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Abstract

Continual learning is often motivated by the idea, known as the big world hy-
pothesis, that “the world is bigger” than the agent. Recent problem formulations
capture this idea by explicitly constraining an agent relative to the environment.
These constraints lead to solutions in which the agent continually adapts to best use
its limited capacity, rather than converging to a fixed solution. However, explicit
constraints can be ad hoc, difficult to incorporate, and may limit the effectiveness of
scaling up the agent’s capacity. In this paper, we characterize a problem setting in
which an agent, regardless of its capacity, is constrained by being embedded in the
environment. In particular, we introduce a computationally-embedded perspective
that represents an embedded agent as an automaton simulated within a universal
(formal) computer. Such an automaton is always constrained; we prove that it is
equivalent to an agent that interacts with a partially observable Markov decision
process over a countably infinite state-space. We propose an objective for this
setting, which we call interactivity, that measures an agent’s ability to continually
adapt its behaviour by learning new predictions. We then develop a model-based
reinforcement learning algorithm for interactivity-seeking, and use it to construct
a synthetic problem to evaluate continual learning capability. Our results show
that deep nonlinear networks struggle to sustain interactivity, whereas deep linear
networks sustain higher interactivity as capacity increases.

1 Introduction

The goal of this paper is to characterize a general problem setting in which the best use of an agent’s
limited capacity is to continually adapt (Ring, 1994; Thrun, 1998; Abel et al., 2023). Our approach
is motivated by the idea, known as the big world hypothesis, that “the world is bigger” than the
agent (Javed and Sutton, 2024). That is, an agent in a big world may lack the capacity to learn
the fixed optimal solution, and should instead continually adapt to new experience by updating its
approximate solution (i.e., by tracking, Sutton et al., 2007). However, formalizing the relationship
between the agent and the environment presents a challenge, because they are typically treated as
separate entities in reinforcement learning (see Figures 1a and 1b). We address this by introducing a
computationally-embedded agent that is simulated by the environment’s dynamics, thus constraining
the agent within the environment. With this perspective, we construct a problem setting in which
any such agent is (i) constrained by its capacity, and (ii) suboptimal if it stops learning.

Explicit constraints on the agent have been previously considered in continual learning as a means
of capturing the big world hypothesis. For example, in continual learning experiments, the agent’s
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Figure 1: Comparing the agent and environment in different problem formulations. Each
problem formulation differs in the constraints that it imposes on the agent relative to the environment.
Traditional RL: A given environment typically has a bounded capacity, but a scalable agent can
increase its capacity. Such an agent is unconstrained in principle because its capacity can always be
scaled beyond the environment. Universal AI: Both the computationally universal environment and
the AIXI agent are unbounded. AIXI is thus unconstrained but not computable. This work: The
universal-local environment is unbounded, but it can simulate an embedded agent of any bounded
capacity within its state-space. An embedded agent is implicitly constrained because the environment
necessarily has greater capacity than any agent contained within it.

learning algorithm is often explicitly constrained by what it can store (Prabhu et al., 2020), or by
the expressivity of its function approximator (Meyer et al., 2024). Other real-world constraints on the
agent’s hardware have also been considered. Such constraints include limits on the agent’s compute
(see discussion on measuring compute in Section 4.1, Verwimp et al., 2024) and on the agent’s
energy use (Javed and Sutton, 2024). One recent formalization of continual learning uses an explicit
constraint on the agent’s information-theoretic capacity (Kumar et al., 2023, 2024). However, beyond
analytically tractable agents and environments, this information-theoretic constraint is difficult to
measure and enforce, limiting its generality as a problem setting for continual learning. Furthermore,
explicitly constraining the agent limits the effectiveness of scaling up the agent’s capacity, which
has been a major source of progress in machine learning more broadly (Hestness et al., 2017; Kaplan
et al., 2020; Hoffmann et al., 2022). These limitations suggest that explicit constraints may not be
an effective way of capturing the big world hypothesis.

In contrast to explicit constraints, our approach considers the implicit constraint that arises from an
agent embedded in an environment (see Figure 1c). Specifically, an embedded agent is, in principle,
fully defined within the environment’s state, and simulated by the environment’s dynamics. The
embedded nature of agents—that they exist within and as part of their environment—is typically
treated as outside the scope of the problem formulation (Demski and Garrabrant, 2019). However,
the physical world is a clear example of a world bigger than any agent, suggesting that embedded
agency can provide a natural formalization of the big world hypothesis and of continual learning.

To formalize an agent embedded in an environment, we define a universal-local environment: a
Markov process whose transition dynamics can simulate an agent within a finite portion of its
state-space. Computational universality guarantees that the environment can simulate any algorithm
(Church, 1936; Turing, 1937). Uniform locality decomposes the environment’s transition dynamics
into a collection of identical Markov processes, each operating on a finite portion of the state-space.
An embedded agent is then represented as an automaton simulated within the environment, formalized
as one of these local Markov processes. When the automaton’s dynamics are determined solely by
its input and output, we prove it interacts with a partially observable Markov decision process: it
receives inputs (observations), updates its internal state, and produces outputs (actions). We then
propose interactivity, defined through algorithmic complexity (Kolmogorov, 1965; Solomonoff,
1964; Chaitin, 1966), to measure an automaton’s ability to continually adapt its future input-output
behaviour. An interactivity-seeking agent pursues behaviour that is increasingly complex while
remaining predictable given its past experience. Crucially, we prove that an agent’s interactivity is
constrained by its capacity, which can be allocated either to increase its behavioural complexity or to
improve its behavioural predictability.

Universal artificial intelligence similarly considers universal environments (Hutter, 2000, 2005), in
which the uncomputable AIXI agent was extended to an embedded formulation (Orseau and Ring,
2012). However, these works did not consider the problem of learning under limited capacity. By con-
sidering a universal environment that is also local, we show that an interactivity-seeking agent must
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continually adapt to its experience, regardless of its capacity. Interactivity also relates to intrinsic moti-
vation objectives (Schmidhuber, 1991; Chentanez et al., 2004), such as forecasting complexity (Grass-
berger, 1986), statistical complexity (Crutchfield and Young, 1989), predictive information (Bialek
et al., 2001; Still and Precup, 2012), and light cone complexity (Shalizi et al., 2004; Aaronson et al.,
2014). These objectives are defined through Shannon information as measures of past-future depen-
dence in the agent’s behaviour, requiring a probability distribution over behaviour sequences. Interac-
tivity, however, uses algorithmic information, allowing it to operate directly on individual sequences,
without requiring probability distributions. Since an agent’s behaviour is an individual sequence rather
than a probability distribution, this formulation provides a natural computational framework for contin-
ual learning. Moreover, by tying the agent’s objective to its computational capacity, which is naturally
constrained relative to the environment, our formalism further captures the big world hypothesis.

Lastly, we develop a reinforcement learning algorithm for maximizing interactivity, and use it to
construct a task that evaluates a learning algorithm’s capability for continually adaptive behaviour.
Specifically, we operationalize algorithmic complexity in terms of the prediction error. Interactivity
is then measured as the reduction in this error attributable to continual learning, relative to a baseline
agent that stops learning. Interactivity-seeking behaviour thus involves learning a policy to steer
the agent’s behaviour to new experiences that are learnable, but that would have high prediction
error without learning. We show that interactivity-seeking agents create their own non-stationarity
by changing their policy, thereby satisfying key desiderata of the continual learning problem: every
agent is constrained by its capacity, and any agent that stops learning is suboptimal. Our results
indicate that, in this setting, deep nonlinear networks struggle to sustain interactivity, whereas deep
linear networks effectively scale their interactivity with increased capacity.

2 Background

We formalize an embedded agent from a computational perspective, viewing the environment as
a computational process that also simulates the agent. Specifically, we consider a computationally
universal environment that, through its state transitions, simulates the computational steps of any
algorithm. Our approach is general, by making use of the Church-Turing thesis, which asserts that all
computationally universal systems are equivalent in what they can simulate, and that any such system
can simulate another (Church, 1936; Turing, 1937). This allows us to adopt a particular model of
computation (e.g., Turing machines) while retaining a general class of environments that are capable
of simulating an embedded agent.

We characterize the capabilities of an agent, relative to its environment, in terms of its input-output
behaviour as a finite sequence (i.e., a string). In particular, we use the algorithmic complexity of a
string, which is the length of the shortest program that computes it and halts (Kolmogorov, 1965;
Solomonoff, 1964; Chaitin, 1966).
Definition 1 (Algorithmic Complexity). Given strings x, y ∈ Σ∗, where Σ is a finite symbol-set and
Σ∗ is the set of strings, the conditional algorithmic complexity is the length of the shortest program,
|c|, that halts and outputs x given y as input,

KU (x|y) := min{|c| : U(c, y) = x},

where U is a reference universal machine. The unconditional algorithmic complexity is given by
KU (x) := KU (x | ϵ), where ϵ is the empty string.

While algorithmic complexity depends on the choice of a reference universal machine, any specific
choice affects the algorithmic complexity by, at most, an additive constant independent of the specific
string (Li and Vitányi, 2019). Moreover, in this work, we will consider the given computationally
universal environment, defineed in the next section, as the canonical reference universal machine.

3 A Universal-Local Environment
We begin by defining universal-local environments, a general class of environments in which an
agent can be embedded. These environments are characterized by two key properties: computational
universality (Section 3.1), which establishes that any algorithm can be simulated by the environment’s
transition dynamics, and uniform locality (Section 3.2), which ensures that any finite computation
can be confined to a bounded portion of the environment’s state-space. In Section 4, we use these
properties to define an embedded agent as an automaton simulated on the environment’s state-space.
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3.1 Markov Representation of a Computationally Universal Environment

We first connect computational processes with Markov processes defined over a countable state-space
with a transition function that is computable in polynomial-time with respect to the size of the state.
Definition 2. An algorithmic Markov process, E = (Ω,Ξ,T), is a discrete process defined on a count-
able state-space, Ω := {ω : Ξ → Σ : |ω| < ∞}, where Σ is a finite symbol set with distinguished
blank symbol □ ∈ Σ, Ξ is a countable set used for indexing, and |ω| := |{ξ ∈ Ξ : ω(ξ) ̸= □}| counts
the number of non-blank symbols. Given an initial state ω ∈ Ω with |ω| < ∞, the process produces
the next state ω′ = T(ω), such that |ω′| < ∞ and where the transition function, T : Ω → Ω, is
computable in time O(poly(|ω|)).

The significance of this formulation is that any Turing machine can be represented as an algorithmic
Markov process. Specifically, the Markov state represents the entire configuration of the Turing
machine, including its head position, current tape contents, and control state. The Markov transition
function represents the Turing machine’s transition function, which is a lookup table that can be
applied to the Markov state in polynomial-time. We will consider only deterministic transitions, but
non-deterministic transitions are also possible, and would involve multiple possible next states.
Proposition 1 (Representing Turing machines). The computational process followed by a Turing
machine can be represented as an algorithmic Markov process.

All proofs of propositions and theorems can be found in Section B of the Appendix. One consequence
of Proposition 1 is that there exists a universal Markov process (an algorithmic Markov process
corresponding to a universal Turing machine). This result highlights how an algorithmic Markov
process is more general than the Markov processes typically considered in reinforcement learning. In
particular, a universal Markov process is capable of simulating any algorithm, which is crucial for
defining an embedded agent in Section 4.

3.2 Defining Uniform Locality with Boundaried Markov Processes

Intuitively, uniform locality means that the transition function can be decomposed into identical local
transition functions with dynamics that are determined by a finite portion of the state-space. To make
this precise, we first formalize a finite portion of the state-space as a substate-space.
Definition 3. Given an algorithmic Markov process, E = (Ω,Ξ,T), a substate-space, Ω|F , is defined
as a restriction of the state-space, Ω, to a finite index-set, F ∈ F(Ξ) := {I : I ⊂ Ξ, |I| < ∞}:
Ω|F = {ω|F : ω ∈ Ω} where ω|F : F → Σ is defined by, ω|F (ξ) := ω(ξ) for all ξ ∈ F .

We now consider the transition function restricted to a substate-space, Ω|F . In particular, we define
a boundaried Markov process in which the restricted transition function, T|F , depends on both the
substate-space, Ω|F , and an additional substate-space, Ω|b(F ), called the boundary-space.

Definition 4. Given an algorithmic Markov process, E = (Ω,Ξ,T), a substate-space, Ω|F , admits
a k-horizon boundaried Markov process if there exists a substate-space Ω|bk(F ) (referred to as a
boundary-space) and a restricted transition function T|kF : Ω|F × Ω|bk(F ) → Ω|F that is equivalent
to the k-step transition function on the substate-space: T|kF (ω|F , ω|bk(F )) = T(k)(ω)|F for all
ω ∈ Ω. We denote the k-horizon boundaried Markov process as E|kF = (Ω|F ,Ω|bk(F ),T|kF ), and, if
k = 1, we refer to it simply as a boundaried Markov process, E|F = (Ω|F ,Ω|b(F ),T|F ).

Typically, the size of the boundary-space increases as the transition horizon k becomes larger. This is
because the current substate, ω|F ∈ Ω|F , and the current boundary, ω|b(F ) ∈ Ω|b(F ), only determine
the next substate, ω|′F ∈ Ω|F , and not the next boundary.

An algorithmic Markov process is uniformly local if every index admits a boundaried Markov process
that is isomorphic to a single reference boundaried Markov process.
Definition 5 (Uniform Locality). An algorithmic Markov process, E = (Ω,Ξ,T), is uniformly local
if there exists a boundary function, b : Ξ → F(Ξ) and a reference ξ⋆ ∈ Ξ, such that every ξ ∈ Ξ
admits a boundaried Markov process isomorphic to the reference ξ⋆. That is, there exist bijections
αξ : Ω|{ξ} → Ω|{ξ⋆} and βξ : Ω|b({ξ}) → Ω|b({ξ⋆}) satisfying, for all ω ∈ Ω,

αξ

(
T|{ξ}(ω|{ξ}, ω|b({ξ}))

)
= T|{ξ⋆}(αξ(ω|{ξ}), βξ(ω|b({ξ}))).
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Figure 2: Conway’s Game of Life is a cellular automaton and an example of a universal-local
environment. The state-space is an infinite 2D grid, Ξ = Z2, where each cell in the grid takes one
of two values, Σ = {black,white}. Every cell uses the same local transition function in which the
boundary-space consists of its 8 adjacent neighbours. The blue and green borders (left) correspond to
1 and 2 horizon boundary-spaces, which determine the center cell at time-steps t+ 1 (middle) and
t+ 2 (right), respectively. Longer-term transition dynamics depend on larger boundary-spaces.

Uniform locality guarantees that the transition function can be computed by simultaneously applying
an identical local transition function to each singleton of the state-space. Consequently, the transition
dynamics for any substate-space Ω|F can be determined from the collective boundary, defined by
b(F ) =

⋃
ξ∈F b({ξ}). This ensures that every substate-space admits a boundaried Markov process.

Thus, we use the term universal-local environment for a universal Markov process that is also
uniformly local. We call it an environment because, as we will show, an embedded agent can be
simulated as a boundaried Markov process within it.

3.3 Example of a Universal-Local Environment: Conway’s Game of Life

Conway’s Game of Life (or Life) is an example of a universal-local environment (Conway, 1970).
This environment is computationally universal because it can simulate a universal Turing machine
(Berlekamp et al., 1982; Rendell, 2011). A substate-space in Life is a finite subset of cells on the
grid and the possible values taken by those cells. Furthermore, Life is uniformly local because the
one-step transition dynamics for each individual cell is determined by its 8 adjacent neighbouring
cells, which defines the boundary-space (see Figure 2).

We point out Life as an existence proof for universal-local environments, but we are not suggesting to
program an agent within it. Instead, we use our formalism to characterize the constraints that would
be faced by an agent if it were embedded in any such environment.

4 A Computationally-Embedded Agent
We represent an embedded agent as an automaton simulated within the universal-local environment,
formalized as a boundaried Markov process. Specifically, we prove that when the automaton’s
boundary space coincides with its input-output space, it constitutes a formal agent-environment
boundary (Jiang, 2019; Harutyunyan, 2020). Consequently, the automaton is equivalent to a stateful
policy interacting with a partially observable Markov decision process. We then introduce interactivity
to measure a capability for continually adaptive behaviour, proving that interactivity-seeking automata
are constrained by their computational capacity.

4.1 Embedding an Automaton in a Universal-Local Environment

A universal-local environment can simulate any algorithm; this property enables us to define an
automaton, A, within the environment’s state space, Ω, such that its operation is simulated by the
environment’s transition dynamics, T. Moreover, uniform locality ensures that the automaton can be
represented as a boundaried Markov process (see Figure 3, left).
Definition 6. Given a universal-local environment, E = (Ω,Ξ,T), an embedded automaton is defined
by A := (Ω|X ,Ω|Y ,Ω|Θ, u, π), where Ω|Θ is the automaton’s internal state space, Ω|X ,Ω|Y are
input and output spaces, π : Ω|X × Ω|Θ → Ω|Y is the output function, and u : Ω|X × Ω|Θ → Ω|Θ
is the automaton’s internal state update function.

Relating this to an agent in reinforcement learning, we may think of the inputs as observations, the
internal state as the parameters of a function approximator, the outputs as actions, the internal state
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Figure 3: An illustrative depiction of a computationally-embedded agent interacting with its
environment. An embedded automaton, A = (Ω|X ,Ω|Y ,Ω|Θ, u, π), represents an agent embedded
within the universal-local environment. Left: The agent is simulated by a boundaried Markov
process within the environment, in which it iteratively receives an input from the environment,
x ∈ Ω|X , produces the corresponding output y = π(x; θ) ∈ Ω|Y , and updates its internal state,
θ′ = u(x; θ) ∈ Ω|Θ. Right: We will also consider an idealized setting in which a self-predicting agent
exerts full control over its experience by reading and writing to an internal boundary-space, Ω|b(Θ).

update function as a learning rule, and the output function as a policy. The input-space may also
provide an external reward to the automaton, but this need not be the case.
Proposition 2 (Automaton-Environment Relationship). Given an embedded automaton,
A = (Ω|X ,Ω|Y ,Ω|Θ, u, π), if there exists a horizon k such that bk(Θ) = X , then:

1. The automaton is equivalent to a k-horizon boundaried Markov process

2. The automaton’s environment is a partially observable Markov decision process.

3. The automaton’s interaction with the environment is equivalent to a stateful policy.

Now that we have defined both the embedded automaton and its environment within the same
universal-local environment, we can show that any such automaton is constrained by the size of
its internal state-space, which determines its memory and computational capacity.
Proposition 3 (Implicitly Constrained). The capacity of an embedded automaton is upper bounded
by the size of its internal state space, |Θ|, which is finite. Thus, there exists input-output sequences
that the automaton cannot realize.

An embedded automaton is constrained by its capacity, which constrains the behaviours that it can
produce. While more complex behaviour can be produced with more capacity, we will show that this
constraint specifically limits its ability to produce behaviour that continually adapts to past experience.

4.2 Interactivity as a Computational Measure of Adapatability

An agent’s capability for learning can be characterized by its ability to adapt its future behaviour
using its past experience. We propose interactivity to measure this capability directly in terms of
algorithmic complexity. Specifically, interactivity measures the difference between the algorithmic
complexity of future behaviour with and without conditioning on past experience.

Following Proposition 2, we represent an embedded agent as an embedded automaton A where its
input space constitutes its boundary-space, Ω|X = Ω|bk(Θ). Thus, the behaviour of the agent is de-
termined by the values taken on the boundary-space, bt ∈ Ω|bk(Θ) which combines the input and the
corresponding output, bt = (xt, yt). At time t, the behaviour can be separated into finite sequences:
the past, b0:t−1 := b0b1 · · · bt−1, and the T -horizon future, bt:t+T−1 := btbt+1 · · · bt+T−1.
Definition 7 (Interactivity). Given an embedded automaton, A := (Ω|X ,Ω|Y ,Ω|Θ, u, π), we define
its T -horizon interactivity relative to its environment, E , as the difference between the algorithmic
complexity of its future behaviour with and without conditioning on its past behaviour,

IT (A |xt, b0:t−1) := KE(bt:t+T−1 | ϵ)−KE(bt:t+T−1 | b0:t−1),

where ϵ is the empty string, xt is the current observation, θt−1 is the internal state, yt = π(xt; θt−1)
is the action, θt = u(xt; θt−1) is the next internal state, and bt = (xt, yt) is the next behaviour tuple.
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That is, interactivity measures the predictable complexity of an agent’s future behaviour, given its past
behaviour. Interactivity is high if both (i) the future behaviour, bt:t+T−1, has high unconditional algo-
rithmic complexity, and (ii) the past behaviour, b0:t−1, is predictive of this future behaviour, thereby
yielding a low conditional algorithmic complexity. Interactivity-seeking behaviour thus balances
complexity and predictability with respect to the agent’s past behaviour, similar to how definitions
of open-endedness balance novelty and learnability with respect to an observer (Hughes et al., 2024).

4.3 An Interactivity-Seeking Agent Faces a Big World

The interactivity of any embedded agent is always constrained by its capacity. That is, an interactivity-
seeking agent can only sustain a given level of interactivity with a given capacity. However, an
interactivity-seeking agent can always use additional capacity to achieve higher interactivity.

Theorem 1. Given an embedded agent, A = (Ω|X ,Ω|Y ,Ω|Θ, u, π), its maximum interactivity is
asymptotically upper and lower bounded by a quantity that depends on its capacity.

The goal of an interactivity-seeking agent can be understood as balancing the complexity and
predictability of its future behaviour, given its past behaviour. Seeking to achieve this goal requires
that the agent continually adapt to its experience, learning about its computational limitations, and
tracking its environment with predictions learned within these limitations. This suggests the following
interactivity thesis:

Interactivity measures a capability for continually adaptive behaviour.

We refer to this as the interactivity thesis, rather than a hypothesis, to reflect its speculative and philo-
sophical nature. With low interactivity, the future behaviour of an agent is either i) simple, or ii) com-
plex and unpredictable. In either case, the thesis asserts that the agent’s capability for continually adap-
tive behaviour is limited. A simple agent has a limited range of possible behaviours and thus has a rela-
tively lower capability for adaptive behaviour. A complex agent could have a relatively high capability
for adaptive behaviour, but only if its future behaviour is influenced by, and can be predicted from,
past experience. Embracing the interactivity thesis naturally leads to a spectrum of adaptive capability.

5 Maximizing Agent-Relative Interactivity with Reinforcement Learning

Maximizing interactivity poses a fundamental computational challenge: it depends on algorithmic
complexity, which is generally uncomputable. While algorithmic complexity can be computed
for finite automata through exhaustive program enumeration (Li and Vitányi, 2019), this requires
computational resources that exceed the automaton’s own capacity. Consequently, an interactivity-
seeking agent must approximate interactivity rather than compute it exactly.

To approximate interactivity, we take a distortion-rate view of algorithmic complexity, which measures
complexity in terms of prediction error under a constrained reference machine, rather than under
an unconstrained universal Turing machine (Vereshchagin and Vitányi, 2010). The embedded
agent, being an automaton, provides a natural choice for the constrained reference machine. We
then augment this agent to include a predictor function as a function of agent-state, and measure
agent-relative complexity by the incurred temporal difference errors under this predictor.

Definition 8. Given an embedded agent A = (Ω|X ,Ω|Y ,Ω|Θ, u, π) with a predictor
v : Ω|X∪Y × Ω|Θ → Ω|X∪Y and γ ∈ [0, 1], the agent-relative complexity of future behaviour
bt:t+T−1, conditioned on past behaviour b0:t−1, is the sum of future temporal difference errors,

K̂A(bt:t+T−1|b0:t−1) :=

T−1∑
k=0

(bt+k + γv(bt+k; θt+k−1)− v(bt+k−1; θt+k−1))
2
,

where θt+k−1 is the agent-state after processing b0:t−1 followed by bt:t+k−1 through repeated
application of the agent’s update function u.

Complexity, measured in this way, is relative to the agent’s capabilities. If the future prediction
errors are large (small), then the future behaviour is relatively complex (simple). These future
prediction errors depend crucially on the agent through its predictor, its current agent-state, its
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learning algorithm, its policy, and its observations from the environment. With this prediction error
formulation of complexity, we now consider the agent-relative interactivity,

ÎT (A |xt, b0:t−1) := K̂A(bt:t+T−1 | ϵ)− K̂A(bt:t+T−1|b0:t−1).

5.1 Learning to Maximize Agent-Relative Interactivity

We now develop a reinforcement learning algorithm for maximizing agent-relative interactivity. Our
algorithm is summarized in the following three steps: (i) learning a prediction of the discounted
future behaviour using a value function, (ii) computing the agent-relative interactivity, defined as the
difference between static prediction errors (unconditional complexity) and dynamic prediction errors
(conditional complexity), and (iii) meta-learning a policy to maximize agent-relative interactivity.

The first step involves learning a prediction of the future input-output behaviour, where we consider
the deterministic setting and omit the expectation over trajectories. This value function predicts both
future observations and actions, similar to successor features (Barreto et al., 2017) and the successor
representation (Dayan, 1993). Specifically, with temporal difference learning (Sutton, 1984, 1988),
we train a value function to predict the discounted sum of future input-output behaviour,

v(bt; θt) ≈
∞∑
k=0

γkbt+k+1, δt+k(θ) = bt+k + γv(bt+k; θ)− v(bt+k−1; θ),

where θt+k can be understood as dynamic parameters which are updated using semi-gradient TD(0):
θt+k = θt+k−1 + ηδt+k(θt+k−1)∇θv(bt+k−1; θ)

∣∣
θ=θt+k−1

, where η is a step-size.

For the second step, we measure the conditional and unconditional complexity terms using dynamic
and static temporal difference errors, respectively. From the first step, we can readily compute the
conditional complexity using the dynamic temporal difference errors just described,

K̂A(bt+1:t+T |b0:t−1) =

T−1∑
k=0

δ2t+k(θt+k−1).

Unlike the conditional complexity term, the unconditional complexity term is not conditioned on past
experience, which means means that it cannot be computed using the dynamic parameters. Instead,
computing the unconditional complexity involves a static and unchanging reference state, θref . One
convenient choice is the current state, θref := θt−1, which we adopt to yield the following form for
agent-relative interactivity,

ÎT (A |xt, b0:t−1) ≈
T−1∑
k=1

δ2t+k(θt−1)︸ ︷︷ ︸
static

− δ2t+k(θt+k−1)︸ ︷︷ ︸
dynamic

 .

Lastly, we outline how a policy can be trained to maximize interactivity. To obtain the future
prediction errors, we assume access to a differentiable model that we can use to roll-out a sequence
of observations and actions using the current policy. Interactivity is estimated on the roll-out by
computing the cumulative difference between the static and dynamic prediction errors. The policy
is then updated using a gradient-based optimizer with the objective of maximizing the estimated
interactivity.1 Crucially, both the policy and value function must be continually updated to sustain
interactivity: if the value function stops changing then interactivity is trivially zero, and if the policy
stops changing then the value function can converge to a fixed point.

5.2 Maximizing Interactivity as a Continual Learning Problem

We now show that an interactivity-seeking reinforcement learning agent faces a continual learning
problem. Intuitively, this is because interactivity-seeking behaviour is directed towards experience
which can be predicted by a dynamic value function that learns from experience, but which cannot be
predicted by the current value function if it were to remain static. Specifically, interactivity-seeking
agents are suboptimal if they stop learning, such as when the parameters of their policy and value
stop changing. Similar to our previous result on embedded automata (Theorem 1), we also show that
the agent’s maximum possible interactivity increases as the its capacity increases.

1Optimizing the dynamic errors involves meta-gradients through the value function’s parameter update.
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Figure 4: Deep ReLU networks fail to sustain performance on the interactivity evaluation
task. Interactivity-seeking simulates a big world to evaluatesa learning algorithm’s capability for
continually adaptive behaviour. Right: The deep linear network sustains interactivity, whereas the
deep ReLU collapses in performance. Middle: Each colour corresponds to one component of the
action vector. The deep linear policy learns to produce actions following a non-stationary wave,
which can be predicted by a dynamic linear function. Left: The deep ReLU policy fails to produce
actions with any predictable structure, despite its increased expressivity

Theorem 2 (Big World). An agent that seeks to maximize its agent-relative interactivity is (i) limited
by its finite capacity and, (ii) suboptimal if it stops learning.

The desiderata of Theorem 2 were previously described as conditions for a big world simulator
(Kumar et al., 2024). Thus, interactivity-seeking appears to be a general problem setting which
captures the big world hypothesis: the best use of an agent’s limited capacity is to continually adapt.

6 Evaluating Continual Adaptation With Agent-Relative Interactivity
We now use interactivity-seeking to construct a synthetic problem to evaluate a learning algorithm’s
capability for continually adaptive behaviour. In particular, we consider a setting in which the agent
only observes its own actions (see the self-predicting agent in Figure 3, right). Even though such an
agent has full control over its experience stream, its interactivity is still implicitly constrained by its
capacity. That is, the interactivity objective depends on the parameters and learning algorithm of the
value function, which the agent does not directly observe. An advantage of this evaluation approach
is that it is environment-free, allowing direct evaluation of an algorithm outside of an environment, or
any collected data. Instead, algorithms are directly evaluated by continually learning from their own
online experience in a manner similar to self-play.

We instantiate the reinforcement learning agent outlined in Section 5 with a linear parameteriza-
tion of the value function, v(bt;Wt) := Wtbt ≈

∑∞
k=0 γ

kbt+k+1. Linearity provides stability for
learning online with TD(0), compared to temporal difference learning with deep nonlinear networks.
For the policy parameterization, we consider a deep network architecture (using either linear or
ReLU activations), where we normalize the output to ensure that the output has bounded range,
bt+1 := RMSNorm (π(bt; θt)). This policy is optimized using the model-based approach described
in Section 5. Optimizing the agent-relative interactivity is a bi-level optimization problem as the
dynamic prediction errors depend on the value function’s learning process. Thus, our model-based
approach to maximizing interactivity is similar to the cross-prop algorithm (Veeriah et al., 2017),
which is an online version of model-agnostic meta-learning (Finn et al., 2017). For both the policy
and the value function, we found RMSProp (Hinton et al., 2012) to balance performance and stability
better than either Adam (Kingma and Ba, 2015), or vanilla gradient descent.

Our results demonstrate that a deep nonlinear policy is unable to sustain interactivity (see Figure 4,
right). That is, the deep nonlinear policy is unable to plan an action sequence for which the dynamic
value function has low prediction error, but for which the current static value function has high
prediction error. However, we find that a deep linear policy is able to sustain interactivity. This
finding suggests that interactivity-seeking agents produce non-stationarity that can lead to apparent
loss of plasticity, which linear methods have been shown to avoid (Lewandowski et al., 2025b; Dohare
et al., 2024). Observing the actions chosen by each policy, we found that the deep linear policy
learned to produce actions with predictable structure, resembling a non-stationary wave (see Figure 4,
middle). These actions can be locally predicted by a linear function, but global prediction requires a
dynamic linear function. In contrast, the deep nonlinear policy learned failed to produce actions with
any predictable structure (see Figure 4, left). Furthermore, in Figure 5, we found that deep linear
networks are also capable of increasing their interactivity with more capacity, in the form of deeper
or wider networks. These findings demonstrate that interactivity-seeking simulates the challenges of
a big world in which any policy is limited by its finite capacity, and suboptimal if it stops learning.
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Figure 5: Deep linear networks are capable of sustaining higher interactivity with more com-
putational resources. By increasing the width and depth of the deep linear network, we increase
the network’s capacity for continual adaptation, which allows it more quickly change its linear
function approximator. Left: Increasing width marginally increases the sustained interactivity. Right:
Increasing depth results in a large increase in interactivity, as well as more oscillatory behaviour.

7 Discussion

In this paper, we introduced a computationally-embedded perspective on the big world hypothesis,
where we (i) characterize the implicit constraint faced by an embedded agent, (ii) propose interactivity
as a computational measure of adaptability, and (iii) develop a reinforcement learning algorithm for
maximizing interactivity. We show that interactivity-seeking leads to the common desideratum of the
continual learning problem in which any agent that stops learning is suboptimal.

Our work departs from dogmas common in reinforcement learning (Abel et al., 2024) by formalizing
the agent as embedded in the environment, and by proposing interactivity as an objective defined
relative to an agent and its learning algorithm. Interactivity-seeking agents are implicitly constrained
because the interactivity objective depends on components, such as parameters, that are not directly
observable but evolve through learning. As we demonstrated in the environment-free evaluation
task, this perspective has a critical consequence: an interactivity-seeking agent must continually
adapt rather than converging to a fixed point. Unlike existing continual learning problems that often
involve manually designed non-stationarity, an interactivity-seeking agent autonomously produces
the non-stationarity through its learning algorithm. This task thus provides several unique challenges:
(i) the task complexity scales with the complexity of the learning algorithm, (ii) hyperparameters
influence the non-stationarity produced by the learning algorithm, requiring more careful procedures
for tuning (Mesbahi et al., 2025), and (iii) the task incentivizes the design of continual learning
algorithms that can both sustain plasticity to learn from new experience (Lyle et al., 2024; Dohare et al.,
2024), and use plasticity and prior learning to create more new experience through non-stationarity.

Beyond serving as an evaluation task for continual learning, interactivity can also serve as an auxiliary
objective for agents in reinforcement learning environments. Unlike the environment-free evaluation
task investigated in this paper, estimating the interactivity of an agent in an environment would involve
learning a model of the environment to calculate meta-gradients, or learning a value function that
directly approximates interactivity. The change in temporal difference error due to learning would then
serve as an intrinsic reward, similar to curiosity-driven methods, to incentivize directed exploration.

This practical potential for directed exploration suggests a refinement of the interactivity thesis. We
speculate that if an agent can sustain a particular level of interactivity, then it possesses the capacity to
learn any behaviour with equal or lower interactivity—including those that maximize the discounted
cumulative sum of a reward signal. That is, the ability to sustain high interactivity may reflect a more
general capacity for acquiring goal-directed behaviours.
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A Experimental Details for Behavioural Self-Prediction

The code for the experiments can be found at: https://github.com/AlexLewandowski/bigger-world-
interactivity

The problem that we consider involves a value function predicting a policy’s actions, where the policy
is trained to maximize interactivity. Specifically, the policy is trained to produce actions which have
large prediction errors for the current static value function but which have low prediction errors for a
dynamic value function that is continually learned. We consider a policy that maps its previous action
to a new action, meaning that there is no external environment providing observations.

The value function, which we restrict to be linear, is tasked with predicting the future behaviour of
the policy iteratively and online. At the first timestep, we randomly initialize the parameters of the
policy θ0 ∼ p(θ) and of the value function, W0 ∼ p(W), using standard distributions for neural
network initialization. We then randomly sample the initial action, b0 ∼ N(0, 1/d), where d = 1000
denotes the dimensionality of the action, b ∈ Rd. The policy, πθ, is then trained to maximize its
interactivity whereas the value function vW is trained to predict the policy using TD(0).

The following steps are repeated at each timestep t,

• A trajectory of T actions is produced by the policy, πθt .

• A copy of the current value function is frozen, and we record the temporal difference
errors incurred along this trajectory: {δt+1(Wt+1, θt), . . . , δt+T (Wt+T , θt)}. The sum
of squared temporal difference errors provides a measure of the unconditional algorithmic
complexity, K̂A(bt:T |ϵ) =

∑T
k=1 δ

2
t+k(Wt, θt).

• A copy of the current value function is updated dynamically along the trajec-
tory, and we record the temporal difference errors incurred along this trajectory:
{δt+1(Wt+1, θt), . . . , δt+T (W

−
t+T , θ)}. Where each W−

t+k corresponds to the updated
parameters of the value function. The sum of squared temporal difference errors pro-
vides a measure of the conditional algorithmic complexity, K̂A(bt:t+T−1|b0:t−1) =∑T

k=1 δ
2
t+k(W

−
t+k, θt).

• We update the policy using a single step from a gradient-based optimizer, maximizing
interactivity, but written here as minimizing negative interactivity,

J(θ) = −
T∑

k=1

δ2t+k(Wt, θ)− δ2t+k(W
−
t+k, θ).

• We take an action using the updated policy, bt+1 = π(bt; θt+1).

• We now update the value function with a single step of TD(0) using the temporal difference
error, δt = bt+1 + γv(bt+1,Wt)− v(bt,Wt).

A.1 Interpreting Interactivity Maximization As A Continual Learning Benchmark

Our theoretical and experimental results show that maximizing interactivity requires both fast adapta-
tion to increase complexity with higher prediction errors and stability to sustain adaptation over time.
That is, maximizing interactivity involves the canonical plasticity-stability trade-off of continual
learning (Grossberg and Grossberg, 1982; Parisi et al., 2019). Our empirical results demonstrate
that deep nonlinear baselines fail at striking this balance, whereas deep linear networks appear to
naturally achieve this balance. This suggests that this synthetic benchmark isolates the key challenge
in continual learning, while also not requiring outside data or environments. This is significant
because few environments are designed specifically to evaluate continual adaptation. Thus, it is
suboptimal to stop learning in this setting, regardless of the capacity of the algorithm or function
approximator.

A.2 Limitations of Experiments

Our experiments used relatively shallow networks, with a maximum depth of D = 4. However, with
the meta-gradient calculation over a finite horizon of T = 10, the effective depth of the networks
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during auto-differentiation is T · D = 40. Meta-gradient methods for deep networks can exhibit
more pathological learning dynamics due to increased curvature, leading to instability that could
partially explain the discrepancy between linear and nonlinear networks. Understanding how to
control curvature using only first-order methods is key for effective meta-gradient descent in this
setting.

The meta-gradient method poses several limitations in scaling. Ideally, we would prefer to scale both
the horizon and the capacity of the function approximator. However, because meta-gradients involve
a second-order term (the hessian) and because the effective depth is multiplicative in the horizon and
the depth of the network, this makes simultaneously scaling both costly. A more promising direction
involves bootstrapping meta-gradients (Flennerhag et al., 2022), other first-order approximation
(Nichol et al., 2018), or more effective regularizers (Lewandowski et al., 2025a).

Experimental evaluation in this setting also requires special consideration. Holding the agent fixed
for evaluation, as is commonly done in machine learning, is not appropriate given that interactivity is
defined as an online objective. In addition, standard approaches to hyperparameter tuning may not be
feasible for evaluating the long-term performance of a continual learning agent (Mesbahi et al., 2025).
Overcoming these obstacles to more fairly assess dependence on hyperparameters would require
re-evaluation of several components of empirical practice in machine learning.

B Proofs

Proof of Proposition 1. Let M = (Q,Σ′,Γ, δ, q0,□′, F ) be a Turing machine where:

• Q is the finite set of states

• Σ′ is the input alphabet

• Γ is the tape alphabet with Σ′ ⊂ Γ

• δ : Q× Γ → Q× Γ× {L,R} is the transition function

• q0 ∈ Q is the initial state

• □′ ∈ Γ is the blank symbol

• F ⊆ Q is the set of final states

Our proof constructs an algorithmic Markov process, E = (Ω,Ξ,T). Specifically, it involves showing
how the Turing machine can be represented on a state-space Ω, with its transition function represented
in the Markov transition function, T.

Constructing the state-space (Ω)

Let Ξ = Z denote the integers for tape positions, Σ = ((Q ∪ {□′′}) × Γ) ∪ {□} where □ is the
Markov blank symbol. Then each ω ∈ Ω represents a complete Turing machine configuration by
encoding the tape contents at each position, the current state and head position.

Specifically, for a TM configuration with state q, head at position h, and tape contents ...a−1a0a1...,
we define:

ω(ξ) =


(q, ah) if ξ = h (head position)
(□′′, aξ) if ξ ̸= h and aξ ̸= □′

□ otherwise

Constructing the transition function (T)

The Markov transition T(ω) simulates one step of the Turing machine. It first finds the head position
h where ω(h) = (q, a) for some q ∈ Q, a ∈ Γ. It then applies the Turing machine transition:
δ(q, a) = (q′, a′, d) where d ∈ {L,R}. Lastly, we construct ω′ by:

• Setting ω′(h) = (□′′, a′) (write new symbol)
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• Setting ω′(h+ offset(d)) = (q′, b) where

b =

{
c if ω(h+ offset(d)) = (□′′, c) for some c ∈ Γ

□′ if ω(h+ offset(d)) = □

and offset(L) = −1, offset(R) = 1

• Leaving all other positions unchanged: ω′(ξ) = ω(ξ) for all ξ /∈ {h, h+ offset(d)}

At initialization, we have that the initial tape contents is finite and thus |ω′| < ∞. At each step,
the state remains finite, |ω′| < ∞, because each step changes at most 2 positions. Note also that
T is computable in O(poly(|ω|)); finding the head and updating positions requires linear scan and
constant updates.

Proof of Proposition 2. We prove each part in sequence.

Part 1: The automaton is equivalent to a k-horizon boundaried Markov process.

Given that bk(Θ) = X , the k-step transition dynamics on the internal state space Ω|Θ depends only
on the current internal state and the current observation.

We define two k-horizon boundaried Markov process. First, for the internal statel, we have:
E|Θ = (Ω|Θ,Ω|X ,T|kΘ) where T|kΘ(θ, x)) := u(x; θ). Next, for the policy, we have: E|Y =
(Ω|Y ,Ω|X∪Θ,T|kY ) where T|kY (y, θ, x) := π(x; θ).

That is, both the policy, π, and the internal state update function, u, is simulated by the k-step
composition of the environment’s transition function. By the definition of uniform locality and the
condition bk(Θ) = X , the k-step transition on Ω|Θ is fully determined by the current internal state
θ ∈ Ω|Θ and the boundary x ∈ Ω|X . This establishes the equivalence.

Part 2: The automaton’s environment is a partially observable Markov decision process.

For the automaton specifically, the environment consists of:

• State space: Ω

• Action space: The output space Ω|Y

• Observation space: The input space Ω|X

• Transition function: Given the current environment state, the automaton’s action y ∈ Ω|Y ,
the next environment state follows from T

• Observation function: The automaton observes x ∈ Ω|X from the current environment
state

Since the automaton only observes Ω|X and not the full environment state Ω, this constitutes partial
observability. The Markov property holds for the underlying environment state transitions via T.

Part 3: The automaton’s interaction is equivalent to a stateful policy acting on the environment.

The automaton maintains an internal state θ ∈ Ω|Θ and produces actions via the output function
π : Ω|X × Ω|Θ → Ω|Y . This defines a stateful policy, π(x; θ), where the internal state θ is updated
according to:

θt+1 = u(xt; θt−1).

This is precisely the definition of a stateful policy in partially observable environments, where the
policy maintains internal memory (the substate θ) and conditions its actions on both observations and
this internal state.

Proof of Proposition 3. An embedded automaton has a finite number of states, which is upper
bounded by the size of its internal state space, |Θ|. This upper bounds the number of unique
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configurations that the internal state space can take, which thus upper bounds the capacity of the
automaton.

Thus, the automaton’s capacity is constrained to be upper bounded by a number of states that is less
than |Θ|, which is finite.

Forthermore, an embedded automaton is only capable of a limited form of computation relative to the
partially observable Markov decision process. An embedded automaton is equivalent to a finite-state
machine. This means that the automaton is only capable of recognizing a regular language. The
partially observable Markov decision process that it faces, however, is computationally universal
and equivalent in power to a Turing machine (by Proposition 1). This means that the environment
can, in general, generate a recursively-enumerable language. The embedded automaton is thus
implicitly computationally constrained, because of the separation between finite-state automata and
the turing-complete environment in the Chomsky hierarchy (Chomsky, 1959).

Thus, for a sufficiently long behaviour sequence, the automaton must eventually return to a previous
state (i.e., T >> |Θ|) by the pigeonhole principle. Any behavioural sequence with a period longer
than |Θ| cannot be represented by the automaton.

Thus, an embedded automaton simulated in a universal-local environment is implicitly constrained:
there exist input-output behaviours that it cannot realize.

See also: C.1.

Proof of Theorem 1. We denote the capacity of the automaton as C(A), and denote the maximum
achievable T -horizon interactivity for a given automaton as,

max
A

IT (A|xt, b0:t−1).

Intuition: interactivity is determined by the dependence between the past and future behaviour of
the automaton. This behaviour is determined by a substate-space that grows with the horizon (T ).
Specifically, the future behaviour of an embedded automaton is determined by (i) the universal-
local environment’s transition function, (ii) the embedded automaton’s initial internal state, and (iii)
a substate-space of the environment that grows with the horizon of behaviour considered. If an
embedded automaton’s past behaviour were predictive of its future behaviour of a given horizon, then
it would also imply that its past behaviour is predictive of a substate-space growing with that horizon.
For a large enough horizon, the size of this substate-space will eventually be larger than the capacity
of the automaton. An embedded automaton with a given capacity cannot maximize interactivity
beyond a given horizon, meaning that it actively faces an implicit capacity constraint.

Formally: an automaton with sufficiently high interactivity will produce a behaviour with high
unconditional Kolmogorov complexity, K(bt:t+T−1) + O(1) > C(A), where O(1) is a constant
independent of the automaton. Because the behaviour is generated by the automaton, we know that
the Kolmogorov complexity is also upper bounded by the capacity, C(A) +O(1) > K(bt:t+T−1).

Thus, we can upper bounded interactivity in terms of the unconditional complexity,

IT (A|xt, b0:t−1) = (K(bt:t+T−1)−K(bt:t+T−1 | b0:t−1))

≤ K(bt:t+T−1)

Which uses the fact that the conditional algorithmic complexity is positive, K(bt:t+T−1 | b0:t−1) > 0.

Next we use the fact that the Kolmogorov complexity of a sequence produced by an automaton is
upper bounded by its capacity, which implies that,

max
A

IT (A|xt, b0:t−1) ≤ K(bt:t+T−1) ≤ C(A) +O(1)

Lower Bounding Interactivity By Capacity

For the lower bound, we provide a constructive proof in which we show how an automaton can scale
a lower bound on its interactivity proportional to its capacity.
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In particular, the automaton will use a brute-force method which simulates a much smaller automaton
along with a stored history. That is, a subroutine will simulate an automaton with capacity αC(A),
where α < 1. The automaton will use its remaining capacity to store on the order of (1− α)C(A) of
the previous input-output pairs. It then runs an enumeration strategy as a subroutine, which simulates
the smaller automaton with capacity αC(A). Specifically, the subroutine enumerates over all possible
T -horizon futures and selects the next output that maximizes the resulting T horizon unconditional
complexity and minimizes the T -horizon conditional complexity with respect to the stored history of
length (1− α)C(A). While this is computationally expensive, we can choose α to be small enough
that this is possible. The interactivity achieved in this setting is thus,αC(A)−O(!)

Putting these together, we have the lower and upper bounds of:

αC(A)−O(1) < max
A

IT (A|xt, b0:t−1) ≤ K(bt:t+T−1) ≤ C(A) +O(1)

Proof of Theorem 2. We provide a proof for each of the two desiderata

(i) The first property follows from an argument that is similar to Theorem 1, but adapted to a learning
agent, A, with some bounded capacity C(A). We are interested in what interactivity the best such
agent can achieve, maxA IT (A|xt, b0:t−1).

A bounded agent that maximizes its interactivity will have a non-zero unconditional agent-relativized
complexity, KA(bt:t+T−1|ϵ) > 0 (otherwise, its interactivity would be zero). This implies that the
unconditional Kolmogorov complexity of its behaviour is on the order of the the capacity of the
agent, K(bt:t+T−1) ≥ C(A)−O(1), where O(1) is a constant independent of the agent. Because
the behaviour is generated by the automaton, we know that the Kolmogorov complexity is also upper
bounded in terms of the capacity, C(A) +O(1) ≥ K(bt:t+T−1).

Such an agent will also have low conditional agent-relativized complexity (otherwise, its inter-
activity would be low). An optimal learning agent that minimizes the agent-relativized com-
plexity, KA(bt:t+T−1|b0:t−1) = 0, has conditional Kolmogorov complexity is strictly less than
the capacity of the agent, K(bt:t+T−1|b0:t−1) < C(A). In fact, we have, for α < 1, that
K(bt:t+T−1|b0:t−1) ≤ αC(A). This is because the agent can only use a fraction of its capacity
on predicting its future behaviour (in addition to making predictions, an agent selects actions, and
updates its substate).

Taken together, we have that the performance of an interactivity-seeking agent interactivity is upper
and lower bounded by capacity,

(1− α)C(A)−O(1) ≤ max
A

IT (A|xt, b0:t−1) ≤ C(A) +O(1).

An agent with a given capacity cannot maximize its interactivity without increasing its capacity.
Thus, a bounded agent that seeks to maximize its interactivity through learning is limited by its finite
capacity constraint.

(ii) For the second property, we demonstrate the necessity of continual adaptation for maximizing
interactivity, by considering the role of the embedded agent’s transition function.

Continual Adaptation in Automata

First we consider the finite-state automaton, A, and how its substate transition function, u, encodes
its learning. An automaton agent that has stopped learning is thus equivalent to one that stops
updating its internal state. In this case, the automaton’s internal state remains constant zt′ = z for
all t′ > t. A finite-state automaton has a capacity on the order of C(A) ∈ O(poly(|A|)). But, a
finite-state automaton that does not update its internal state, denoted by A−, has a reduction in its
capacity. In particular, the capacity is reduced to C(A−) = O(|Ω|X |), because the terms needed to
encode the transition function are no longer needed for an automaton that does not use the transition
function. Using the upper bounds on interactivity from the Theorem 1, we conclude that an agent
that stops learning reduces its future output complexity from O(|IA||A| log |A|) to O(|IA|). Thus, it
is suboptimal to stop learning.

Continual Adaptation in Reinforcement Learning Agents
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Value parameters: If the parameters of the value function stop being updated, the interactivity
objective immediately collapses to 0.

Policy parameters: Suppose the policy’s parameters stop being updated, meaning that the policy
becomes fixed. Then the sequence of actions taken by the fixed policy becomes a Markov process,
which is predictable. Under the Markovian dynamics induced by a fixed policy, the value function
could converge to an optimal static prediction of the future behaviour. This would lower both the
unconditional Kolmogorov complexity and interactivity. Thus, an agent maximizing interactivity is
suboptimal if it stops updating its policy parameters.

C Additional Background and Related Work

C.1 Additional constraints on embedded agents

There are two additional ways in which an embedded automaton is implicitly constrained:

1. Minimum size: The size of an embedded automaton, including the size of its input and
output spaces, cannot be arbitrarily small, and thus there exists a minimum size. This
implies that the automaton cannot read and write to arbitrarily small parts of the environment,
constraining its observation and action spaces.

2. Simulation time: Simulating an embedded automaton in a universal-local environment may
also incur a simulation overhead. This constrains the automaton by the fact that several
transitions in the environment may be necessary to simulate a single transition for the
automaton.

While the embedded automaton is computationally constrained relative to its environment, these two
additional constraints limit the information made available to the automaton about the environment.
Specifically, an automaton generally cannot observe, process and output information at the same
granularity, or at the same timescale, as the environment because of constraints on its size and its
simulation time.

C.2 Algorithmic complexity

The Kolmogorov complexity (Kolmogorov, 1965; Solomonoff, 1964; Chaitin, 1966) of an object
(encoded as a binary string) is the length of the shortest program that computes it and halts. Unlike
traditional information theory, it measures the complexity of an individual object without depending
on a stochastic source or ensemble.

The Kolmogorov complexity of a string depends on the choice of a universal Turing machine.
However, since any universal Turing machine can simulate another (e.g., via a compiler), the choice
of the machine affects the Kolmogorov complexity by, at most, an additive constant independent of
the specific string (Li and Vitányi, 2019).

Kolmogorov complexity is closely tied to compression, where the shortest description represents the
most efficient compression for the given universal Turing machine. Although Kolmogorov complexity
is uncomputable, it is possible to compute improving upper bounds by searching over all possible
programs in parallel and tracking the shortest candidate that generates the target string (Li and Vitányi,
2019).

C.3 AIXI

AIXI defines a general Bayes-optimal reinforcement learning agent in an unknown computable
environment (Hutter, 2005). In this framework, the environment is represented by a Turing machine
with unidirectional input and output tapes, and bidirectional working/internal tapes. The agent’s
actions are received by the environment on its input tape, based on which it can write a computable
history-based reward and observation on its output tape.
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The AIXI agent acts in a Bayes-optimal manner by planning based on a posterior estimate over
all computable environments, using Solomonoff’s universal prior as a starting point (Solomonoff,
1964). This prior assigns higher probability to ‘simpler’ environments–those with lower Kolmogorov
complexity. However, both Solomonoff’s prior and AIXI are incomputable, making the development
of practical approximations within this framework a key area of interest (Veness et al., 2011).

C.4 Connections to intrinsic motivation and the free energy principle

Previous work has explored several intrinsic drives that can guide agent behaviour without the
need for explicit external rewards (Schmidhuber, 2010; Barto, 2013). Many approaches to intrinsic
motivation are developed within the framework of traditional RL, where the agents are not constrained
relative to the environment. As a result, these approaches may not be well-suited to a big world.
Nevertheless, interactivity shares connections to ideas such as mutual information maximization in
intrinsic motivation.

The information gain of a dynamics model can serve as an intrinsic or auxiliary reward, promoting
curious exploration (Storck et al., 1995; Houthooft et al., 2016) Unlike curiosity driven by information
gain, the goal of interactivity is not to learn an accurate model of the world.

Another related concept is Empowerment (Klyubin et al., 2005), where an agent seeks to maximize its
control over its environment. Empowerment-seeking agents aim to maximize the mutual information
between their actions and future states. Such agents avoid states where their actions have low
influence and prefer states that allow for a wide range of controllable outcomes. This objective can
also be used to learn a set of behaviours (or options) that lead to different final states (Mohamed
and Jimenez Rezende, 2015; Gregor et al., 2016). As discussed earlier, interactivity-maximizing
agents produce complex yet predictable behaviour, which is not directly tied to the concept of control.
Furthermore, unlike objectives grounded in traditional (Shannon) information theory, interactivity
relies on asymmetric algorithmic mutual information between previous inputs and future outputs.

Active inference describes agentic behavior in partially observable environments as the minimization
of free energy (Friston et al., 2010; Sajid et al., 2021). Free-energy minimization prefers selecting
actions that lead to highly predictable states—inputs that are unsurprising to the agent’s model. In
contrast to free-energy minimization, maximizing interactivity actively discourages low-complexity
predictable states.

C.5 Relationship to other notions of boundaries and Markov processes

The boundaried Markov process that we define is also similar to other frameworks which introduce
explicit boundaries. Active inference, for example, considers a Markov blanket that separates
probabilistic nodes in a directed acyclic graph as a way of separating the agent from its environment
(Kirchhoff et al., 2018). Open Markov processes have also been defined which have explicit boundary
states from which probability can flow in and out of (Baez et al., 2016). Our work applies similar
ideas specifically in the computational setting that we consider.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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• The paper should point out any strong assumptions and how robust the results are to
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model well-specification, asymptotic approximations only holding locally). The authors
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will be specifically instructed to not penalize honesty concerning limitations.
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Justification: Yes, in the appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
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of Normality of errors is not verified.
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error rates).
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: It does not, as it is purely a theoretical investigation.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
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from (intentional or unintentional) misuse of the technology.
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: None of these were used.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Not used.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For existing datasets that are re-packaged, both the original license and the license of
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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well as details about compensation (if any)?
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or other labor should be paid at least the minimum wage in the country of the data
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guidelines for their institution.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
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Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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