigcup\{I : \nu_I^* > 0\} \supseteq \text{supp}(a)$, we may apply continuity of the inverse to conclude that

$$1454 \quad \lim_{B \rightarrow \infty} BV_B(\underline{n}_{\text{round}}) = a^\top \left(\sum_I \nu_I^* P_I^\top \Sigma_I^{-1} P_I \right)^\dagger a = V_1(\underline{\nu}^*)$$

1455 and the limit is proven.

1458
1459

E.4 DECAY OF COVERAGE IN THE LARGE BUDGET REGIME

1460
1461
1462

In this section, we discuss the phenomenon of decaying coverage as $B \rightarrow \infty$. Note that this is not unique to MultiPPI: it can be seen occurring to all baselines we compare to, and is especially pronounced for PPI++ vector. After discussing the phenomenon, we describe one way to avoid it.

1463
1464
1465

Since, to the best of our knowledge, this phenomenon has not been observed in other works concerning PPI++, we focus our discussion on the PPI++ estimator and explain why it happens in that setting. Recall from [Equation 2](#) the PPI++ estimator

1466
1467
1468
1469

$$\hat{\theta}_{\text{PPI}++} = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\lambda} X_i) + \frac{1}{N} \sum_{j=1}^N \hat{\lambda} \tilde{X}_j$$

1470
1471
1472
1473

where $\{(X_i, Y_i)\}_{i \leq n}$ are i.i.d. according to some joint distribution \mathbb{P} , and $\{\tilde{X}_j\}_{j \leq N}$ are i.i.d. \mathbb{P}_X .

[Angelopoulos et al. \(2023b\)](#) (as well as many works before, in the context of control variates) propose a choice of $\hat{\lambda}$ which depends on $\{(X_i, Y_i)\}_{i \leq n}$; namely, they let

1474
1475
1476

$$\hat{\lambda} = \frac{N}{n+N} \frac{\widehat{\text{Cov}}(X_{1:n}, Y_{1:n})}{\widehat{\text{Var}}(X_{1:n})}$$

1477
1478
1479
1480
1481

where $\widehat{\text{Cov}}(X_{1:n}, Y_{1:n})$ and $\widehat{\text{Var}}(X_{1:n})$ are the relevant empirical covariance and variance computed from $\{(X_i, Y_i)\}_{i \leq n}$. This choice introduces bias in finite samples, and MultiPPI exhibits a similar behavior, as discussed in §4. In the limit theorems provided in this work, c.f. ??, and in [Angelopoulos et al. \(2023b\)](#), it is assumed that the number of labeled samples (here, denoted n) tends to infinity. But this is not the situation presented in our experimental results.

1482
1483

Here we consider the bias of $\hat{\theta}_{\text{PPI}++}$ for fixed n as $N \rightarrow \infty$. This bias is exactly

1484
1485
1486

$$\text{bias}(\hat{\theta}_{\text{PPI}++}) := \left| \mathbb{E}[\hat{\theta}_{\text{PPI}++}] - \mathbb{E}[Y] \right| = \left| \mathbb{E}[\hat{\lambda}(X_1 - \tilde{X}_1)] \right| = \frac{N}{n+N} \left| \text{Cov} \left(X_1, \frac{\widehat{\text{Cov}}(X_{1:n}, Y_{1:n})}{\widehat{\text{Var}}(X_{1:n})} \right) \right|$$

1487
1488
1489
1490

by independence of $\hat{\lambda}$ and \tilde{X}_1 . Now for fixed n , and $N \rightarrow \infty$, the right-hand side converges upward precisely to the covariance of X_1 with the sample regression slope of Y onto X , which is not in general zero. Therefore, the bias will increase but stay bounded as $N \rightarrow \infty$, as observed.

1491
1492
1493

Note that this analysis does not apply to the setting in which the ratio N/n is bounded. We find, accordingly, that this decay is unobserved in our experiments in which the number of labeled samples is in constant proportion with the budget.

1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 **F PROOFS**
 1513

1514 Unless explicitly stated otherwise, we prove results for the generalized setup outlined in Section B.
 1515

1516 **F.1 PROOF OF THEOREM 4.2**
 1517

1518 For $\Sigma \in \mathbb{R}^{k \times k}$ symmetric positive-definite, let \mathcal{P}_Σ denote the set of distributions on \mathbb{R}^k with co-
 1519 variance Σ . For a fixed collection of index subsets \mathcal{I} with associated costs c_I , let Θ_B denote the
 1520 set of budget satisfying estimators $\hat{\theta}$, i.e. the estimators $\hat{\theta}$ which are measurable functions of n_I
 1521 independent copies of $X_I = (X_i)_{i \in I}$, for each $I \in \mathcal{I}$, such that $\mathbf{B}(\underline{n})$ holds. We emphasize that we
 1522 make no explicit restriction to linear estimators.

1523 **Theorem F.1** (Minimax optimality for general budget constraints). *We have*
 1524

$$1525 \inf_{\hat{\theta} \in \Theta_B} \sup_{P \in \mathcal{P}_\Sigma} \mathbb{E}[(\hat{\theta} - \theta^*)^2] = \text{Var}(\hat{\theta}_{\text{Multi-allocate}(\Sigma)}) = \mathcal{V}_B$$

1527 where the variance is with respect to any distribution $P \in \mathcal{P}_\Sigma$.
 1528

1529 *Proof of Theorem F.1.* We first reduce to the case of known and fixed \underline{n} .
 1530

1531 **Lemma F.2.** Let $\Theta^{(\underline{n})}$ denote the set of measurable functions $\hat{\theta}$ which are functions of n_I indepen-
 1532 dent copies of X_I , for each $I \in \mathcal{I}$. Then if $\text{supp}(a) \subseteq \bigcup\{I : n_I > 0\}$,

$$1533 \inf_{\hat{\theta} \in \Theta^{(\underline{n})}} \sup_{P \in \mathcal{P}_\Sigma} \mathbb{E}[(\hat{\theta} - \theta^*)^2] = \min_{\underline{\lambda} : \mathbf{U}(\underline{n}, \underline{\lambda})} \sum_{I : n_I > 0} \frac{1}{n_I} \lambda_I^\top \Sigma_I \lambda_I;$$

1536 otherwise, $\sup_{P \in \mathcal{P}_\Sigma} \mathbb{E}[(\hat{\theta} - \theta^*)^2]$ is unbounded for all $\hat{\theta} \in \Theta_B$.
 1537

1539 We now reduce the conjecture to this lemma. Observe that

$$1540 \Theta_B = \bigcup_{\underline{n} : \mathbf{B}(\underline{n})} \Theta^{(\underline{n})}$$

1543 and so the left hand-side of the conjecture is equal to
 1544

$$1545 \inf_{\underline{n} : \mathbf{B}(\underline{n})} \inf_{\hat{\theta} \in \Theta^{(\underline{n})}} \sup_{P \in \mathcal{P}_\Sigma} \mathbb{E}[(\hat{\theta} - \theta^*)^2] = \inf_{\underline{n} : \mathbf{B}(\underline{n})} \min_{\underline{\lambda} : \mathbf{U}(\underline{n}, \underline{\lambda})} \sum_{I : n_I > 0} \frac{1}{n_I} \lambda_I^\top \Sigma_I \lambda_I =: \text{Var}(\hat{\theta}_{\text{Multi-allocate}(\Sigma)})$$

1547 since $\mathbf{U}(\underline{n}, \underline{\lambda})$ is feasible for $\underline{\lambda}$ if and only if $\text{supp}(a) \subseteq \bigcup\{I : n_I > 0\}$. It now suffices to prove the
 1548 lemma. \square
 1549

1550 *Proof of Theorem F.2.* The claim that $\sup_{P \in \mathcal{P}_\Sigma} \mathbb{E}[(\hat{\theta} - \theta^*)^2]$ is unbounded for all $\hat{\theta} \in \Theta_B$ if
 1551 $\text{supp}(a) \not\subseteq \bigcup\{I : n_I > 0\}$ follows from the observation that if $i \in \text{supp}(a) \setminus \bigcup\{I : n_I > 0\}$,
 1552 there exist distributions $P \in \mathcal{P}_\Sigma$ such that $\theta_i^* = \mathbb{E}[X_i]$ may be made arbitrary large, while $\hat{\theta}$ cannot
 1553 depend on such X_i .

1555 Therefore, in what follows, we assume $\text{supp}(a) \subseteq \bigcup\{I : n_I > 0\}$. The upper bound is clear from
 1556 that fact that

$$1557 \{\hat{\theta}_{\underline{n}, \underline{\lambda}} : \mathbf{U}(\underline{n}, \underline{\lambda})\} \subseteq \Theta^{(\underline{n})}$$

1558 i.e., the set of unbiased linear estimators depending on \underline{n} samples is a subset of the set of all esti-
 1559 mators depending on \underline{n} samples; and from the fact that $\text{Var}(\hat{\theta}_{\underline{n}, \underline{\lambda}}) = \sum_{I : n_I > 0} \frac{1}{n_I} \lambda_I^\top \Sigma_I \lambda_I$ for every
 1560 $P \in \mathcal{P}_\Sigma$, hence the minimal MSE of such estimators is precisely the right-hand side.
 1561

1562 We now prove the lower bound. Since the Bayes risk for any prior μ lower bounds the minimax
 1563 risk, it suffices to construct a sequence of priors μ for which the risk of the Bayes estimator tends
 1564 upward to our claimed lower bound. Let us choose the distribution $X \sim \mathcal{N}(\mu, \Sigma)$, and supply the
 1565 prior $\mu \sim \mathcal{N}(0, \tau^2 \text{Id}_k)$ for $\tau > 0$ arbitrary; we will later take $\tau \rightarrow \infty$. Note that we then have
 $X_I = P_I X \sim \mathcal{N}(P_I \mu, P_I \Sigma P_I^\top)$.

1566 By construction, any estimator $\hat{\theta} \in \Theta^{(\underline{n})}$ depends on the independent set $\bigcup_{I \in \mathcal{I}} \{X_I^{(j)}\}_{1 \leq j \leq n_I}$ where
 1567 each $X_I^{(j)}$ is distributed according to $\mathcal{N}(\mu_I, \Sigma_I)$. The posterior⁴ is then
 1568

$$\begin{aligned} \mu \mid \bigcup_{I \in \mathcal{I}} \{X_I^{(j)}\}_{1 \leq j \leq n_I} &\sim \mathcal{N}(m_\tau, S_\tau) \\ S_\tau &= \left(\frac{1}{\tau^2} \text{Id}_k + \sum_{I \in \mathcal{I}} n_I P_I^\top \Sigma_I^{-1} P_I \right)^{-1} \\ m_\tau &= S_\tau \left(\sum_I n_I P_I^\top \Sigma_I^{-1} \bar{X}_I \right) \end{aligned}$$

1579 The Bayes risk of estimating $\theta = a^\top \mu$ is then $a^\top S_\tau a$. Letting $\tau \rightarrow \infty$, we have shown that the
 1580 minimax risk is at least⁵

$$a^\top S a, \quad S = \left(\sum_{I \in \mathcal{I}} n_I P_I^\top \Sigma_I^{-1} P_I \right)^\dagger.$$

1585 It remains to show that this risk is achievable by the $\hat{\theta}_{\underline{n}, \underline{\lambda}}$ for some choice of $\underline{\lambda}$ satisfying $\mathbf{U}(\underline{n}, \underline{\lambda})$.
 1586 We quickly verify this below:

1587 Putting⁶

$$\lambda_I = (n_I \Sigma_I^{-1} P_I) S a$$

1589 we see that indeed $\mathbf{U}(\underline{n}, \underline{\lambda})$ holds. Moreover, we calculate

$$\text{Var}(\hat{\theta}_{\underline{n}, \underline{\lambda}}) = \sum_I n_I a^\top S P_I^\top \Sigma_I^{-1} \Sigma_I \Sigma_I^{-1} P_I S a = a^\top S \left(\sum_{I: n_I > 0} n_I P_I^\top \Sigma_I^{-1} P_I \right) S a = a^\top S a$$

1594 as desired. This concludes the proof. \square

F.2 PROOFS OF FINITE SAMPLE RESULTS

1598 *Proof of theorem E.1.* We have

$$\begin{aligned} R(\hat{\underline{n}}, \hat{\underline{\lambda}}) - R(\underline{n}^*, \underline{\lambda}^*) &= R(\hat{\underline{n}}, \hat{\underline{\lambda}}) - \hat{R}_N(\hat{\underline{n}}, \hat{\underline{\lambda}}) \\ &\quad + \underbrace{\hat{R}_N(\hat{\underline{n}}, \hat{\underline{\lambda}}) - \hat{R}_N(\underline{n}^*, \underline{\lambda}^*)}_{\leq 0} \\ &\quad + \hat{R}_N(\underline{n}^*, \underline{\lambda}^*) - R(\underline{n}^*, \underline{\lambda}^*) \end{aligned} \tag{9}$$

1606 and so it suffices to bound $|R(\hat{\underline{n}}, \hat{\underline{\lambda}}) - \hat{R}_N(\hat{\underline{n}}, \hat{\underline{\lambda}})|$ and $|\hat{R}_N(\underline{n}^*, \underline{\lambda}^*) - R(\underline{n}^*, \underline{\lambda}^*)|$. Define

$$\begin{aligned} \Delta_N(\underline{n}, \underline{\lambda}) &= |R(\underline{n}, \underline{\lambda}) - \hat{R}_N(\underline{n}, \underline{\lambda})| \\ &= \left| \sum_{I \in \mathcal{I}: n_I > 0} \frac{1}{n_I} \lambda_I^\top (\Sigma - \hat{\Sigma}_N) \lambda_I \right| \\ &\leq \|\Sigma - \hat{\Sigma}_N\| \sum_{I \in \mathcal{I}: n_I > 0} \frac{1}{n_I} \|\lambda_I\|_2^2 \end{aligned} \tag{10}$$

1615 ⁴Morally, we are done at this point: the posterior mean is linear in $(\bar{X}_I)_I$, and the Multi-PPI estimator is the
 1616 best such linear estimator. However, this does not yet directly imply the result. See next page for calculation of
 1617 the posterior.

1618 ⁵Here we use the assumption that $\text{supp}(a) \subseteq \bigcup\{I : n_I > 0\}$, and thus a lies in the range of
 1619 $\sum_I n_I P_I^\top \Sigma_I^{-1} P_I$.

1619 ⁶To find this choice organically, one may solve an infimal norm convolution with Lagrange multipliers.

1620 Now since $\underline{n}^0, \underline{\lambda}^0$ satisfies \mathbf{U} and \mathbf{B} , we have
 1621

$$1622 R(\underline{n}^*, \underline{\lambda}^*) \leq R(\underline{n}^0, \underline{\lambda}^0), \quad \widehat{R}_N(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) \leq \widehat{R}_N(\underline{n}^0, \underline{\lambda}^0)$$

1623 from which it follows that
 1624

$$1625 \sigma_1^2/n_{I^0}^0 \geq \sum_{I \in \mathcal{I}: n_I^* > 0} \frac{1}{n_I^*} (\lambda_I^*)^\top \Sigma (\lambda_I^*) \geq \gamma_{\min}(\Sigma) \sum_{I \in \mathcal{I}: n_I^* > 0} \frac{1}{n_I^*} \|\lambda_I^*\|_2^2 \quad (11)$$

1626 and similarly
 1627

$$1628 \widehat{\sigma}_1^2/n_{I^0}^0 \geq \sum_{I \in \mathcal{I}: \widehat{n}_I > 0} \frac{1}{\widehat{n}_I} \widehat{\lambda}_I^\top \widehat{\Sigma}_N \widehat{\lambda}_I \geq \gamma_{\min}(\widehat{\Sigma}_N) \sum_{I \in \mathcal{I}: \widehat{n}_I > 0} \frac{1}{\widehat{n}_I} \|\widehat{\lambda}_I\|_2^2,$$

1629 where $\gamma_{\min}(A)$ denotes the minimum eigenvalue of the matrix A . We deduce that
 1630

$$1631 \sum_{I \in \mathcal{I}: n_I^* > 0} \frac{1}{n_I^*} \|\lambda_I^*\|_2^2 \leq \frac{\Sigma_{11}}{n_{I^0}^0 \gamma_{\min}(\Sigma)}$$

$$1632 \sum_{I \in \mathcal{I}: \widehat{n}_I > 0} \frac{1}{\widehat{n}_I} \|\widehat{\lambda}_I\|_2^2 \leq \frac{\widehat{\Sigma}_{N,11}}{n_{I^0}^0 (\gamma_{\min}(\Sigma) - \delta)} \leq \frac{\Sigma_{11} + \delta}{n_{I^0}^0 (\gamma_{\min}(\Sigma) - \delta)}$$

1633 by Weyl's inequality, where we let $\delta = \|\Sigma - \widehat{\Sigma}_N\|$. Coupled with Equation 10, we have
 1634

$$1635 \Delta_N(\underline{n}^*, \underline{\lambda}^*) \leq \delta \frac{\Sigma_{11}}{n_{I^0}^0 \gamma_{\min}(\Sigma)}$$

$$1636 \Delta_N(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) \leq \delta \frac{\Sigma_{11} + \delta}{n_{I^0}^0 (\gamma_{\min}(\Sigma) - \delta)}$$

1637 Taken together with Equation 9 and the definition of Δ_N , we conclude that
 1638

$$1639 R(\widehat{\underline{n}}, \widehat{\underline{\lambda}}) \leq R(\underline{n}^*, \underline{\lambda}^*) + 4 \frac{\delta}{\gamma_{\min}(\Sigma)} \cdot \frac{\sigma_1^2}{n_{I^0}^0}$$

1640 for all $\delta \leq \gamma_{\min}(\Sigma)/2$. □
 1641

1642 *Proof of Theorem E.2.* This follows immediately from the preceding theorem and Corollary 6.20 of
 1643 Wainwright (2019). □
 1644

1645 *Proof of Theorem E.3.* This follows immediately from the preceding theorem and Theorem 4.7.1 of
 1646 Vershynin (2018). □
 1647

1648 *Proof of Theorem E.4.* This follows immediately from the Gershgorin circle theorem, as
 1649 $\sum_{t \neq s} \text{Cov}(X_t, X_s) \leq \sqrt{\text{Var}(X_t) \text{Var}(X_s)} < c$, and so $\lambda_{\min}(\Sigma)$ is bounded below for all k . On
 1650 the other hand, $\lambda_{\max}(\Sigma)$ is bounded above on account of the same argument and the assumption that
 1651 X_i are bounded. □
 1652

1653 F.3 PROOF OF ??

1654 We prove a generalization of ?? in which we allow for multiple budget inequalities.
 1655

1656 Fix a vector $B_0 \in \mathbb{R}_{>0}^m$. We consider the limit in which our budget is $B = t \cdot B_0$ and let $t \rightarrow \infty$.
 1657

1658 Suppose that $\widehat{\Sigma} \xrightarrow{P} \Sigma$ in the operator norm, potentially dependent on the variables sampled X_I .
 1659

1660 We assume the following condition: Suppose that the following problem has a unique minimizer $\underline{\nu}$:
 1661

$$1662 \underline{\nu}^* = \operatorname{argmin}_{\underline{\nu}} V(\underline{\nu}) := a^\top \left(\sum_I \nu_I P_I^\top \Sigma_I^{-1} P_I \right)^\dagger a \quad (12)$$

$$1663 \text{s.t. } \underline{\nu} \geq 0, \quad \sum_I \nu_I c_I \leq B_0, \quad \text{supp}(a) \subseteq \bigcup_I \{I : \nu_I > 0\}$$

1674 **Theorem F.3** (Generalized asymptotic normality). *Suppose that condition 12 holds. Then we have*

$$1675 \quad 1676 \quad 1677 \quad \sqrt{t} \left(\hat{\theta}_{\text{MultiPPI}(\hat{\Sigma})} - \theta^* \right) \xrightarrow{d} \mathcal{N}(0, V(\underline{\nu}^*)).$$

1678 While $\hat{\theta}_{\text{MultiPPI}(\Sigma)}$ is minimax optimal in the setting of fixed and known covariance Σ , it is in
1679 general not efficient, and the variance \mathcal{V} can in general be improved by slowly concatenating onto
1680 X nonlinear functions of its components. It may be that such a version of $\hat{\theta}_{\text{MultiPPI}(\Sigma)}$, in which
1681 k is increased slowly by adding appropriate nonlinear transformations of the components of X , is
1682 semiparametrically efficient if this is done at such a rate that $k \ll B^{1/2}, N^{1/2}$.
1683

1684 *Proof of Theorem F.3.* Let $\hat{\theta} = \hat{\theta}_{\text{MultiPPI}(\hat{\Sigma})}$. Note that 12 is simply a rounded version of the optimization problem which is solved by $\hat{\theta}_{\text{MultiPPI}(\hat{\Sigma})}$. Let $\hat{\underline{\nu}}$ denote the solution to 12 with Σ replaced by $\hat{\Sigma}$.
1685
1686
1687

1688 We first show that, as a result of the assumed condition, we have $\hat{\nu}_I \rightarrow \nu_I^*$ whenever $\hat{\Sigma} \rightarrow \Sigma$; that
1689 rounded solutions are optimal in the limit $t \rightarrow \infty$ is justified by § E.3. Since a lies in the range of
1690 $\sum_I \nu_I^* P_I^\top \Sigma_I^{-1} P_I$, the objective function is continuous in (ν, Σ) at ν^* .
1691

1692 The allocation \hat{n} and weights $\hat{\lambda}$ are chosen to minimize the variance under $\hat{\Sigma}$ subject to the budget
1693 $B = tB_0$. Let $\hat{\nu}_I = \hat{n}_I/t$. As $t \rightarrow \infty$, the optimal proportions $\hat{\underline{\nu}}$ converge to the solution $\underline{\nu}^*$ of the
1694 continuous optimization problem 12. The convergence $\hat{\underline{\nu}} \xrightarrow{P} \underline{\nu}^*$ follows from $\hat{\Sigma} \xrightarrow{P} \Sigma$ and Berge's
1695 Maximum Theorem, as the objective function is continuous and the feasible set is compact. By the
1696 continuous mapping theorem, we similarly have $\hat{\lambda}_I \xrightarrow{P} \lambda_I^*$.
1697

1698 We can write $\sqrt{t}(\hat{\theta} - \theta^*) = \sum_{I \in \mathcal{I}} \hat{\lambda}_I^\top \sqrt{\frac{t}{\hat{n}_I}} W_{I, \hat{n}_I}$, where $W_{I, \hat{n}_I} = \frac{1}{\sqrt{\hat{n}_I}} \sum_{j=1}^{\hat{n}_I} (X_I^{(I,j)} - \mu_I)$. For
1699 indices I with $\nu_I^* > 0$, we have $\hat{n}_I \xrightarrow{P} \infty$. Define $n_I^* = \lfloor t\nu_I^* \rfloor$, and let
1700

$$1701 \quad 1702 \quad 1703 \quad W_I^* := \frac{1}{\sqrt{n_I^*}} \sum_{i=1}^{n_I^*} (X_I^{(I,i)} - \mu_I)$$

1704 It is now enough to show that $W_{I, \hat{n}_I} - W_I^* \xrightarrow{P} 0$, and this will follow from Kolmogorov's inequality.
1705

1706 To simplify notation, let us focus on a single subset I , and define $Y_j = X_I^{(I,j)} - \mu_I$. Let us also
1707 define $S_m = \sum_{j=1}^m Y_j$. We must show that

$$1708 \quad 1709 \quad \frac{S_{\hat{n}}}{\sqrt{\hat{n}}} - \frac{S_{n^*}}{\sqrt{n^*}} \xrightarrow{P} 0$$

1710 where we have dropped dependence on I for convenience. We decompose
1711

$$1712 \quad 1713 \quad 1714 \quad \frac{S_{\hat{n}}}{\sqrt{\hat{n}}} - \frac{S_{n^*}}{\sqrt{n^*}} = \underbrace{\frac{S_{\hat{n}} - S_{n^*}}{\sqrt{n^*}}}_{A} + \underbrace{\frac{S_{\hat{n}}}{\sqrt{\hat{n}}} \left(1 - \sqrt{\hat{n}/n^*} \right)}_{B}$$

1715 Fix $0 < \delta < 1$. We work on the event $E_\delta(t) = \{|\hat{n} - n^*| \leq \delta t\}$, which holds with high probability.
1716

1717 We first control A . On $E_\delta(t)$, $\sqrt{n^*}|A|$ is a sum of at most $\delta t + 1$ i.i.d. copies of Y_j . Kolmogorov's
1718 inequality then yields

$$1719 \quad 1720 \quad \mathbb{P}(A > \epsilon) \leq \frac{\delta t + 1}{\epsilon^2 n^*} \leq 4 \frac{\delta}{\epsilon^2}$$

1721 because $n^* = \lfloor t\nu^* \rfloor$. Taking $\delta \rightarrow 0$ yields that $A \xrightarrow{P} 0$.
1722

1723 We next control B . Working again on $E_\delta(t)$, we have

$$1724 \quad 1725 \quad 1726 \quad 1727 \quad \frac{S_{\hat{n}}}{\sqrt{\hat{n}}} \leq \frac{1}{\sqrt{1-\delta}} \left(\underbrace{\frac{S_{n^*}}{\sqrt{n^*}}}_{O_p(1)} + \underbrace{\frac{S_{\hat{n}} - S_{n^*}}{\sqrt{n^*}}}_{A} \right)$$

Recognizing the second term as $A \xrightarrow{P} 0$, and the first term as tight by the central limit theorem, we conclude that $S_{\hat{n}}/\sqrt{\hat{n}}$ is tight. Now we conclude that $B \xrightarrow{P} 0$ because $\hat{n}/n^* \xrightarrow{P} 1$.

Having proven $W_{I,\hat{n}_I} - W_I^* \xrightarrow{P} 0$, we conclude that

$$\sqrt{t}(\hat{\theta} - \theta^*) = \sum_{I:n_I^* > 0} \frac{1}{n_I^*} \sum_{j=1}^{n_I^*} (\lambda_I^*)^\top (X_I^{(I,j)} - \mu_I) + o_p(1)$$

But this is precisely the desired result, since this is the solution to the continuous optimization problem, and we are done. \square

F.4 PROOFS OF ADDITIONAL THEORETICAL RESULTS

Proof. Note: For the purpose of this proof only, we slightly change notation, letting m denote the number of labeled samples rather than n . This just has the purpose of clarifying the potential conflict with the notation n_I .

Let us introduce the notation that P_I is the orthogonal projection onto coordinates I , and thus $P_I^\top \lambda_I$ shares its values with λ_I on coordinates I , and is 0 elsewhere. As a result, note that we have required

$$\sum_{I:n_I > 0} P_I^\top \lambda_I = \mu.$$

Now we aim to minimize

$$\frac{1}{m} (\sigma_Y^2 - 2\mu^\top \text{Cov} + \mu^\top \Sigma \mu) + \sum_{I:n_I > 0} \frac{1}{n_I} \lambda_I^\top \Sigma_I \lambda_I$$

or, expanding,

$$V(n, \lambda) := \frac{1}{m} \left(\sigma_Y^2 - 2 \sum_{I:n_I > 0} \lambda_I^\top \text{Cov}_I + \sum_{I,J:n_I, n_J > 0} \lambda_I^\top \Sigma_{IJ} \lambda_J \right) + \sum_{I:n_I > 0} \frac{1}{n_I} \lambda_I^\top \Sigma_I \lambda_I$$

We are interested in minimizing $V(n, \lambda)$ over all λ (by which we mean $(\lambda_I)_{I \in \mathcal{I}}$) and n satisfying the budget constraint $\sum_I c_I n_I \leq C$. We will first minimize over λ for fixed n : define $U(n) := \min_{\lambda} V(n, \lambda)$. But

$$V(n, \lambda) = \lambda^\top \begin{pmatrix} \left(\frac{1}{m} + \frac{1}{n_{I_1}}\right) \Sigma_{I_1} \mathbb{1}_{n_{I_1} > 0} & \dots & \frac{1}{m} \Sigma_{I_1 I_k} \mathbb{1}_{n_{I_1}, n_{I_k} > 0} \\ \vdots & \ddots & \vdots \\ \frac{1}{m} \Sigma_{I_k I_1} \mathbb{1}_{n_{I_k}, n_{I_1} > 0} & \dots & \left(\frac{1}{m} + \frac{1}{n_{I_1}}\right) \Sigma_{I_1} \mathbb{1}_{n_{I_1} > 0} \end{pmatrix} \lambda - 2\lambda^\top \begin{pmatrix} \frac{1}{m} \text{Cov}_{I_1} \mathbb{1}_{n_{I_1} > 0} \\ \vdots \\ \frac{1}{m} \text{Cov}_{I_k} \mathbb{1}_{n_{I_k} > 0} \end{pmatrix} + \frac{\sigma_Y^2}{m}$$

is a quadratic form in λ , where we define $\Sigma_{IJ} = (\Sigma_{ij})_{i \in I, j \in J} = P_I \Sigma P_J^\top$. This is of the form

$$V(n, \lambda) = \lambda^\top \left(\frac{1}{m} S_1 + S_2 \right) \lambda - 2 \frac{1}{m} \lambda^\top T + d$$

where

$$S_1 = (\Sigma_{IJ} \mathbb{1}_{n_I, n_J > 0})_{I, J \in \mathcal{I}}, \quad S_2 = \text{block_diag} \left(\frac{1}{n_I} \Sigma_I \mathbb{1}_{n_I > 0} \right)_{I \in \mathcal{I}}, \quad T = (\text{Cov}_I \mathbb{1}_{n_I > 0})_{I \in \mathcal{I}}$$

and d is constant in n, λ . It is known that the minimum value of such a quadratic form is

$$U(n) = \min_{\lambda} V(n, \lambda) = -\frac{1}{m^2} T^\top \left(\frac{1}{m} S_1 + S_2 \right)^+ T.$$

This is because T lies in the range of $\frac{1}{m} S_1 + S_2$. To see this, let us introduce the notation that $\mathcal{I}^+ = \{I \in \mathcal{I} : n_I > 0\}$ and let \mathcal{I}^0 be its complement. Reorder \mathcal{I} if necessary so that \mathcal{I}^+ strictly precedes \mathcal{I}^0 . Then $\frac{1}{m} S_1 + S_2$ takes the block form

$$\frac{1}{m} \begin{pmatrix} (\Sigma_{IJ})_{I, J \in \mathcal{I}^+} & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} \text{block_diag}(\Sigma_I/n_I)_{I \in \mathcal{I}^+} & 0 \\ 0 & 0 \end{pmatrix}.$$

Now, both $(\Sigma_{IJ})_{I,J \in \mathcal{I}^+}$ and $\text{block_diag}(\Sigma_I/n_I)_{I \in \mathcal{I}^+}$ are symmetric positive-definite, hence invertible, on the coordinates \mathcal{I}^+ , and T has support in the span of the coordinates \mathcal{I}^+ .

Given the block form shown above, we see that

$$\left(\frac{1}{m} S_1 + S_2 \right)^+ = \begin{pmatrix} \left(\frac{1}{m} (\Sigma_{IJ})_{I,J \in \mathcal{I}^+} + \text{block_diag}(\Sigma_I/n_I)_{I \in \mathcal{I}^+} \right)^{-1} & 0 \\ 0 & 0 \end{pmatrix}$$

again in the coordinates in which \mathcal{I}^+ precedes \mathcal{I}^0 .

Continuity of the inverse is now enough to conclude that

$$\lim_{m \rightarrow 0} m^2 U(n) = -T^\top \text{block_diag} \left(n_I \Sigma_I^{-1} \right)_{I \in \mathcal{I}} T = - \sum_{I \in \mathcal{I}} n_I \text{Cov}_I^\top \Sigma_I^{-1} \text{Cov}_I =: L(n)$$

But now this is a linear function $L(n)$ in n . Consider minimizing this in n , subject to the (simplex) budget constraint $n_I \geq 0$, $\sum_I c_I n_I \leq C$. The minimum is achieved on a vertex of the simplex, and the minimizer is unique except in the unlikely situation that

$$\frac{\text{Cov}_I^\top \Sigma_I^{-1} \text{Cov}_I}{c_I} = \text{constant in } I$$

assuming that $\text{Cov}_I \neq 0$ for some I .

Now we claim that $m^2 U(n) \rightarrow L(n)$ uniformly in n subject to the budget constraint. For this, it suffices to show that

$$\left(\frac{1}{m} (\Sigma_{IJ})_{I,J \in \mathcal{I}^+} + \text{block_diag}(\Sigma_I/n_I)_{I \in \mathcal{I}^+} \right)^{-1} \rightarrow \text{block_diag}(\Sigma_I/n_I)_{I \in \mathcal{I}^+}^{-1}$$

in the operator norm, uniformly in n . The Woodbury matrix identity implies that the difference is exactly

$$\text{block_diag}(n_I \Sigma_I^{-1})_{I \in \mathcal{I}^+} (I + m \text{block_diag}(\Sigma_I^{-1}/n_I)_{I \in \mathcal{I}^+} (\Sigma_{IJ})_{I,J \in \mathcal{I}^+})^{-1}$$

Now, we have $0 < n_I \leq C/c_I$ for all $I \in \mathcal{I}^+$ by the constraint. The operator norm is sub-multiplicative, and the first factor is bounded in norm by a constant multiple of $1/\min_I c_I$. Similarly, we have

$$I + m \text{block_diag}(\Sigma_I^{-1}/n_I)_{I \in \mathcal{I}^+} (\Sigma_{IJ})_{I,J \in \mathcal{I}^+} \succ I + \frac{mC}{\min_I c_I} \text{block_diag}(\Sigma_I^{-1})_{I \in \mathcal{I}^+} (\Sigma_{IJ})_{I,J \in \mathcal{I}^+}$$

The operator norm of the right-hand side goes to ∞ uniformly in n , so the operator norm of its inverse goes to 0 uniformly as well. In conclusion, we have uniform convergence. Therefore, we have

$$n^*(m) := \underset{\lambda}{\operatorname{argmin}} \underset{n}{V(n, \lambda)} \xrightarrow[m \rightarrow \infty]{} n^*$$

□

G COMPUTATIONAL CONSIDERATIONS

Here we show that the Multi-Allocate procedure reduces to a SOCP in the case of a single budget constraint, and to an SDP in the general case. The proof of Theorem H.1 shows that the minimization problem over $\underline{n}, \underline{\lambda}$ may be reduced to one only over $\underline{\lambda}$ via the Cauchy-Schwartz inequality. This minimization over $\underline{\lambda}$ is the dual of an SOCP, as shown by Theorem H.2, and the KKT conditions hold. This is

$$\sup_x a^\top x$$

where the supremum is taken over all $x \in \mathbb{R}^k$ such that $x_I^\top \Sigma_I x_I \leq c_I^{-1}$ for all $I \in \mathcal{I}$. This SOCP is simple to implement in the Python package cvxpy.

In the general case, Theorem 4.2 shows that the optimal choice of \underline{n} is

$$\underset{\underline{n} : \mathbf{B}(\underline{n})}{\operatorname{argmin}} a^\top \left(\sum_{I \in \mathcal{I}} n_I P_I^\top \Sigma_I^{-1} P_I \right)^\dagger a$$

1836 Let us denote

1837
$$M(\underline{n}) = \sum_{I \in \mathcal{I}} n_I P_I^\top \Sigma_I^{-1} P_I$$

1838 so that our goal is to solve

1839
$$\min t$$

1840 subject to the constraints that

1841
$$a^\top M(\underline{n})^\dagger a \geq t$$

1842 and $\mathbf{B}(\underline{n})$, which denotes a set of linear constraints on \underline{n} . But this is equivalent to the SDP

1843
$$\min t$$

1844 subject to the constraint that

1845
$$\begin{pmatrix} M(\underline{n}) & a \\ a^\top & t \end{pmatrix} \succeq 0$$

1846 and linear constraints on \underline{n} . Once again, this is straightforward to implement in cvxpy.1847

H THE DUAL PROBLEM

1848 We briefly recall the setup. Let $\Sigma \in \mathbb{R}^{k \times k}$ be SPD, let \mathcal{I} denote a collection of index subsets
1849 $I \subseteq \{1, \dots, k\}$, and let c_I be a positive scalar defined for every $I \in \mathcal{I}$. It will be convenient
1850 to define, for every $I \in \mathcal{I}$, a vector $\lambda_I \in \mathbb{R}^{|I|}$. We denote the concatenation of such vectors by
1851 $\underline{\lambda} \in \Lambda = \prod_{I \in \mathcal{I}} \mathbb{R}^{|I|}$. We further recall that $P_I : \mathbb{R}^k \rightarrow \mathbb{R}^{|I|}$ is the orthogonal projection onto
1852 the coordinates indexed by I , and set $\Sigma_I = P_I \Sigma P_I^\top$. We define the norm $\|v\|_{\Sigma_I} = \sqrt{v^\top \Sigma_I v}$ on
1853 $\mathbb{R}^{|I|}$; this induces the seminorms $\|y\|_{\Sigma_I} = \|P_I y\|_{\Sigma_I}$ on \mathbb{R}^k , and $\|\underline{\lambda}\|_{\Sigma_I} = \|\lambda_I\|_{\Sigma_I}$ on Λ . Lastly, we
1854 employ

1855
$$A : \Lambda \rightarrow \mathbb{R}^k, \quad A(\underline{\lambda}) = \sum_{I \in \mathcal{I}} P_I^\top \lambda_I$$

1856 to enforce the linear (unbiasedness) constraint $A(\underline{\lambda}) = a$, for some fixed $a \neq 0 \in \mathbb{R}^k$.1857 Our first step will be to show how to alleviate the budget constraint. To do so, we first briefly recall
1858 this constraint. To describe the budget, recall that we define $\underline{n} = (n_I)_{I \in \mathcal{I}} \in \mathbb{Z}_{\geq 0}^{|\mathcal{I}|}$, and employ a
1859 budget constraint of the form $\sum_{I \in \mathcal{I}} n_I c_I \leq B$ for a fixed $B > 0$. Denoting $\underline{c} = (c_I)_{I \in \mathcal{I}} \in \mathbb{R}_{> 0}^{|\mathcal{I}|}$,
1860 our budget constraint may be written $\underline{c}^\top \underline{n} \leq B$. With all of this said, recall that our original problem
1861 of interest is

1862
$$V(a) = \min_{\underline{n}, \underline{\lambda}} \sum_{I \in \mathcal{I}: n_I > 0} \frac{1}{n_I} \lambda_I^\top \Sigma_I \lambda_I \quad \text{s.t.} \quad \sum_{I \in \mathcal{I}: n_I > 0} P_I^\top \lambda_I = a, \quad \underline{c}^\top \underline{n} \leq B \quad (13)$$

1863 We begin by deriving tractable methods to solve Equation 13. Let us assume for the moment that
1864 $\underline{n} \in \mathbb{R}_{\geq 0}^{|\mathcal{I}|}$; we will later construct the final budget allocation by rounding. Our first step is to remove
1865 the dependence on \underline{n} : we show that the above problem is equivalent to the following:

1866
$$U(a) = \min_{\underline{\lambda} \in \Lambda} \sum_{I \in \mathcal{I}} \sqrt{c_I} \|\lambda_I\|_{\Sigma_I} \quad \text{s.t.} \quad A\underline{\lambda} = a \quad (14)$$

1867 We next show that this is equivalent to the dual problem

1868
$$U(a) = \sup_{y \in \mathbb{R}^k} a^\top y \quad \text{s.t.} \quad \bigwedge_{I \in \mathcal{I}} \{\|y\|_{\Sigma_I}^2 \leq c_I\} \quad (15)$$

1869 Finally, this is a second order cone program, and can be solved with off-the-shelf tools. After we
1870 have shown these things, we describe how to convert solutions to Equation 15 into solutions to
1871 Equation 13.1872 **Proposition H.1.** *The problems described in Equation 13 and Equation 14 yield the same optimum
1873 $V = U^2/B$.*1874 **Proposition H.2.** *The problems described in Equation 14 and Equation 15 yield the same optimum
1875 U .*1876 *Proof of theorem H.1.* We now begin the proof.

1890 (2) \leq (3): Let $A\lambda = a$. Define \underline{n} by⁷

$$1892 \quad 1893 \quad n_I := \left(\frac{B}{c_I} \right) \frac{\sqrt{c_I} \|\lambda_I\|_{\Sigma_I}}{\sum_{J \in \mathcal{I}} \sqrt{c_J} \|\lambda_J\|_{\Sigma_J}}$$

1894 It is clear that $\underline{c}^\top \underline{n} = B$ by construction, and we have

$$1897 \quad 1898 \quad BV(a) \leq \sum_{I: n_I > 0} \frac{B}{n_I} \lambda_I^\top \Sigma_I \lambda_I = \sum_{I: \lambda_I \neq 0} \sqrt{c_I} \|\lambda_I\|_{\Sigma_I} \sum_J \sqrt{c_J} \|\lambda_J\|_{\Sigma_J} = \left(\sum_{I \in \mathcal{I}} \sqrt{c_I} \|\lambda_I\|_{\Sigma_I} \right)^2$$

1900 (3) \leq (2): Let $\underline{n}, \underline{\lambda}$ satisfy the constraints of [Equation 13](#). Consider the vectors $\underline{c}^{1/2} \odot \underline{n}^{1/2} =$
1901 $(\sqrt{c_I n_I})_{I \in \mathcal{I}}$ and $(\mathbb{1}_{n_I > 0} n_I^{-1/2} \|\lambda_I\|_{\Sigma_I})_{I \in \mathcal{I}}$ in $\mathbb{R}^{|\mathcal{I}|}$. The Cauchy-Schwartz inequality yields that
1903 the product of their squared norms is

$$1905 \quad 1906 \quad \left(\sum_I c_I n_I \right) \left(\sum_{I: n_I > 0} \frac{1}{n_I} \|\lambda_I\|_{\Sigma_I}^2 \right) \geq \left(\sum_{I: n_I > 0} \sqrt{c_I} \|\lambda_I\|_{\Sigma_I} \right)^2$$

1908 Now let us define $\tilde{\lambda}$ by $\tilde{\lambda}_I = \lambda_I$ if $n_I > 0$, and $\tilde{\lambda}_I = 0$ otherwise. Then we have

$$1910 \quad 1911 \quad A\tilde{\lambda} = \sum_I P_I^\top \tilde{\lambda}_I = \sum_{I: n_I > 0} P_I^\top \lambda_I = a$$

1913 by assumption, and

$$1915 \quad 1916 \quad U(a)^2 \leq \left(\sum_I \sqrt{c_I} \|\tilde{\lambda}_I\|_{\Sigma_I} \right)^2 = \left(\sum_{I: n_I > 0} \sqrt{c_I} \|\lambda_I\|_{\Sigma_I} \right)^2 \leq BV(a)$$

1918 and we are done. \square

1920 **Remark H.3.** Note that in general, many n_I will be zero.

1922 *Proof of theorem H.2.* Let $\iota_{\{a\}}$ denote the indicator $b \mapsto \begin{cases} 0 & a = b \\ \infty & a \neq b \end{cases}$. Then [Equation 14](#) is alter-
1923 natively written

$$1926 \quad V(a) = \min_{\underline{\lambda} \in \Lambda} g(\underline{\lambda}) + \iota_{\{a\}}(A\underline{\lambda})$$

1927 where $g(\underline{\lambda}) = \sum_I g_I(\lambda_I)$ and $g_I(\lambda_I) = \sqrt{c_I} \|\lambda_I\|_{\Sigma_I}$. We now apply the Fenchel duality theorem.
1928 Note that $\iota_{\{a\}}^*(y) = a^\top y$, and $g^*(A^\top y) = \sum_I g_I^*(P_I^\top y) = \sum_I \iota_{\{\|y_I\|_{\Sigma_I} \leq c_I\}} = \iota_{\bigwedge_I \|y_I\|_{\Sigma_I}^2 \leq c_I}$. \square

1931 I EXPERIMENTAL DETAILS

1933 Here we detail the experimental setup used. We do so in two parts: first, we explain the details for
1934 generating the model predictions (X_2, \dots, X_k) in each experiment; second, we explain the details
1935 for constructing the proposed estimator, $\hat{\theta}_{\text{MultiPPI}}$, and the baselines from such predictions.

1937 I.1 GENERATING MODEL PREDICTIONS

1939 I.1.1 EXPERIMENT 1: CHATBOT ARENA

1941 We follow the implementation of [Angelopoulos et al. \(2025\)](#) to request autoratings from Gemini 2.5
1942 Pro and Gemini 2.5 Flash. See section E of [Angelopoulos et al. \(2025\)](#) for implementation details.

1943 ⁷This is defined as long as $\lambda_J \neq 0$ for some J ; if this fails then $\underline{\lambda} = 0$ and $A\underline{\lambda} = 0$ yields a contradiction.

	Model collection	Cost
1944	Gemini 2.5 Pro	\$1.25
1945	Gemini 2.5 Flash	\$0.30
1946	Both	\$1.55
1947		

Table 1: Cost structure for experiment 1.

1951 In the following, you will see a math problem and an attempted solution. There may or may not be an error in
 1952 the attempted solution. Your task is to review the attempted solution and decide whether or not it is correct.
 1953 Report your answer as "correct" or "incorrect" in `\boxed{}`.

1954 Problem:

1955
 1956 Find the smallest number n such that there exist polynomials f_1, f_2, \dots, f_n with rational
 1957 coefficients satisfying
 1958
$$x^2 + 7 = f_1(x)^2 + f_2(x)^2 + \dots + f_n(x)^2.$$

 1959
$$\dots$$

 1960

1961 Attempted solution:

1962
 1963 To find the smallest number n , we start by considering the given equation: $x^2 + 7 = f_1(x)^2 +$
 1964 $f_2(x)^2 + \dots + f_n(x)^2$. Notice that $x^2 + 7$ is always greater than or equal to 7 for any real
 1965 value of x .
 1966 \dots
 1967 Therefore, the smallest number n is $\boxed{4}$.

1968 Now decide whether or not the attempted solution is correct. Be sure to report your answer as "correct" or
 1969 "incorrect" in `\boxed{}`. For example, if you believe that the attempted solution is correct, then you should
 1970 respond "`\boxed{correct}`"; if you believe that the attempted solution is incorrect, then you should respond
 1971 "`\boxed{incorrect}`". You must respond in exactly this format and include no other text in your response. If
 1972 you include any additional text in your response, you will be disqualified.

1974 Gemini 2.5 Pro: [Thinking...]

1976 — after B words of thought have been produced —

1978 Gemini 2.5 Pro: So, the answer is: `\boxed{correct}`.

Figure 18: Prompt used to generate autoratings for Experiment 2.

I.1.2 EXPERIMENT 2: PROCESSBENCH

1985 We evaluate our method on 500 samples from the OlympiadBench subset of the ProcessBench
 1986 dataset (Zheng et al., 2024). Binary labels are determined according to whether or not a process
 1987 error occurred in the given (problem, attempted solution) pair.

1988 To generate autoratings, we use Gemini 2.5 Pro and truncate its reasoning process at various check-
 1989 points. Specifically, using the prompt shown in Figure 18, we instruct the model to think for up to
 1990 3,000 tokens but interrupt it and demand an answer after B words of thought have been produced,
 1991 for $B \in \{125, 250, 375, 500\}$, as described in §5. To elicit a definite judgement at each checkpoint,
 1992 we provide "So, the answer is:" as the assistant and attempt to extract an answer from the subsequent
 1993 20 tokens of output with our template.

I.1.3 EXPERIMENT 3: BIOGRAPHY FACTUALITY

1995 We consider evaluating the factuality of a set of biographies generated by Gemini 2.5 Pro. We repli-
 1996 cate the setting of Du et al. (2023): Gemini 2.5 Pro is asked to generate biographies for 524 computer

1998 scientists, and we evaluate the factual consistency of such biographies with a set of grounding facts
 1999 collected by [Du et al. \(2023\)](#).

2000
 2001 More specifically, for every person $p \in \mathcal{P}$, we associate a Gemini-generated biography b^p and a set
 2002 of collected grounding facts $\mathcal{F}^p = \{f_1^p, \dots, f_{m_p}^p\}$ about the person. Following [Du et al. \(2023\)](#), we
 2003 estimate the proportion of *factually consistent pairs* (b^p, f_i^p) of generated biographies b^p with each
 2004 of the collected grounding facts f_i^p . Concretely, given the set of all pairs

$$2005 \quad \mathcal{S} = \{(b^p, f^p) : p \in \mathcal{P}, f^p \in \mathcal{F}^p\}$$

2006 we *target* the proportion of factually consistent pairs
 2007

$$2008 \quad \frac{\#\{(b, f) \in \mathcal{S} : (b, f) \text{ is factually consistent}\}}{\#\mathcal{S}}$$

2009 We determine the factual consistency, or lack thereof, of a pair (b, f) by majority voting over 5
 2010 independent judgments from Gemini 2.5 Pro with thinking. [Du et al. \(2023\)](#) found that judgments
 2011 by ChatGPT achieved over 95% agreement with human labelers on a set of 100 samples. This level
 2012 of agreement is evidently not achieved by certain cheaper models, as we proceed to demonstrate
 2013 experimentally. In [Figure 15](#), we explore using Gemini 2.0 Flash Lite as an autorater for evaluating
 2014 the factuality consistency of pairs $(b, f) \in \mathcal{S}$.
 2015

2016 To elicit better autoratings from queries to Gemini 2.0 Flash Lite, we bootstrap performance via
 2017 multi-round debate. For a fixed number of agents $A \in \{1, \dots, 5\}$, and a fixed number of maximum
 2018 rounds $R \in \{1, 2\}$, we perform the following procedure:
 2019

- 2020 1. A instances of Flash Lite are independently prompted to consider the factual consistency
 2021 of pairs $(b, f) \in \mathcal{S}$, and provide an explanation for their reasoning.
- 2022 2. A “pooler” instance of Flash Lite is then asked to review the pair (b, f) and the responses
 2023 generated by each of the A other instances, and output a judgment in the form of a single
 2024 word: yes, no, or uncertain.
 - 2025 (a) If the pooler outputs “yes” or “no,” the judgment is final.
 - 2026 (b) If the pooler outputs “uncertain” and the number of maximum rounds R has not yet
 2027 been reached, the A instances of Flash Lite are independently shown their prior re-
 2028 sponds, and the prior responses of each other, and prompted to continue reasoning
 2029 given this additional information. This procedure continues until either the pooler no
 2030 longer reports “uncertain,” or the maximum number of rounds R has been reached.
 - 2031 (c) If the pooler outputs “uncertain” and the maximum number of rounds R has been
 2032 reached, a fair coin is flipped and “yes” or “no” are reported with equal probability.

2033 Since the dataset is balanced, the outcome described in (c) is fair insofar as it is as good as random
 2034 guessing. We impose the maximum round restriction to encapsulate our budget constraint. To reduce
 2035 randomness, we generate all autoratings twice, so that the resulting dataset has an effective size of
 2036 1048.
 2037

2038 **Target:** Proportion of factually-consistent pairs, $\#\{(b, f) \in \mathcal{S} : (b, f) \text{ is factually consistent}\} / \#\mathcal{S}$
 2039

2040 **Model family:** $\{\text{The output of the above procedure given } (A, R) : A \in \{1, \dots, 5\}, R \in \{1, 2\}\}$

2041 **Cost structure:** For a given (A, R) , the cost is $A \cdot R$. For collections of models, the cost is additive.
 2042

2043 I.2 CONSTRUCTING THE MULTIPPI ESTIMATOR 2044

2045 For the results shown in [§6](#), we draw 250 fully-labeled samples from each dataset above. We then
 2046 follow the procedure described in [§C.3](#) for $N = 250$, using the empirical distribution over each
 2047 dataset as our source of randomness. In [§ D.2](#), we replicate the study over a range of values of N .
 2048

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

Biography of Richard Hamming:

- * Worked on the Manhattan Project, contributing to computations on early computing devices.
- * Joined Bell Labs in 1945, working on relay calculators and early digital computers like the IBM 650.
- * Developed Hamming codes, a fundamental set of error detection and correction codes for digital data.
- * Introduced the concept of Hamming distance, a metric for comparing two binary strings.

...

2078

Fact: Richard Hamming was a mathematician who made contributions in computer engineering and communications.

2079

Gemini 2.5 Pro judgement: Factually consistent.

2080

2081

Fact: Hamming worked on the Manhattan Project before joining Bell Telephone Laboratories in 1946**Gemini 2.5 Pro judgement:** Factually inconsistent.

2082

2083 Figure 19: Depiction of biography-fact pairs (b, f) as in Experiment 3. Judgements about factual
2084 consistency of (b, f) are made by a language model.

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105