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Abstract
We study first-order methods with precondition-
ing for solving structured nonlinear convex op-
timization problems. We propose a new family
of preconditioners generated by symmetric poly-
nomials. They provide first-order optimization
methods with a provable improvement of the con-
dition number, cutting the gaps between highest
eigenvalues, without explicit knowledge of the ac-
tual spectrum. We give a stochastic interpretation
of this preconditioning in terms of coordinate vol-
ume sampling and compare it with other classical
approaches, including the Chebyshev polynomi-
als. We show how to incorporate a polynomial
preconditioning into the Gradient and Fast Gra-
dient Methods and establish the corresponding
global complexity bounds. Finally, we propose
a simple adaptive search procedure that automat-
ically chooses the best possible polynomial pre-
conditioning for the Gradient Method, minimiz-
ing the objective along a low-dimensional Krylov
subspace. Numerical experiments confirm the
efficiency of our preconditioning strategies for
solving various machine learning problems.

1. Introduction
Motivation. Preconditioning is an important tool for im-
proving the performance of numerical algorithms. The clas-
sical example is the preconditioned Conjugate Gradient
Method (Hestenes & Stiefel, 1952) for solving a system of
linear equations. It proposes to modify the initial system
in a way to improve its eigenvalue distribution and thus to
accelerate the convergence of the method. The question of
choosing the right preconditioner heavily depends on the
problem structure, and there exist many problem-specific
recommendations which provide us with a good trade-off
between computational cost and the spectrum properties of
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the new system. Some notable examples include Jacobi or
the diagonal preconditioners, symmetric successive over-
relaxation, the incomplete Cholesky factorization (Golub
& Van Loan, 2013), Laplacian preconditioning for graph
problems (Vaidya, 1991; Spielman & Teng, 2004), precon-
ditioners for discretizations of system of partial differential
equations (Mardal & Winther, 2011).

Another important class of numerical algorithms are the
second-order methods or Newton’s Method (see, e.g. (Nes-
terov, 2018)), that aims to solve difficult ill-conditioned
problems by using local curvature information (the Hessian
matrix) as a preconditioner at every step. However, being
a powerful algorithm, each iteration of Newton’s Method
is very expensive. It requires to solve a system of linear
equations with the Hessian matrix, and in case of quadratic
objective it is equivalent to solving the original problem.

In this paper, our goal is to solve a general nonlinear op-
timization problem with a structured convex objective by
the efficient first-order methods. Thus, in the case of un-
constrained minimization of a smooth function: minx f(x),
the simplest method that we study is as follows, for k ≥ 0:

xk+1 = xk − αkP∇f(xk), (1)

where αk > 0 is a stepsize and P is a fixed precondition-
ing matrix. P := I corresponds to the classical gradient
descent. Another natural choice is P := B−1, where B is
a curvature matrix of our problem1, which is directly avail-
able for the algorithm. That resembles the Newton-type
direction, and the method with this preconditioner tends to
converge much faster in practice (see Figure 1). However,
computing B−1 (or solving the corresponding linear sys-
tem with B) is a very expensive operation in the large scale
setting.

Instead of using B−1, we propose a new family of Symmet-
ric Polynomial Preconditioners, that provably improve the
spectrum of the objective. The first member of our family is

P := tr (B)I −B. (2)

We prove that using preconditioner (2) within method (1),
makes the condition number insensitive to the gap between

1See the definition of B in our Assumption 2.1 and the corre-
sponding Examples 2.2, 2.3, 2.4 of different problems.
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Figure 1: Training logistic regression with the standard gradient
descent (P = I), and using the inverse of the curvature matrix
(P = B−1) as a preconditioner in (1). The latter method works
much faster, while it can be very expensive to compute B−1 for
large scale problems.

the top two eigenvalues of the curvature matrix. Since it
is quite common for real data to have a highly nonuniform
spectrum with several large gaps between the top eigenval-
ues (see Figure 2), our preconditioning can significantly
improve the convergence of the first-order methods. At the
same time, one step of the form (1),(2) is still cheap to com-
pute. It involves just the standard matrix operations (trace
and the matrix-vector product), without the need to solve
linear systems with the curvature matrix as in Newton’s
Method.
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Figure 2: Leading eigenvalues (in the logarithmic scale) of the
curvature matrix B, for several typical datasets2. There are large
gaps between the top eigenvalues.

This approach works for general structured nonlinear prob-
lems (not necessarily quadratics) and also for the problems
with possible composite parts (e.g., constrained minimiza-
tion or non-smooth regularization).

2https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/

Our new family of Symmetric Polynomial Preconditioners
gradually interpolate between the first preconditioner (2)
and P ∝ B−1 as the other extreme case. We show that
increasing the order of the preconditioner, we are able to cut
off several top eigenvalues of the curvature matrix, without
knowing the actual spectrum. We can incorporate these pre-
conditioners both into the Gradient Method, as well as into
the accelerated Fast Gradient Method (Nesterov, 1983), with
a further provable improvement of the condition number.

Finally, we address the common question of choosing the
best possible preconditioner. We propose a new adaptive
strategy for the basic nonlinear Gradient Method based on
the Krylov subspace minimization. In this approach, pre-
conditioner P is defined as a general polynomial of the
curvature matrix B of a fixed (small) degree τ :

P := a0I + a1B + . . .+ aτB
τ ,

where the vector of coefficients a ∈ Rτ+1 is found by
solving a certain linear system of size τ +1 in each iteration
of the method. It has a plain interpretation of projecting the
direction B−1∇f(xk) onto an affine set Kτxk

, which is the
Krylov subspace:

Kτx
def
= span

{
∇f(x), B∇f(x), . . . ,Bτ∇f(x)

}
.

(3)
In case of small τ , we can solve this linear system easily and
obtain the best preconditioning guarantee for our method,
which is adaptive for each iteration.

Related Work. It is widely known that the standard Con-
jugate Gradient Method is optimal in the class of the first-
order algorithms for unconstrained minimization of convex
quadratic functions (Nemirovski, 1995). The kth iteration
of the Conjugate Gradients finds the full minimum of the
objective over the k-dimensional Krylov subspace, and thus
it provably solves the problem after k = n iterations, where
n is the dimension of the problem. Quadratic minimiza-
tion is equivalent to solving a system of linear equations,
therefore it is often referred as the linear case. Polyno-
mial preconditioning for solving large linear systems has
been extensively studied during the last several decades;
see (Dubois et al., 1979; Johnson et al., 1983; Saad, 1985;
Van Gijzen, 1995; Liu et al., 2015; Loe & Morgan, 2022)
and references therein. See also Section 5.3 for the com-
parison of our preconditioning strategies with the linear
Conjugate Gradient Method.

The situtation with nonlinear problems is more difficult.
Along with the basic Gradient Method, the classical ap-
proaches include the Nonlinear Conjugate Gradients and
Quasi-Newton Methods (see, e.g. (Nocedal & Wright,
2006)), which typically demonstrate a decent practical per-
formance, while replicating the standard Conjugate Gradi-
ents in the linear case. However, these methods lack of
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Preconditioner Condition number, β/α Methods Cost

Classical Gradient Method P = I λ1/λn GM, FGM cheap

”Full Preconditioning” P = B−1 1 GM, FGM expensive

Symmetric Polynomial Preconditioning (ours) P = Pτ (11) λ1/λn · ξτ (λ) GM, FGM cheap for small τ

Krylov Subspace Minimization (ours) optimal polynom. λτ+1/λn GM cheap for small τ

Table 1: The value β/α for different preconditioning strategies, λ = λ(B). Note that ξτ (λ) ≤ 1, and ξτ (λ) → 0 in case of large spectral
gaps, namely when λ1/λτ+1 → ∞ (see Section 4). For solving the problem with ϵ > 0 accuracy, GM needs k(ϵ) = O(β/α · 1/ϵ) and
k(ϵ) = O(β/α · L/µ · log 1/ϵ) iterations for convex and strongly convex functions correspondingly. FGM needs only

√
k(ϵ) iterations

(Theorems 3.1 and 3.2).

having any good global complexity bounds, and thus in the
worst-case scenario they can actually perform even worse
than the Gradient Method (Gupta et al., 2023). At the same
time, the Fast Gradient Method developed by (Nesterov,
1983) is optimal for the class of nonlinear problems with a
uniformly bounded eigenvalues of the Hessian (Nemirovski
& Yudin, 1983). This assumption does not take into account
the actual distribution of the spectrum. Hence, it can not
distinguish the problems with large gaps between the top
eigenvalues, as in Figure 2.

There have been several attempts to study more specific
problem formulations, and so to gain a provable advantage
for the optimization algorithms by leveraging the spectrum
of the Hessian. Thus, the quadratic minimization problems
were studied under the assumption of a particular probability
distribution for the eigenvalues (Scieur & Pedregosa, 2020;
Cunha et al., 2022), or assuming a certain fixed spectral
gap (Goujaud et al., 2022), revealing the advantages of
employing the Heavy-ball Method (Polyak, 1987) in these
cases. Another example is the Stochastic Spectral Descent
(Kovalev et al., 2018), which improves the condition number
for quadratic problems if we know some of the eigenvectors.

In this work, we consider a refined smoothness characteriza-
tion of the objective with the curvature matrix B (Assump-
tion 2.1). It is similar in spirit to that one used in Stochastic
Dual Newton Ascent (Qu et al., 2016). An important partic-
ular instance of this class of algorithms is the Randomized
Coordinate Descent with Volume Sampling (Rodomanov &
Kropotov, 2020). In the latter method, it was proposed to
select subsets of variables of certain size m proportionally
to the determinants of principal submatrices of B. While
this approach was practically implementable only for the
subsets of size m = 1 or 2, it was shown that, in theory, the
method is insensitive to the large spectral gap between the
top m− 1 eigenvalues.

Surprisingly, our new family of the Symmetric Polynomial
Preconditioners can be viewed as a deterministic version of
the Volume Sampling technique (withm = τ+1 where τ is
the degree of a preconditioning polynomial; preconditioner
(2) corresponds to τ = 1). Thus, we provide the Volume

Sampling with a novel deterministic interpretation, which
also leads to new accelerated and composite optimization
algorithms (see Section 4.3 for a detailed comparison).

Contributions. We propose several polynomial precon-
ditioning strategies for first-order methods for solving a
general composite convex optimization problem, and prove
their better global complexity guarantees, specifically:

• We study the convergence of the basic Gradient Method
(GM, Algorithm 1) and the accelerated Fast Gradient
Method (FGM, Algorithm 2) with a general (arbitrar-
ily fixed) preconditioning matrix. We introduce two
condition numbers, that are designated to the different
parts of the objective (L/µ for nonlinearity and β/α
for the curvature matrix), and show that they serve as
main complexity factors.

• We develop a new family of Symmetric Polynomial
Preconditioners (Section 4). Combining them with
the preconditioned Gradient Methods, we establish
a significant improvement of the curvature condition
number β/α in case of large gaps between the top
eigenvalues of the matrix (see Table 1).

• Then, we propose a new adaptive procedure based
on the Krylov subspace minimization (Algorithm 3)
that achieves the best polynomial preconditioning. We
present the guarantees we can get, including cutting
off the top eigenvalues directly and by employing the
Chebyshev polynomials, and compare this approach
with the Symmetric Polynomial Preconditioning.

• Numerical experiments are provided.

2. Notation and Assumptions
We consider the following optimization problem given in
the composite form:

F ⋆ = min
x∈Rn

{
F (x)

def
= f(x) + ψ(x)

}
, (4)

3
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where f : Rn → R is a differentiable convex function
which is the main part of the problem, and ψ : Rn →
R ∪ {+∞} is a proper closed convex function that can be
nondifferentiable but has a simple structure. For example, it
can be an indicator of a convex set, or ℓ1-regularizer.

Additionally, we fix some symmetric positive-definite ma-
trix B ∈ Rn×n (notation B = B⊤ ≻ 0). This matrix plays
the key role in our characterization of the smoothness prop-
erties of f . Namely, we assume the following (considering
for simplicity two-times differentiable functions):

Assumption 2.1. The Hessian of f is uniformly
bounded, for some constants L ≥ µ ≥ 0:

µB ⪯ ∇2f(x) ⪯ LB, ∀x ∈ Rn. (5)

Having fixed the matrix B, we define the corresponding
induced norm by ∥x∥B

def
= ⟨Bx,x⟩1/2, x ∈ Rn. Thus,

matrix B is responsible for fixing the coordinate system
in the problem. Then, condition (5) can be rewritten in
terms of the global lower and upper bound on the first-order
approximation of f (Nesterov, 2018):
µ
2 ∥y − x∥2B ≤ f(y)− f(x)− ⟨∇f(x),y − x⟩

≤ L
2 ∥y − x∥2B, ∀x,y ∈ Rn.

(6)

In what follows, we denote by λ = λ(B) ∈ Rn the vector
of eigenvalues for the matrix B, sorted in a nonincreasing
order: λ1 ≥ λ2 ≥ . . . ≥ λn.

The classical example is B := I (identity matrix). Then,
condition (5) implies that the function f is (strongly) con-
vex and has the Lipschitz continuous gradient. However,
by choosing a specific B, we tend to achieve a better gran-
ularity of the description of our problem class and thus to
improve the convergence properties of the methods.

Example 2.2. Let a ∈ Rn. Then, the quadratic function

f(x) = 1
2 ⟨Bx,x⟩ − ⟨a,x⟩,

satisfies condition (5) with L = µ = 1.

We see that in this case, the so-called condition number
L/µ is just 1, which means that preconditioning the Gra-
dient Method (1) with the matrix P := B−1 would give
an immediate convergence to the solution. However, in-
verting the matrix is prohibitively expensive for large scale
problems. Our aim is to find a suitable trade-off between
improving the condition number and the arithmetic cost of
algorithm steps. Let us consider the following important
example which can be met in many practical applications.

Example 2.3. Let A ∈ Rm×n be a given data matrix, and
b ∈ Rm be a given vector. Denote,

f(x) = g(Ax+ b)

Then, the derivatives are as follows: ∇f(x) =
A⊤∇g(Ax + b) and ∇2f(x) = A⊤∇2g(Ax + b)A.
Hence, assuming: µIm ⪯ ∇2g(x) ⪯ LIm, ∀x, with
some L ≥ µ ≥ 0, condition (5) is satisfied 3 with

B := A⊤A.

At the same time, for B := In (the standard Eu-
clidean norm), the Lipschitz constant increases by the
factor λ1(A⊤A), which makes the problem extremely ill-
conditioned.

A particular case of this example is separable optimization,
or generalized linear models (Bishop, 2006), which covers
the classical regression and classification models.

Example 2.4. Let

f(x) = 1
m

m∑
i=1

ϕ(⟨ai,x⟩), x ∈ Rn,

where ϕ : R → R is a loss function satisfying: µ ≤ ϕ′′(t) ≤
L, ∀t ∈ R, with some L ≥ µ ≥ 0. Then, forming the
matrix A ∈ Rm×n whose rows are a⊤

1 , . . . ,a
⊤
m and setting

B := A⊤A, condition (5) holds.

3. Preconditioned Gradient Methods
A natural intention would be to use the global upper bound
(6) as a model for the smooth part of the objective. How-
ever, the direct minimization of such upper model requires
to solve the linear system with the matrix B, which can
computationally unfeasible for large scale problems.

Instead, let us fix for our preconditioner some positive
definite symmetric matrix P = P⊤ ≻ 0, which sat-
isfies the following bound, for some α := α(P ) and
β := β(P ) ≥ α > 0:

αB−1 ⪯ P ⪯ βB−1. (7)

We are going to use this matrix instead of B−1 in our meth-
ods. For a fixed symmetric positive definite matrix P and
parameter M > 0, we denote the gradient step from a point
x ∈ domψ along a gradient direction g ∈ Rn by

GradStepM,P (x, g)

def
= argmin

y∈domψ

{
⟨g,y⟩+ ψ(y) +

M

2
∥y − x∥2P−1

}
.

This operation is well-defined since the objective function
in the above minimization problem is strongly convex. We
assume that both ψ and P are reasonably simple so that
the corresponding gradient step can be efficiently com-
puted. An important case is ψ = 0 for which we have

3Here, we assume that A⊤A ≻ 0 which is typically the case
when m ≫ n. Otherwise, we can reduce the dimensionality.
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GradStepM,P (x, g) = x − 1
MPg. The latter expression

can be efficiently computed whenever one can cheaply mul-
tiply the matrix P by any vector.

3.1. Preconditioned Basic Gradient Method

First, we consider the basic first-order scheme shown in
Algorithm 1 for solving the composite problem (4). For
simplicity, in this section, we only present a version of this
method with a fixed step size and assume that all necessary
constants are known. An adaptive version of Algorithm 1
which does not have these limitations and is more efficient
in practice can be found in Appendix C.

Algorithm 1 Preconditioned Basic Gradient Method

Input: x0 ∈ domψ, P = P⊤ ≻ 0, M > 0.
for k = 0, 1, . . . do

Compute xk+1 = GradStepM,P

(
xk,∇f(xk)

)
.

end for

For Algorithm 1, we can prove the following results.

Theorem 3.1. Consider Algorithm 1 with M = βL.
Then, at each iteration k ≥ 1, we have

F (xk)− F ⋆ ≤ β

α

L∥x0 − x⋆∥2B
k

. (8)

When µ > 0, the convergence is linear: for all k ≥ 1,

F (xk)−F ⋆ ≤
(
1− 1

4

α

β

µ

L

)k
[F (x0)−F ⋆]. (9)

We see that one of the principal complexity factors in the
above estimates is the condition number β/αwhich depends
on the choice of our preconditioner P (see (7)). For the
basic choice P = I , we have β/α = λ1/λn. However,
as we show in the following sections, it is possible to use
more efficient (and still quite cheap) preconditioners which
improve this condition number.

3.2. Preconditioned Fast Gradient Method

Now let us consider an accelerated scheme shown in Al-
gorithm 2. This algorithm is one of the standard variants
of the Fast Gradient Method (FGM) known as the Method
of Similar Triangles (see, e.g., Section 6.1.3 in (Nesterov,
2018)) but adapted to our assumptions (5) and (7).

As in other versions of FGM, to properly handle strongly
convex problems, Algorithm 2 requires the knowledge of
the strong convexity parameter α and µ (or, more precisely,
their product ρ = αµ). For non-strongly convex problems,
we can always choose α = µ = 0. See also Appendix C for
a variant of Algorithm 2 which can automatically adjust the
constant M in iterations.

Algorithm 2 Preconditioned Fast Gradient Method

Input: x0 ∈ domψ, P = P⊤ ≻ 0, M > 0, ρ ≥ 0.
Set v0 = x0, A0 = 0.
for k = 0, 1, . . . do

Find ak+1 from eq. Ma2k+1

Ak+ak+1
= 1 + ρ(Ak + ak+1).

Set Ak+1 = Ak + ak+1, Hk = 1+ρAk+1

ak+1
.

Set θk = ak+1

Ak+1
, ωk = ρ

Hk
, γk = ωk(1−θk)

1−ωkθk
.

Set v̂k = (1− γk)vk + γkxk.
Set yk = (1− θk)xk + θkv̂k.
Compute vk+1 = GradStepHk,P

(
v̂k,∇f(yk)

)
.

Set xk+1 = (1− θk)xk + θkvk+1.
end for

The convergence results for Algorithm 2 are as follows.

Theorem 3.2. Consider Algorithm 2 with M = βL
and ρ = αµ. Then, at each iteration k ≥ 1, we have

F (xk)− F ⋆ ≤ 2
β

α

L∥x0 − x⋆∥2B
k2

. (10)

When µ > 0, the convergence is linear: for all k ≥ 1,

F (xk)−F ⋆ ≤
(
1−

√
α

β

µ

L

)k−1
β

α

L

2
∥x0−x⋆∥2B.

Comparing these estimates with those from Theorem 3.1, we
see that the accelerated scheme is much more efficient. For
instance, to reach accuracy ϵ > 0 in terms of the objective
function in the non-strongly convex case, Algorithm 1 needs
k(ϵ) = β

α
L∥x0−x⋆∥2

B

ϵ iterations, while for Algorithm 2 this
number is only k2(ϵ) =

√
2k(ϵ). Similar conclusions are

valid in the strongly convex case.

Despite having much weaker dependency on the condition
number β/α, Algorithm 2 is still quite sensitive to it. Thus,
the proper choice of the preconditioner P is important for
both our methods.

4. Symmetric Polynomial Preconditioning
We would like to have a family of preconditioners Pτ for our
problem indexed by some parameter τ . Varying τ should
provide us with a trade off between the spectral quality of
approximation (7) of the inverse matrix and the arithmetical
cost of computing the preconditioner.

Surprisingly, such a family of preconditioners can be built
by using symmetric polynomials, the classical objects of
Algebra. We prove that our preconditioning improves the
condition number β

α of the problem, by automatically cut-
ting off the large gaps between the top eigenvalues.

5
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4.1. Definition and Basic Properties

We define the family of symmetric matrices {Pτ}0≤τ≤n−1

recursively. We start with identity matrix: P0
def
= I . Then,

Pτ
def
= 1

τ

τ∑
i=1

(−1)i−1Pτ−iUi, (11)

where Uτ
def
= tr (Bτ )I −Bτ are the auxiliary matrices. It

turns out that matrices (11) serve as a good approximation
of the inverse matrix: Pτ ≈ B−1, up to some multiplicative
constant, and the quality of such approximation is gradually
improving when increasing parameter τ . Let us look at
several first members. Clearly,

P1 = tr (B)I −B, (12)

which is very easy to handle, by having computed the trace
of the curvature matrix. Then, multiplying P1 by any vector
would require just one matrix-vector multiplication with our
original B. Further,

P2 = 1
2 tr (P1B)I − P1B

= 1
2

[
[tr (B)]2 − tr (B2)

]
I − tr (B)B +B2,

(13)
thus its use would cost just two matrix-vector products with
B, having evaluated4,5 the numbers tr (B) and tr (B2).

It is clear that in general Pτ = pτ (B), where pτ is a polyno-
mial of a fixed degree τ with coefficients that can be found
recursively from (11). Let us give a useful interpretation
for our family of preconditioners, that also explains their
name. For a ∈ Rn−1, we denote by σ0(a), . . . , σn−1(a)
the elementary symmetric polynomials in n−1 variables6. It
is known that every symmetric polynomial (that is invariant
to any permutation of the variables) can be represented as a
weighed sum of elementary symmetric polynomials (Dum-
mit & Foote, 2004). We establish the following important
characterization.

Lemma 4.1. Let B = QDiag (λ)Q⊤ be the spectral de-
composition. Then,

Pτ = QDiag (στ (λ−1), . . . , στ (λ−n))Q
⊤, (14)

where λ−i ∈ Rn−1 is the vector that contains all elements
of λ except λi.

In particular, we justify Pτ ≻ 0. For τ = n− 1, we get

4Note that tr (B2) =
∑n

i=1 ∥B[:, i]∥22, where B[:, i] ∈ Rn is
the ith column of B.

5For general τ , we can also use a stochastic estimate of the
trace: ξτ

def
= n⟨Bτu,u⟩, where u ∈ Rn is uniformly distributed

on the unit sphere. It would give an unbiased estimate: E[ξτ ] =
nE[tr (u⊤Bτu)] = ntr (E[uu⊤]Bτ ) = tr (Bτ ).

6That is στ (a)
def
=

∑
1≤i1<...<iτ≤n−1 ai1 . . . aiτ .

Pn−1
(4.1)
= det(B)B−1 def

= Adj (B), (15)

which gives us the true inverse matrix B−1 up to the con-
stant factor det(B).

4.2. Approximation Quality

Now, let us show that the quality of approximation Pτ ≈
B−1 and that the corresponding condition number β

α is
improving when τ is increasing.

Theorem 4.2. For any τ , we have

λnστ (λ−n)B
−1 ⪯ Pτ ⪯ λ1στ (λ−1)B

−1. (16)

Therefore, the condition number is bounded as

β
α

(16)
= λ1

λn
· ξτ (λ), where ξτ (λ)

def
= στ (λ−1)

στ (λ−n)
.

Note that ξτ (λ) ≤ 1. It is equal to 1 for τ = 0 and can be
much smaller for bigger values of τ . For example, for τ = 1
(thus using preconditioner P1 given by (12)), we get

ξ1(λ) =
∑n

i=2 λi∑n−1
i=1 λi

≤ 1,

and it is much smaller than 1 when λ1 ≫ λ2, which cor-
responds to the case when the highest eigenvalue is well
separated from the others. Therefore, the methods with pre-
conditioner P1 achieve a provable acceleration in the case
of large gap between λ1 and λ2, without explicit knowledge
of the spectrum of B. The price of using P1 instead of P0

is just one extra matrix-vector product per iteration. Let us
summarize the main properties of ξτ (λ) (see also Figure 3).

Lemma 4.3. It holds that ξ0(λ) = 1, ξn−1(λ) =
λn

λ1
, and

ξτ (λ) monotonically decreases with τ . Moreover,

ξτ (λ) → 0 when λ1

λτ+1
→ ∞.

A more explicit upper bound which implies the above limit
is as follows.

Lemma 4.4. For any 0 ≤ τ ≤ n− 1, we have

ξτ (λ) ≤
∑n
i=τ+1 λi

λ1 +
∑n−1
i=τ+1 λi

.

We see that τ interpolates Pτ between I and Adj (B), while
the condition number β

α changes from λ1

λn
to 1 Therefore,

we obtain an extra degree of freedom in our methods for
choosing an appropriate small value of τ , that improves the
spectrum of the problem by cutting off large gaps between
λ1 and λτ+1.
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Figure 3: Above: different distributions of eigenvalues λ(B).
Below: the corresponding improvement of the condition number
β
α
= ξτ (λ) · λ1/λn by using the preconditioner Pτ of order τ .

4.3. Stochastic Representation

Let us provide another interesting interpretation for our
family of preconditioners. One way of approximating the
inverse matrix B−1 could be to extract from B a randomly
selected principal submatrix of size τ + 1, compute its in-
verse, put it back into the original “big matrix” and zero out
all other elements outside the submatrix. It turns out that,
in expectation, the result of this operation is exactly pro-
portional to our preconditioner Pτ if we pick the submatrix
from a special volume sampling distribution (Deshpande
et al., 2006).
Theorem 4.5. For any 0 ≤ τ ≤ n− 1, it holds that

Pτ ∝ ES∼Volτ+1(B)[IS(BS×S)
−1I⊤

S ], (17)

where S ⊆ {1, . . . , n} is a random (τ + 1)-element sub-
set of coordinates, IS ∈ Rn×(τ+1) is the matrix obtained
from the identity matrix by retaining only the columns with
indices from S, BS×S

def
= I⊤

S BIS ∈ R(τ+1)×(τ+1), and
Volτ+1(B) is the volume sampling distribution prescribing
to pick S with probability ∝ det(BS×S).

The idea of applying volume sampling in Optimization was
first proposed in (Rodomanov & Kropotov, 2020) for ac-
celerating coordinate descent methods. It was shown that
using this particular nonuniform sampling of coordinates
leads to a provable acceleration by a factor whose magnitude
depends on gaps in the spectrum of the curvature matrix.

Thus, we can interpret our basic Gradient Method (Al-
gorithm 1) with a fixed Symmetric Polynomial Precondi-
tioner Pτ as a deterministic counterpart of the randomized
coordinate descent method from (Rodomanov & Kropotov,
2020) with (τ + 1)-element volume sampling of coordi-
nates. Correspondingly, both methods have very similar
convergence properties and theoretical efficiency estimates.

Nevertheless, this work offers several significant advantages

over (Rodomanov & Kropotov, 2020). First, in addition to
the basic method, we have an accelerated one (Algorithm 2),
while the accelerated version of coordinate descent with
volume sampling is an open question. Second, volume sam-
pling is an expensive operation which is difficult to carry out
already when τ = 2. In contrast, the corresponding precon-
ditioner P2 for our gradient methods is still computationally
efficient (see Section 4.1). Finally, as we will show next, the
basic Gradient Method can be improved to automatically
choose the best possible polynomial preconditioner of de-
gree τ (including the one we have been discussing in this
section), and the resulting algorithm can easily handle much
bigger values of τ .

5. Krylov Subspace Preconditioning
Our new symmetric polynomial preconditioners, introduced
in the previous section, can be viewed as a certain family of
polynomials that we apply to our curvature matrix B. Thus,
for a fixed degree τ > 0, we use the matrix P = pτ (B)
as a preconditioner, where pτ is a specifically constructed
polynomial of degree τ such that P ≻ 0.

A natural question is how optimal is this choice of a poly-
nomial? Indeed, the problem of polynomial approximation
has a long and rich history with an affirmative answer pro-
vided by the classical Chebyshev polynomials (Mason &
Handscomb, 2002) for the uniform approximation bound.
We present a new adaptive algorithm that automatically
achieves the best polynomial preconditioning. Then, we
study what are the complexity guarantees that we can get
with this optimal approach. In this section, we focus on the
non-composite case only, i.e. the problem of unconstrained
minimization of a smooth function: minx∈Rn f(x).

5.1. Gradient Method with Krylov Preconditioning

We denote Pa
def
= a0I + a1B + . . .+ aτB

τ , where vector
a = (a0, . . . , aτ ) ∈ Rτ+1 is a parameter. In each iteration,
it is found by solving the linear system:

a = A−1
τ gτ ∈ Rτ+1, (18)

where Aτ = Aτ (x) ∈ R(τ+1)×(τ+1) is the Gram matrix
with the following structure (0 ≤ i, j ≤ τ ):[

Aτ (x)
](i,j) def

= L · ⟨∇f(x),Bi+j+1∇f(x)⟩, (19)

and gτ = gτ (x) ∈ Rτ+1 is defined by (0 ≤ i ≤ τ ):[
gτ (x)

](i) def
= ⟨∇f(x),Bi∇f(x)⟩. (20)

Note that this operation is exactly the projection of the
direction 1

LB
−1∇f(xk) onto the Krylov subspace (3):

xk+1 − xk := argmin
h∈Kτ

xk

∥h+ 1
LB

−1∇f(xk)∥2B.

7
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Fortunately, for computing this projection we indeed do not
need to invert the curvature matrix B, but to solve only a
small linear system (18) of size τ + 1. We are ready to
formulate our new adaptive method.

Algorithm 3 Gradient Method with Krylov Preconditioning

Initialization: x0 ∈ Rn, τ ≥ 0, L > 0.
for k = 0, 1, . . . do

Form matrix Aτ (xk) and vector gτ (xk) by (19), (20).
Compute ak = Aτ (xk)

−1gτ (xk) ∈ Rτ+1.
Set xk+1 = xk − Pak

∇f(xk).
end for

We prove the following optimality result.
Theorem 5.1. Let P ≻ 0 be any preconditioner that
is a polynomial of degree τ of the curvature matrix:

P = pτ (B), pτ ∈ R[s], deg(pτ ) = τ.

Then, for the iteration of Algorithm 3 we have the
global rates (8),(10) with the condition number that is
attributed to P (7): β

α = β(P )
α(P ) .

Hence, our method automatically chooses the best possible
preconditioning matrix from the polynomial class. Let us
understand what are the bounds for βα that we can achieve
in this case.

5.2. Bounds for the Condition Number

Let us assume that the top τ > 0 eigenvalues of B are
all separated. Then, we can easily cut them off with the
following simple construction. Define

qτ (s)
def
=

(
1− s

λ1

)(
1− s

λ2

)
· . . . ·

(
1− s

λτ

)
. (21)

Proposition 5.2. For any τ , taking P = pτ (B), where
pτ (s) :=

1+qτ (s)·(αs−1)
s with qτ defined by (21) and α =

2
λτ+1+λn

, the condition number is bounded by β
α ≤ λτ+1

λn
.

The worst case instance for the cutting strategy is when
all the eigenvalues except one share the same value. A
better approach in such a situation would be to find a bound
from the uniform polynomial approximation for the whole
interval [λn, λ1], which is achieved with the Chebyshev
polynomials (Nemirovski, 1995).
Proposition 5.3. For a fixed 0 < ϵ < 1, let τ :=⌊√

λ1

λn
ln 8

ϵ

⌋
. Then, taking P = pτ (B), where pτ (s) :=

1−Qτ (s)
s with Qτ is a normalized Chebyshev polynomial7of

the first kind of degree τ + 1, the condition number is
bounded by β

α ≤ 1 + ϵ.

7See Appendix B.9 for the precise definition.

5.3. Discussion

We see that in the case of unconstrained smooth minimiza-
tion, it is possible to achieve the guarantee of the best poly-
nomial of a fixed degree τ , by computing a certain pro-
jection onto the corresponding Krylov subspace. Namely,
we can achieve β

α ≤ λτ+1

λn
(Proposition 5.2), which cuts

off the top τ eigenvalues of the spectrum completely, if
they are separated from the others. At the same time, by
using the Chebyshev polynomials, we can contract a part
of the spectrum uniformly, with an appropriate degree τ
(Proposition 5.3). It remains to be an open question where
we can incorporate adaptive Krylov preconditioning into
the Fast Gradient Method, which would give us a further
improvement of the condition number.

6. Experiments
Huber Loss. Let us present an illustrative experiment,
with the regression model (Example 2.4) with the Huber
loss function:

ϕ(t) :=

{
t2

2µ , if |t| ≤ µ,

|t| − µ
2 , otherwise,

where µ := 0.1 is a parameter. The data is generated with
a fixed distribution of eigenvalues: λ1 > λ2 > λ3 =
. . . λn = 1. Thus, we have two gaps between the leading
eigenvalues. We use the Gradient Method (Algorithm 1),
with the adaptive search to fit the parameter M . The results
are shown in Figure 4. Using the preconditioner P1 helps
the method to deal with the large gap between λ1 and λ2,
while P2 makes the method to be insensitive to the gap
between λ1 and λ3, as predicted by our theory.
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Figure 4: Minimizing the Huber loss.

Logistic Regression. We examine the training of logis-
tic regression on real data. In Figure 5, we see that the
best convergence is achieved by the Fast Gradient Method
(FGM, Algorithm 2) with P2. Using Symmetric Polyno-
mial Preconditioning makes the methods to converge much

8
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better (two times faster for GM using P2 instead of P0 ≡ I ,
and about 1.5 times faster for FGM). Among the versions
of GM, the most encouraging performance belongs to the
Krylov preconditioning, which is consistent with the theory.
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Figure 5: Training logistic regression.
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Supplementary Material

A. Extra Experiments
Logistic Regression. Let us present experimental results for our preconditioning strategies, for the training of Logistic
Regression with several real datasets. We investigate both the number of iterations and the number of matrix-vector products
(the most difficult operation) required to reach a certain accuracy level in the functional residual. The results are shown in
Figure 6.
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Figure 6: Training logistic regression with Algorithm 1 (GM) and Algorithm 2 (FGM) employing Symmetric Polynomial Preconditioning
(11); and with Algorithm 3 (Krylov).

We see that using Symmetric Polynomial Preconditioning (P1 and P2) significantly accelerates both the Gradient Method
(GM) and the Fast Gradient Method (GM), without extra arithmetic efforts during each iteration. Using the Krylov
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preconditioning is more costly, while it equips GM with the best possible iteration rates.

Typical Distributions of the Data Spectrum. Let us provide the plots with the distributions of the leading eigenvalues (in
the logarithmic scale) of the curvature matrix B for a selection of typical machine learning datesets8.

We see (Figure 7) that it is quite common to have several top eigenvalues well separated from others. In these cases, our new
Symmetric Polynomial Preconditioners provides the gradient methods with the best acceleration.
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Figure 7: Leading eigenvalues (in the logarithmic scale) of the curvature matrix for several real datasets.

8https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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Comparison with BFGS and L-BFGS. In the following experiment, we compare the performance of the Gradient
Method (GM) and Fast Gradient Method (FGM) equipped with our Symmetric Polynomial Preconditioning, and GM with
Krylov preconditioning, with the classical BFGS and L-BFGS optimization schemes (Nocedal & Wright, 2006).

The results are presented in Figure 8. We show both the number of matrix-vector products (the most expensive operation)
and the total computational time9 required to reach a given accuracy in terms of the functional residual.
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Figure 8: Comparison of our methods with Quasi-Newton methods: training Logistic Regression

We see that the performance of the Gradient Method and Fast Gradient Method with Symmetric Polynomial preconditioner
of order τ = 2 (GM, 2 and FGM, 2 correspondingly) is comparable to that one of the BFGS and L-BFGS methods.

9Clock time was evaluated using the machine with Intel Core i5 CPU, 1.6GHz; 8 GB RAM. All methods were implemented in Python.
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In the next experiment, we consider the problem of minimizing the Soft Maximum objective (log-sum-exp):

min
x∈Rn

f(x) := µ ln

(
m∑
i=1

exp
(

⟨ai,x⟩−bi
µ

))
≈ max

1≤i≤m

[
⟨ai,x⟩ − bi

]
, (22)

where µ > 0 is a sufficiently small number. The problems of this type are important in applications with minimax strategies
for matrix games and for training ℓ∞-regression (Nesterov, 2005; Bullins, 2020). The vectors a1, . . . ,am ∈ Rn and b ∈ Rn
form our data, with n = 100, m = 200. That the structure of this objective satisfies Example 2.3 and the corresponding
curvature matrix has the following distribution of the spectrum (in the double-logarithmic scale):

120406080100
i
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101

lo
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i

Spectrum

Note that the function (22) does not have a finite-sum structure, thus it is impossible to apply to this problem stochastic
optimization methods. We use the value µ = 0.005 for the smoothing parameter. The results are shown in Figure 9.
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Figure 9: Comparison of our methods with Quasi-Newton methods: training Soft Maximum (log-sum-exp objective)

We see that using our Symmetric Polynomial Preconditioning significantly helps the Gradient Method (GM) and the Fast
Gradient Method (FGM). The performance of FGM with preconditioner of order τ = 2 is comparable to that one of the
BFGS algorithm, both in terms of the matrix-vector products and total computational time.
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B. Proofs
B.1. Proof of Theorem 3.1

Let us consider one iteration of the method, for some k ≥ 0. By definition, xk+1 = argmin
y∈domψ

{
Ωk(y)

}
, where

Ωk(y)
def
= f(xk) + ⟨∇f(xk),y − xk⟩+ M

2 ∥y − xk∥2P−1 + ψ(y)

is strongly convex with respect to P−1 norm with parameter M := βL. Thus, we have, for any y ∈ domψ:

M
2 ∥y − xk∥2P−1 + F (y) ≥ Ωk(y) ≥ Ωk(xk+1) +

M
2 ∥y − xk+1∥2P−1

≥ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+ L
2 ∥xk+1 − xk∥2B + ψ(xk+1) +

M
2 ∥y − xk+1∥2P−1

(6)
≥ F (xk+1) +

M
2 ∥y − xk+1∥2P−1 .

(23)

Hence, substituting y := x⋆ (solution to the problem), we establish the boundness for all iterates:

∥xk+1 − x⋆∥P−1 ≤ ∥xk − x⋆∥P−1 . (24)

Further, let us take y := γkx
⋆ + (1− γk)xk, for some γk ∈ [0, 1]. We obtain

F (xk+1)
(23)
≤ F (γkx

⋆ + (1− γk)xk) +
γ2
kM
2 ∥x⋆ − xk∥2P−1

≤ γkF
⋆ + (1− γk)F (xk) +

γ2
kM
2 ∥x⋆ − xk∥2P−1 .

(25)

Now, setting Ak
def
= k · (k + 1), ak+1

def
= Ak+1 −Ak = 2(k + 1), and γk := ak+1

Ak+1
= 2

k+2 , we obtain

Ak+1

(
F (xk+1)− F ⋆

) (25)
≤ Ak

(
F (xk)− F ⋆

)
+

a2k+1

Ak+1
· M2 ∥x∗ − xk∥2P−1

(24)
≤ Ak

(
F (xk)− F ⋆

)
+

a2k+1

Ak+1
· M2 ∥x∗ − x0∥2P−1

(7)
≤ Ak

(
F (xk)− F ⋆

)
+

a2k+1

Ak+1
· βα · L2 ∥x

∗ − x0∥2B.

(26)

Telescoping this bound for the first k iterations, we get

F (xk)− F ⋆
(26)
≤ β

α · L2 ∥x
∗ − x0∥2B · 1

Ak

k∑
i=1

a2i
Ai

= O
(
β
α · L2k∥x

∗ − x0∥2B
)
.

To prove the linear rate for the strongly convex case, we continue as follows

F (xk+1)
(25),(6)
≤ γkF

⋆ + (1− γk)F (xk) + γ2k ·
βL
αµ ·

(
F (xk)− F ⋆

)
.

Choosing γk := αµ
2βL < 1, we get the exponential rate

F (xk+1)− F ⋆ ≤
(
1− αµ

4βL

)(
F (xk)− F ⋆

)
,

which completes the proof.

B.2. Proof of Theorem 3.2

Let x ∈ domψ and k ≥ 0 be arbitrary. From (6), (7), and the fact that ρ = αµ, it follows that

F (x) = f(x) + ψ(x) ≥ ℓk(x) +
ρ

2
∥x− yk∥2P−1 , ℓk(x)

def
= f(yk) + ⟨∇f(yk),x− yk⟩+ ψ(x).
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Hence,

AkF (xk) + ak+1F (x) +
1 + ρAk

2
∥x− vk∥2P−1

≥ Akℓk(xk) + ak+1ℓk(x) +
1 + ρAk

2
∥x− vk∥2P−1 +

ρak+1

2
∥x− yk∥2P−1

≥ Akℓk(xk) + ak+1ℓk(x) +
1 + ρAk+1

2
∥x− v̂k∥2P−1

def
= ζk(x),

(27)

where the final inequality follows from the convexity of the squared norm and the fact that, according to our definitions,

(1 + ρAk)vk + ρak+1yk
1 + ρAk+1

= (1− ωk)vk + ωkyk = (1− ωk)vk + ωk[(1− θk)xk + θkv̂k] = v̂k.

Note that ζk is a (1 + ρAk+1)-strongly convex function w.r.t. ∥·∥P−1 , and vk+1 is precisely its minimizer. Therefore,

ζk(x) ≥ ζk(vk+1) +
1 + ρAk+1

2
∥x− vk+1∥2P−1 . (28)

Since ℓk is a convex function, we have, by our definition of xk+1,

Akℓk(xk) + ak+1ℓk(vk+1) ≥ Ak+1ℓk(xk+1).

On the other hand, by the definition of xk+1 and yk,

xk+1 − yk = θk(vk+1 − v̂k) =
ak+1

Ak+1
(vk+1 − v̂k).

Therefore,

ζk(vk+1) = Akℓk(xk) + ak+1ℓk(vk+1) +
1 + ρAk+1

2
∥vk+1 − v̂k∥2P−1

≥ Ak+1

[
ℓk(xk+1) +

Ak+1(1 + ρAk+1)

2a2k+1

∥xk+1 − yk∥2P−1

]
.

In view of our choice of ak+1, we have the following identity:

Ma2k+1

Ak+1
= 1 + ρAk+1. (29)

Combining this with the fact that M = βL and using (7) and (6), we get

ζk(vk+1) ≥ Ak+1

[
ℓk(xk+1) +

M

2
∥xk+1 − yk∥2P−1

]
≥ Ak+1

[
ℓk(xk+1) +

L

2
∥xk+1 − yk∥2B

]
= Ak+1

[
f(yk) + ⟨∇f(yk),xk+1 − yk⟩+

L

2
∥xk+1 − yk∥2B + ψ(xk+1)

]
≥ Ak+1F (xk+1).

Substituting the above bound into (28), and that one into (28), we thus obtain

AkF (xk) + ak+1F (x) +
1 + ρAk

2
∥x− vk∥2P−1 ≥ Ak+1F (xk+1) +

1 + ρAk+1

2
∥x− vk+1∥2P−1 .

This inequality is valid for any k ≥ 0.

Fixing an arbitrary k ≥ 1 and summing up the previous inequalities for all indices k′ = 0, . . . , k − 1, we get

AkF (xk) ≤ AkF (x) +
1 + ρA0

2
∥x− v0∥2P−1 = AkF (x) +

1

2
∥x− x0∥2P−1 .

Substituting further x = x⋆ (an optimal solution) and using (7), gives us the following convergence rate estimate:

F (xk)− F ⋆ ≤
∥x⋆ − x0∥2P−1

2Ak
≤ ∥x⋆ − x0∥2B

2αAk
. (30)
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To complete the proof, it remains to use standard lower bounds on Ak (see (Nesterov, 2018)). Specifically, dropping the
second term from the right-hand side of (29) and rearranging, we obtain, for any k ≥ 0,√

Ak+1

M
≤ ak+1 = Ak+1 −Ak = (

√
Ak+1 −

√
Ak )(

√
Ak+1 +

√
Ak ) ≤ 2(

√
Ak+1 −

√
Ak )

√
Ak+1.

Cancelling
√
Ak+1 on both sides and using the fact that A0 = 0, we obtain, for any k ≥ 1,

√
Ak ≥ k

2
√
M
.

Squaring both sides, substituting the resulting inequality into (30) and replacing M = βL, we get (10).

When µ > 0, we can drop the first term from the right-hand side of (29). This gives us

a2k+1 ≥ ρ

M
A2
k+1.

Hence, for any k ≥ 0,

Ak+1 −Ak = ak+1 ≥ qAk+1, q
def
=

√
ρ

M
≤ 1,

or, equivalently,

Ak+1 ≥ Ak
1− q

.

Consequently, for any k ≥ 1,

Ak ≥ A1

(1− q)k−1
≥ 1

M(1− q)k−1
,

where the final inequality is due to (29) combined with the fact that A0 = 0. Substituting this inequality into (30) and
replacing M = βL, ρ = αµ, we get the second bound from Theorem 3.2.

B.3. Proof of Lemma 4.1

Let us denote by uk(a) the k-th power sum of the variables:

uk(a)
def
=

n−1∑
i=1

aki , ∀a ∈ Rn−1.

Then, the classical Newton-Girard identities (see, e.g. (Kalman, 2000)) state the following relation between the elementary
symmetric polynomials:

στ (a) ≡ 1
τ

τ∑
i=1

(−1)i−1στ−i(a) · ui(a). (31)

Note that for the matrix Uτ
def
= tr (Bτ )I −Bτ , the following spectral decomposition holds:

Uτ = QDiag
( n∑
i=1

λτi − λτ1 ,
n∑
i=1

λτi − λτ2 , . . . ,
n∑
i=1

λτi − λτn

)
Q⊤

= QDiag
(
uτ (λ−1), uτ (λ−2), . . . , uτ (λ−n)

)
Q⊤.

(32)

Now, the identity that we need to prove is

Pτ = QDiag
(
στ (λ−1), στ (λ−2), . . . , στ (λ−n)

)
Q⊤. (33)

17



Polynomial Preconditioning for Gradient Methods

We justify (33) by induction. By definition, P0
def
= I and σ0(a) ≡ 1, therefore (33) holds for τ = 0, which is our base. Let

us fix τ ≥ 1 and assume that (33) is true for all smaller indices. Then,

Pτ
def
= 1

τ

τ∑
i=1

(−1)i−1Pτ−iUi

(33),(32)
= QDiag

( τ∑
i=1

(−1)i−1στ−i(λ−1) · ui(λ−1), . . . ,
τ∑
i=1

(−1)i−1στ−i(λ−n) · ui(λ−n)
)
Q⊤

(31)
= QDiag

(
στ (λ−1), . . . , στ (λ−n)

)
Q⊤.

Hence, (33) is proven for all 0 ≤ τ ≤ n− 1.

B.4. Proof of Theorem 4.2

By Lemma 4.1, we have the following representation of our preconditioner:

Pτ = QDiag
(
στ (λ−1), στ (λ−2), . . . , στ (λ−n)

)
Q⊤.

Further, for the spectrum of the matrix

B1/2PτB
1/2 = QDiag

(
λ1 · στ (λ−1), λ2 · στ (λ−2), . . . , λn · στ (λ−n)

)
Q⊤,

it holds, according to Lemma D.10, that

λ1 · στ (λ−1) ≥ λ2 · στ (λ−2) ≥ . . . ≥ λn · στ (λ−n). (34)

Consequently,
λn · στ (λ−n)I ⪯ B1/2PτB

1/2 ⪯ λ1 · στ (λ−1)I,

which proves the required bound.

B.5. Proof of Theorem 4.5

Let B = QDiag(λ)Q⊤ be a spectral decomposition of B, where λ = λ(B) and Q ∈ Rn×n is an orthogonal matrix.
Formula (3.5) in (Rodomanov & Kropotov, 2020) states that

ES∼Volτ+1(B)[IS(BS×S)
−1I⊤

S ] =
1

στ+1(λ)
QDiag

(
στ (λ−1), . . . , στ (λ−n)

)
Q⊤.

(Their στ is στ+1 in our notation.) But, according to Lemma 4.1,

QDiag
(
στ (λ−1), . . . , στ (λ−n)

)
Q⊤ = Pτ ,

and the claim follows.

B.6. Proof of Lemma 4.3

Clearly, when τ = 0, we have ξ0(λ) ≡ 1 . For τ = n− 1, inequalities (16) are in fact identities, and ξn−1(λ)
(15)
= λn

λ1
.

To prove that ξτ (λ) is decreasing in τ , we need to justify that, for any 0 ≤ τ ≤ n− 2, we have

ξτ (λ)
def
= στ (λ−1)

στ (λ−n)
≥ ξτ+1(λ)

def
= στ+1(λ−1)

στ+1(λ−n)
.

This follows from Lemma D.11 (recall that, by our assumptions, λ1 ≥ . . . ≥ λn > 0).

To prove the limit, let us divide the right hand side of

ξτ (λ) = στ (λ−1)
στ (λ−n)

≤

∑
2≤i1<...<iτ≤n−1

λi1
·...·λiτ

λ1·...·λτ

by the biggest element from the sum, which is λ2 · . . . · λτ+1. Thus, we get

ξτ (λ) ≤ 1+E
(λ1/λτ+1)

,

where E is a finite sum of numbers that are smaller than 1. Hence, ξτ (λ) → 0 when λ1

λτ+1
→ ∞.
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B.7. Proof of Lemma 4.4

We can assume that τ ≥ 1 since otherwise the inequality is trivial (ξ0(λ) ≤ 1).

Using the definition of ξτ (λ) and applying Lemma D.12 (recalling that λ1 ≥ . . . ≥ λn > 0 by our assumption), we obtain

ξτ (λ) =
στ (λ−1)

στ (λ−n)
≤ λn + sτ−1

λ1 + sτ−1
,

where sτ−1 is the sum of all but the τ − 1 largest elements of λ−{1,n} = (λ2, . . . , λn−1):

sτ−1 =

n−1∑
i=τ+1

λi.

Substituting this into the previous display, we get

ξτ (λ) ≤
λn +

∑n−1
i=τ+1 λi

λ1 +
∑n−1
i=τ+1 λi

=

∑n
i=τ+1 λi

λ1 +
∑n−1
i=τ+1 λi

,

which is exactly the desired inequality.

B.8. Proof of Proposition 5.2

The problem of finding the best polynomial preconditioner can be reformulated as minimizing the norm of a symmetric
matrix over the set of (positive) polynomials of a fixed degree τ ≥ 0:

min
pτ∈Pτ

{
γ(pτ )

def
= ∥Bpτ (B)− I∥

}
,

where Pτ
def
=

{
pτ ∈ R[s] : deg(pτ ) = τ, pτ (B) ≻ 0

}
. Here we use the spectral norm to measure the size of a symmetric

matrix, and the objective can be rewritten as

γ(pτ ) = max
s∈Spec (B)

|spτ (s)− 1|, (35)

where Spec (B) is the discrete set of eigenvalues of the curvature matrix. For any value of γ := γ(pτ ), our original
approximation guarantee (7) clearly satisfied with β = 1 + γ and α = 1− γ, and the condition number becomes10

β
α = 1+γ

1−γ . (36)

Now, we take
qτ (s) :=

(
1− s

λ1

)(
1− s

λ2

)
· . . . ·

(
1− s

λτ

)
. (37)

First, note that qτ (0) = 1 and thus the polynomial 1+ qτ (s) · (αs− 1) is divisible by s. Hence the degree of the polynomial

pτ (s) := 1+qτ (s)·(αs−1)
s

is exactly τ . Then, we obtain

γ = max
s∈Spec (B)

|spτ (s)− 1| = max
s∈Spec (B)

|qτ (s) · (αs− 1)|

≤ max
s∈{λτ+1,...,λn}

|αs− 1| = λτ+1−λn

λτ+1+λn
,

(38)

and the optimal value is α = 2
λτ+1+λn

, where we put formally λn+1 ≡ λn. It remains to substitute this bound into

β
α = 1+γ

1−γ ,

which is monotone in γ.
10We are interested in γ < 1, since γ = 1 trivially holds for zero polynomial.
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B.9. Proof of Proposition 5.3

Let us use an upper bound on γ from (35), which is the uniform polynomial approximation for the whole interval [λn, λ1]:

γ(pτ ) ≤ max
s∈[λn,λ1]

|spτ (s)− 1|. (39)

Then, we use
Qτ (s)

def
= Tτ+1

(
λ1+λn−2s
λ1−λn

)
· Tτ+1

(
λ1+λn

λ1−λn

)−1
, (40)

where Tτ+1(·) is the standard Chebyshev polynomial of the first kind of degree τ + 1. Namely, we can define them
recursively:

T0(x)
def
= 1, T1(x)

def
= x, Tk+1(x)

def
= 2x · Tk(x)− Tk−1(x), k ≥ 1.

Note that Qτ (0) = 1, thus the polynomial 1−Qτ (s) is divisible by s. Then, we take

pτ (s) := 1−Qτ (s)
s ,

which is the polynomial of degree τ . This choice ensures that

γ
(39),(40)
≤ max

x∈[−1,1]
|Tτ+1(x)| · Tτ+1

(
λ1+λn

λ1−λn

)−1

= Tτ+1

(
λ1+λn

λ1−λn

)−1 ≤ 2
(√

λ1−
√
λn√

λ1+
√
λn

)τ+1

,

where the last inequality is the classical bound for the Chebyshev polynomials (see, e.g. Section 16.4 in (Vishnoi, 2013)).
Thus, the condition number

β
α = 1+γ

1−γ

decreases exponentially with τ .

B.10. Proof of Theorem 5.1

Let us fix an arbitrary P = P⊤ ≻ 0 such that P = pτ (B), for some polynomial pτ ∈ R[s] and deg(pτ ) = τ . We take
β := β(P ) and α := α(P ) (from the definition (7)) and denote

P̄ := 1
βLP .

Let us consider an arbitrary iteration k ≥ 0, and denote the following step

T := xk − P̄∇f(xk).

Recall also that
xk+1 := xk − Pak

∇f(xk).
By the optimality of ak as the projection of B−1∇f(xk) onto the Krylov subspace, we have:

⟨∇f(xk),xk+1 − xk⟩+ L
2 ∥xk+1 − xk∥2B ≡ L

2 ∥xk+1 − xk +
1
LB

−1∇f(xk)∥2B − 1
2L∥∇f(xk)∥

2
B−1

≤ L
2 ∥T − xk +

1
LB

−1∇f(xk)∥2B − 1
2L∥∇f(xk)∥

2
B−1 ≡ ⟨∇f(xk),T − xk⟩+ L

2 ∥T − xk∥2B.
(41)

Hence, we obtain, for any y ∈ Rn:

f(xk+1)
(6)
≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+ L

2 ∥xk+1 − xk∥2B

(41)
≤ f(xk) + ⟨∇f(xk),T − xk⟩+ L

2 ∥T − xk∥2B

≤ f(xk) + ⟨∇f(xk),T − xk⟩+ βL
2 ∥T − xk∥2P−1

≤ f(xk) + ⟨∇f(xk),y − xk⟩+ βL
2 ∥y − xk∥2P−1 .
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where we used that T is the minimizer of the last upper bound in y. Thus, using convexity, we get, for any y ∈ Rn:

f(xk+1) ≤ f(y) + βL
2 ∥y − xk∥2P−1 ≤ f(y) + β

α · L2 ∥y − xk∥2B. (42)

In particular, substituting y := xk we justify that the method is monotone: f(xk+1) ≤ f(xk),∀k ≥ 0. Therefore,

xk ∈ F0
def
=

{
x ∈ Rn : f(x) ≤ f(x0),

}
and we assume that the initial level set F0 is bounded, denoting

D0
def
= sup

x∈F0

∥x− x⋆∥B < +∞.

Substituting y := γkx
⋆ + (1− γk)xk, γk ∈ [0, 1] into (42), we obtain

f(xk+1) ≤ γkf
⋆ + (1− γk)f(xk) + γ2k

β
α · L2 ∥x

⋆ − xk∥2B

≤ γkf
⋆ + (1− γk)f(xk) + γ2k

β
α · L2D

2
0.

(43)

Substituting γk := 2
k+1 and using the standard technique (see the proof of Theorem 3.1), we establish the global rate for the

convex case:
f(xk)− f⋆ ≤ O

(
β
α · LD

2
0

k

)
.

For strongly convex functions (µ > 0), we continue as

f(xk+1)
(43),(6)
≤ γkf

⋆ + (1− γk)f(xk) + γ2k
βL
αµ ·

(
f(xk)− f⋆

)
,

and choosing γk := αµ
2βL we establish the exponential rate.

C. Adaptive Search
In this section, we briefly present adaptive versions of Algorithms 1 and 2 which do not require the knowledge of the
constant M = βL and can automatically “tune” it in iterations yet preserving the original worst-case efficiency estimates.
This is achieved by using a standard “backtracking line search” which can be found, e.g., in (Nesterov, 2013).

In what follows, for any x,y ∈ domψ, M > 0 and P = P⊤ ≻ 0, we define the following predicate:

QuadGrowthM,P (x,y) : f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ M

2
∥y − x∥2P−1 .

According to our assumptions (6) and (7), we know that this predicate is surely satisfied for any pair of points once M ≥ βL.

The adaptive version of Algorithm 1 is presented in Algorithm 4. This method starts with a certain initial guess M̃0 for the
constant βL and then, at every iteration, repeatedly increases the current guess in two times until the predicate becomes
satisfied. This process is guaranteed to terminate (when Mk becomes bigger or equal to βL, or even sooner). After that, we
accept the new point xk+1 and choose a new “optimistic” guess of the constant M for the next iteration by halving the value
of Mk that we have accepted at the current iteration.

We assume that the preconditioner P is sufficiently simple so that we can efficiently check the predicate
QuadGrowthMk,P

(xk,xk+1). For example, if ψ = 0, then xk+1 = xk − 1
Mk

P∇f(xk) and Mk∥xk+1 − xk∥2P−1 =

⟨∇f(xk),xk − xk+1⟩ can be efficiently computed.

For Algorithm 4, we can prove exactly the same rates as in Theorem 3.1 (up to absolute constants) provided that

M̃0 ≤ βL. (44)

The proof is essentially the same as in Appendix B.1 with only two minor differences: 1) inequality (23) is now guaranteed
by our predicate; 2) instead of using M = βL in (26), we should use the bound Mk ≤ 2βL which follows from (44) and
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Algorithm 4 Adaptive Preconditioned GM

Input: x0 ∈ domψ, P = P⊤ ≻ 0, M̃0 > 0.
for k = 0, 1, . . . do

Find smallest integer ik ≥ 0 such that

xk+1 = GradStepMk,P

(
xk,∇f(xk)

)
, Mk = 2ikM̃k

satisfies the predicate QuadGrowthMk,P
(xk,xk+1).

Set M̃k+1 =Mk/2.
end for

the fact that any value of M ≥ βL is always acceptable in the line search. Using a classical argument from (Nesterov, 2013),
it is not difficult to show that, on average, Algorithm 4 makes only ∼ 2 gradient steps at each iteration.

In contrast to an upper estimate of the constant βL, an initial guess satisfying (44) can be easily generated. One simple
recipe is to make a trial step x′

1 = GradStepM ′
0,P

(
x0,∇f(x0)

)
for an arbitrarily chosen M ′

0 > 0 and then compute

M̃0 =
f(x′

1)− f(x0)− ⟨∇f(x0),x
′
1 − x0⟩

1
2∥x

′
1 − x0∥2P−1

.

Alternatively, we can find a suitable M̃0 be choosing an arbitrary M ′
0 > 0 and then repeatedly halving it until the predicate

QuadGrowth(x0,x
′
1(M)) stops being satisfied for x′

1(M) = GradStepM,P (x0,∇f(x0)). This auxiliary procedure
either terminates in a logarithmic number of steps, in which case we get a suitable M̃0, or, otherwise, we quickly find an
approximate solution of our problem.

Similar technique can be applied for the Fast Gradient Method. Specifically, let us introduce an auxiliary procedure shown
in Algorithm 5 for computing one iteration of Algorithm 2 for a given value of M . Then, the adaptive FGM method can be
constructed as shown in Algorithm 6. As in the basic method, we can show that the rates from Theorem 3.2 still remain
valid (up to absolute constants) for Algorithm 6, provided that M̃0 satisfies (44). For generating the initial guess M̃0, we can
use exactly the same techniques as before.

Algorithm 5 (x+,v+, A+;y) = FastGradStepM,ρ,P (x,v, A)

Require: M > 0; ρ ≥ 0; P = P⊤ ≻ 0; x,v ∈ domψ; A > 0.

Find a+ from eq. Ma2+
A+a+

= 1 + ρ(A+ a+).

Set A+ = A+ a+, H = 1+ρA+

a+
, θ = a+

A+
, ω = ρ

H , γ = ω(1−θ)
1−ωθ .

Set v̂ = (1− γ)v + γx, y = (1− θ)x+ θv̂.
Compute v+ = GradStepH,P

(
v̂,∇f(y)

)
.

Set x+ = (1− θ)x+ θv+.
Return (x+,v+, A+;y).

Algorithm 6 Adaptive Preconditioned FGM

Input: x0 ∈ domψ, P = P⊤ ≻ 0, M̃0 > 0.
Set v0 = x0, A0 = 0.
for k = 0, 1, . . . do

Find smallest integer ik ≥ 0 such that

(xk+1,vk+1, Ak+1;yk) = FastGradStepMk,P

(
xk,vk, Ak

)
, Mk = 2ikM̃k

satisfies the predicate QuadGrowthMk,P
(yk,xk+1).

Set M̃k+1 =Mk/2.
end for

22



Polynomial Preconditioning for Gradient Methods

D. Auxiliary Results
D.1. Elementary Symmetric Polynomials

The elementary symmetric polynomial in variables x ∈ Rn of degree k (integer, 1 ≤ k ≤ n) is defined as

σk(x) :=
∑

1≤i1<...<ik≤n

xi1 . . . xik .

It will be convenient to extend this definition to arbitrary integer degrees k and also to the case n = 0 (which corresponds to
the empty vector x). For this, we additionally define, for any x ∈ Rn with n ≥ 0,

σk(x) :=

{
1, if k = 0,

0, if k < 0 or k > n.

Thus, σk(x) is defined for any any x ∈ Rn with n ≥ 0 and any integer k.

The following three properties are obvious from the definition.

Observation D.1 (symmetry). For any x ∈ Rn with n ≥ 0, any integer k, and any permutation π := (π1, . . . , πn)
of indices {1, . . . , n}, we have σk(x) = σk(xπ), where xπ := (xπ1

, . . . , xπn
) ∈ Rn is the vector obtained from x by

rearranging11 its components according to π.

Observation D.2. For any x ∈ Rn+ with n ≥ 0 and any integer k, we have σk(x) ≥ 0.

Observation D.3. For any x ∈ Rn+ with at least 1 ≤ k ≤ n strictly positive elements, we have σk(x) > 0.

Let us now establish a number of other properties that will be useful in our analysis.

In what follows, given a vector x with n ≥ 1 elements (indexed by 1, . . . , n), and an index 1 ≤ i ≤ n, we use the
notation x−i to denote the (n− 1)-dimensional vector obtained from x by removing its ith element. More generally, for
a set of indices I ⊆ {1, . . . , n}, we denote by x−I the (n − |I|)-dimensional vector obtained from x by removing the
elements with indices from I .

Also, for a vector x with n ≥ 0 elements, we use the notation x ≥ 0 to express the fact that each element of x is nonnegative.
For an empty vector x (i.e., when n = 0), this inequality is always assumed to be satisfied (vacuously).

We start with a simple but very useful recursive decomposition.

Lemma D.4. For any x ∈ Rn, any index 1 ≤ i ≤ n, and any integer k, we have

σk(x) = xiσk−1(x−i) + σk(x−i).

Proof. In view of Observation D.1, it suffices to prove the identity only for i = 1.

If k < 0 or k > n, then σk(x) = σk−1(x−1) = σk(x−1) = 0, and we get the identity 0 = 0 which is indeed valid.

If k = 0, then σk−1(x−1) = 0, while σk(x) = σk(x−1) = 1, and we get the identity 1 = 1 which is also valid.

If k = 1, then

σk(x) =

n∑
j=1

xj = x1 +

n∑
j=2

xj = x1 + σ1(x−1),

so the claim is valid since σ0(x−1) = 1 by definition.

Finally, in the general case when 2 ≤ k ≤ n, we have

σk(x) =
∑

1≤i1<...<ik≤n

xi1 . . . xik = x1
∑

2≤i2<...<ik≤n

xi2 . . . xik +
∑

2≤i1<...<ik≤n

xi1 . . . xik

= x1σk−1(x−1) + σk(x−1).

11By convention, the empty vector gets rearranged into the empty vector.
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Next, we consider several inequalities between elementary symmetric polynomials of different degrees.

Lemma D.5 (Weak Newton’s inequality). For any x ∈ Rn+ with n ≥ 0 and any integer k, we have

σ2
k(x) ≥ σk−1(x)σk+1(x).

Remark D.6. In the only nontrivial case 1 ≤ k ≤ n− 1, the above is a weaker version of the classical Newton’s inequality:

σ̂2
k(x) ≥ σ̂k−1(x)σ̂k+1(x),

where, for any 1 ≤ k ≤ n, σ̂k(x) :=
σk(x)

(nk)
is the normalized elementary symmetric polynomial in variables x, and

(
n
k

)
is

the binomial coefficient. For more information about the two inequalities, see, e.g., Section 2.22 in (Hardy et al., 1952). We
present the proof of Lemma D.5 below for the reader’s convenience.

Proof. Note that the claim is obvious if either k < 1 or k ≥ n since then either σk−1(x) = 0 or σk+1(x) = 0, and we get
the trivial inequality σ2

k(x) ≥ 0.

Let us prove the claim by induction on n.

For n = 1, the claim is obvious since, in this case, all values of k satisfy either k < 1 or k ≥ n.

Assume that n ≥ 2, and that we have already proved the claim for n′ = n− 1. Let us prove it for n′ = n.

According to the observation made at the beginning, we can assume that 1 ≤ k ≤ n− 1 since otherwise the claim is obvious.
Since both sides of the claimed inequality are continuous in x (as certain polynomials), we can further assume w.l.o.g. that
all the elements of x are strictly positive.

According to Lemma D.4, we can decompose

σk(x) = x1σk−1 + σk, σk−1(x) = x1σk−2 + σk−1, σk+1(x) = x1σk + σk+1,

where σk′ := σk′(x−1) ≥ 0 for any k′ ∈ {k − 2, k − 1, k, k + 1} (see Observation D.2). Note that x−1 has exactly
n− 1 ≥ 1 elements, all of which are strictly positive (since we have assumed that all the elements of x are so). In particular,
we can assume that σk > 0 (see Observation D.3 and recall that 1 ≤ k ≤ n− 1 by our assumption).

The inequality we need to prove is then

(x1σk−1 + σk)
2 ≥ (x1σk−2 + σk−1)(x1σk + σk+1).

After the expansion of both sides, the above inequality becomes

x21σ
2
k−1 + 2x1σk−1σk + σ2

k ≥ x21σk−2σk + x1(σk−2σk+1 + σk−1σk) + σk−1σk+1.

Making cancellations and rearranging, we come to the following inequality we need to prove:

x21(σ
2
k−1 − σk−2σk) + x1(σk−1σk − σk−2σk+1) + (σ2

k − σk−1σk+1) ≥ 0.

Since x1 ≥ 0, it suffices to prove the following three inequalities:

σ2
k−1 ≥ σk−2σk, σk−1σk ≥ σk−2σk+1, σ2

k ≥ σk−1σk+1.

But this is simple: the first and the third ones are valid in view of our inductive assumption, while the second one follows
from the other two (indeed, σk−1σ

2
k ≥ σ2

k−1σk+1 ≥ σk−2σkσk+1, and it remains to cancel σk which is assumed to be
positive).

Lemma D.7. For any x ∈ Rn, any index 1 ≤ i ≤ n, such that x−i ≥ 0, and any integer k, we have

σk(x)σk(x−i) ≥ σk+1(x)σk−1(x−i).
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Proof. Let us denote for brevity σk′ := σk′(x−i) for any k′ ∈ {k − 1, k, k + 1}. Then, according to Lemma D.4,

σk(x) = xiσk−1 + σk, σk+1(x) = xiσk + σk+1.

The inequality we need to justify is then

(xiσk−1 + σk)σk ≥ (xiσk + σk+1)σk−1,

or, equivalently,
σ2
k ≥ σk−1σk+1.

But this is indeed true according to Lemma D.5 (and our assumption that x−i ≥ 0).

Lemma D.8. For any x ∈ Rn+ with n ≥ 0 and any integer 0 ≤ k ≤ n, we have

σk+1(x) ≤ s̄↑k(x)σk(x),

where s̄↑k(x) is the sum of all but k largest elements of x (i.e., s̄↑k(x) =
∑n
i=k+1 x[i], where x[1] ≥ . . . ≥ x[n] are the

components of x sorted in nonincreasing order, and s̄↑k(x) := 0 for the empty vector x).

Proof. We can assume that n ≥ 1 since otherwise k = n = 0, the vector x is empty, σk+1(x) = s̄↑k(x) = 0, and we get a
trivial inequality 0 ≤ 0.

Further, in view of Observation D.1, we can assume w.l.o.g. that x1 ≥ . . . ≥ xn. Then, we need to prove that

σk+1(x) ≤
( n∑
i=k+1

xi

)
σk(x).

Since both sides of the above inequality are continuous in x (as certain polynomials), we can assume w.l.o.g. that all the
components of x are strictly positive.

Applying repeatedly Lemma D.7, we obtain

σk+1(x)

σk(x)
≤ σk(x−1)

σk−1(x−1)
≤
σk−1(x−{1,2})

σk−2(x−{1,2})
≤ . . . ≤

σ1(x−{1,...,k})

σ0(x−{1,...,k})
=

n∑
i=k+1

xi,

where the final identity follows from the definitions of σ1 and σ0. (Note that each denominator in the above display is strictly
positive, see Observation D.3 and recall that, by our assumptions, x has strictly positive components and 0 ≤ k ≤ n.) This
is exactly the desired inequality.

Lemma D.9. For any x ∈ Rn, any indices 1 ≤ i, j ≤ n, any integer k, and any a, b ∈ R, we have the implication

xi ≥ xj and aσk(x−{i,j}) & bσk−1(x−{i,j}) =⇒ (axi + b)σk(x−i) & (axj + b)σk(x−j),

where “&” is either “≤” or “≥”. Furthermore, if xi > xj , then the reverse implication is also true.

Proof. We can assume that i ̸= j since otherwise the claim is trivial. In particular, we can assume that n ≥ 2.

According to Lemma D.4, we can decompose

σk(x−i) = xjσk−1 + σk, σk(x−j) = xiσk−1 + σk,

where σk′ := σk′(x−{i,j}) for any k′ ∈ {k − 1, k}. The inequality after the implication sign is then

(axi + b)(xjσk−1 + σk) & (axj + b)(xiσk−1 + σk).

After the expansion of both sides, this inequality reads

xixjaσk−1 + xiaσk + xjbσk−1 + bσk & xixjaσk−1 + xibσk−1 + xjaσk + bσk.
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Making cancellations and rearranging, we obtain the following equivalent inequality:

(xi − xj)aσk & (xi − xj)bσk−1.

This inequality is obviously true if xi ≥ xj and aσk & bσk−1. On the other hand, if xi > xj , we can cancel (xi − xj) on
both sides and conclude that aσk & bσk−1.

Lemma D.10. For any x ∈ Rn, any indices 1 ≤ i, j ≤ n, such that x−{i,j} ≥ 0, and any integer k, we have the implication

xi ≥ xj =⇒ xiσk(x−i) ≥ xjσk(x−j).

Proof. Follows from Lemma D.9 (applied to a = 1 and b = 0) since σk(x−{i,j}) ≥ 0 in view of our assumption that
x−{i,j} ≥ 0 (see Observation D.2).

Lemma D.11. For any x ∈ Rn, any indices 1 ≤ i, j ≤ n, such that x−{i,j} ≥ 0, and any integer k, we have the implication

xi ≥ xj =⇒ σk(x−i)σk+1(x−j) ≥ σk+1(x−i)σk(x−j).

Proof. For brevity, let us denote σk′ := σk′(x−{i,j}) for any k′ ∈ {k − 1, k, k + 1}. According to Lemma D.5 and our
assumption that x−{i,j} ≥ 0, we have σ2

k ≥ σk−1σk+1. Since we also assume that xi ≥ xj , we can therefore apply
Lemma D.9 with a = σk and b = σk+1 to get

(xiσk + σk+1)σk(x−i) ≥ (xjσk + σk+1)σk(x−j).

This is exactly the desired inequality since, according to Lemma D.4,

σk+1(x−i) = xjσk + σk+1, σk+1(x−j) = xiσk + σk+1.

Lemma D.12. For any x ∈ Rn, any indices 1 ≤ i, j ≤ n, with x−{i,j} ≥ 0, and any integer12 1 ≤ k ≤ dim(x−{i,j}) + 1,
the following implication holds:

xi ≥ xj =⇒ σk(x−i)
(
xi + s̄↑k−1(x−{i,j})

)
≤ σk(x−j)

(
xj + s̄↑k−1(x−{i,j})

)
,

where s̄↑k−1(x−{i,j}) is the sum of all but k − 1 largest elements of the vector x−{i,j}.

Proof. Follows from Lemma D.9 applied to a = 1 and b = s̄↑k−1(x−{i,j}) since σk(x−{i,j}) ≤ bσk−1(x−{i,j}) according
to Lemma D.8 (applied to k′ = k − 1 and x′ = x−{i,j}; note that dim(x′) = n − 2 ≥ 0 and 0 ≤ k′ ≤ dim(x′) by our
assumption).

12Here, dim(x) denotes the number of elements in the vector x.
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