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Abstract

Continual learning is often motivated by the idea, known as the big world hypothe-
sis, that the “world is bigger” than the agent. Recent problem formulations capture
this idea by explicitly constraining an agent relative to the environment. These con-
straints lead to solutions in which the agent continually adapts to best use its limited
capacity, rather than converging to a fixed solution. However, explicit constraints
can be ad hoc, difficult to incorporate, and limiting to the effectiveness of scaling
up the agent’s capacity. In this paper, we characterize a problem setting in which an
agent, regardless of its capacity, is implicitly constrained by being embedded in the
environment. In particular, we introduce a computationally-embedded perspective
that represents an embedded agent as an automaton simulated within a universal
(formal) computer. We prove that such an automaton is implicitly constrained and
that it is equivalent to an agent that interacts with a partially observable Markov
decision process over a countably infinite state-space. We then propose an objec-
tive for this setting, which we call interactivity, that measures an agent’s ability
to continually adapt its behaviour and to continually learn new predictions. We
develop a reinforcement learning algorithm for maximizing interactivity and a syn-
thetic evaluation task to support experimentation on continual learning. Our results
indicate that deep nonlinear networks struggle to sustain interactivity whereas deep
linear networks can achieve higher interactivity as capacity increases.

1 Introduction

The goal of this paper is to characterize a general problem setting in which the best use of an agent’s
limited capacity is to continually adapt (Abel et al.,|2023)). Our approach is motivated by the idea,
known as the big world hypothesis, that the “world is bigger” than the agent (Javed and Sutton)
2024). That is, an agent in a big world may lack the capacity to learn the fixed optimal solution,
and should instead continually adapt by updating its approximate solution (i.e., by tracking, [Sutton
et al.||2007). However, formalizing the relationship between the agent and the environment presents
a challenge, because they are typically treated as separate entities in reinforcement learning (see
Figures [Ib]and[Ic). We address this challenge by defining a general environment in which an agent
can be embedded, and derive a problem setting in which any such agent is (i) implicitly constrained
by its capacity, and (ii) suboptimal if it stops learning.

Explicit constraints on the agent have been previously considered in continual learning as a means
of capturing the big world hypothesis. For example, in continual learning experiments, it is common
practice to constrain what the agent can store (Prabhu et al., 2020), or the capacity of its function
approximator (Meyer et al.| |2024). Other more general constraints on the agent have also been
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Figure 1: Comparing the agent-environment relationship in different problem formulations.
Each problem formulation imposes different constraints on the agent and environment. This work:
A universal-local environment embeds the agent by simulating it on its state-space. The agent is
implicitly constrained because the environment necessarily has greater complexity than the agent
it contains. Traditional RL: A given environment and agents of varying complexity. Agents are
unconstrained in principle—they can always be scaled to exceed the environment’s complexity. AIXI:
A computationally universal environment and an uncomputable agent, neither is constrained.

considered. Such constraints include hardware limits on the agent’s compute (see discussion on
measuring compute in Section 4.1, [Verwimp et al.,|2024) and on the agent’s energy use (Javed and
Sutton, [2024)). One recent characterization of continual learning uses an explicit constraint on the
agent’s information-theoretic capacity (Kumar et al., 2023, 2024). However, beyond analytically
tractable agents and environments, this information-theoretic constraint is difficult to measure and
verify, limiting its utility for evaluating continual learning agents. In addition, an explicit constraint
undermines the effectiveness of scaling up the agent’s capacity beyond that constraint, which has
been a major source of progress in machine learning more broadly (Hestness et al., 2017; Kaplan
et al.| 20205 Hoffmann et al., [2022). These limitations suggest that explicit constraints may not be
an effective way of capturing the big world hypothesis.

In contrast to explicit constraints, our approach considers the implicit constraint that arises from
an agent embedded in an environment (see Figure [Ta). Specifically, an embedded agent is, in
principle, fully defined by the environment’s state and dynamics. The embedded nature of intelligent
systems—that they exist within and as part of their environment—is typically treated as outside the
scope of the problem formulation (Demski and Garrabrant, 2019). However, the physical world is a
clear example of a world bigger than any agent, suggesting that a formalization of embedded agency
could also provide a natural framework for formalizing the big world hypothesis.

To formalize an agent embedded in an environment, we define a universal-local environment that
is capable of simulating an agent on its state-space with its transition dynamics. This environment
is a Markov process that is computationally universal, meaning that it is capable of simulating
any algorithm (Churchl [1936; [Turing| [1937). Locality further ensures that the Markov process
can be decomposed into a collection of boundaried Markov processes which depend on a finite
boundary-space, thus bounding the complexity of the environment’s transition dynamics. We use this
formalism to show that an embedded automaton can be simulated in the environment as a boundaried
Markov process. When the automaton’s boundary-space consists of only its input and output, we
prove that the automaton interacts with a partially observable Markov decision process by receiving
inputs (observations), updating its internal finite-state, and producing outputs (actions). We then
propose interactivity, defined through algorithmic complexity (Kolmogorov, |1965;|Solomonoff} [1964;
Chaitinl |1966)), to measure an automaton’s ability to adapt its future input-output behaviour sequence,
given its past experience. An interactivity-seeking agent produces structured behaviour that balances
complexity and predictability, rather than behaviour that is either simple or unpredictable. Crucially,
we prove that interactivity-seeking agents are implicitly constrained: an agent with bounded resources
has bounded interactivity, but the agent could use additional resources to increase the complexity of
its behaviour and improve its predictions.

Universal artificial intelligence similarly considers universal environments (Hutter, 2000, [2005]),
in which the uncomputable AIXI agent was extended to define an embedded agent (Orseau and
Ring| 2012). However, these works did not consider how such an agent could be designed to learn
given its limited resources. By considering a universal environment that is also local, we are able to
define an interactivity-seeking agent that is implicitly constrained: maximizing interactivity requires
continually adapting to experience, regardless of the agent’s capacity. Interactivity is similar to



previously considered intrinsic motivation objectives (Chentanez et al.,[2004; Schmidhuber, [2010),
and specifically predictive information (Bialek et al.,[2001} |Still and Precupl 2012). However, inter-
activity uses algorithmic information rather than Shannon information, which can operate directly on
individual sequences rather than requiring probability distributions. This sequence-based formulation
provides a natural framework for continual adaptation, in which an agent’s behaviour is treated as an
individual sequence. Furthermore, by tying the agent’s objective to its computational capacity, and by
bounding that capacity relative to the environment, our formalism captures the big world hypothesis.

Lastly, we demonstrate how the computationally-embedded perspective can be applied in a practical
setting by developing a reinforcement learning algorithm to maximize interactivity and a task to
evaluate continual adaptation in learning algorithms. Specifically, we recast algorithmic complexity
in terms of the prediction error incurred by the agent and view interactivity as the reduction in
prediction error due to continual learning, relative to a baseline that stops learning. Interactivity-
seeking behaviour thus involves learning a policy to direct the agent’s future to new experiences that
would have high prediction error without learning, but which are learnable for the agent. We show
that interactivity-seeking agents create their own non-stationarity and face the common desideratum
of the continual learning problem, in which any agent that stops learning is suboptimal. Our results
indicate that deep nonlinear networks struggle to sustain interactivity whereas deep linear networks
can achieve higher interactivity as capacity increases.

2 Background

To formalize an embedded agent, we use a computational perspective in which we view the envi-
ronment as a computation that also simulates the agent. Specifically, we consider a computationally
universal environment that can simulate any algorithm through state transitions that implement
computational steps. Our approach is general, by making use of the Church-Turing thesis, which
states that all computationally universal systems are equivalent in what they can simulate, and that any
such system can simulate another (Church, |1936; [Turing, |1937). This allows us to adopt a particular
model of computation (e.g., Turing machines) while retaining a general class of environments that
are capable of simulating an embedded agent.

We characterize the capabilities of an agent, relative to its environment, in terms of its input-output
behaviour as a finite sequence (i.e., a string). In particular, we use the algorithmic complexity of a
string, which is the length of the shortest program that computes it and halts (Kolmogorov, |1965;
Solomonoff], |1964; [Chaitinl |1966).

Definition 1 (Algorithmic Complexity). Given strings x,y € %%, where X is a finite symbol-set and
* is the set of strings, the conditional algorithmic complexity is the length of the shortest program,
|c|, that halts and outputs x given y as input,

K(zly) := min{|e| : U(e,y) = =},

where U is a reference universal machine. The unconditional algorithmic complexity is given by
K(z) := K(x | €), where € is the empty string.

While algorithmic complexity depends on the choice of a reference universal machine, any specific
choice affects the algorithmic complexity by, at most, an additive constant independent of the specific
string (L1 and Vitanyi, 2019). Moreover, in this work, we will consider the given computationally
universal environment as the canonical universal machine.

3 A Universal-Local Environment

We begin by defining a general class of environments—universal-local environments—in which
an agent can be embedded. Specifically, such an environment is both computationally universal—
capable of simulating any algorithm on its state-space (Section [3.T)—and local—ensuring that any
bounded computation is confined to a portion of the environment’s state-space (Section [3.2). These
two properties will be used to define an embedded agent as an automaton simulated on the state-space
of this environment, implicitly constraining the agent’s computational capacity (Section ).

3.1 Markov Representation of a Computationally Universal Environment

We first connect computational processes with Markov processes defined over a countable state-space
with a transition function that is computable in polynomial-time with respect to its input size.



Definition 2. An algorithmic Markov process, £ = (2, A, T), is a discrete process defined on a
countable state-space ) := {w : A — X : |w| < oo} where ¥ is a finite symbol set with distinguished
blank symbol O € ¥, A is a countable set used for indexing, and |w| := |[{\ € A : w(\) # O} counts
the number of non-blank symbols. Given an initial state w € Q with |w| < oo, the process produces
the next state w' = T(w), such that |w'| < oo and where the transition function, T : Q — Q, is
computable in time O(poly(|w|))]

The significance of this formulation is that any Turing machine can be represented as an algorithmic
Markov process. Specifically, the Markov state represents the entire configuration of the Turing
machine, including its head position, current tape contents, and control state. The Markov transition
function represents the Turing machine’s transition function, which is a lookup table that can be
applied to the Markov state in polynomial-time.

Proposition 1 (Turing machines as Markov processes). The computational process followed by a
Turing machine can be represented as an algorithmic Markov process.

All proofs of propositions and theorems can be found in Section[A]of the Appendix. One consequence
of Proposition [I]is that there exists a universal Markov process—an algorithmic Markov process
corresponding to a universal Turing machine. This result highlights how an algorithmic Markov
process is more general than the Markov processes typically considered in reinforcement learning. In
particular, a universal Markov process is capable of simulating any algorithm, which is crucial for
defining an embedded agent in Section[4]

3.2 Defining Locality with Boundaried Markov Processes

Intuitively, locality means that the transition function can be restricted to a bounded portion of the
state-space, which we define as a substate-space, corresponding to a finite index-set.

Definition 3. Given an algorithmic Markov process, £ = (Q, A, T), a substate-space, Q|p — Q
(where — denotes an embedding), is defined as a restriction of the state-space to a finite index-set,
FeFA):={1:1cCA,|I| < oo}, suchthat Qp = {w|r : w € Q} where w|p = {w(\) }rer

We now consider the transition function restricted to a substate-space, 2| < €. In particular, we
define a boundaried Markov process in which the transition dynamics on the substate-space, T|r,
depends on another substate-space, |;(ry < €2, referred to as the boundary-space of Q2.

Definition 4. Given an algorithmic Markov process, £ = (0, A, T), a substate-space, Q| , admits a
k-horizon boundaried Markov process if there exists a boundary-space, |y (py < § and a restricted

transition function T|}. : Q| x Qye(r) — Qp that is equivalent to the k-step transition function
on the substate-space: T} (w|p, w|ye () = T® (w)|F for all w € Q. When such a boundary exists,
we denote the k-horizon boundaried Markov process as E|% = (Q|r, Q|yr (), T|}).

Typically, the size of the boundary-space increases as the transition horizon k becomes larger. This is
because the current substate, w|r € |, and the current boundary, w|yp) € Q|p(), only define the
next substate, w\’F € Q|, and not the next boundary. We now characterize an algorithmic Markov
process as uniformly local if it can be factored into 1-horizon boundaried Markov processes.

Definition 5 (Uniform Locality). An algorithmic Markov process, £ = (Q, A, T), is uniformly local
if there exists a polynomial-time boundary function, b : F(A) — F(A) and a reference A\, € A,
such that every A\ € A admits an isomorphic boundaried Markov process: there exist bijections
Q) e Q|{>\} — Q‘{)\*} and (B : Q|b({>\}) — Q‘b({)\*}) satisfying, for all w € ,

ax (Tl @logswlhan)) = Tl (@awlpag) Ba@lpan)-

Uniform locality ensures that the transition function is structurally similar across the state-space,
that each singleton boundary is constant, |b({A})| = ¢, for constant ¢, and that every substate-space
admits a boundaried Markov process, using the boundary function b(F') = (J, o b({A}).

Thus, we use the term universal-local environment for a universal Markov process that is also
uniformly local. As we will show, an embedded agent can be simulated as a boundaried Markov
process within the universal-local environment. The environment terminology reflects its role as the
setting in which an embedded agent operates.

In this paper, we consider deterministic transitions. For non-deterministic transitions, T becomes a relation
where multiple next states w’ € T(w) are possible.
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Figure 2: Conway’s Game of Life is a cellular automaton and an example of a universal-local
environment. The state-space is an infinite 2D grid, A = 7.2, where each cell takes on one of two
values, ¥ = {alive, dead}. Each cell has a local transition function in which it lives (black) with 2 or
3 neighbours, but dies (white) otherwise, and dead cells with 3 neighbours become alive. The blue
and green borders (left) correspond to neighbourhoods that determine the middle cell at time-steps
t + 1 (middle) and t + 2 (right). Longer-term transition dynamics depend on larger neighbourhoods.

3.3 Example of a Universal-Local Environment: Conway’s Game of Life

Conway’s Game of Life is an example of a universal-local environment (Conway), [1970). This
environment is computationally universal because it can simulate a universal Turing machine
(Berlekamp et al., [ 1982; |Rendell, |2011). A substate-space in Conway’s Game of Life is a finite subset
of locations on the grid, specifying the possible values taken by the cells at those locations. Conway’s
game of life is local because the one-step transition dynamics for each individual cell depend on
only the adjacent neighbourhood of that cell, which defines the boundary-space (see Figure[2).

While Conway’s Game of Life has the potential to simulate any algorithm using its local dynamics,
we are not suggesting to program an agent within it. We only point out Conway’s Game of Life as a
proof-of-existence for universal-local environments. Instead, we consider and formalize the implicit
constraints that would be faced by an agent if it were embedded in any such environment.

4 A Computationally-Embedded Agent

We formalize an embedded agent as an automaton simulated within the univeral-local environment as
a boundaried Markov process. The boundary-space acts as an interface that separates the automaton
from the rest of the universal-local environment (Jiangl 2019; Harutyunyan, 2020). When this
boundary-space consists of only the automaton’s input and output space, we prove that the automaton
interacts with a partially observable Markov decision process. We then propose interactivity to
measure the automaton’s capability for continual adaptation, and prove that an interactivity-seeking
automaton is implicitly constrained: the maximum achievable interactivity is upper bounded by the
automaton’s finite capacity.

4.1 Embedding an Automaton in a Universal-Local Environment

A universal-local environment can simulate any algorithm; this property enables us to define an
automaton, .4, on the environment’s state-space, {2 such that its computations are performed through
the environment’s transition dynamics, T. Moreover, locality ensures that the automaton can be
represented as a boundaried Markov process on a substate-space (see Figure 3] left).

Definition 6. Given a universal-local environment, £ = (Q, A, T), an embedded automaton is defined
by A= (Qx,Qy,Qz,u,m), where |z — Q is the internal substate-space of the automaton,
Qlx, Qy — Q are input and output spaces, u : Q| z x Q|x X Qly — Q|z is the internal substate
update function, and 7 : Q|z X Q|x X Qly — Ql|y is the output function. The automaton iteratively
receives an input from the environment, x, and produces its next internal substate, 2’ = u(z, x,y),
and next output, y' = w(z,x,y).

Relating this to an agent in reinforcement learning, we may think of the inputs as observations| the
internal substate as the parameters of a function approximator, the outputs as actions, the substate
update function as a learning rule, and the output function as a policy.

The input-space may also provide an external reward to the automaton, but this need not be the case.
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Figure 3: An illustrative depiction of a computationally-embedded agent interacting with
its environment. An embedded automaton, A = (Q|x, Q|y, |z, u, ), simulates an agent on a
substate-space of the universal-local environment. Left: At each step, an automaton with subtate z
and with previous output y iteratively reads from its input-space, « € Q|x < €, updates its internal
substate, 2’ = u(z, z,y) € Q|z < Q, and writes to its output-space, y' = 7(z,z,y) € Qly — Q.
Right: We will also consider an idealized setting in which a self-predicting agent exerts full control
over its experience by reading and writing to an internal boundary-space, Q).

Proposition 2 (Automaton-Environment Relationship). Given an embedded automaton,
A= (Qx,Qly,Q|z,u, ), if there exists a horizon k such that b*(Z) = X UY, then:

1. The automaton is equivalent to a k-horizon boundaried Markov process
2. The automaton’s environment is a partially observable Markov decision process.
3. The automaton’s interaction is equivalent to a stateful policy acting on the environment

Now that we have defined both the embedded automaton and its environment within the same
universal-local environment, we can show that any such automaton is constrained by the size of
its internal substate, which determines its memory and computational capacity.

Proposition 3 (Implicitly Constrained). In a universal-local environment, any embedded automaton
is constrained by the size of its internal substate-space: there exists an input-output behavioural
sequence that the automaton cannot realize.

While every embedded automaton is constrained by its internal substate-space, which is finite, simple
behavioural sequences can be realized within this constraint. For example, any automaton could
produce a constant output sequence without being constrained by its substate-space. We will show,
however, that every embedded automaton is constrained by the finiteness of its internal substate-space
when adapting to its past input-output experience.

4.2 Interactivity as a Computational Measure of Adaptivity

An agent’s capability for learning can be characterized by its ability to adapt its future behaviour
using its past experience. We propose interactivity to measure this capability directly in terms of
algorithmic complexity. Specifically, interactivity measures the difference between the algorithmic
complexity of future behaviour with and without conditioning on past experience.

Following Proposition 2] we represent an embedded agent as an embedded automaton .4 where its
input and output spaces constitute its boundary-space, Q|xuy = yx(z). Thus, the behaviour of the
agent is determined by the values taken on the boundary-space, b; € |y« (z) Which combines the input
and the corresponding output, b, = (¢, y;). At time ¢, the behaviour can be separated into finite se-
quences: the past, bg.;—1 := bgby - - - by—1, and the T-horizon future, b,y 71 := bybyt1 -+ - bpyr—1.
Definition 7 (Interactivity). Given an embedded automaton, A := (Q|x,Qly, Q| z, u, ), we define
its T'-horizon interactivity as the difference between the algorithmic complexity of its future behaviour
with and without conditioning on its past behaviour,

]IT(A | T, bO:t—l) = K(bt:t+T—1 |€) - K(bt:t+T—1|bO:t—1)a

where € is the empty string, y; = m(bi_1, z¢—1) is the action, z; = u(bs—1,2¢—1) is the internal
substate, x is the current observation, and by = (xy,y;) is the next behaviour tuple.



That is, interactivity measures the predictable complexity of an agent’s future behaviour, given its
past behaviour. Interactivity is high if both (i) the future behaviour, b, 1.7, has high unconditional
algorithmic complexity, and (ii) the past behaviour, by, is predictive of this future behaviour,
thereby yielding a low conditional algorithmic complexity. However, interactivity is low if the future
behaviour has low algorithmic complexity, or if the past behaviour is not sufficiently predictive.

4.3 An Interactivity-Seeking Agent Faces a Big World

The interactivity of any embedded agent is always constrained by its internal substate-space. That
is, an embedded agent that seeks to maximize its interactivity can only sustain a given level of
interactivity with a given internal substate-space. However, an embedded agent with a larger internal
substate-space could use the additional resources to achieve higher interactivity.

Theorem 1. Given an embedded agent, A = (Q|x,Qly, Q| z,u, ), its maximum interactivity is
upper bounded by a quantity depending on the size of its internal substate-space, |Z|.

The goal of an interactivity-seeking agent can be understood as balancing its future complexity with
its future predictability given its past behaviour. Seeking to achieve this goal requires that the agent
continually adapt to its experience so that it learns to track its environment as it changes, and to
discover its computational limitations. This suggests the following interactivity thesis:

Interactivity measures a relative capability for continual adaptation.

We refer to this as the interactivity thesis, rather than a hypothesis, to reflect its speculative and philo-
sophical nature. With low interactivity, an agent’s capability for continual adaptation is limited be-
cause its future behaviour is either: 1) simple, or ii) complex and unpredictable. In either case, the the-
sis stresses the relative notion of capabilities. A simple agent has a limited range of possible behaviours
and thus has a relatively lower capability for adaptation. A complex agent could have a relatively high
capability for adaptation, but only if its future behaviour is influenced by, and can be predicted from,
past experience. Embracing the interactivity thesis naturally leads to a spectrum of adaptive capability.

5 Maximizing Agent-Relative Interactivity with Reinforcement Learning

Maximizing interactivity poses a fundamental computational challenge: it depends on algorithmic
complexity, which is generally uncomputable. While algorithmic complexity can be computed
for finite automata through exhaustive program enumeration (Li and Vitanyil [2019), this requires
computational resources that exceed the automaton’s own capacity. Consequently, an interactivity-
seeking agent must approximate interactivity rather than compute it exactly.

To approximate interactivity, we take a distortion-rate view of algorithmic complexity, which measures
complexity in terms of prediction error under a constrained reference machine, rather than under an
unconstrained universal Turing machine (Vereshchagin and Vitanyi, 2010). The embedded agent,
being an automaton, provides a naturally constrained reference machine. We then augment this agent
to include a predictor function on its finite substate-space, and measure agent-relative complexity by
the incurred temporal difference errors under this predictor.
Definition 8. Given an embedded agent A = (Q|x,Qly,Qz,u,7,v,7) with a predictor
v:Qxuy X Qz = Qlxuy and v € [0,1], the agent-relative complexity of future behaviour
by.t+1—1, conditioned on past behaviour by.4—1, is the sum of future temporal difference errors,

T-1

2
Ka(brtsr-1lbo:t—1) == Y (bear +70ran, 2ek-1) = 0(besr—1, 245-1))°

k=0
where zy4 .1 is the agent’s internal substate after processing bg..—1 followed by by. 1 through
repeated application of the substate update function u.

Complexity, measured in this way, is relative to the agent’s capabilities. If the future prediction
errors are large (small), then the future behaviour is relatively complex (simple). These future
prediction errors depend crucially on the agent through its predictor, its current internal substate, its
learning algorithm, its policy, and its observations from the environment. With this prediction error
formulation, we now consider the agent-relative interactivity,

ﬁT(A | Tt, bO:t—l) = KA(bt+1:t+T | E) - K.A(bt+1:t+T|bO:t—1)-



5.1 Learning to Maximize Agent-Relative Interactivity

We now develop a reinforcement learning algorithm for maximizing agent-relative interactivity. Our
algorithm is summarized in the following three steps: (i) learning a prediction of the discounted
future behaviour using a value function, (ii) computing the agent-relative interactivity, defined as the
difference between static prediction errors (unconditional complexity) and dynamic prediction errors
(conditional complexity), and (iii) meta-learning a policy to maximize agent-relative interactivity.

The first step involves learning a prediction of the future input-output behaviour, in which we consider
the deterministic setting and omit the expectation over the policy and environment. This value
function predicts both future observations and actions, generalizing successor features (Barreto et al.|
2017) and the successor representation (Dayan, [1993). Specifically, with temporal difference learning
(Sutton, |1984, |1988), we train a value function to predict the discounted sum of future input-output
behaviour,

oo

(b z) = Y AV bk, Otk (zerk) = bk + Y0Brsks Zerk1) — V(brir-1, Zek-1),
k=0

where each z;,j, can be understood as dynamic parameters which are updated using semi-gradient
TD0): Zt4k+1 = 2tk + N0t4ky (Ze4k) V0 (bp gk, Z)| , where ) is a step-size.

Z=Zt+k

For the second step, we measure the conditional and unconditional complexity terms using dynamic
and static temporal difference errors, respectively. From the first step, we can readily compute the
conditional complexity using the dynamic temporal difference errors just described,

Ka(btr1:047[b0:t—1) = Z 07 iy (Ze4k)-

However, conditional complexity alone is not sufficient for maximizing interactivity, as it would
otherwise result in reaching a fixed point in which the behaviour is perfectly predicted by the value
function. In contrast, the definition of unconditional complexity does not involve previous experience,
meaning that it cannot be computed using the dynamic evolution from the current substate, 2;. Instead,
computing the unconditional complexity involves a static and unchanging reference state, z,..¢. The
most convenient choice for which is the current state, z,..y := z;, which yields the following form for
agent-relative interactivity,

T

I(A:) = Z t+k: (2t) 5t2+k(2t+k)
—_——

k=t .
slauc dynamic

Lastly, we outline how a policy can be trained to maximize interactivity. To obtain the future
prediction errors, we assume access to an environment model that we can use to roll-out a sequence
of observations and actions from the current policy. Model-based reinforcement learning can then be
used to maximize interactivity: the policy is updated using a gradient of the cumulative prediction error
differences computed from the roll-out, thus estimating the agent-relative interactivity] Interactivity-
seeking behaviour is directed towards experience which can be predicted by the dynamic value
function, but which cannot be predicted by any static value function. Thus, to sustain interactivity, an
agent would need to continually adapt both its policy and its value function.

5.2 Maximizing Interactivity as a Continual Learning Problem

We now show that an interactivity-seeking reinforcement learning agent faces a continual learning
problem. Similar to our previous result on embedded automata (Theorem E]), we show that, as the
agent’s capacity increases, so too does its maximum possible interactivity. Moreover, interactivity-
seeking agents are suboptimal if they stop learning, such as when the parameters of their policy and
value stop changing.

Theorem 2 (Big World). An agent that seeks to maximize its agent-relative interactivity is (i) limited
by its finite capacity and, (ii) suboptimal if it stops learning.

This optimization problem involves meta-learning because the dynamic prediction errors depend on the
value function’s learning process.
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Figure 4: Deep ReLU networks fail to sustain performance on the interactivity evaluation task.
Interactivity maximization is a big world simulator that directly evaluates a learning algorithm’s
capability for continual adaptation. Right: The deep linear network sustains interactivity, whereas
the deep ReLU network performs progressively worse. Middle: Each colour corresponds to an action
index. The deep linear policy learns to produce actions following a non-stationary wave, which can
be locally predicted by a static linear function and globally predicted by a dynamic linear function.
Left: The deep ReLU policy fails to produce actions with any predictable structure, thus highlighting
the unique challenge provided by the interactivity evaluation task.

The desiderata of Theorem [2] were previously described as conditions for a big world simulator
(Kumar et al.||2024). Thus, interactivity maximization appears to be a general problem setting which
captures the big world hypothesis: the best use of an agent’s limited resources is to continually adapt.

6 Evaluating Continual Adaptation With Agent-Relative Interactivity

We now pose interactivity maximization as a behavioural self-prediction task, and use it as a synthetic
task to evaluate algorithms for continual learning. In particular, we consider a setting in which the
agent only observes its own actions (see the self-predicting agent in Figure 3] right). Even though
such an agent has full control over its experience stream, it is still implicitly constrained. That is, the
interactivity objective depends on the parameters and learning algorithm of the value function, which
the agent does not directly observe. The advantage of this type of evaluation task is that it does not
require an external environment, or any collected data. Instead, algorithms are directly evaluated by
continually learning from their own online experience in a manner similar to self-play.

We instantiate the reinforcement learning agent outlined in Section 5] with a linear parameterization of
the value function, v(by, W) := Wby = > 77 7*by 4 p41. Linearity provides stability for learning
online with TD(0), unlike the instability of temporal difference learning with deep nonlinear networks.
For the policy parameterization, we consider a deep network architecture (using either linear or
ReLU activations), where we normalize the output to ensure that the output has bounded range,
b1 := RMSNorm (7 (b¢; 0¢)). This policy is optimized using the model-based approach described
in Section 5} Optimizing the agent-relative interactivity is a bi-level optimization problem: the
dynamic prediction errors depend on the value function’s learning process. That is, gradient-based
optimization, using auto-differentiation, implements an online version of model-agnostic meta-
learning (Finn et al., [2017), similar to the cross-prop algorithm (Veeriah et al.,[2017). For both the
policy and the value function, we found RMSProp (Hinton et al., 2012) to balance performance and
stability better than either Adam (Kingma and Bal [2015)), or conventional gradient descent.

Our results demonstrate that, across a variety of network sizes, the deep nonlinear policy was unable
to sustain interactivity with a horizon of 7' = 10 (see Figured] right). That is, the deep nonlinear
policy is unable to plan an action sequence for which the dynamic value function has low prediction
error, but for which the current static value function has high prediction error. In contrast, we find that
a deep linear policy is able to sustain interactivity. This finding suggests that interactivity-seeking
agents produce non-stationarity that can lead to apparent loss of plasticity, which linear methods have
been shown to avoid (Lewandowski et al., |2025bj |[Dohare et al., 2024). Observing the actions chosen
by each policy, we found that the deep linear policy learned to produce structured actions, resembling
a non-stationary wave (see Figure 4] middle). These actions can be locally predicted by a linear
function, but global prediction is impossible with a fixed linear function. In comparison, the deep
nonlinear policy learned failed to produce actions with any predictable structure (see Figure ] left).
Furthermore, in Figure 5] we found that deep linear networks are also capable of increasing their
interactivity with more resources, in the form of deeper or wider networks. These findings provide
empirical support that the interactivity task is useful for evaluating continual learning algorithms as a
big world simulator; even given a linear predictor, the policy is empirically: (i) limited by its finite
capacity and, (ii) suboptimal if it stops learning.
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Figure 5: Deep linear networks are capable of sustaining higher interactivity with more compu-
tational resources. By increasing the width and depth of the deep linear network, we increase the
network’s computational resources, which allows it more quickly adapt its linear function approxima-
tor. Left: Increasing width marginally increases the sustained interactivity. Right: Increasing depth
results in a large increase in interactivity, as well as more oscillatory behaviour.

7 Discussion

In this paper, we introduced a computationally-embedded perspective on the big world hypothesis,
which considers the implicit constraint faced by an embedded agent. Our work (i) characterizes the
implicit constraint faced by an embedded agent, (ii) proposes interactivity as a computational measure
of adaptivity, and (iii) develops a reinforcement learning algorithm for maximizing interactivity. We
show that interactivity maximization leads to the common desideratum of the continual learning
problem in which any agent that stops learning is suboptimal.

Our work departs from dogmas common in reinforcement learning (Abel et al.,|2024)) by formalizing
the agent as embedded in the environment, and by proposing interactivity which depends both
on the environment and on the agent’s internals. This perspective has a critical consequence: an
interactivity-seeking agent must continually adapt rather than converging to a fixed point. Such an
agent is implicitly constrained because interactivity depends on components, such as parameters, that
are not directly observable but evolve through learning. Thus, our work formally captures the big
world hypothesis: no matter the agent’s capacity, optimal behaviour requires continual adaptation.

Building on the computationally-embedded perspective, we develop a synthetic task that evaluates an
algorithm’s capability for continual learning in a big world setting. This evaluation task is derived
from maximizing interactivity without an external environment. Unlike other tasks in continual
learning, the non-stationarity is autonomously produced by the learning algorithm, rather than
manually produced by the researcher. Moreover, the complexity of the task scales with the complexity
of the learning algorithm. Our results show that typical deep nonlinear networks are unable to sustain
interactivity, whereas deep linear networks can sustain interactivity and improve with more resources.
Further empirical work is needed to design algorithms that combine the representational capacity of
deep nonlinear networks with the stability of deep linear networks, such as using recurrent networks to
summarize past behaviour, and applying regularizers designed for continual learning (Lewandowski
et al.}2025a). Interactivity maximization thus provides a unique evaluation task that integrates the
central continual learning challenges inherent to a big world.

Beyond serving as an evaluation task for continual learning, interactivity maximization can serve as
an auxiliary objective for agents in conventional reinforcement learning environments. Specifically,
as an intrinsic reward, interactivity maximization would incentivize directed exploration similar to
curiosity-driven methods. To maximize interactivity with an external environment, the agent would
need to learn an environment model to apply our meta-gradient approach, or learn a value function
that directly approximates interactivity.

This practical potential motivates a refinement of the interactivity thesis: if an agent can sustain a
particular level of interactivity, then it possesses the adaptive capacity to learn any behaviour with
equal or lower interactivity—including those that maximize external reward. Since every behaviour
has measurable interactivity, sustaining high interactivity indicates the adaptive capacity needed to
learn other goal-directed behaviours.
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A Proofs
Proof of Proposition[l] Let M = (Q,%',T,0,qo,', F') be a Turing machine where:

¢ (@ is the finite set of states

Y/ is the input alphabet

e T'is the tape alphabet with ¥/ C T’

* 0:QxT — Q xT x{L, R} is the transition function
e ¢o € ( is the initial state

» [0’ € T is the blank symbol

e F C ( is the set of final states

Our proof constructs an algorithmic Markov process, £ = (€2, A, T). Specifically, it involves showing
how the Turing machine can be represented on a state-space €2, with its transition function represented
in the Markov transition function, T.

Constructing the state-space (2)

Let A = Z denote the integers for tape positions, ¥ = ((Q U {O"}) x T') U {O} where O is the
Markov blank symbol. Then each w € €2 represents a complete Turing machine configuration by
encoding the tape contents at each position, the current state and head position.

Specifically, for a TM configuration with state g, head at position h, and tape contents ...a_japas ...,
we define:
(g,an)  if A = h (head position)
wA) =< (O ay) ifA#handay #T
(] otherwise
Constructing the transition function (T)

The Markov transition T(w) simulates one step of the Turing machine. It first finds the head position
h where w(h) = (q,a) for some ¢ € @Q,a € T. Tt then applies the Turing machine transition:
d(¢q,a) = (¢',d’,d) where d € {L, R}. Lastly, we construct w’ by:

* Setting w'(h) = (O", a’) (write new symbol)

* Setting w’(h + offset(d)) = (¢’, b) where

po lc if w(h + offset(d)) = (0", ¢) for some ¢ € T’
O ifw(h+ offset(d)) = O

and offset(L) = —1, offset(R) = 1
* Leaving all other positions unchanged: w’(\) = w(A) for all A ¢ {h, h + offset(d)}
At each step, |w’| < oo because each step changes at most 2 positions, preserving finiteness. Note

also that T is computable in O(poly(|w]|)); finding the head and updating positions requires linear
scan and constant updates.

This construction preserves the computational behaviour of the Turing machine while representing it
as an algorithmic Markov process. O

Proof of Proposition|2] We prove each part in sequence.
Part 1: The automaton is equivalent to a k-horizon boundaried Markov process.

Given that b*(Z) = X UY’, the k-step transition dynamics on the internal substate-space 2|7 depend
only on the current internal substate and the boundary-space | xyy -
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We define twok-horizon boundaried Markov process. First, for the substate, we have: &|z
(Qz,Qxuy, T%) where T|% (2, (z,y)) := u(z,2,y). Next, for the policy, we have: €|y
(Qly, Qlzux, TIS) where T|y (2, (x,y)) := n(z, z,y).

That is, both the policy, 7, and the internal substate update function, wu, is simulated by the k-step
composition of the environment’s transition function. By the definition of uniform locality and the
condition v*(Z) = X UY, the k-step transition on §2| 7 is fully determined by the current substate
z € Q|z and the boundary (z,y) € Q|xuy. This establishes the equivalence.

Part 2: The automaton’s environment is a partially observable Markov decision process.

From the automaton’s perspective, the environment consists of:

+ State space: The complement of the automaton’s substate-space, 2 \ 2|z
* Action space: The output space |y
* Observation space: The input space | x

¢ Transition function: Given the current environment state and the automaton’s action
y € Qly, the next environment state follows from T

* Observation function: The automaton observes z € | x from the current environment
state

Since the automaton only observes 2| x and not the full environment state € \ €|z, this constitutes
partial observability. The Markov property holds for the underlying environment state transitions via
T.

Part 3: The automaton’s interaction is equivalent to a stateful policy acting on the environment.
The automaton maintains an internal state z € 2|z and produces actions via the output function

m:Qlz x Qx x Qy — Q|y. This defines a stateful policy:

71'stateful<37a Z) = 71-(2; z, y)

where the internal state z is updated according to:

Zt41 = U(Zt733t7yt)

This is precisely the definition of a stateful policy in partially observable environments, where the
policy maintains internal memory (the substate z) and conditions its actions on both observations and
this internal state.

O

Proof of Proposition[3] We first show that an embedded automaton is only capable of a limited
form of computation relative to the partially observable Markov decision process. We then outline
additional constraints that result from the automaton being embedded.

An embedded automaton is equivalent to a finite-state machine. This means that the automaton is
only capable of recognizing a regular language. The partially observable Markov decision process
that it faces, however, is a function of an unbounded substate-space of the computationally universal
environment. This means that it can, in general, generate a recursively-enumerable language. The
embedded automaton is thus implicitly computationally constrained, because of the separation
between automaton and the environment in the Chomsky hierarchy (Chomskyl [1959).

Moreover, for a sufficiently long behaviour sequence, the automaton must eventually return to a
previous state (i.e., T >> | Z|). Thus, any behavioural sequence with a period longer than | Z| cannot
be represented by the automaton.

Thus, an embedded automaton simulated in a universal-local environment is implicitly constrained:
there exist input-output behaviours that it cannot realize.

There are two additional ways in which an embedded automaton is implicitly constrained:
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1. Minimum size: The size of an embedded automaton, including the size of its input and
output spaces, cannot be arbitrarily small, and thus there exists a minimum size. This
implies that the automaton cannot read and write to arbitrarily small parts of the environment,
constraining its observation and action spaces.

2. Simulation time: Simulating an embedded automaton in a universal-local environment may
also incur a simulation overhead. This constrains the automaton by the fact that several
transitions in the environment may be necessary to simulate a single transition for the
automaton.

While the embedded automaton is computationally constrained relative to its environment, these two
additional constraints limit the information made available to the automaton about the environment.
Specifically, an automaton generally cannot observe, process and output information at the same
granularity, or at the same timescale, as the environment because of constraints on its size and its
simulation time. O

Proof of Theorem[I] We denote the maximum achievable T-horizon interactivity for a given automa-
ton as,
max Ip(Alxe, bo:—1)-

All inequalities below pertaining to Kolmogorov complexity are subadditive, meaning they hide
constant terms, O(1).

Intuition: interactivity depends on a substate-space that grows with the horizon, due to locality.
Specifically, the future behaviour of an embedded automaton is determined by (i) the universal-
local environment’s transition function, (ii) the embedded automaton’s initial internal state, and (iii)
a substate-space of the environment that grows with the horizon of behaviour considered. If an
embedded automaton’s past behaviour were predictive of its future behaviour of a given horizon, then
it would also imply that its past behaviour is predictive of a substate-space growing with that horizon.
For a large enough horizon, the size of this substate-space will eventually be larger than the capacity
of the automaton. An embedded automaton with a given capacity cannot maximize interactivity
beyond a given horizon, meaning that it actively faces an implicit capacity constraint.

Formally: an automaton with sufficiently high interactivity will produce a behaviour with high
unconditional Kolmogorov complexity, K(b;.;+7—1) > C(A). Because the behaviour is generated
by the automaton, we know that the Kolmogorov complexity is also upper bounded by the capacity,
C(A) + ¢ > K(bs.t+7-1), Where c is a constant independent of A.

Thus, we can upper bounded interactivity in terms of the unconditional complexity,
Ir(Alzt, bo:t—1) = (K(bg:tr7-1) — K(bprr—1 | bo:t-1))
< K(betyr-1)
Which uses the fact that the conditional algorithmic complexity is positive, K(bs.;r7—1 | bo:t—1) > 0.

Next we use the fact that the Kolmogorov complexity of a sequence produced by an automaton is
upper bounded by its capacity, which implies that,

max Ir(Alze, bo:t—1) < K(bp4r—1) < C(A)

Proof of Theorem 2] 'We provide a proof for each of the two desiderata

(i) The first property follows from an argument that is similar to Theorem|[I] but adapted to a learning
agent, A, with some bounded capacity C(.A). We are interested in what interactivity the best such
agent can achieve, max 4 I7(A|x¢, bo.t—1)-

A bounded agent that maximizes its interactivity will have a non-zero unconditional agent-relativized
complexity, K 4 (by.s+7—_1]|€) > 0 (otherwise, its interactivity would be zero). This implies that the
unconditional Kolmogorov complexity of its behaviour is on the order of the the capacity of the agent,
K(be.;r) > C(A) — O(1), where O(1) is a constant independent of the agent. Because the behaviour
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is generated by the automaton, we know that the Kolmogorov complexity is also upper bounded in
terms of the capacity, C'(A) + O(1) > K(bs.m).

Such an agent will also have low conditional agent-relativized complexity (otherwise, its inter-
activity would be low). An optimal learning agent that minimizes the agent-relativized com-
plexity, K 4(bgt+7—1|bo:t—1) = 0, has conditional Kolmogorov complexity is strictly less than
the capacity of the agent, K(bs.ry7—1/bo.t—1) < C(A). In fact, we have, for « < 1, that
K(bg.t+1—1]bo:t—1) < aC(A). This is because the agent can only use a fraction of its capacity
on predicting its future behaviour (in addition to making predictions, an agent selects actions, and
updates its substate).

Taken together, we have that the performance of an interactivity-seeking agent interactivity is upper
and lower bounded by capacity,

(1-a)C(A)—0(1) < m}xHT(.A\xt, bo:t—1) < C(A) + O(1).

An agent with a given capacity cannot maximize its interactivity without increasing its capacity.
Thus, a bounded agent that seeks to maximize its interactivity through learning is limited by its finite
capacity constraint.

(ii) For the second property, we demonstrate the necessity of continual adaptation for maximizing
interactivity, by considering the role of the embedded agent’s transition function.

Continual Adaptation in Automata

First we consider the finite-state automaton, .4, and how its substate transition function, u, encodes
its learning. An automaton agent that has stopped learning is thus equivalent to one that stops
updating its internal state. In this case, the automaton’s internal state remains constant 2y = 2 for
all ¢’ > t. A finite-state automaton has a capacity on the order of C'(A) € O(poly(|A])). But, a
finite-state automaton that does not update its internal state, denoted by A, has a reduction in its
capacity. In particular, the capacity is reduced to C(A~) = O(|2| x|), because the terms needed to
encode the transition function are no longer needed for an automaton that does not use the transition
function. Using the upper bounds on interactivity from the Theorem 1, we conclude that an agent
that stops learning reduces its future output complexity from O(|14]|A|log|A|) to O(|I4]). Thus, it
is suboptimal to stop learning.

Continual Adaptation in Reinforcement Learning Agents

Value parameters: If the parameters of the value function stop being updated, the interactivity
objective immediately collapses to 0.

Policy parameters: Suppose the policy’s parameters stop being updated, meaning that the policy
becomes fixed. Then the sequence of actions taken by the fixed policy becomes a Markov process,
which is predictable. Under the Markovian dynamics induced by a fixed policy, the value function
could converge to an optimal static prediction of the future behaviour. This would lower both the
unconditional Kolmogorov complexity and interactivity. Thus, an agent maximizing interactivity is
suboptimal if it stops updating its policy parameters.

O

B Experimental Details for Behavioural Self-Prediction

The code for the experiments can be found at: https://github.com/AlexLewandowski/bigger-world+
interactivity

The problem that we consider involves a value function predicting a policy’s actions, where the policy
is trained to maximize interactivity. Specifically, the policy is adversarial to the static value function
but cooperative with the dynamic value function. We consider a policy that maps its previous action
to a new action. In this case, there is no external environment providing observations.

The value function, which we restrict to be linear, is tasked with predicting the future behaviour of
the policy iteratively and online. At the first timestep, we randomly initialize the parameters of the
policy 6y ~ p(6) and of the value function, Wy ~ p(W), using standard distributions for neural
network initialization. We then randomly sample the initial action, by ~ N (0, 1/d), where d = 1000
denotes the dimensionality of the action. The function approximator, 7y is then trained to maximize
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its interactivity whereas the value function vwy is trained using TD(0). Specifically, the following
steps are repeated at each timestep ¢,

* A trajectory of T actions is produced by the policy, 7y, .

* A copy of the current value function is frozen, and we record the temporal difference
errors incurred along this trajectory: {d0¢ (¢, 0%), ... , dt41~(2¢, 0¢)}. The sum of squared
temporal difference errors provides a measure of the unconditional algorithmic complexity,
Kaberle) = Yoy 07 4,4 (2, 00).

* A copy of the current value function is updated dynamically along the trajec-
tory, and we record the temporal difference errors incurred along this trajectory:
{04,4(2,0¢), ... ,0t41~(2e41,0)}. Where each z;, corresponds to the updated parame-
ters of the value function. The sum of squared temporal difference errors provides a measure
of the conditional algorithmic complexity, K 4 (bs.¢+7—1|bot—1) = ZZ:1 5?+k’7 (Zt4k, 01).

* We update the policy using a single step from a gradient-based optimizer on the loss,

T
JO) = 3 i (20:0) = G (s, 0),
k=1

» We take an action using the updated policy, by1 = m(bs; 0¢41)-

* We now update the value function with a single step of TD(0) using the temporal difference
€ITor, 5,5 = bt+1 + 7v(bt+1, Wt) — U(bt7 Wt)

B.1 Interpreting Interactivity Maximization As A Continual Learning Benchmark

Our theoretical and experimental results show that maximizing interactivity requires both fast adapta-
tion to increase complexity with higher prediction errors and stability to sustain adaptation over time.
That is, maximizing interactivity involves the canonical plasticity-stability trade-off of continual
learning (Grossberg and Grossberg, |1982; |Parisi et al.,|2019). Our empirical results demonstrate
that deep nonlinear baselines fail at striking this balance, whereas deep linear networks appear to
naturally achieve this balance. This suggests that this synthetic benchmark isolates the key challenge
in continual learning, while also not requiring outside data or environments. This is significant
because few environments are designed specifically to evaluate continual adaptation. Thus, it is
suboptimal to stop learning in this setting, regardless of the capacity of the algorithm or function
approximator.

B.2 Limitations of Experiments

Our experiments used relatively shallow networks, with a maximum depth of D = 4. However, with
the meta-gradient calculation over a finite horizon of T' = 10, the effective depth of the networks
during auto-differentiation is 7" - D = 40. Meta-gradient methods for deep networks can exhibit
more pathological learning dynamics due to increased curvature, leading to instability that could
partially explain the discrepancy between linear and nonlinear networks. Understanding how to
control curvature using only first-order methods is key for effective meta-gradient descent in this
setting.

The meta-gradient method poses several limitations in scaling. Ideally, we would prefer to scale the
horizon and the capacity of the function approximator. However, because meta-gradients involve a
second-order terms, involving the hessian, and because the horizon is multiplicative with the depth
of the network, we have a computational complexity on the order O(H D?), where D is the depth
of the network. Scaling both the horizon and the capacity results in a effective cubic scaling. A
more promising direction involves bootstrapping meta-gradients (Flennerhag et al., 2022), and other
first-order approximation (Nichol et al.,[2018).

Experimental evaluation in this setting also requires special consideration. Holding the agent fixed
for evaluation, as is commonly done in machine learning, is not appropriate given that interactivity is
defined as an online objective. In addition, standard approaches to hyperparameter tuning may not be
feasible for evaluating the long-term performance of a continual learning agent (Mesbabhi et al., 2025).
Overcoming these obstacles to more fairly assess dependence on hyperparameters would require
re-evaluation of several components of empirical practice in machine learning.
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C Additional Background and Related Work

C.1 Algorithmic complexity

The Kolmogorov complexity (Kolmogorovl, |1965; [Solomonoft] |1964; |Chaitin, [1966) of an object
(encoded as a binary string) is the length of the shortest program that computes it and halts. Unlike
traditional information theory, it measures the complexity of an individual object without depending
on a stochastic source or ensemble.

The Kolmogorov complexity of a string depends on the choice of a universal Turing machine.
However, since any universal Turing machine can simulate another (e.g., via a compiler), the choice
of the machine affects the Kolmogorov complexity by, at most, an additive constant independent of
the specific string (Li and Vitanyi, [2019).

Kolmogorov complexity is closely tied to compression, where the shortest description represents the
most efficient compression for the given universal Turing machine. Although Kolmogorov complexity
is uncomputable, it is possible to compute improving upper bounds by searching over all possible
programs in parallel and tracking the shortest candidate that generates the target string (Li and Vitanyi,
2019).

C.2 AIXI

AIXI defines a general Bayes-optimal reinforcement learning agent in an unknown computable
environment (Hutter, [2005). In this framework, the environment is represented by a Turing machine
with unidirectional input and output tapes, and bidirectional working/internal tapes. The agent’s
actions are received by the environment on its input tape, based on which it can write a computable
history-based reward and observation on its output tape.

The AIXI agent acts in a Bayes-optimal manner by planning based on a posterior estimate over
all computable environments, using Solomonoff’s universal prior as a starting point (Solomonoff,
1964). This prior assigns higher probability to ‘simpler’ environments—those with lower Kolmogorov
complexity. However, both Solomonoff’s prior and AIXI are incomputable, making the development
of practical approximations within this framework a key area of interest (Veness et al.,2011).

C.3 Connections to intrinsic motivation and the free energy principle

Previous work has explored several intrinsic drives that can guide agent behaviour without the
need for explicit external rewards (Schmidhuber, |2010j Bartol [2013). Many approaches to intrinsic
motivation are developed within the framework of traditional RL, where the agents are not constrained
relative to the environment. As a result, these approaches may not be well-suited to a big world.
Nevertheless, interactivity shares connections to ideas such as mutual information maximization in
intrinsic motivation.

The information gain of a dynamics model can serve as an intrinsic or auxiliary reward, promoting
curious exploration (Storck et al.| [1995;|[Houthooft et al., | 2016) Unlike curiosity driven by information
gain, the goal of interactivity is not to learn an accurate model of the world.

Another related concept is Empowerment (Klyubin et al.,2005)), where an agent seeks to maximize its
control over its environment. Empowerment-seeking agents aim to maximize the mutual information
between their actions and future states. Such agents avoid states where their actions have low
influence and prefer states that allow for a wide range of controllable outcomes. This objective can
also be used to learn a set of behaviours (or options) that lead to different final states (Mohamed
and Jimenez Rezende| [2015; |Gregor et al., 2016). As discussed earlier, interactivity-maximizing
agents produce complex yet predictable behaviour, which is not directly tied to the concept of control.
Furthermore, unlike objectives grounded in traditional (Shannon) information theory, interactivity
relies on asymmetric algorithmic mutual information between previous inputs and future outputs.

Active inference describes agentic behavior in partially observable environments as the minimization
of free energy (Friston et al.,|2010; Sajid et al.,2021). Free-energy minimization prefers selecting
actions that lead to highly predictable states—inputs that are unsurprising to the agent’s model. In
contrast to free-energy minimization, maximizing interactivity actively discourages low-complexity
predictable states.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the discussion, the limitations of an efficient algorithm for maximizing
ineractivity is discussed.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Yes, in the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, in the appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: Not currently in the supplementary material, but we plan to open source it.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In the appendix and supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Shaded error bars are provided, but no statistical p-test.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: No, only a local cluster was used which did not log computational resources,
but they can be replicated on a modern GPU in less than 24 hours.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: It does not, as it is purely a theoretical investigation.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: None of these were used.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Not used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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