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ABSTRACT

Despite the active research for tabular data synthesis, state-of-the-art methods con-
tinue to face challenges arising from the complex distribution of tabular data. To
this end, we claim that the difficulty can be alleviated by making the distribu-
tion simpler using Gaussian decomposition. In this paper, we propose a training
method, Gaussian Decomposition-based Generation of Tabular data (GADGET),
which can be applied to any generative models for tabular data. The method i) de-
composes the complicated distribution of tabular data into a mixture of K Gaus-
sian distributions, ii) trains one model for each decomposed Gaussian distribution
aided by our proposed self-paced learning algorithm. In other words, we do not
stop at utilizing a Gaussian mixture model to discover K simplified distributions
but utilize their surrogate density functions for designing our self-paced learning
algorithm. In our experiments with 11 datasets and 8 baselines, we show that
GADGET greatly improves existing tabular data synthesis methods. In particular,
a score-based generative model on our GADGET training framework achieves the
state-of-the-art performance in terms of sampling quality and diversity.

1 INTRODUCTION

Tabular data synthesis has been a long-standing research issue in machine learning (Chawla et al.,
2002; He et al., 2008; Han et al., 2005; Park et al., 2018; Lee et al., 2021). With significant advance-
ments in deep generative modeling, many tabular data synthesis methods have been proposed, e.g.,
CTGAN (Xu et al., 2019), TableGAN (Park et al., 2018), and STaSy (Kim et al., 2022a). However,
tabular data exhibit challenging characteristics: i) some columns can have eccentric distinct distribu-
tions and moreover, ii) we need to model the joint distribution of them. Modern deep tabular models
typically consider data preprocessing to be important, which involves handling categorical features
and normalizing/scaling numerical ones (Xu et al., 2019). Although some approaches attempt to
address the differences in distributions, modeling the data distribution has remained a challenge, as
they attempt to model mixture of distributions with a single model.

In this paper, we argue that i) the complicated tabular data distribution can be simplified by breaking
it down into K Gaussian-like distributions and therefore, ii) training deep generative models on
these K Gaussian-like distributions is notably more manageable, as discussed in Sec. 2. Based
on the assertion, we propose a model-agnostic training framework that can be applied to any deep
learning model for tabular data generation addressing the challenges and subsequently improving
model performance. To apply the method, firstly, we employ Gaussian mixture models (GMMs) to
identify K Gaussian distributions that best decompose the original data distribution. We then train
K smaller models, each specialized in a single Gaussian distribution1. To further reduce training
complexity, we design a self-paced learning algorithm (by referring to the surrogate probability
density derived from the Gaussian distributions). Self-paced learning, inspired by human learning,
enables the model to control the training difficulty autonomously. Specifically, data records with
high surrogate probability density are assigned higher weights in their training loss.

1Real-world tabular data is not likely to be perfectly decomposed into K Gaussians. For the sake of our
discussion, we assume this simplification, but our design does not rely on such clean decomposition. Our main
intuition is that learning K simplified distributions separately with K small models is easier than training a
large model for the original distribution.
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Figure 1: A vector field, i.e., score, and a density from trained SGM on a bivariate Gaussian distri-
bution at time t (upper) and those of a complicated distribution (lower). t = 0 means the original
distribution, and t = 1 means a Gaussian prior. For our study, we design a SGM for tabular data in
Appendix A but we do not claim that this is our contribution since it follows past standard designs
for tabular synthesis. Hereinafter, SGMs in our contexts means tabular SGMs defined by us.

In the latter part of our paper, we demonstrate that our proposed training framework, called Gassian
Decomposition-based Generation of Tabular data (GADGET), enhances the performance of deep
tabular generative models. To demonstrate the effectiveness of GADGET, we thoroughly select rep-
resentative generative adversarial network (GAN), flow, and score-based generative models for tab-
ular data synthesis as base generative models of GADGET. As a result, the models trained on top of
GADGET exhibit significant performance improvements. Furthermore, score-based generative mod-
els (SGMs) combined with GADGET outperforms other state-of-the-art tabular synthesis methods
in terms of both sampling quality and diversity. Additionally, by decomposing the data distribution
and applying our self-paced learning, we significantly reduce the number of learnable parameters in
each smaller model (as well as the total number of parameters, which is the sum of the parameter
numbers across small models). Our contributions are as follows:

1. We propose a model training framework GADGET which decompose the original distribu-
tion into K Gaussian-like distributions. K small models learn those K simplified distribu-
tions, reducing the training difficulty.

2. We design a self-paced learning algorithm that utilizes the probability density of each train-
ing record for each Gaussian distribution2.

3. We show that popular tabular models trained on the proposed framework improve the per-
formance in terms of sampling quality, diversity, and/or time. In particular, tabular SGMs
with GADGET show the best sampling quality and diversity among all methods. In addition,
the number of parameters in K models is mostly smaller than original models.

2 WHY DO WE DECOMPOSE THE ORIGINAL DISTRIBUTION?

We claim that the difficulty of modeling tabular data can be mitigated by decomposing the original
distribution into K Gaussian-like distributions using Gaussian mixture models (GMMs) and training
K small models. In the remainder of this section, we present empirical evidence illustrating the
simplification of real-world datasets using Gaussian decomposition.

2In reality, it is impossible to know the exact probability density of a record x contained by tabular data.
After the Gaussian decomposition, however, one can use the density derived from each Gaussian as a surrogate
probability density measurement. Although not perfect, our experimental results prove the efficacy of the
surrogate measurement since our self-placed learning based on it improves the sampling quality and diversity.

2



Under review as a conference paper at ICLR 2024

(a) SGM (b) SGM-GADGET
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(N2)
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Figure 2: Cosine similarity between scores at
each time t of SGM and SGM-GADGET, where
the SGM-GADGET is trained after decompose
the original data distribution into 2 Gaussian-
like distributions N1 and N2. The latter 2
columns represent each SGM trained on each
distribution. The upper row is for Fish, the
lower row is for Concrete. Each axis means
time t, and each cell represents the averaged co-
sine similarity between the scores at time t.

For our preliminary study, we choose SGM for
its superior performance. However, our claim
can be applied to other types of tabular synthesis
models (see our experimental results). In Fig. 1,
each figure represents a vector field, i.e., score, of
trained SGM at time t. t = 0 means the original
distribution and t = 1 means a Gaussian prior.
The upper row is for a SGM to learn a bivari-
ate Gaussian distribution where mean µ =

�
7
7

�

and covariance ⌃ =
�
4 0
0 1

�
, and the lower row

is for a SGM to learn a more complicated distri-
bution which has 5 spirals. In the lower row, the
vector field becomes significantly more intricate
than the upper row as t approaches 0. Therefore,
the training process becomes easier after Gaus-
sian decomposition, since as the data pattern, i.e.,
distribution, becomes simpler, the task of model
learning also becomes easier. The philosophy be-
hind our method design can be best phrased by
solving K easy problems is easier than solving
one difficult problem.

In Fig. 2, we visualize cosine similarity between
vector fields with respect to time t from SGMs
trained for Fish (the upper row) and Concrete
(the lower row). As shown, the overall similar-
ity of SGM-GADGET is greater than that of SGM,
which means the vector field of SGM-GADGET
does not change drastically compared to that of
SGM. Moreover, while the vector field of SGM at t = 0 is barely relevant to vector fields at other
time t, the vector fields of SGM-GADGET are similar throughout all time, even at t = 0, i.e., the
original distribution. From Fig. 2, we confirm that Gaussian decomposition using GMM works in
real-world tabular data as well.

3 BACKGROUNDS

3.1 GAUSSIAN MIXTURE MODELS

The Gaussian mixture distribution is given by the following equation:

p(x) =
KX

k=1

⇡kN (x|µk,⌃k), (1)

where K is the number of probability distributions constituting the mixture distribution, k-th Gaus-
sian distribution Nk is characterized by a weight ⇡k 2 [0, 1], a mean µk, and a covariance
⌃k — we note that

P
k ⇡k = 1. Eq. 1 means a linear mixture of Gaussian density functions,

{N (x|µk,⌃k)}Kk=1.

A mixture model is a probabilistic model for density estimation using a mixture distribution, which
can describe more complex probability distributions, by combining several probability distributions.
Especially, a Bayesian Gaussian mixture model is commonly extended to fit a vector of unknown
parameters, or multivariate Gaussian distributions. In a multivariate distribution, one may model a
vector of parameters using a Gaussian mixture model prior distribution on the vector of estimates
given by Eq. 1. To incorporate this prior into a Bayesian estimation, the prior is multiplied with the
known distribution p(x|✓) of the data x conditioned on the parameters ✓ to be estimated. With the
formulation, the posterior distribution p(✓|x) is also a Gaussian mixture model of the form

p(✓|x) =
KX

k=1

⇡̃kN (x|µ̃k, ⌃̃k), (2)

3



Under review as a conference paper at ICLR 2024

where ⇡̃k, µ̃k, and ⌃̃k for all k are the updated parameters using the EM algorithm.

3.2 TABULAR DATA SYNTHESIS

There are many tabular data synthesis methods to create realistic fake tables for various purposes.
For instance, Patki et al. (2016) utilizes a recursive table modeling with a Gaussian copula for syn-
thesizing continuous variables. On the other hand, Bayesian networks (Zhang et al., 2017; Aviñó
et al., 2018) and decision trees (Reiter, 2005) can be used for discrete variables. With great ad-
vancement in generative modeling, there exists an attempt to synthesize tabular data using GANs.
TableGAN (Park et al., 2018) utilizes convolutional neural networks to improve the quality of syn-
thesized tabular data and prediction on label column accuracy. CTGAN and TVAE (Xu et al., 2019)
propose a column-type-specific preprocessing method to deal with the challenges in tabular data,
for which tabular data usually consists of mixed-type variables and the variables follow multi-modal
distributions. In specific, they approximate the discrete variables to the continuous spaces by us-
ing Gumbel-Softmax. OCT-GAN (Kim et al., 2021) is a generative model based on neural ODEs.
SOS (Kim et al., 2022b) and STaSy (Kim et al., 2022a) are state-of-the-art tabular data synthesis
methods, which are based on the score-based generative regime. The former focuses on synthesiz-
ing minority class(es) in classification data, while the latter generates the entire data. Specifically,
STaSy is the most similar method to ours. In STaSy, tabular data is treated as a collection of univari-
ate distributions, whereas SGM-GADGET handles tabular data as a single multivariate distribution.
This distinction enables us to design our proposed training strategies.

3.3 SCORE-BASED GENERATIVE MODELS

Score-based generative models (SGMs) employ the following diffusion process of Itô stochastic
differential equation (SDE):

dx = f(x, t)dt+ g(t)dw, (3)

where f(x, t) = f(t)x, f and g are drift and diffusion coefficients of x(t), and w is the standard
Wiener process. We can reverse the diffusion process and this is called a denoising process:

dx =
�
f(x, t) � g2(t)rx log pt(x)

�
dt+ g(t)dw, (4)

where this reverse SDE is a generative process. score network, the time-dependent score-based
model F✓(x, t), approximates the score function rx log pt(x).

We can derive x(t) at time t 2 [0, 1] using the diffusion process in Eq. 3, where x(0) and x(1)
means a real and noisy sample, respectively. By this process, the transition probability p(x(t)|x(0))
at time t is easily approximated, and it always follows a Gaussian distribution. It allows us to collect
the gradient of the log transition probability, rx(t) log p(x(t)|x(0)), during the diffusion process.
Therefore, we can train a score network F✓(x, t) as follows:

argmin
✓

EtEx(t)Ex(0)

h
�(t)kF✓(x(t), t) � rx(t) log p(x(t)|x(0))k22

i
, (5)

where �(t) is to control the trade-off between the sampling quality and likelihood. This is called de-
noising score matching, and ✓⇤ solving Eq. 5 can accurately solve the reverse SDE in Eq. 4 (Vincent,
2011).

After the training process, we can synthesize fake data records with i) the predictor-corrector frame-
work or ii) the probability flow method, a deterministic method based on the ordinary differential
equation (ODE) whose marginal distribution is equal to that of Eq. 3 (Song et al., 2021). In particu-
lar, the probability flow enables fast sampling and exact log-probability computation.

4 PROPOSED METHOD

In this section, we describe our proposed method, GADGET. We first describe how to decompose N
records with a potentially complicated distributions into K Gaussian-like distributions. Using the
surrogate probability density derived from the Gaussian decomposition, we design training strategy,
which enhance the sampling quality/diversity in a non-trivial way.
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Outcome of Step (2)
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Figure 3: Overall workflow of GADGET. Each color represents each Gaussian-like distribution Nk,
and the black hatched distribution means a distribution learned by k-th model F✓k .

4.1 GAUSSIAN DECOMPOSITION FOR FINDING THE SURROGATE PROBABILITY DENSITY
FUNCTION

Definition 1. The ground-truth density function p(x) of tabular data is unknown. However, the
following surrogate density can be derived for a record x for k-th Gaussian distribution Nk:
p̃k(x) = N (x|µ̃k, ⌃̃k), where p̃k(x) is a surrogate probability density of k-th distribution and
µ̃k and ⌃̃k are its parameters.

Gaussian mixture models can be used to represent the probability distribution of a multi-dimensional
variable as a weighted sum of multiple multivariate Gaussian distributions. The original tabular data
distribution contains a number of variables, and we use Eq. 1 to model the original distribution.
The step (1) in Fig. 3 shows an example of the Gaussian mixture distribution decomposition using
GMMs, where we find 3 Gaussian distributions.

4.2 DENSITY-BASED TRAINING STRATEGY

In this section, we discuss the density-based training strategy in detail.
Definition 2. Let T be a tabular data consisting of N records to learn. Let Tk be a set of N records
that are i) normalized with k-th Gaussian-like distribution’s parameters, i.e., µ̃k and ⌃̃k, and ii)
associated with its surrogate probability density p̃k(x). We note that Tk has all N records — Tk is
not a subset of the original tabular data. One can consider that Tk is a projection of the original
tabular data onto Nk (cf. Step (1) of Fig. 3).

In training, T k is used to train k-th model F✓k after weighting each record x based on the surrogate
density p̃k(x) in self-paced learning. We note that all records are used in the training to maximize
the sampling diversity.
Definition 3. Let k(x) be an indicator variable to denote whether the record has the highest
probability density for Nk, i.e., p̃k(x) = maxj p̃j(x).

4.2.1 SELECTIVE SPL-BASED TRAINING

In our proposed method, we train K model with {Tk}Kk=1 separately. We use the same network
architecture for each model F✓k with different parameters ✓k. To further reduce the training com-
plexity, our training method is based on the self-paced learning (SPL) customized from (Kumar
et al., 2010) by us, which controls the training level by weighting the loss function according to the
training records’ importance or difficulty. We consider a training record with high probability den-
sity is of importance. Our proposed objective function Lk for F✓k , which aims to learn the overall
distribution of Nk, is as follows:

Lk =
1

N

NX

i=1

vk,ili(✓k), (6)
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where li is the original loss of a base model, e.g., GANs, SGMs, and flow-based models, for i-th
training record and ✓k is the parameters for k-th model. vk = [vk,1, vk,2, . . . , vk,N ] is an importance
vector for SPL:

vk = vk,scaled +
1 � vk,scaled

10, 000
⇥ epoch. (7)

Sample
id  

1 1 0.9

2 0 0.3

3 1 0.7

4 1 0.4

Sample
id
1 1 1

2 0 0

3 1 0.67

4 1 0.17

Sample
id
1 1 1

2 0 0

3 1 0.703

4 1 0.253

1000-th epoch0-th epoch

Figure 4: Example of importance vector schedul-
ing during training. Red color indicates that the
importance of the cell does not increase through-
out the training, while blue color indicates the op-
posite case.

Fig. 4 is an example of importance vector
scheduling of selective SPL-based training of
F✓1 . First, we scale p̃1(xi) for all i to be in
[0, 1] by the min-max scaling to have v1,scaled

which contains the initial weights multiplied to
training records (cf. Fig. 4 (Middle)). During
the SPL training, v1,i, for which 1(xi) = 1,
is increased linearly w.r.t. training epoch (cf.
Fig. 4 (Right)). Note that importance of sample
2 does not increase since it does not belongs
to N1. At the start of the training, the train-
ing records with relatively low p̃1(xi) which

belongs to N1 are hardly trained. After 10,000 epochs, all belonging samples are fully trained
because v1,i for all i where 1(xi) = 1 are increased to 1.

The training strategy provides us with the following two benefits: i) By allowing the model to focus
on important records at the beginning of the training, it can better learn the key records of the
distribution, whose densities are high, in an efficient way. ii) This allows us to train the k-th model
with a main focus on Nk while maintaining the information of records that do not belong to Nk (to
increase its sampling diversity). Therefore, we do not lose information about records that lie on the
decision boundary where two or more distributions overlap.

4.3 TRAINING ALGORITHM

We describe the overall training process in this section along with the training algorithm in Al-
gorithm 1. First, we initialize ✓k and decompose the raw data to have Tk for all k. After the
decomposition, we can calculate p̃k(xi) for all k and i. Using vk,scaled calculated with p̃k(xi), we
compute Lk and update ✓k for all k. Throughout the training, the model focuses on Nk along with
the non-belonging records which have high p̃k(xi).

Algorithm 1 How to train with our proposed
method
Initialize ✓k and process the raw data for Tk, where
k 2 {1, 2, . . . ,K}
Calculate p̃k(xi) for all k and i
/* Train models based on our

proposed selective SPL-based
training */

1 for each k do
2 for each epoch do
3 Update vk using p̃k(xi) with Eq. 7
4 Update ✓k with Eq. 6
5 return {✓k|k = 1, 2, . . . ,K}

The following proposition shows us one more
advantage of GADGET, which is we can theo-
retically estimate the difficulty of training k-th
model — a deep generative model can be un-
derstood as a mapping function from a prior
distribution to a target data distribution, and it
is well known that a large Wasserstein distance
between them means they are disparate distri-
butions and therefore, it is hard to find such a
mapping function (Arjovsky et al., 2017).

Proposition 1. Since k-th model is trained for
k-th Gaussian-like distribution, the generation
process is reduced to mapping from a Gaussian
prior, which is typically a unit Gaussian distribution N (0, I), to k-th Gaussian-like distribution.
The Wasserstein distance between the two Gaussian distributions d = W2(N (0, I);N (µ̃k, ⌃̃k) is
d2 = kµ̃kk22 +Tr(I+ ⌃̃k � 2(I1/2⌃̃kI1/2)1/2).

How to generate fake tabular data When we generate fake tabular data, we make the data
have the same cardinality of distributions as the original data. We let the k-th model generatePN

i=1 k(xi) records and merge k subtables to have the same number of records to training data.
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5 EXPERIMENTS

5.1 EXPERIMENTAL ENVIRONMENTS

In this section, we provide our experimental environments. The statistical information of our datasets
is in Appendix B.1, and descriptions of baselines are in Appendix B.2.

Evaluation method A brief description of our experimental environments is as follows: i) We use
8 baseline methods — for our study, we design a SGM for tabular data in Appendix A — and 11
real-world tabular datasets for classification and regression. ii) In general, we follow the “train on
synthetic, test on real (TSTR)” framework (Esteban et al., 2017; Jordon et al., 2019) to evaluate the
quality of sampling. Details are in Appendix B.3. For Identity, we train them with real training
data and test with real testing data, whose score can be a criterion to evaluate the sampling quality of
various generative methods in a dataset. iii) We leverage coverage (Naeem et al., 2020) to measure
the diversity of the fake data. Coverage is the ratio of real records that have at least one fake record
among their neighbors, which are found by the K-NN algorithm. iv) We use various metrics to
evaluate in various aspects. We mainly use F1 (resp. R2) for the classification (resp. regression)
TSTR evaluation in the main paper.

5.2 EXPERIMENTAL RESULTS

Table 1: The existing tabular data synthesis meth-
ods trained with and without GADGET

Methods Sampling Sampling RuntimeQuality Diversity
CTGAN 0.3282 0.3952 0.1417

CTGAN-GADGET 0.4487 0.4352 0.0973
RNODE 0.4701 0.5091 16.3990

RNODE-GADGET 0.4802 0.5141 14.9962
SGM 0.4736 0.5692 17.4736

SGM-GADGET 0.6314 0.7137 3.5390

We discuss the proposed method in terms of
the generative learning trilemma (Xiao et al.,
2022). The hyperparameter settings for our ex-
perimental results are in Appendix B.4, and full
results, including the standard deviation after 5
runs, are in Appendix C.

We show the experimental results where
GADGET is applied to the existing tabular data
synthesis methods, i.e., CTGAN, RNODE and
SGM — these are representative GAN, flow,
and score-based models for tabular synthe-
sis. The model performance and runtime are
summarized in Table 1. CTGAN-GADGET,
RNODE-GADGET, and SGM-GADGET mean CTGAN, RNODE, and SGM trained with GADGET,
respectively. In general, Gaussian decomposition tends to enhance sampling quality and diversity,
leading to improved performance in all three GADGET-trained methods across almost all datasets
(For full results, refer to Appendix C). Additionally, Gaussian decomposition reduces the training
complexity of RNODE and CTGAN and significantly decreases the number of learnable parameters
in them. As a result, the sampling time can also be considerably reduced.

5.3 SGM-GADGET

Real 
SGM-GADGET 
STaSy

Real 
SGM-GADGET 
STaSy

Figure 5: Column-wise histogram of the orig-
inal data and the fake data by SGM-GADGET
and STaSy. (Left) ‘cholesterol’ from Heart
Disease and (Right) ‘default’ from Bank.

Since SGM-GADGET exhibits the best per-
formance among the three methods, i.e.,
CTGAN-GADGET, FFJORD-GADGET, and
SGM-GADGET, we compare it with the 8
existing tabular data synthesis methods.

Sampling quality In Table 2, we summa-
rize the sampling quality of the baseline
methods and SGM-GADGET. Advanced GAN-
based methods, i.e., CTGAN, TableGAN, and
OCT-GAN, perform to some degree, whereas
MedGAN and VEEGAN show impractical per-
formance. In general, score-based generative models, i.e., STaSy and SGM-GADGET, outperform
other generative models in large margins. Especially in Nursery, SGM-GADGET show a 27.0%
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N1

N2

N3

(a) The original data

N1

N2

N3

(b) Fake data by SGM-
GADGET trained using GMM
decomposition

Cluster 1

Cluster 2

Cluster 3

(c) Fake data by SGM-
GADGET trained using
K-Means clustering

Figure 6: Column-wise distributions of the ‘cholesterol’ column from Heart Disease. (a) Each
color represents the histogram of the decomposed real data records using GMM. (b, c) The colors
represent the histograms of the fake data records from each SGM, where for (b), the training data is
decomposed using GMM, and for (c), the data is decomposed using K-Means.

improvement in F1 score compared to STaSy, with STaSy achieving a score of 0.566 and SGM-
GADGET achieving a score of 0.719. In Absenteeism, SGM-GADGET exhibit an 943.8% im-
provement in R2 compared to STaSy, with STaSy achieving a score of 0.016 and GADGET achieving
a score of 0.167.

Table 2: The generative learning trilemma Xiao
et al. (2022). For the sampling quality, we report
average values of F1 and AUROC for classifica-
tion datasets, and average values of R2 and RMSE
for regression dataset across the datasets. For
the sampling diversity, we report coverage Naeem
et al. (2020). We report wall clock time for run-
time. The best (resp. the second best) results are
highlighted in bold face (reps. with underline).

Methods Sampling Sampling RuntimeQuality Diversity
Identity 0.6929 1.0000 -

MedGAN -0.2635 0.0801 0.0223
VEEGAN -0.5995 0.0204 0.0219
CTGAN 0.3282 0.3952 0.1417
TVAE 0.2792 0.4320 0.0201

TableGAN 0.3743 0.5255 0.0128
OCT-GAN 0.3900 0.3194 1.6101
RNODE 0.4701 0.5091 16.3990
STaSy 0.5966 0.6797 21.9437

SGM-GADGET 0.6314 0.7137 3.5390

In Fig. 5, we show the column-wise histograms
of 2 columns from Heart Disease and
Bank. SGM-GADGET shows much more reli-
able data distribution than STaSy, showing sim-
ilar distribution as that of the real data. Fig. 6
(a) and (b) show the column-wise histograms
of real and fake data where each Gaussian-
like distribution is represented in different col-
ors. The distributions of fake data by SGM-
GADGET are similar to those of real data.

Sampling diversity In Table 2, we summa-
rize the experimental result in terms of sam-
pling diversity. MedGAN and VEEGAN show
poor performance in terms of the sampling di-
versity, which means they suffer from mode
collapse. TableGAN shows reasonable cover-
age, and score-based generative model, STaSy,
shows the best score again among the baseline
methods. SGM-GADGET shows the best perfor-
mance in terms of the sampling diversity again.

Sampling time SGMs are notorious for their
long sampling time, as they require a large number of steps in the reverse process. SGM-GADGET
consists of K SGMs, and one might assume that the sampling complexity of SGM-GADGET is of
the order K. However, it is important to note that SGM-GADGET is trained using probability flow,
where we generate fake records using the neural ordinary differential equation (NODE) based on
F✓k . By employing an augmented ODE, we are able to generate samples from K SGMs efficiently.
The sampling algorithm for STaSy and SGM-GADGET are presented in Appendix D.

In Table 2, we report averaged wall-clock times taken to generate 10,000 records with the methods,
which are measured in the same environment. As shown, two early GAN-based methods, i.e.,
MedGAN and VEEGAN, generate 10,000 samples within about 0.2 seconds, which is a highly fast
runtime, and advanced GAN-based methods, i.e., CTGAN and OCT-GAN, take a relatively long but
reasonable time. In our experiments, TableGAN shows the fastest sampling speed.

STaSy’s sampling time is more than 1,000 times as slow compared to the GANs and VAEs. SGM-
GADGET, though, improves the sampling speed by reducing the number of parameters in F✓k , 8k.
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SGM-GADGET improves the sampling time by 83.9% compared to STaSy. In Appendix E, we
provide a summary of the number of learnable parameters for each method. Table 17 shows the
number of learnable parameters in SGM-GADGET is significantly decreased compared to STaSy,
except for Bank and Heart Disease. This reduction in parameters has resulted in an impressive
decrease in sampling time.

5.3.1 DATA DECOMPOSITION WITH K-MEANS CLUSTERING

Table 3: The ablation study on GMM vs. K-
Means. For the sampling quality, we report F1
score or R2 (resp. coverage) for the sampling
quality (resp. diversity).

Datasets Sampling quality Sampling diversity
GMM K-Means GMM K-Means

Absenteeism 0.167 0.314 0.222 0.367
Bank 0.567 0.456 0.865 0.054
Clave 0.607 0.501 0.715 0.694

Contraceptive 0.447 0.413 0.897 0.796
Concrete 0.835 0.831 0.552 0.820
Customer 0.362 0.334 0.745 0.399

Fish 0.548 0.557 0.945 0.828
Heart Disease 0.876 0.827 0.895 0.634

Nursery 0.719 0.619 0.523 0.497
Obesity 0.917 0.762 0.765 0.098
Spambase 0.901 0.878 0.727 0.077

Our data decomposition for tabular data
is based on GMMs. K-Means cluster-
ing, another popular unsupervised cluster-
ing method, can be a substitute for GMM.
We provide a comparison between the de-
composition methods in this section.

For an importance vector vk for K-Means
decomposition, we use the distance of
each record to the centroid it belongs,
where the closer to the centroid records
is, the greater weight given. The exper-
imental result is in Table 3. In general,
decomposing the data using GMM is bet-
ter to help the model training in terms of
sampling quality and diversity. However,
we also observe cases where K-Means de-
composition works much better, such as in
Absenteeism, Concrete, and Fish.
This means these datasets can be divided more effectively based on distance rather than distribution.

In Fig. 6 (b) and (c), we provide the column-wise histograms where each subset is shown in a
different color. Compared to Gaussian decomposition, each subset of K-Means decomposition has
a proper range but fails to reproduce the desired frequency.

5.3.2 SENSITIVITY ANALYSIS ON THE NUMBER OF GAUSSIAN DISTRIBUTIONS

Table 4: The sampling quality and diversity with re-
spect to the number of Gaussian distribution K

Datasets Sampling quality Sampling diversity
2 3 5 2 3 5

Absenteeism 0.160 0.074 0.167 0.271 0.555 0.222
Concrete 0.835 0.825 0.804 0.552 0.555 0.441
Nursery 0.671 0.717 0.719 0.518 0.528 0.523
Spambase 0.901 0.891 0.514 0.727 0.643 0.000

Table 4 shows the sampling quality and
diversity with respect to the number of
Gaussian-like distributions K, which is a
hyperparameter in our experiments. SGM-
GADGET with K = 1 is the same as
SGM, which is trained without selective
self-paced learning. We discover that the
overall performance tends to better when
K is small. We conjecture that this is be-
cause even though the Nk is not exactly
Gaussian distribution, K with 2 or 3 is
enough to reduce the training complexity. We also found that the sampling diversity is largely
influenced by K, and the fake data is prone to be less diverse as K increases. This is because as K
increases,

PN
i=1 k(xi) for each k decreases, letting each model overfitted to each distribution.

6 CONCLUSIONS & DISCUSSIONS

We presented a method to decompose the raw data using GMM for density-based model-agnostic
training method, i.e., selective SPL-based training, which helps the model to concentrate better on
likely data records. The training method also helps to alleviate the training complexity by making
each decomposed distribution analogous to the prior distribution. We highlight that by applying the
training method, the generation process of the score-based diffusion model, which is known for its
large computation, can be simplified and reduce the sampling time while maintaining its sampling
quality and diversity.
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Ethic Statement As tabular data synthesis methods improve their performance, they also raise
privacy risks, as they have the potential to disclose sensitive patterns or information about individuals
in the original dataset. This presents a challenge for researchers and practitioners who intend to
utilize generative models for tasks such as data augmentation, synthetic data generation, or privacy
preservation.
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