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ABSTRACT

Vision Transformers (ViTs) are now flourishing in the computer vision area. De-
spite the remarkable success, ViTs suffer from high computational costs, which
greatly hinder their practical usage. Token reduction, which identifies and dis-
cards unimportant tokens during forward propagation, has then been proposed to
make ViTs more efficient. For token reduction methodologies, a scoring metric is
essential to distinguish between important and unimportant tokens. The attention
score from the [CLS] token, which takes the responsibility to aggregate useful
information and form the final output, has been established by prior works as an
advantageous choice. Nevertheless, whereas the task pressure is applied at the end
of the whole model, token reduction generally starts from very early blocks. Given
the long distance in between, in the early blocks, [CLS] token lacks the impetus to
gather task-relevant information, causing somewhat arbitrary attention allocation.
This phenomenon, in turn, degrades the reliability of token scoring and substan-
tially compromises the effectiveness of token reduction. Inspired by advances in
the domain of dynamic neural networks, in this paper, we introduce Multi-Exit
Token Reduction (METR), a simple romance between multi-exit architecture and
token reduction—two areas previously considered orthogonal. By injecting early
task pressure via multi-exit loss, the [CLS] token is spurred to collect task-related
information in even early blocks, thus bolstering the credibility of [CLS] attention
as a token-scoring metric. Additionally, we employ self-distillation to further re-
fine the quality of early supervision. Extensive experiments substantiate both the
existence and effectiveness of the newfound chemistry. Comparative assessments
also indicate that METR outperforms state-of-the-art token reduction methods on
standard benchmarks, especially under aggressive reduction ratios.

1 INTRODUCTION

The transformer architecture was first introduced in (Vaswani et al., 2017) for natural language
processing. Due to advantages like flexible input format and outstanding scaling performance (Zhai
et al., 2022; Kaplan et al., 2020), Transformer has now become a universal architecture widely
adopted by diverse deep learning areas (Carion et al., 2020; Radford et al., 2021; Alayrac et al.,
2022; Radford et al., 2023). In computer vision, starting from the monumental work Dosovitskiy
et al. (2020), transformers have also achieved state-of-the-art performance on a variety of tasks.

Despite the remarkable success, vision transformers suffer from high computational cost, which
greatly hinders their practical usage, especially under resource-constrained circumstances. In pur-
suit of more efficient ViTs, some works revisit the traditional model compression techniques like
distillation (Yang et al., 2022; Ren et al., 2023; Liu et al., 2022), pruning (Yang et al., 2021), quan-
tization (Lin et al., 2021), etc, and some others turn to efficient architecture design, bringing up
innovations like pyramid architecture (Wang et al., 2021) and sliding window attention (Liu et al.,
2021). Among these ViT compression efforts, token reduction, which enjoys special affinity with
the characteristics of the transformer architecture and the sparse nature of visual information, has
emerged as a promising approach. Due to the quadratic complexity of self-attention operation w.r.t.
token number, reducing the number of tokens can greatly alleviate the computation burden of ViTs.
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Figure 1: Visualization of [CLS] attention. We use DeiT-S and investigate the 4-th, 7-th, and 10-th
blocks. Token with top 50% [CLS] attention scores are kept, while others are masked. (a) Official
DeiT-S model (b) Further fine-tune the official model for 30 epochs with multi-exit loss.

The methodology design of token reduction can be roughly decomposed into three sub-problems:
➀ How to score the importance of each token, so that the least important ones can be pruned?
➁ How is token removal implemented exactly (directly discard, merge into reserved ones, etc.)?
➂ How to allocate the number of reduced tokens in each block?

Among these points, the first one plays a pivotal role. After a period of exploration from the re-
search community, the attention score from the [CLS] token has been proved to be the superior
choice (Liang et al., 2021; Chen et al., 2023b; Xu et al., 2022; Haurum et al., 2023). Since the [CLS]
token bears the responsibility for forming the final result, it has to gather important task-relevant
information from the patch tokens. Therefore, how much the [CLS] token attends to a patch token
naturally becomes a reasonable proxy for the importance of the patch token.

Nevertheless, whereas the task pressure is applied at the end of the whole network, the token re-
duction operation needs to commence from very shallow blocks to achieve significant acceleration.
Therefore, while in the last few blocks, the task pressure imposes the [CLS] token a strong impetus
to pay more attention to the important informative tokens, it is doubtful if, within the blocks far
before, the [CLS] token still has the abundant motivation to prioritize the most important tokens.
For example, the [CLS] token may otherwise defer the summarization of important information to
the last few blocks, leaving the allocation of attention score in early blocks somewhat arbitrary. We
empirically validate that this is indeed the fact: as shown in Fig. 1(a), tokens with top 50% [CLS]
attention scores in block 10 are mostly those containing informative cues such as the head part of
the dog, but in block 4, many of these informative tokens are assigned with low attention scores
(within the bottom 50%). For normal neural networks, this is okay. However, for token reduction
methods, such a phenomenon significantly degrades the reliability of token scoring and substantially
compromises the effectiveness of token reduction methods.
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Is it possible to make [CLS] attention in early blocks as indicative of token importance as in the last
block? In this paper, we reveal that the multi-exit architecture, a technique typically adopted in the
domain of dynamic neural network (Han et al., 2021b), is a good solution to achieve this goal. Both
multi-exit architecture and vision transformer token reduction are established topics and have been
investigated independently in their respective domains. However, we find that there exists some un-
explored special chemistry between these two topics. We thus propose Multi-Exit Token Reduction
(METR), an extraordinarily simple yet highly effective and efficient combination. With the multi-
exit architecture, pressure from the target task permeates through to the [CLS] token in even earlier
transformer blocks, forcing it to collate useful information from patch tokens immediately. The at-
tention score thus makes a better reflection of token significance, ensuring accurate token reduction.
Additionally, we adopt self-distillation to further refine the quality of early supervision. Note that
while our method aims to improve the sub-problem ➀ of token reduction, we empirically show that
METR is compatible with recent progress targeting the other two sub-problems (➁➂).

Overall, our main contributions are summarized as below:

1. We identify the inconsistency between [CLS] attention and token significance in early ViT block,
which greatly harms the performance of token reduction methods.

2. We propose METR, a simple romance between multi-exit vision transformer and token reduction,
to alleviate the aforementioned inconsistency, and further employ self-distillation to improve the
quality of early supervision.

3. Extensive experiments substantiate both the existence and effectiveness of the newfound chesm-
istry between mutli-exit and token reduction. Comparative assessments also indicate that METR
outperforms state-of-the-art token reduction methods, especially under high reduction ratio.

2 RELATED WORK

2.1 VISION TRANSFORMER COMPRESSION

In the realm of computer vision, convolutional neural networks (CNNs) once held sway (Simonyan
& Zisserman, 2014; He et al., 2016; Sandler et al., 2018); however, the advent of the Vision Trans-
former (ViT) family (Dosovitskiy et al., 2020; Touvron et al., 2021; Yuan et al., 2021; Han et al.,
2021a) has heralded a new era. The model’s unparalleled flexibility, versatility, and performance
have driven an increasing number of researchers to employ vision transformers for a diverse range
of computer vision tasks (Carion et al., 2020; Radford et al., 2021; Li et al., 2022).

However, like other deep neural networks, vision transformer suffers from the conundrum between
model performance and model complexity. Model compression techniques are then investigated
to fight for a better balance. Among the explorations, some works revisit the architecture-agnostic
approaches like distillation (Yang et al., 2022; Ren et al., 2023), pruning (Yang et al., 2021), quan-
tization (Lin et al., 2021), and neural architecture search (Chen et al., 2021), making them readily
applicable to the ViT family. Conversely, the distinctive attributes of the transformer architecture per
se provide unique opportunities for model compression, among which token reduction has emerged
as a particularly promising avenue for research.

2.2 TOKEN REDUCTION

The technique of token reduction relies on two favorable properties of the vision transformer. Firstly,
transformers can deal with mutable sequence length and patch-level sparsity leads to real accelera-
tion without the need of special hardware / algorithm support (Note that this advantage has also been
exploited by works like MAE (He et al., 2022)). Secondly, the information in the image is unevenly
and sparsely distributed among patches, making token reduction theoretically feasible.

The core problem of token reduction is how to score the significance of each token so that we can de-
cide which to discard and which to retain. Prior works can be roughly divided into the parametric and
the non-parametric genres. Parametric scoring strategies introduce specialized policy networks to
evaluate the significance of each token. For example, DynamicViT (Rao et al., 2021), SPViT (Kong
et al., 2021), and IA-RED2 (Pan et al., 2021) insert additional token importance prediction modules
between transformer blocks, AViT (Yin et al., 2022) implicitly merges the policy network into the
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original model, making one feature dimension specially responsible for representing token impor-
tance. AdaViT (Meng et al., 2022) generalizes the aforementioned idea, incorporating token-level,
head-level, and block-level sparsity into a unified framework. Since discarding or retaining a to-
ken is inherently a discrete problem, re-parameterization tricks (Jang et al., 2016) or reinforcement
learning (Sutton & Barto, 2018) are indispensable for optimization. However, the former hampers
training-time acceleration because tokens can only be masked rather than really discarded, while the
latter incurs complicated training curriculum and unstable performance.

On the other hand, non-parametric methods rely on off-the-shelf indicators to reflect token impor-
tance. Since there are no parameters to update within the scoring function, training-time acceleration
is generally accessible. The attention score from the [CLS] token or its slight variance is the pre-
dominant choice of this genre (Liang et al., 2021; Yin et al., 2022). Prior works have validated its
superiority (Haurum et al., 2023), and multiple works have based themselves on this metric, making
advances from other aspects for creating new SOTA (Chen et al., 2023b; Fayyaz et al., 2022; Xu
et al., 2022; Chen et al., 2023a). However, the reliability of [CLS] attention itself and ways for en-
hancing it, which is the focus of this paper, has been rarely investigated. In this paper, we point out
the inconsistency between [CLS] attention and real token significance, and then propose a method-
ology to fix it. Meanwhile, the efforts made in this paper are orthogonal to recent advances achieved
in other aspects of the token reduction problem and can be seamlessly combined together.

2.3 MULTI-EXIT NETWORK

Adding early-exit heads to neural networks is a long-existing topic in deep learning for various
purposes. As early as the onset of the current deep learning wave, multi-exit architectures were
employed to tackle the vanishing gradient problem in deep neural networks (Wang et al., 2015).
At present, one typical purpose is to make neural network dynamic (Teerapittayanon et al., 2016;
Bolukbasi et al., 2017; Han et al., 2021b), so that for easy samples, whose early results are already
accurate, the remaining blocks can be skipped for higher efficiency. With the boom of transformer in
the vision community, Bakhtiarnia et al. (2021) also applied the idea of multi-exit dynamic network
to vision transformer. Different from existing works, in this paper, we open up a novel utility of the
multi-exit structure, revealing its special chemistry with transformer token reduction.

3 METHOD

In this section, we first briefly review the architecture of vision transformer, focusing on components
related to our method. We then introduce how to inject early task pressure to [CLS] tokens in early
transformer blocks, making [CLS] attention a more accurate token importance indicator. Finally, we
show how to use self-distillation to costlessly enhance the final performance.

3.1 VISION TRANSFORMER OVERVIEW

Given an input image, the ViT architecture first divides it into patches and then projects the patches
into token embeddings. An extra [CLS] token is then added to the beginning of the token sequence,
forming X0, the input to the stack of transformer blocks:

XL = BlockL · BlockL−1 · · ·Block2 · Block1(X0), X0 = [xc
0,x

1
0,x

2
0, · · · ,xn

0 ]
⊤,

where Block means a transformer block, L is the number of blocks, n is the number of image
patches, and superscript c means the [CLS] token. X ∈ R[n+1,d] comprises of the token features
x ∈ Rd for one [CLS] token and n patch tokens, and each x contains d elements. The transformer
block typically consists of Norm layer, Multi-Head Self-Attention (MHSA) layer, and Feed-Forward
Network (FFN) layer. Considering the i-th block (Blocki), the computation graph therein is:

Xi-attn = Xi +MHSA(NORM(Xi)), (1)
Xi+1 = Xi-attn + FFN(NORM(Xi-attn)). (2)

In the MHSA layer, every token serves as query to attend to other tokens, gathering information by
absorbing value vectors with weights defined by query-key product. Considering the [CLS] token
as query, the corresponding [CLS] attention Ac ∈ Rn is computed as follows:

Ac = Softmax
(
qcK⊤/

√
d′
)
, (3)
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Figure 2: An overview of METR. In the attention layer, information from patch tokens flows into the
[CLS] token (purple arrow), with the [CLS] token’s attention score, Ac, defining the contributing
ratio. In each transformer block where token reduction is applied, Ac separates the input tokens
into the important set SI and the unimportant set SU ; token reduction is then applied following the
principle of retaining SI while discarding SU . To ensure that Ac accurately reflects the importance
of each token for the task at hand, we introduce the self-distillation loss Lsd for injecting early task
pressure, which spurs the [CLS] token to turn to informative tokens for forming the correct answer.

where d′ is the dimension of an attention head, qc∈ Rd′
is the query vector of the [CLS] token, and

K∈ R[n,d′] denotes the key matrix. With slight abuse of notation, here we make K consist of only
patch tokens (i.e. [CLS] excluded).

Finally, at the end of the whole vision transformer, xc
L, the feature in XL corresponding to the [CLS]

token, is picked out and fed to the final classification head for task result.

Ofinal = Hfinal(x
c
L), (4)

Lfinal = CE(Ofinal, y), (5)

where Hfinal is the final classification head, CE is cross-entropy loss, and y is ground-truth label.

3.2 MULTI-EXIT TOKEN REDUCTION

For a given block, suppose there are n input tokens and we want to reduce the number to m, we first
propagate through the MHSA layer following Eq. 1, obtaining the intermediate feature Xattn and
the [CLS] attention Ac (we omit the block index i for notation convenience), and then use Ac as the
metric to divide the n input tokens to m important tokens and (n−m) unimportant tokens.

SI = {xp
attn ∈ Xattn|ac,p ∈ top(Ac,m)}, SU = Xattn − SI . (6)

SI and SU denote the set of important and unimportant tokens, respectively. p indexes a patch
token, ac,p is its corresponding attention score in Ac, and xp

attn is the corresponding token feature
in Xattn. The top(·,m) operator selects the largest m elements from (·). The action of token
reduction then follows the general principle to retain the tokens in SI , while discarding those in SU .

The quality of token reduction is hence dominated by the consistency between [CLS] attention (Ac)
and the real significance of each token. However, the extent of consistency, as shown in Fig. 1(a),
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Table 1: Off-the-shelf token reduction performance on ImageNet. While the models have not un-
dergone any token-reduction aware training, they are tested directly with token reduction applied.
Throughput is evaluated on one RTX 4090 with batch size 512.

Keep Ratio 1.0 0.7 0.6 0.5 0.4 0.3
GFLOPs 4.6 3.0 2.6 2.3 2.0 1.8

Throughput (imgs/s) 2360 3582 4158 4712 5256 5864

DeiT-S 79.80 78.52 76.89 74.10 68.67 57.88
DeiT-S (Multi-Exit) 79.78 78.76 77.55 75.12 70.76 61.19

∆ -0.02 +0.24 +0.66 +1.02 +2.09 +3.31

is in fact unsatisfactory. Specifically, while within the deeper blocks, most of the important tokens
are given relatively high [CLS] attention score, the consistency degrades significantly when the
block goes shallower. We attribute this phenomenon to the lack of task pressure in the early blocks:
given the refined patch features in the last several blocks, it may be enough for the [CLS] token to
collect task-relevant information majorly in these blocks, leaving [CLS] attention in shallow blocks
relatively arbitrary. For token-reduction transformers, this becomes a fatal drawback.

In order to calibrate [CLS] attention, we need to make the pressure penetrate through to the early
transformer blocks, so that the [CLS] token always bears the urgent impetus to collect as much task-
relevant information and it could. Specifically, we make the transformer network multi-exit, adding
an early-exit head Hi within every block i where token reduction is employed. As shown in Fig. 2,
the early-exit head takes xc

i-attn, the [CLS] token in Xi-attn, as input, comprising of a two-layer
bottleneck MLP, outputting an intermediate result Oi:

Oi = Hi(x
c
i-attn), (7)

early task pressure is then applied by the multi-exit loss Lme:

Lme =
1

|Br|
∑

i∈Br

CE(Oi, y), (8)

where Br denotes the set of blocks where token reduction is involved, and |Br| is its cardinality.
In this way, in every block where token reduction is employed, the [CLS] token is compelled to
provide a result given existing patch features immediately. The [CLS] attention thus becomes a
better reflection of token significance, as shown in Fig. 1(b).

3.3 SELF-DISTILLATION

While the multi-exit loss in Eq. 8 can already effectively improve the reliability of early [CLS]
attention, the high-quality final answer, Ofinal, offers an opportunity for yet another free lunch. To
further facilitate the efficiency and effectiveness of METR, we propose the self-distillation loss Lsd

to enhance the quality of supervision for early-exit heads.

Lsd =
1

|Br|
∑

i∈Br

KL (Oi,detach [Ofinal]), (9)

where detach[·] denotes the stop gradient operation. Here for simplicity, we use the KL-Divergence
based KD loss (Hinton et al., 2015) for distillation, but its advanced variants (Zhao et al., 2022) may
also be applicable. Finally, the total loss for training / fine-tuning a token-reduction transformer with
METR becomes:

Ltotal = Lfinal + αLsd. (10)

Note that after training, all of the early-exit heads H are removed. Therefore, no extra inference cost
is introduced by METR.

4 EXPERIMENT

In this section, we first validate the existence of the claimed special chemistry between multi-exit
architecture and token reduction in Sec. 4.1. We then delve into the design choices of METR and

6



Published as a conference paper at ICLR 2024

Table 2: Performance on ImageNet after 30 epochs of token-reduction fine-tuning.
Keep Ratio 0.7 0.6 0.5 0.4 0.3
GFLOPs 3.0 2.6 2.3 2.0 1.8

DeiT-S 79.32 79.06 78.47 77.68 76.34
DeiT-S (Multi-exit) 79.49 79.22 78.72 77.91 76.72

∆ +0.17 +0.16 +0.25 +0.23 +0.38

analyze its performance in different scenarios in Sec. 4.2. Finally, we compare METR with existing
token reduction methods to prove its effectiveness in Sec. 4.3. Experiemnts are conducted on the
ImageNet (Deng et al., 2009) dataset using DeiT (Touvron et al., 2021) and MAE (He et al., 2022)
models. Unless otherwise specified, we base METR on EViT (Liang et al., 2021), reduce the number
of tokens according to the specified keep ratio (e.g. 30% of the tokens are reduced when keep ratio
set to 0.7) in the 4-th, 7-th, and 10-th blocks, and fuse the unimportant tokens into one additional
token. Similarly, for other experiments where we base METR on DiffRate (Chen et al., 2023b), we
inherit their allocation of token number and their exact token reduction action. See appendix for
detailed experiment settings.

4.1 EXSITENCE OF THE CHESMISTRY

4.1.1 OFF-THE-SHELF TOKEN REDUCTION ON MULTI-EXIT MODEL

We first fine-tune the officially pre-trained DeiT-S model with Ltotal in Eq. 10 for 30 epochs, without
incorporating any token reduction operations. Subsequently, we directly add the token reduction
operation to the model at inference time. Since the model has not undergone any token-reduction
aware training, this forms an off-the-shelf evaluation setting. Based on this setting, we compare the
performance of the DeiT-S model before and after muti-exit finetuning in Tab 1.

After 30 epochs of multi-exit tuning, the normal accuracy (i.e. without token reduction) of the model
is almost unchanged (79.80% v.s. 79.78%). However, the model’s robustness to token reduction
improves discernibly, manifesting an average increase of 1.46%, and this margin of improvement
amplifies with the application of more aggressive token reduction strategies. This empirical evidence
lends credence to our argument that the incorporation of early task pressures augments the alignment
between the [CLS] attention score and the token significance.

4.1.2 VISUALIZATION

To elucidate how the model’s robustness to token reduction has been augmented through 30 epochs
of multi-exit fine-tuning, we present visualizations of [CLS] attention maps, revealing insights into
the mechanism at work. As depicted in Fig 1(a), for the original DeiT-S model, the [CLS] atten-
tion pattern possesses a relatively high correlation with the informativeness of individual image
patches in later blocks, such as block 10. However, this correlation substantially diminishes in ear-
lier blocks, for example, block 4. Conversely, after 30 epochs of multi-exit tuning (Fig. 1(b)), the
congruence between attention patterns and token significance is notably strengthened, particularly
in the shallower blocks. Consequently, the [CLS] attention in the fine-tuned model serves as a more
reliable metric for token scoring, resulting in less accuracy drop after token reduction.

4.1.3 FURTHER FINE-TUNE MULTI-EXIT MODEL WITH TOKEN REDUCTION

Token-reduction models typically require an additional fine-tuning phase with token reduction ex-
plicitly incorporated to fully realize their potential. To ascertain whether the multi-exit model ob-
tained in Sec. 4.1.1 has, in a broader context, become more amenable to token reduction, we compare
it with the original DeiT-S model within this fine-tuning setting. This time, both models undergo an
additional 30 epochs of fine-tuning where token reduction is explicitly employed. Early exit losses
are excluded from this phase to maintain a fair comparison between the two models. As shown in
Tab. 2, while multi-exit loss no longer exists in this stage of fine-tuning, its influence lasts and leads
to better performance. The stable advantage of the multi-exit model supports the special chemistry
between multi-exit architecture and token reduction.
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Table 3: Ablation study over the design choices of METR. We start from pre-trained DeiT-S model
and fine-tune for 30 or 100 epochs. EE means early exit and SD means self-distillation. Top-1
accuracy (%) on ImageNet validation set is reported.

Epochs Setting Keep Ratio
0.7 0.6 0.5 0.4 0.3

30

➀ EViT 79.32 79.06 78.47 77.68 76.34
➁ + EE 79.51 79.28 78.82 78.08 76.79

∆ 0.19 0.22 0.35 0.40 0.45
➂ + EE & SD 79.64 79.45 78.94 78.23 76.90

∆ 0.32 0.39 0.47 0.55 0.56

100
➃ EViT 79.58 79.23 78.85 78.17 77.13
➄ + EE & SD 80.17 79.86 79.62 78.96 78.02

∆ 0.59 0.66 0.77 0.79 0.89

4.2 ABLATION STUDY

In Sec. 4.1, we split up the multi-exit and the token-reduction fine-tuning process for clearer con-
clusion. In practice, however, such a split design is inefficient and unnecessary. For all remaining
experiments in this paper, we merge the above two fine-tuning stages into a single stage. Based
on this ground, in this section we ablate over some of the design choices.

4.2.1 ONE-STAGE TOKEN-REDUCTION FINE-TUNING WITH MULTI-EXIT LOSS

As shown in Tab. 3 (index ➀ and ➁), by introducing early task pressure into the token-reduction
fine-tuning process, the performance is considerably enhanced with no additional inference cost and
negligible additional training cost (for early heads) imposed. Again, the advantage of ➁ becomes
increasingly large as the pruning becomes more and more aggressive. This is intuitive: to prevent
significant information loss under aggressive pruning, a stringent token scoring metric is necessary,
so that the most informative tokens can be retained.

4.2.2 SELF-DISTILLATION

Contrary to hard-labeled-based Lme, we instead use the self-distillation loss Lsd for early task pres-
sure. Such a substitution incurs no additional computation cost, and we empirically find that there’s
even no need to modify the hyper-parameter α. After the replacement. As shown in Tab. 3 (index
➂), METR outperforms EViT by 0.46% on average in this setting.

4.2.3 LONGER FINE-TUNING

Since 30 epochs may not be enough to fully optimize the multi-exit task, we further investigate the
performance of METR with longer (100 epochs) fine-tuning. See ➃ and ➄ in Tab. 3 for results. As
shown in the table, the advantage of METR is magnified with the application of longer fine-tuning
recipe, and the average improvement reaches 0.74%.

4.2.4 NUMBER OF MULTI-EXIT HEADS

Table 4: Effect of early head number on METR
performance. Model: ViT-B with GFLOPs =
8.7. We base METR on DiffRate.

Early Heads DeiT MAE

All 81.11 82.42
Every 2 80.94 82.34
Every 3 80.81 82.29

Considering that methods like DiffRate (Chen et al.,
2023b) conduct token reduction in 10 out of 12 trans-
former blocks, is it optimal to allocate 10 early heads,
one for each of them? Interestingly, the answer is yes.
As shown in Tab 4, on the one hand, an exit head not
only influences the block it’s in, but also influences
the preceding blocks, so more early heads help. On
the other hand, such influence is weaker than directly
adding early exit heads in these blocks per se.
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Table 5: Comparison with token-reduction methods on ImageNet (Deng et al., 2009). We report
our reproduced accuracy for EViT and DiffRate, and the author-reported accuracy for others. ‡
means fusing token reduction into model training (i.e. training from scratch for 300 epochs for
DeiT, and training from self-supervised checkpoint for 100 epochs for MAE), † means starting from
supervisely trained checkpoints and further fine-tune for 100 epochs, and for those without special
notation we start from supervised checkpoints and fine-tune for 30 epochs.

Model Method GFLOPs Acc. Model Method GFLOPs Acc.

ViT-S
(DeiT)

Baseline 4.6 79.82

ViT-B
(DeiT)

Baseline 17.6 81.83
A-ViT† 3.6 78.60 EViT‡ 11.5 81.30
DynamicViT 2.9 79.32 DynamicViT 11.2 81.30
Evo-ViT‡ 3.0 79.40 ToMe‡ 11.5 81.41
ToMe 2.9 79.49 DiffRate 11.5 81.76
EViT‡ 3.0 79.50 METR+DiffRate 11.5 82.05
METR+EViT‡ 3.0 79.76 EViT† 8.7 80.00
EViT 3.0 79.32 DiffRate 8.7 80.51
METR + EViT 3.0 79.64 METR+DiffRate 8.7 81.11
METR + EViT† 3.0 80.09

ViT-B
(MAE)

Baseline 17.6 83.72
DiffRate 2.9 79.72 ToMe‡ 11.5 82.94
METR + DiffRate 2.9 79.83 DiffRate 11.5 83.25
DynamicViT 2.5 78.50 METR+DiffRate 11.5 83.29
EViT‡ 2.3 78.50 ToMe‡ 8.7 81.91
METR+EViT‡ 2.3 79.06 DiffRate 8.7 81.97
EViT 2.3 78.47 METR+DiffRate 8.7 82.42
METR + EViT 2.3 78.94

ViT-L
(MAE)

Baseline 61.6 85.95
METR + EViT† 2.3 79.62 ToMe‡ 31.0 85.05
DiffRate 2.3 79.22 DiffRate 31.0 85.15
METR + DiffRate 2.3 79.46 METR+DiffRate 31.0 85.32

4.3 COMPARE WITH EXISTING METHODS

In this section, we compare with state-of-the-art methods to demonstrate the effectiveness of METR.
We select EViT (Liang et al., 2021) and DiffRate (Chen et al., 2023b) as the base method, and build
METR on top of them. Note that for these two base methods, we report our re-produced results.
Additionally, DynamicViT (Rao et al., 2021), A-ViT (Yin et al., 2022), Evo-ViT (Xu et al., 2022),
and ToMe (Bolya et al., 2022) are compared. For holistic evaluation, we consider both the from-
scratch training setting and the fine-tuning setting. The results are shown in Tab 5.

Again, we observe stable improvement brought by METR. Specifically, the improvement is robust to
different base methods, different models, and different schedules. Such enhancement convincingly
proves the existence and the effectiveness of the special chemistry between multi-exit architecture
and token reduction. Note that since METR investigates transformer token reduction from an aspect
different from most existing works on this topic, it can boost state-of-the-art to a new level. For
example, even though the recent DiffRate (Chen et al., 2023b) has already surpassed other meth-
ods by a large margin, METR can still enhance it in a stable and considerable manner. On the
other hand, there is still a clear tendency that more aggressive token pruning benefits more from
METR. For example, considering the ViT-B (DeiT) model, METR improves DiffRate by 0.29% in
the GFLOPs=11.5 setting, and the margin increases to 0.6% with GFLOPs=8.7.

5 CONCLUSION

In this paper, we scrutinize the congruence between [CLS] attention and token significance, a foun-
dational premise underlying existing token reduction approaches, and pinpoint its intrinsic unrelia-
bility. To ameliorate this issue, we introduce METR—a straightforward yet efficacious amalgama-
tion of multi-exit architecture and token reduction. Extensive empirical evaluations corroborate that
the early task pressure, engendered by the multi-exit loss, is highly effective in calibrating [CLS]
attention. Furthermore, this adjustment can elevate existing token reduction methods to a new level.
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Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Liwei Wang, Chen-Yu Lee, Zhuowen Tu, and Svetlana Lazebnik. Training deeper convolutional
networks with deep supervision. arXiv preprint arXiv:1505.02496, 2015.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
568–578, 2021.

Yifan Xu, Zhijie Zhang, Mengdan Zhang, Kekai Sheng, Ke Li, Weiming Dong, Liqing Zhang,
Changsheng Xu, and Xing Sun. Evo-vit: Slow-fast token evolution for dynamic vision trans-
former. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 2964–
2972, 2022.

Huanrui Yang, Hongxu Yin, Pavlo Molchanov, Hai Li, and Jan Kautz. Nvit: Vision transformer
compression and parameter redistribution. 2021.

Zhendong Yang, Zhe Li, Ailing Zeng, Zexian Li, Chun Yuan, and Yu Li. Vitkd: Practical guidelines
for vit feature knowledge distillation. arXiv preprint arXiv:2209.02432, 2022.

Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit:
Adaptive tokens for efficient vision transformer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10809–10818, 2022.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
558–567, 2021.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104–12113, 2022.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distilla-
tion. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11953–
11962, 2022.

12



Published as a conference paper at ICLR 2024

A EXPERIMENT DETAILS

The experiment hyper-parameters are mostly inherited from the base method on which METR is
built. All experiments are conducted on a server with 8 NVIDIA RTX 4090 GPUs.

A.1 METR + EVIT

Under the 30-epoch fine-tuning setting, the official DeiT (Touvron et al., 2021) checkpoints are
loaded as model initialization. The model is then trained with effective batch size 2048, actual learn-
ing rate (after proportional scaling w.r.t. effective batch size) 8e-5, minimum learning 2e-6, without
learning rate warm up. The cosine learning rate scheduler is adopted. The optimizer is AdamW,
with weight decay set to 1e-6. For self-distillation, the temperature for distillation loss (Hinton
et al., 2015) is set to 1, and the weight, namely α in Eq. 10, is set to 1.0; when Lme instead of Lsd

is used for ablation studies, the weight for Lme is also 1.0, as we find that Lme and Lsd generally
share the same optimal weight.

For the 100-epoch finetuning setting, the learning rate is enlarged to 8e-4, and the other hyper-
parameters are left unchanged.

For the from-scratch training setting, the model is trained for 300 epochs. Consistent to the original
setting of DeiT, the learning rate and minimum learning rate are set to 2e-3 and 1e-5, the number
of warm-up epochs is set to 5, and weight decay is set to 0.05. The training starts with token keep
ratio equal to 1, namely no token reduction is applied; subsequently, from epoch 100 to epoch 150,
the keep ratio linearly decays to the target value; finally, after epoch 150, the keep ratio is fixed to
the target value. Different from the fine-tuning settings, we find that smaller α (weight for Lsd), like
0.3, makes the best results, while larger α will hurt the performance.

For all of the above settings, token reduction is applied in the 4-th, 7-th, and 10-th blocks, with inat-
tentive token fusion (proposed in the EViT (Liang et al., 2021) paper) turned on. Correspondingly,
the early-exit heads are placed in these blocks.

A.2 METR + DIFFRATE

For experiments based on DiffRate (Chen et al., 2023), we adopt the Prune & Merge token reduction
operation, and the searched token reduction schedule (i.e. how may tokens should be reduced in
each block). Unlike EViT, DiffRate densely applies token reduction in every block; as supported by
Tab. 4, we correspondingly add early-exit heads to all these blocks except the first and the last one.

All METR + DiffRate experiments follow the 30-epoch finetuning setting, where the officially re-
leased checkpoints for DeiT (Touvron et al., 2021) and MAE (He et al., 2022) (after supervised
finetuning) are used for initialization. For all experiments, we set effective batch size 1024, actual
learning rate (after proportional scaling w.r.t. effective batch size) 8e-5, minimum learning 1e-6,
1 epoch of learning rate warm up, and weight decay 0.05. As an exception, for the ViT-L (MAE)
model, the learning rate is set to 2e-5. The weight α for Lsd is set to 1 accross all experiments.

B DISCUSSION: OFF-THE-SHELF V.S. TOKEN-REDUCTION AWARE
FINETUNING

Comparing Tab. 1 with other experiments in the main text, we find that the advantage of METR
is numerically more salient in the off-the-shelf setting. We deduce that the reason is that, with
finetuning, the model can make some compromises, e.g. redundantly copy and store information
among tokens, so that it could gain some robustness even when the token scoring metric is not
reliable. In contrast, the off-the-shelf setting is way more challenging and poses stricter demands on
the accuracy of token scoring. To empirically validate this deduction, we consider the random token
selection baseline. Using the official DeiT-S checkpoint (79.80 top-1 accuracy), we first directly
evaluate the model in the off-the-shelf setting, with token reduction applied and keep ratio set to
0.5. When [CLS] attention is used for token scoring and selection, the accuracy drops to 74.10;
in contrast, when tokens are random reduced, the accuracy drops dramatically to 71.46. We then
consider the 30-epoch finetuning setting, employing Lfinal as loss function, with token-reduction
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operation applied. When [CLS] attention is used for finetuning and evaluation, the accuracy is
78.47; when random token selection is used for finetuning and evaluation, the accuracy is 77.12 –
the gap is much smaller than the previous setting. This contrast provides an explanation over why
the advantage of METR is more pronounced under the off-the-shelf setting.

However, as indicated by our experiment results in main text, even though the improvement in the
finetuning setting is not as numerically salient as the off-the-shelf setting, it is still fairly consid-
erable, especially when taking the average developing pace of the token reduction topic into con-
sideration. It indicates that an accurate token scoring metric is still indispensable in fulfilling the
potential of token reduction, even with token-reduction aware finetuning applied. An explanation
is that, the aforementioned compromises are unlikely to completely erase the influence of scoring
metric quality. Furthermore, the more unreliable the metric is, the stronger the comprises have to
be and the more model capacity would be occupied to achieve it, which would inevitably hurt the
representation ability and the accuracy of the model.
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