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Abstract

Exploring the integration of if-then logic rules within neural network architectures
presents an intriguing area. This integration seamlessly transforms the rule learning
task into neural network training using backpropagation and stochastic gradient
descent. From a well-trained sparse and shallow neural network, one can interpret
each layer and neuron through the language of logic rules, and a global explanatory
rule set can be directly extracted. However, ensuring interpretability may impose
constraints on the flexibility, depth, and width of neural networks. In this paper,
we propose HyperLogic: a flexible approach leveraging hypernetworks to gen-
erate weights of the main network. HyperLogic can be combined with existing
differentiable rule learning methods to generate diverse rule sets, each capable
of capturing heterogeneous patterns in data. This provides a simple yet effective
method to increase model flexibility and preserve interpretability. We theoretically
analyze the benefits of the HyperLogic by examining the approximation error and
generalization capabilities under two types of regularization terms: sparsity and
diversity regularization. Experiments on real data demonstrate that our method can
learn more diverse, accurate, and concise rules. Our code is publicly available at
https://github.com/YangYang-624/HyperLogic.

1 Introduction
Despite the significant impact of deep learning on society, its lack of interpretability limits its use in
critical areas that demand high transparency. For instance, in high-risk domains such as healthcare,
finance, and law, the decision-making process of models needs to be fully open and explainable to
users and relevant regulatory authorities to gain necessary trust and legitimacy [1, 2, 3]. Compared to
the “black box” models, which may perform well but are uninterpretable, people prefer intrinsically
interpretable model for decision support [4, 5], such as a set of concise IF-THEN rules.
Traditional rule learning methods, which are based on statistical or heuristic approaches, have
been extensively explored but often struggle to simultaneously achieve two key objectives: 1)
simplicity and accuracy in rules, and 2) noise tolerance and scalability in data handling [6, 7, 8, 9, 10].
These methods typically rely on search-based techniques, which can be limited when dealing with
complex and noisy data. In contrast, deep learning, which focuses on representation learning through
embedding, is robust to noise and effectively manages large datasets. This has led to the exploration
of differentiable rule learning [11], which leverages the high performance of deep learning while
ensuring interpretability through explicit rule formulation
Differentiable rule learning primarily includes two types of methods. The first approach outputs
rules directly through the network, leveraging powerful and diverse neural models to enhance
handling of complex data patterns [12, 13, 14]. The second approach is to extract rules from network
weights [15, 16, 17], which promotes rapid training and efficient data management while enabling
the use of predefined structures to integrate expert priors [18].
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Figure 1: The framework of HyperLogic: Hypernetwork generates θ for the main network, which is
a rule-learning network. An example of a main rule-learning network is shown on the right, from
which rules can be extracted based on the learned network weights.

We focus on the second approach, aiming to extract rules like “IF a ∧ b ∧ ¬c THEN y is True” from
network weights, where a, b, c are predefined predicates. Although integrating if-then logic rules
within neural network architectures offers clear advantages, their performance is often hindered by
the restrictive network structures required for interpretability. These structures tend to be overly
simplistic and not scalable, limiting their ability to capture complex data patterns and making them
prone to only capturing partial or local patterns in the data. This raises a critical question: How can
we modify these models to better harness the full potential of neural networks without compromising
their interpretability?
In this work, we introduce HyperLogic, a novel framework that integrates hypernetworks with
a main rule-learning network (as illustrated in Fig. 1, where an example of a main rule-learning
network is shown on the right). Hypernetworks are a type of neural network that generate weights for
a main rule-learning network. In our framework, the hypernetwork takes random samples from a
high-dimensional Gaussian distribution as input and outputs weights for different parts of the main
network. These weights can be utilized in two ways: either directly as the weights for the main
network throughout the training process (meaning the main network itself has no parameters), or by
retaining trainable weights in the main network and combining them with the hypernetwork-generated
weights through weighted fusion. In both scenarios, this approach yields an interpretable set of rules
derived from the comprehensive weights.
HyperLogic can be seen as a mixture of expert model with an infinite number of experts, providing a
simple yet effective way to enhance model flexibility and adaptability. We analyze the benefits of
HyperLogic by examining its approximation error and generalization capabilities under two types
of regularization: sparsity and diversity regularization. Our findings demonstrate that HyperLogic
acts as a universal approximation estimator in the Barron space [19] and proves its generalization
ability across various regularization methods. These theoretical benefits are further supported by our
empirical experiments.
Additionally, hypernetworks enable the generation of multiple candidate rule sets in a single training
session without significantly increasing computational overhead. This is in stark contrast to traditional
methods, which typically learn only one set of rules at a time. Consequently, HyperLogic greatly
enhances the efficiency and flexibility of the rule-learning process.
We summarize our contributions as follows:
1. We introduce HyperLogic, a pioneering framework that integrates hypernetworks into differen-
tiable rule learning, significantly enhancing the rule-learning landscape.
2. We theoretically justify the performance of HyperLogic and provide insights into its effectiveness.
Specifically, we examine the approximation error and generalization capabilities under two types of
regularization: sparsity and diversity.
3. We validate HyperLogic through extensive experiments on multiple datasets, demonstrating that it
enables the learning of multiple diverse rule sets and yields more concise and accurate rules.

2 Related Work
Learning Rules from Network Weights Many methods for extracting rules from model weights
are not based on neural networks; instead, they primarily focus on interpreting the weights of smaller,
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simpler models to discover rules [20, 7]. Recently, extensive methods have emerged that attempt
to extract rules using neural network models. These approaches often involve data preprocessing
techniques to prepare the data before training [21] or utilize post-hoc methods for rule extraction
after model training [22, 23, 24], which can often lead to a loss of accuracy.
A more promising alternative allows for the direct interpretation of neural network weights as precise
rules by integrating rule extraction directly during training. This leads to a more seamless and effective
learning process. For example, methods such as [25, 26, 27] utilize low-dimensional embeddings to
represent atomic conditions and rules, treating rule learning as a differentiable discrete combinatorial
optimization problem encoded by a feedforward neural network. Specifically, FinRule [27] explores
higher-order interactions between atomic conditions, which aligns somewhat with our approach of
employing hypernetworks. However, it lacks a detailed analysis of the specific roles of these higher-
order interactions and cannot learn a rich set of candidate rules as our method does. Additionally,
these approaches often impose constraints on rule templates, such as fixing the rule length and the
number of rules.
Another common class of methods employs modified simple feedforward neural networks, such as
DR-net [17] and others [28, 29, 30]. These methods simulate logical operations by altering activation
functions and implementing mechanisms that ensure differentiability and support backpropagation.
While they overcome the limitations of rigid rule templates, their model structures tend to be relatively
simple. Furthermore, the training process often involves freezing the weights of one component while
adjusting another, which restricts the model’s ability to fully optimize performance.
Our HyperLogic is a unified framework that can be integrated with various neural network weight
generators, enabling easy adaptation to different main rule learning networks. Currently, our main
network draws inspiration from DR-net [17], but it can be replaced with other architectures based on
task requirements. Unlike recent Bayesian approaches, which often require multiple hyperparameters
to model uncertainty in network weights, HyperLogic simplifies the process by needing fewer
hyperparameters while maintaining scalability. This allows for efficient training and adaptability
across various tasks without the added complexity of managing uncertainty. Additionally, our
approach can generate multiple sets of rule sets in a single training session, a capability not available
in other methods. For further comparisons, including classic rule-based algorithms, please refer to
Appendix A.

Hypernetwork Hypernetworks, or hypernets, are neural networks that generate weights for main
networks [31]. Benefiting from over-parameterization and strategic design, these networks enhance
training flexibility and adaptability, improve information sharing, and accelerate training processes.
While widely used in many areas like continual learning [32, 33], transfer learning [34], uncertainty
quantification [35, 36], natural language processing [37] and computer vision [38], their potential in
rule learning remains largely untapped. Our HyperLogic framework can bridge this gap. Specifically,
our hypernetwork takes inspirations from HyperGAN [36] and similarly we add a loss term to
encourage the diversity of the generated network weights.
Unlike typical applications in other domains that focus on enhancing parameter efficiency and training
speed, our approach addresses the unique challenges of adding model flexibility while preserving
interpretability. Our main goal is to expand the parameter space to produce more diverse, concise and
accurate rule sets.

3 HyperLogic
HyperLogic is a versatile framework designed to enhance various existing neural rule-learning meth-
ods. The concept of hypernetworks can be applied to different types of main networks, provided they
focus on learning a set of interpretable weights in a differentiable manner. Importantly, HyperLogic
imposes no additional restrictions on data formats or rule languages; it simply builds upon the
capabilities of the chosen main network.

3.1 Main Network: Rule-Learning Network

Our main network is currently based on DR-Net [17], which features a simple architecture and is
designed for binary classification tasks. We chose this architecture for its simplicity, which aids in our
proofs and explanations. However, we recognize its limitations, so we can also explore other more
flexible neural approaches as the primary network to overcome restrictions related to data formats
and rule languages. This is further discussed in Appendix B.
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The main network is a two-layer neural network as shown in Fig. 1 (right part). Due to its interpretabil-
ity, one can directly extract the if-then rules from the trained neural networks. The input layer of the
main network is fed with a D-dimensional binary data x = [xd], each element xd ∈ {1,−1}. Here
xd indicates the grounded predicate, where 1 indicates True and -1 means false. Note that common
input types may include binary, categorical, or numerical features, all of which are discretized and
binarized to form our binary input features. The hidden layer has K neurons, where K determines
the total number of rules and serves as a hyperparameter. The first layer is referred to as the Rule
Layer, and the output layer as the OR layer.
Rule Layer: Each neuron in the hidden layer is denoted as ok ∈ {0, 1}. The output represents
whether a rule is satisfied. Each neuron is calculated as:

ok = 1

{
D∑

d=1

wd,kxd −
D∑

d=1

|wd,k| = 0

}
, for k = 1, . . . ,K (1)

where 1{·} denotes the indicator function. Note that the indicator function is one if and only if all
inputs match the sign of the corresponding weights: all positive weights should have the inputs of 1,
and all negative weights should have the inputs of -1, and zero weights mean that the corresponding
inputs are excluded from the rule.
Note that the indicator function is non-differentiable, which will make the gradient hard to compute.
Here, we will instead use a differentiable smooth function to approximate the indicator function (this
will also ease the theoretical analyses). For example, we can use h(u) = exp

(
−u2

τ

)
, τ > 0, to

approximate 1{u = 0}, where τ is the tunable temperature and controls the approximation error.
OR Layer: The second layer operation is defined as

f(x) =

K∑
k=1

ukok (2)

where we assume that the rules contribute to the final prediction in a weighted additive form to reflect
the OR composition, where uk denotes the weight assigned to the k-th rule.

3.2 Hypernetwork: Generate Network Weights

Define the network weights for the previous model as θ = (w, u), where w ∈ RD×K , and u ∈ RK .
Instead of learning only one set of θ, we will learn the distribution of θ, denoted as µ. Specifically,
we introduce a generative model as the hypernetwork to produce samples of θ, i.e.,

θ = G(ϵ), where ϵ ∼ p(ϵ), θ ∈ R(D+1)K . (3)

Here, ϵ is drawn from some simple base distribution such as Gaussian distribution. More details about
the hypernetwork structure can be seen in Appendix C. Note that, in this way, our model parameters
have been changed to µ, which is defined as the distribution of θ, and the proposed Hyperlogic model
is

fµ(x) = Eµ

[
K∑

k=1

ukh

(
D∑

d=1

wd,kxd −
D∑

d=1

|wd,k|

)]
. (4)

In practice, we can use the Monte Carlo method to estimate the above expectation by randomly
drawing M samples from µ, denoted as θ1, . . . , θM , and we define

fM (x) =
1

M

M∑
m=1

[
K∑

k=1

um
k h

(
D∑

d=1

wm
d,kxd −

D∑
d=1

|wm
d,k|

)]
. (5)

This model can be regarded as a mixture of expert models with finite M experts. Each expert is a
shallow two-layer neural network that encodes at most K if-then rules.

3.3 Expand to High-Dimensional Data
When working with high-dimensional data (e.g., 5000 dimensions), the number of parameters in
the main network increases proportionally with the input dimensions, even if the network structure
remains unchanged. This makes training a hypernetwork to generate weights for each module of the
main network more challenging. To tackle this issue, we considered two strategies:
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Combining Original Weights with Hypernetwork-Generated Weights Instead of allowing the
hypernetwork-generated weights (Whyper) to fully dictate the main network’s weights, we combine
them with the original weights (Wmain). The final weights are calculated as follows:

Wmain-final = α ·Whyper + (1− α) ·Wmain,

where α is a learnable parameter constrained between 0 and 1. This strategy enhances stability
without sacrificing the hypernetwork’s ability to produce diverse weights. If the hypernetwork is
poorly trained and generates inappropriate weights, the model adjusts α toward 0, effectively reverting
to the standard main network without hypernetwork influence. We employed this strategy in our
subsequent experiments.

Generating Weights for Only Some Modules of the Main Network We test this strategy when the
dataset dimension and size are very large in the supplementary experiment. It shows that generating
only part of the main network’s weights using the hypernetwork still significantly improves results.
For more details, please see the supplementary experiments in Appendix B.

3.4 Loss Function
One can learn µ by minimizing the loss function ℓ(y, fµ(x)), where fµ(x) can be approximated
by the finite-sample estimator in Eq. (5). Our loss contains two parts. One is the task-related loss
function, denoted as ℓtask(y, fµ(x)). Suppose the problem is a binary classification problem, one can
use the binary cross-entropy loss (BCE), where we first map fµ(x) to a probability value between 0
and 1 using a link function such as sigmoid and the loss is defined as the negative log-likelihood of a
sample belong to a class. Here, the task-related loss measures the prediction accuracy.
The second part of the loss is the regularization loss, denoted as ℓreg , which is introduced to encourage
the diversity of the generated θ and model sparsity (rule simplicity for each expert), i.e.,

ℓreg = λ1DKL(µ∥µ0) + λ2Eµ[|u|]. (6)

For the first regularization term, we introduce a prior distribution µ0 with a high entropy, and we
minimize the relative entropy or KL divergence of the µ and µ0. Minimizing the relative entropy
encourages the diversity of the generated θ. For the second regularization term, we are considering
the ℓ1 sparsity norm for the second OR layer’s weights, where we hope that for each expert, the
discovered number of rules is as compact as possible. In our paper, ℓreg represents the loss incurred
by the hypernetwork, as illustrated in Fig. 1.

4 Theoretical Analysis
We will employ theoretical analysis to demonstrate that while the main network (i.e., a two-layer
shallow neural network) has low capacity, incorporating the hypernet idea significantly enhances the
model’s expressive power. Specifically, we will establish that the proposed HyperLogic model serves
as a universal approximator in the Barron space [19], which will be defined later. For simplicity, but
without loss of generality, we consider the case where the hypernetwork fully generates the weights
and the main network itself has no parameters. Additionally, we will present the generalization error
under the above two types of regularization.
Reparametrization: To ease the proof, let’s first rewrite Eq. (5) as

fM (x) =
1

M

M∑
m=1

[
K∑

k=1

um
k h
(
wm⊤

k x
)]

(7)

by reparametrization. To achieve this, we first use the split variable trick by defining w+ =
max{w, 0} and w− = −min{w, 0}, and reparametrize w = w+ − w−and |w| = w+ + w−.
In this way, we can get rid of the absolute value and have

D∑
d=1

wd,kxd −
D∑

d=1

|wd,k| =
D∑

d=1

w+
d,k(xd − 1) +

D∑
d=1

w−
d,k(−xd − 1). (8)

Therefore, we can simply reparametrize wk, where wk ≥ 0, as a concatenation of the vector
[w+

d,k]d=1,...,D and [w−
d,k]d=1,...,D. We construct the new input data x by making a copy of the

original data and modifying each copy given Eq. (8). That is, for one copy, we subtract it by 1, and
for another copy, we flip the sign and subtract it by 1. Then, we concatenate the two copies of data.
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Given such a reparametrization, we get a simple form as Eq. (7). In the following analysis, we will
still assume that wk ∈ RD and x ∈ RD, which doesn’t affect the generality.
Preparation for the Theoretical Analysis: Our analysis below is based on the following observations.
Given the generated random variable ((w1, u1), . . . , (wK , uK)) ∈ R(D+1)K , we have denoted their
joint distribution as µ. Let us further denote the marginal distribution of (wk, uk) as µk, k = 1, . . . ,K,
respectively. Define a random variable (w̃, ũ) ∈ RD+1, which draws a sample from µk with (equal)
probability 1/K, k = 1, . . . ,K, and then scale the u-component by K. Denote the resulting mixture
distribution as µ̃. Then it follows from the linearity of expectation that

fµ(x) = E((w1,u1),...,(wK ,uK))∼µ

[
K∑

k=1

ukh
(
w⊤

k x
)]

= E((w1,u1),...,(wK ,uK))∼µ

[
1

K

K∑
k=1

ũkh
(
w⊤

k x
)]

= E(w̃,ũ)∼µ̃

[
ũh
(
w̃⊤x

)]
. (9)

We define f̃µ̃(x) := E(w̃,ũ)∼µ̃

[
ũh
(
w̃⊤x

)]
and we have shown that fµ(x) = f̃µ̃(x) as stated above.

The motivation for introducing f̃µ̃(x) is to facilitate the analysis of approximation error and
generalization error. There exist theoretical results for a two-layer neural network of the form
gM (x) =

∑M
m=1 u

mh
(
wm⊤x

)
, where h(·) belongs to certain classes of smooth activation functions,

and (wm, um), m = 1, . . . ,M , are M independent samples drawn from a fixed distribution. In con-
trast, our proposed HyperLogic model involves randomly drawing samples ((w1, u1), . . . , (wK , uK))
from µ, each with K components. To align this with the existing theoretical framework, we perform a
transformation as shown in Eq. (9). This involves converting the process of drawing M samples, each
with K components, into drawing MK samples, each with a single component. This reformulation
maintains the same expectation results, allowing us to leverage existing theoretical results to analyze
HyperLogic. Note that the conversion mentioned is purely for theoretical proof purposes and is not
implemented in the actual algorithm.

4.1 Approximation Error of Finite Experts
Using the connection as shown in Eq. (9), we can directly leverage the approximation error results
for a single hidden layer neural network. Let’s first define the Barron space, which provides a set of
functions for which neural networks can achieve good approximation properties.
Definition 1 (Barron Space [19]). A function f : RD → R belongs to the Barron space B if it can be
represented as:

f(x) =

∫
R×RD×R

uh
(
w⊤x+ b

)
dµ(u,w, b)

where h is an activation function, µ is a probability measure on R × RD × R, and the following
Barron norm is finite:

∥f∥B = inf

{∫
R×RD×R

|u|∥(w, b)∥dµ(u,w, b) : f(x) =
∫
R×RD×R

uh
(
w⊤x+ b

)
dµ(u,w, b)

}
.

Note that the representation of f in the form f(x) =
∫
uh
(
w⊤x+ b

)
dµ(u,w, b) may not be unique.

The Barron norm seeks the representation that minimizes the integral of |u|∥(w, b)∥. The introduction
of the Barron norm provides a quantitative measure of the “complexity” of a function in the context
of neural networks. Functions with a smaller Barron norm are considered simpler and are easier
to approximate with neural networks. Next, let’s provide the approximation error analysis for our
HyperLogic model (the proof can be found in Appendix D):
Theorem 1. For any function f in the Barron space, there exist M experts ((wm

1 , um
1 )

, . . . , (wm
K , um

K)) ∈ R(D+1)×K , m = 1, . . . ,M , forming a predictor fM as shown in Eq. (7),
such that

∥f − fM∥L2 ≤ ∥f∥B√
MK

,

where the L2 norm for a function f : RD → R is defined as ∥f∥L2 =
(∫

RD |f(x)|2dD(x)
) 1

2 where
D(x) is the probability distribution over the input data.

The above theorem asserts that a HyperLogic model (essentially a mixture of expert models) can
approximate any continuous function in the Barron space to arbitrary precision given enough M , K
and appropriate weights.
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4.2 Generalization Error: Entropic Regularization and Sparse Regularization
Let’s derive the generalization error bounds for the HyperLogic model under entropic regularization
(the first term of Eq. (6)) and sparse regularization (the second term of Eq. (6)). The key steps
involve calculating the Rademacher complexity of the model class and then using this to bound the
generalization error. The proof can be found in Appendix E. Let’s give the results here.
Theorem 2. For the function class FKL := {fµ(·) : DKL(µ∥µ0) ≤ BKL}, we have

ED[ℓ(f)]− ℓ̂(f) ≤ 2

√
2BKL

n
+ C

√
log(1/δ)

2n
. (10)

Similarly, for the function class F1 :=
{
fµ(·) : Eµ

[
1
K

∑K
k=1 |uk|

]
≤ B1

}
, we have

ED[ℓ(f)]− ℓ̂(f) ≤ 64B1

√
(D + 1)/n+ C

√
log(1/δ)

n
.

Here, ED[ℓ(f)] is the expected loss over data distribution, ℓ̂(f) is the empirical loss, n is the number
of samples, C is a constant dependent on the loss function, and δ is the confidence level.

From the results, we see that the relative entropy regularization effectively balances fitting the training
data and adhering to the prior distribution with high entropy. Increasing the sample size or decreasing
the KL bound enhances the model’s generalization ability, ensuring good performance on unseen
data. Similar conclusions can be arrived for the sparse regularization.

5 Experiment
In this section, we report experimental results to answer the following questions:
• RQ1: How does the performance of the optimal rule set selected by HyperLogic compare to the

rule sets obtained by other methods?
• RQ2: How rich are the rule sets generated by HyperLogic, and how are their accuracy and diversity

affected by parameters?
• RQ3: Can we further leverage the advantages of HyperLogic through ensemble learning to enhance

performance?

5.1 Experiment Setup
Implementation Details: During training, for each data batch, we randomly generate M1 samples of
network weights to approximate the expectation (as shown in Eq. (5), here we compute fM1

(x) as an
approximation in the training stage). Increasing M1 enhances the stability of hypernetwork training
but raises computational costs. In our experiments, M1 is set to 5 or 10 . After training, we generate
M2 sets of weights from the hypernetwork, resulting in M2 rule sets. In other words, in the inference
stage, we use fM2(x) instead. While M1 is relatively small, M2 can be large (e.g., 5000). We then
select the rule set with the highest training accuracy as the optimal set, though other criteria, such as
minimal loss or custom evaluation metrics balancing accuracy and complexity, can also be used.
For HyperLogic, We use Adam as the optimizer, and the learning rate is 1 × 10−4, with weight
decay is 1 × 10−4. The number of training epochs is 10000. In the experiments for selecting
the optimal rules for comparison, we set hyperparameter M1 = 5, M2 = 5000, λ1 = 0.01, and
λ2 = 0.1 (λ1 and λ2 are related to the hypernetwork loss or regularization loss, as defined in Eq. (6)).
In the following experiments that analyze the influence of hyperparameter, we adjusted only the
corresponding hyperparameter while keeping others unchanged.
Datasets: We selected four publicly available binary classification datasets: MAGIC gamma telescope
(magic), adult census (adult), FICO HELOC (heloc), and home price prediction (house). In all datasets,
preprocessing was performed to encode categorical and numerical attributes as binary variables,
which can be found in [17]. We compared our model HyperLogic with other state-of-the-art rule
learning methods: DR-Net [17], CG [7], BRS [20], and RIPPER [6]. Since CG, BRS, and RIPPER
cannot learn negative conditions, we additionally appended negative conditions for these models.

5.2 Performance Comparison
In the performance comparison section, we sampled M2 = 5000 times from HyperLogic, selecting
the rule set that performed best on the training set as the optimal rule set, and compared it with
other methods. Table 1 presents the comparison of the accuracy of the optimal rule sets selected by
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our method and those generated by other methods. Our method further improves upon DR-Net and
outperforms other methods across all four datasets.
It is important to note that the rule set that performs best on the training set does not strictly guarantee
the best performance on the test set, as shown in Fig. 2. However, this selection method is sufficiently
simple, and experiments have shown that it can achieve good performance.

Table 1: Test accuracy based on a nested 5-fold cross-validation (%, mean ± standard error). Results
corresponding to methods marked with * are directly sourced from [17].

Method Dataset
magic adult house heloc

HyperLogic 84.90 ± 0.73 83.11 ± 0.55 85.22 ± 0.62 71.03 ± 1.07
DR-Net 83.69 ± 0.55 82.95 ± 0.45 85.05 ± 0.51 70.07 ± 0.83
CG* 83.68 ± 0.87 82.67 ± 0.48 83.90 ± 0.18 68.65 ± 3.48
BRS* 81.44 ± 0.61 79.35 ± 1.78 83.04 ± 0.11 69.42 ± 3.72
RIPPER* 82.22 ± 0.51 81.67 ± 1.05 82.47 ± 1.84 69.67 ± 2.09
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Figure 2: Train and test accuracies for sampled rule sets across four datasets
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In addition to rule accuracy, we also considered two met-
rics to measure the compactness of the rules: model com-
plexity and rule complexity. Model complexity is defined
as the sum of the number of rules and the total number of
conditions in the rule set; rule complexity is the average
number of conditions in each rule of the model. Fig. 3
shows that our method reduces both model complexity and
rule complexity compared to DR-Net, indicating that we
have not only improved the accuracy of the rules but also
made them more concise, demonstrating the effectiveness
of our framework.

5.3 Rule Analysis
In this section, we primarily considered the effects of three parameters, M1, λ1, and M2, on the
learned rules. Among these, M2 primarily affects the selection of the final optimal rule set by
controlling the number of candidate rule sets sampled from the hypernetwork after training phase,
while M1 and λ1 directly influence the training of the hypernetwork.
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Figure 4: Analysis of the impact of M2 on all datasets

For M2, we considered the values 10, 100, 1000, 2000, 5000, and 10000 to examine its impact on the
accuracy, model complexity, and rule complexity of the generated optimal rules, as shown in Fig.

8



4. It can be observed that the accuracy, model complexity, and rule complexity of the optimal rules
generally increase with the increase of M2, and then level off or slightly decrease. This is because,
when M2 is small, we may not be able to sample sufficiently suitable rule sets to fit the training set.
When M2 is too large, the sampled optimal rule set is more likely to overfit the training set, leading
to a slight decrease in test accuracy.
So far, we have focused on the optimal rule set extracted from the hypernetwork. Table 2 further
shows the different optimal results obtained in three training sessions for the heloc dataset, indicating
that we can find different high-quality rule sets in different training sessions. However, considering
only one optimal rule set is not enough to reflect the advantage of the hypernetwork in generating
multiple high-quality rule sets in one training session, which provides more options and a deeper
understanding of the data, something that methods learning only one set of rules cannot offer.

Table 2: Examples of optimal rule sets learned from different training runs on the heloc dataset

Version Rule Train
Acc

Test
Acc

1 1⃝¬AvgFile ≤ 40.0 ∧ ¬ExtRisk ≤ 69.0 ∧ ¬PctNeverDelq ≤ 78.0 ∧
NetFracBurden ≤ 77.0

69.28 71.51

2 1⃝¬AvgFile ≤ 40.0 ∧ ¬ExtRisk ≤ 66.0 ∧ ¬OldTradeOpen ≤ 87.0 ∧
¬PctNeverDelq ≤ 78.0 ∧ NetFracBurden ≤ 60.0
2⃝¬MaxDelq2Rec12M ≤ 5.0 ∧ BankTradesHighUtil ≤ 2.0 ∧
¬ExtRisk ≤ 74.0

70.59 71.41

3 1⃝¬ExtRisk ≤ 74.0∧¬PctNeverDelq ≤ 92.0∧NetFracBurden ≤ 47.0 69.95 69.60

The ability of the hypernetwork to generate diverse rules is mainly related to M1 and λ1. λ1, as the
coefficient of diversity regularization term, directly affects the diversity of the hypernetwork output,
while M1 indirectly affects the process by influencing the stability of hypernetwork updates. For
the impacts of M1 and λ1, we are no longer concerned with the optimal rule set but focus on all the
rule sets generated by the hypernetwork, and describe the diversity and accuracy of the rule sets as a
whole.
The diversity of the rules is measured in two aspects: 1. How many different rule sets can we generate
by sampling a certain number of weights from the hypernetwork? 2. What is the degree of similarity
between the generated different rule sets? We use Jaccard similarity to measure this.
We take the magic dataset as an example to analyze M1 and λ1; the results for the remaining datasets
are in Appendix F. The impact of M1 on rule diversity and test accuracy is shown in Fig. 5. It can
be seen that when M1 = 5, there is the best performance in all aspects. This may be because, when
M1 is small, the hypernetwork generates weights fewer times, making the training less stable. When
M1 is too large, the training and updates of the hypernetwork become too stable and conservative,
slowing down the convergence speed and resulting in a performance decline of the hypernetwork.

101 102 103 104

Sample Size

101

102

103

U
ni

qu
e 

R
ul

e 
Se

ts
 N

um

M1 = 1
M1 = 5
M1 = 10
M1 = 20

1 5 10 20
M1

0.76

0.78

0.80

0.82

0.84

Te
st

 A
cc

ur
ac

y

0.10

0.15

0.20

0.25

Ja
cc

ar
d 

Sc
or

e

Jaccard Score

Figure 5: Analysis of the impact of M1 on magic dataset
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The impact of λ1 on rule diversity and test accuracy is shown in Fig. 6. It can be seen that increasing
λ1 significantly enhances the diversity of the rule sets, but excessive emphasis on rule diversity may
affect the accuracy of the rules.
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Figure 6: Analysis of the impact of λ1 on magic dataset

5.4 Ensemble Learning
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Figure 7: Test accuracy using top L rule
sets in ensemble learning.

Since the hypernetwork can generate a diverse and rich
set of rule sets, a natural idea is to use ensemble learning
to achieve better classification performance. We use the
simple averaging voting method for ensemble learning.
We select the top L rule sets based on their accuracy on
the training set and report their accuracy on the test set.
The values of L are 1, 5, 10, 30, 50, 100, and 200. As
shown in Fig. 7, the test accuracy initially increases with
the increase of L, then slightly decreases.
This may because the top single rule set is already highly
effective, leaving little room for improvement. When L
is too large, less effective rule sets decrease the ensemble’s overall performance. Additionally, our
current strategy focuses on balancing diversity and accuracy of single rule sets. Adjusting the strategy
specifically for ensemble learning could yield better results.

6 Conclusion and Limitations
In this paper, we proposed HyperLogic, a novel framework that enhances the field of differentiable
rule learning through the integration of hypernetworks. We also provided a theoretical foundation for
HyperLogic’s performance, explaining its effectiveness. This includes an analysis of approximation
error and generalization capabilities under sparsity and diversity regularization. What’s more, we
conducted extensive experiments on multiple datasets, demonstrating that HyperLogic accelerates
the training process while producing more concise and accurate rules.
Despite these advancements, HyperLogic introduces additional hyperparameters and requires further
exploration of ensemble learning within this framework. Future research will focus on alternative
training strategies, more stable weight combination methods, and applying HyperLogic to a broader
range of datasets and tasks to enhance its generality and practicality.

7 Broader Impacts
The development and utilization of interpretable logic rules through HyperLogic have significant pos-
itive societal impacts, particularly in high-risk domains such as healthcare, finance, and legal systems.
By generating multiple candidate rule sets, HyperLogic provides more flexible and comprehensive
insights, enhancing transparency and trust in decision-making processes. This is crucial for ensuring
safety and regulatory compliance. However, it is important to note that while our method provides
richer rule sets and aids experts in understanding data patterns, these rules should complement rather
than replace expert judgment. Relying solely on automated rules without expert oversight in critical
areas could pose significant risks. Thus, our approach emphasizes the collaborative role of machine
learning models and human experts to mitigate potential negative impacts.
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A Compare with classical rule learning methods
We first compare HyperLogic with falling rule lists(FRL) methods like [39, 40, 41], which are
often used in practice. FRL methods explicitly construct a falling list of rules with probabilities;
Differentiable HyperLogic focuses on directly mining patterns and generating rules from data in a
scalable manner using neural networks. Our differentiable approach demonstrates better scalability
for pattern mining tasks on large-scale data (see Section 2). The main differences between FRL
and the HyperLogic are:

1. Rule Generation:
• FRL methods rely on other rule mining techniques to generate initial candidate rules.
• HyperLogic uses a differentiable neural network approach to directly mine patterns

and generate rules from data in an end-to-end manner.
2. Scalability:

• FRL methods may face scalability issues when dealing with large candidate rule sets
or complex data.

• HyperLogic, a neural network-based approach, is more scalable for pattern mining in
large-scale data.

3. Rule Ordering:
• FRL methods explicitly order the rules into a descending list based on rule probabilities

or other criteria.
• HyperLogic generates an unordered set of rules.

4. Probabilistic Interpretation:
• FRL methods provide probabilistic interpretations for the rules by construction.
• HyperLogic does not directly output rule probabilities, although probabilities could

potentially be derived from the learned patterns.
5. Integration Potential: A recent study [42] proposed a neural method to learn ordered rule

lists, which could potentially be integrated with HyperLogic to enable joint rule generation
and probabilistic ordering, combining the strengths of both approaches.

Other statistical rule mining methods like Bayesian rule lists [43] and Bayesian decision sets [20]
provide probabilistic interpretations but are limited to binary classification and small rule sets. Fuzzy
rule-based models [44] incorporate human-like reasoning but lack probabilistic predictions and
scalability. In the supplementary experiments B, we include the current advanced traditional rule
learning method CLASSY in the comparison to further demonstrate the advantages of our method
over traditional methods.

B Results for HyperLogic with DIFFNAPS
To expand our experiments to larger and more complicated cases, we considered the latest Neuro-
Symbolic algorithm DIFFNAPS [30], which is capable of pattern mining under large-scale data
conditions. For HyperLogic, we selected only the classifier part of DIFFNAPS as the main network
to compare with vanilla DIFFNAPS.

B.1 Large Synthetic Datasets
Following the original experiments, we tested the model’s pattern mining performance under a
fixed input dimension of 5000 and varying total number of categories K (ranging from 2 to 50),
measured by the F1 score, with each category containing 1000 samples.
Compared with the current data set, in our new data set, the feature dimension has been raised from
a maximum of 154 dimensions to a maximum of 5k dimensions, the amount of data has been raised
from a maximum of 24,000 to a maximum of 50,000, and the task has been raised from a maximum
of 2 categories to a maximum of 50 categories, reflecting the characteristics of the task diversity
and complexity.
The experimental results are shown in the table below. It can be seen that in datasets with fewer
categories, due to the smaller total number of samples, HyperLogic has not yet received sufficient
training and does not perform ideally. However, in more challenging classification datasets with
an increased number of samples, the model’s performance has significantly improved, with an
average F1 score increase of 6%. This fully demonstrates that our framework can empower diverse
neural rule learning networks, capable of handling large-scale data and possessing a good range of
applications.
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Dataset (K=) DIFFNAPS HyperLogic
2 0.788 ± 0.080 0.726 ± 0.084
5 0.703 ± 0.030 0.675 ± 0.036

10 0.726 ± 0.013 0.751 ± 0.020
15 0.622 ± 0.017 0.800 ± 0.028
20 0.712 ± 0.015 0.760 ± 0.011
25 0.688 ± 0.020 0.770 ± 0.020
30 0.602 ± 0.014 0.766 ± 0.021
35 0.557 ± 0.014 0.668 ± 0.018
40 0.635 ± 0.022 0.712 ± 0.011
45 0.611 ± 0.009 0.694 ± 0.009
50 0.603 ± 0.010 0.702 ± 0.012

Table 3: The F1 score (± std) of two methods among 11 synthetic datasets

B.2 Large Real Datasets
We evaluated our method on four large biological datasets following the settings of DIFFNAPS:
Cardio, Disease, BRCA-N, and BRCA-S, using the area under the curve (AUC) as the metric. We
continued to combine our approach (HyperLogic) with DIFFNAPS as the main network and compared
it to vanilla DIFFNAPS. Additionally, FRL [39] cannot scale to non-trivial data, while CLASSY [41]
was already compared in the original paper.
The table shows the dataset details (i.e. samples (n), features (D), and classes (K)), number of
discovered patterns (#P), average pattern length (|P|), and AUC scores (results for DIFFNAPS and
CLASSY are taken directly from [30]).

Dataset n D K HyperLogic DIFFNAPS CLASSY

#P |P | AUC #P |P | AUC #P |P | AUC

Cardio 68k 45 2 15 2 0.57 14 2 0.56 10 2 0.36
Disease 5k 131 41 866 2 0.86 838 2 0.84 25 2 0.11
BRCA-N 222 20k 2 187 6 0.95 146 9 0.91 3 1 0.45
BRCA-S 187 20k 4 1k 2 0.89 1k 2 0.86 2 1 0.23

Table 4: Comparison of HyperLogic, DIFFNAPS, and CLASSY across 4 real datasets.

CLASSY lacks the finesse to effectively mine patterns for large-scale real-world tasks. Moreover,
despite competing with the strong DIFFNAPS baseline, HyperLogic achieved further improvements,
demonstrating its potential for handling large, real-world datasets.

C Hypernetwork Details
We adopted HyperGAN as our hypernetwork. Assuming the main network comprises N distinct
weight partitions, HyperGAN includes a mixer Q and N generators G1, G2, . . . , GN .
Mixer Q: Receives high-dimensional Gaussian distributed random samples s ∼ N (0, I), and
transforms it into a N×h dimensional vector z, further split into N samples of h-dimensional vectors
z1, z2, . . . , zN . The mixer’s design reflects the necessity for correlations between layer weights, as
each layer’s output becomes the subsequent layer’s input.
Generators Gi: Each generator receives a vector zi from the mixer, producing an output vector of
dimension mi, where mi represents the parameter count for the i-th part of the network weights.
These vectors are then reshaped to meet the specifications of the corresponding layers in the main
network.
In our specific task, the number of generators N is set to 2, and each generator’s input dimension
h is 64. The input dimension of the Mixer, which is the sampled noise, is 256, and it produces an
output of N × h = 128. Each of the above models has two hidden layers with dimension 512, and
the activation function is ReLu.
Our main network is designed to generate K = 50 rules. For a dataset with dimension D:

• Generator 1: Produces an output of dimension (D ×K, 1), representing the Rule layer.
• Generator 2: Produces an output of dimension (K × 1, 1), representing the OR layer.
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These outputs are then reshaped to meet the specifications of the corresponding layers in the main
network.

D Proof for Theorem 1
Proof. Using Barron’s theorem (e.g., [19, Theorem 11.3]), there exist weight coefficients (wm

k , ũm
k ),

m = 1, . . . ,M , k = 1, . . . ,K, such that the function f̃ defined by

f̃(x) =
1

MK

M∑
m=1

K∑
k=1

ũm
k h
(
(wm

k )⊤x
)

satisfies

∥f − f̃∥L2 ≤ ∥f∥B√
MK

.

Setting um
k = ũm

k /K, wm = (wm
1 , . . . , wm

K), um = (um
1 , . . . , um

K) yields the desired result.

E Proof for Theorem 2
E.1 Generalization Error: Diverse Regularization
Let us compute the Rademacher complexity of the model class

FKL :=

{
fµ(·) : DKL(µ∥µ0) ≤ BKL

}
,

where µ0 is a product distribution µ̃⊗K
0 . Using the property of relative entropy, for each pair of

marginal distributions µk and µ̃0, k = 1, . . . ,K, their relative entropy satisfies DKL(µk∥µ̃0) ≤ BKL.
Using the convexity of the relative entropy, the mixture distribution µ̃ satisfies DKL(µ̃∥µ̃0) ≤ BKL.
Hence, the function class FKL belongs to the function class

F̃KL :=

{
f̃µ̃(·) : DKL(µ̃∥µ̃0) ≤ BKL

}
.

Using [19, Corollary 10.17], the Rademacher complexity of F̃KL is bounded by
√
2BKL/n. Given

our bound on the Rademacher complexity, for f ∈ F̃KL, we get:

ED[ℓ(f)]− ℓ̂(f) ≤ 2

√
2BKL

n
+ C

√
log(1/δ)

2n
. (11)

where ED[ℓ(f)] is the expected loss, ℓ̂(f) is the empirical loss, n is the number of samples, C is a
constant dependent on the loss function, and δ is the confidence level.

E.2 Generalization Error: Sparse Regularization
Next, we will derive the generalization error bounds for the HyperLogic model under sparse regular-
ization (as shown in the second term of Eq. (6 )).
Let us compute the Rademacher complexity of the model class

F1 :=

{
f̃µ(·) : Eµ

[ 1
K

K∑
k=1

|uk|
]
≤ B1

}
.

Observe that the constraint Eµ

[
1
K

∑K
k=1 |uk|

]
≤ B1 implies that

Eµ̃ [|ũ|] = Eµ

[∣∣∣∣∣ 1K
K∑

k=1

uk

∣∣∣∣∣
]
≤ Eµ

[
1

K

K∑
k=1

|uk|

]
≤ B1.

Hence, the function class F belongs to the function class

F̃1 :=

{
f̃µ̃(·) : Eµ̃ [|ũ|] ≤ B1

}
.

Using [19, Proposition 11.23], the Rademacher complexity of F̃1 is bounded by 32B1

√
(D + 1)/n.

The generalization error bound for the HyperLogic model under sparse regularization, derived from
the Rademacher complexity, can be expressed as follows:

ED[ℓ(f)]− ℓ̂(f) ≤ 64B1

√
(D + 1)/n+ C

√
log(1/δ)

n
The explaination of this error bound is similar with the previous one.
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F Supplementary Result
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Figure 8: Analysis of the impact of M1 on adult dataset
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Figure 9: Analysis of the impact of λ1 on adult dataset
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Figure 10: Analysis of the impact of M1 on house dataset
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Figure 12: Analysis of the impact of M1 on heloc dataset
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Figure 13: Analysis of the impact of λ1 on heloc dataset
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Figure 11: Analysis of the impact of λ1 on house dataset

G Computing Infrastructure
For our method, all experiments were conducted on a Linux server with an Intel(R) Xeon(R) Gold
6248R CPU @ 3.00GHz and 30Gi of memory, running Ubuntu 20.04.5 LTS, using one of the NVIDIA
GeForce RTX 3090 GPUs available on the server. Each experimental run took approximately 10-20
minutes to complete. This setup ensures that our experiments are reproducible and efficient.
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paper’s contributions and scope?
Answer: [Yes]
Justification: We demonstrate our innovations and contributions in the abstract and introduc-
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our proposed model in the conclusion part.
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• The answer NA means that the paper has no limitation while the answer No means that
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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should reflect on how these assumptions might be violated in practice and what the
implications would be.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide theoretical proofs about our proposed model in the theoretical
analysis section.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the details of hyper parameters and neural network structures for
reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code will be made publicly available upon the paper’s acceptance.
Guidelines:
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the training and test details including hyperparameters, type of
optimizer, learning rates, hidden layers of networks in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our rule performance results mean accuracy with the standard error across a
nested 5-fold cross-validation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We demonstrate the computer resource requirements in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in our paper fully complies with the NeurIPS Code of
Ethics in all aspects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss potential positiveand negative societal impacts of the work in the
appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that produced the dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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