
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A REPRESENTER THEOREM FOR HAWKES PROCESSES
VIA PENALIZED LEAST SQUARES MINIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The representer theorem is a cornerstone of kernel methods, which aim to esti-
mate latent functions in reproducing kernel Hilbert spaces (RKHSs) in a nonpara-
metric manner. Its significance lies in converting inherently infinite-dimensional
optimization problems into finite-dimensional ones over dual coefficients, thereby
enabling practical and computationally tractable algorithms. In this paper, we ad-
dress the problem of estimating the latent triggering kernels–functions that encode
the interaction structure between events–for linear multivariate Hawkes processes
based on observed event sequences within an RKHS framework. We show that,
under the principle of penalized least squares minimization, a novel form of rep-
resenter theorem emerges: a family of transformed kernels can be defined via a
system of simultaneous integral equations, and the optimal estimator of each trig-
gering kernel is expressed as a linear combination of these transformed kernels
evaluated at the data points. Remarkably, the dual coefficients are all analytically
fixed to unity, obviating the need to solve a costly optimization problem to obtain
the dual coefficients. This leads to a highly efficient estimator capable of handling
large-scale data more effectively than conventional nonparametric approaches.
Empirical evaluations on synthetic datasets reveal that the proposed method attains
competitive predictive accuracy while substantially improving computational ef-
ficiency over existing state-of-the-art kernel method-based estimators.

1 INTRODUCTION

Nonparametric estimation of latent functions remains a central topic in both theoretical and ap-
plied research, spanning domains such as signal and image processing (Liu et al., 2011; Takeda
et al., 2007), system control (Liu et al., 2018), geostatistics (Chiles & Delfiner, 2012), bioinfor-
matics (Schölkopf et al., 2004), and clinical studies (Collett, 2023). Among various nonparametric
approaches, kernel methods stand out as one of the most powerful and mature frameworks. These
methods enable flexible function approximation by embedding data into high-dimensional repro-
ducing kernel Hilbert spaces (RKHSs) (Schölkopf & Smola, 2018; Shawe-Taylor & Cristianini,
2004). In classical supervised settings with i.i.d. data, the representer theorem plays a pivotal role
in kernel methods. It states that the solution to a broad class of infinite-dimensional optimization
problems in RKHSs admits a finite-dimensional representation: the optimal function estimator can
be expressed as a linear combination of kernel functions evaluated at the training points (Schölkopf
et al., 2001; Wahba, 1990). This linear form not only provides theoretical insight but also brings
practical advantages in optimization and inference.

Recently, the kernel method literature has begun to address the nonparametric estimation of intensity
functions in point process models. The problems are fundamentally more challenging than i.i.d.
cases, primarily because the loss functions to minimize (e.g., negative log-likelihood functions)
involve integrals of latent intensity functions over observation domains and violate independence
assumptions, which renders classical representer theorems inapplicable. A seminal contribution by
Flaxman et al. (2017) demonstrated that a representer theorem can still hold for a point process:
specifically, they showed that if the square root of the intensity function lies in an RKHS, then
the solution to the penalized maximum likelihood estimation problem admits a finite-dimensional
representation. Interestingly, the optimal estimator is expressed not via standard RKHS kernels but
via equivalent kernels–RKHS kernels transformed through a Fredholm integral equation. The result
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has since been extended to settings with covariate-dependent intensity functions (Kim et al., 2022)
and survival point processes (Kim, 2023), providing a broader foundation for kernel-based learning
in point process models.

More recently, Bonnet & Sangnier (2025) addressed a more intricate setting of multivariate Hawkes
processes (Brémaud & Massoulié, 1996; Hawkes, 1971), which offer a powerful framework for
modeling self- and mutually-interacting event dynamics in real-world applications such as finance
(Bacry et al., 2015), neuroscience (Gerhard et al., 2017), social networks (Zhou et al., 2013), and
seismology (Ogata, 1988). By leveraging the approximations of both the log-likelihood and least-
squares loss functions, they obtained a representer theorem for the estimation of triggering kernels in
an RKHS. To ensure the non-negativity of the intensity functions, the model employs non-linear link
functions, allowing it to capture both excitatory and inhibitory interactions. Although the method
demonstrates strong empirical performance, it requires solving a non-linear optimization problem
over dual coefficients whose dimensionality scales with the data size, posing serious scalability
issues for a large scale of datasets often seen in multivariate Hawkes processes.

In this paper, we consider a kernel method-based least squares loss formulation for estimating la-
tent triggering kernels in linear multivariate Hawkes processes, where the identity link function is
assumed. By leveraging variational analysis, we establish a novel representer theorem tailored to
the functional optimization problem: the obtained estimator of each triggering kernel admits a linear
expansion in terms of equivalent kernels defined through a system of Fredholm integral equations.
Notably, all dual coefficients are analytically fixed to unity, eliminating the need to solve a costly
coefficient optimization problem. To the best of our knowledge, this paper is the first to establish a
representer theorem for the non-approximated penalized least squares formulation of linear Hawkes
processes. Furthermore, we propose an efficient algorithm to solve the integral equations using the
random feature map approximation of RKHS kernels (Rahimi & Recht, 2007), where all required
integrals are obtained in a closed form, in contrast to the Bonnet & Sangnier (2025) model that re-
lies on Riemann approximation. Consequently, the proposed estimator1 consists solely of additive
matrix operations and an inversion of a matrix whose size is independent of the data size. This
yields a highly lightweight and scalable estimator that remains effective even on large-scale event
data, offering a practical and theoretically grounded solution for learning in multivariate Hawkes
processes.

2 PROPOSED METHOD

2.1 PRELIMINARY: LINEAR HAWKES PROCESSES

We consider a multivariate linear Hawkes process (Brémaud & Massoulié, 1996; Hawkes, 1971) on
a time domain R+, i.e., a U -dimensional counting process (N1(t), . . . , NU (t)) characterized by the
following conditional intensity functions:

λi(t) = µi +
∑
j∈U

∫ t

0

gij(t− s)dNj(s), t ∈ R+, i ∈ U := J1, UK, (1)

where µi ∈ R+ denotes the baseline intensity for dimension i, and gij(t − s) : R+ → R is the
triggering kernel quantifing the change in the dimension i’s intensity at time t caused by the event
of dimension j occurring at time s.

Let {(tn, un) ∈ R+× U}N(T )
n=1 denote a sequence of N(T ) =

∑
i∈U Ni(T ) observed events over

an interval [0, T ], where each pair (tn, un) indicates that the n-th event occurred at time tn on
dimension un. In the literature on point processes, two common approaches have been used to
estimate the intensity functions: one based on the negative log-likelihood function (Daley & Vere-
Jones, 2006), and the other on the least squares contrast (Hansen et al., 2015), defined respectively
as

LLL =
∑
i∈U

[∫ T

0

λi(t)dt−
∑
n∈Ni

log
(
λi(tn)

)]
, LLS =

∑
i∈U

[∫ T

0

λ2i (t)dt− 2
∑
n∈Ni

λi(tn)

]
, (2)

1Code and data to reproduce the results will be public at https://github.com/****.
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where Ni = {tn :un= i}N(T )
n=1 denotes a subset of event times associated with dimension i. Notably,

the least squares contrast, LLS, arises from the principle of empirical risk minimization (van de Geer,
2000), and has recently attracted attention due to its favorable computational properties in Hawkes
process modeling (Bacry et al., 2020; Cai et al., 2024).

2.2 A REPRESENTER THEOREM FOR LINEAR HAWKES PROCESSES

Let k : T × T → R be a positive semi-definite kernel on a one-dimensional compact space T ⊂ R.
Then there exists a unique reproducing kernel Hilbert space (RKHS) Hk (Schölkopf & Smola, 2018;
Shawe-Taylor & Cristianini, 2004) associated with RKHS kernel k(·, ·).

Given an observed sequence of events {(tn, un)}N(T )
n=1 over an interval [0, T ], we consider the fol-

lowing regularized optimization problem of triggering kernels, g = {gij(·)}(i,j)∈U2 , and baseline
intensities, µ = {µi}i∈U , in the linear Hawkes process (1):

ĝ, µ̂ = argmin
g∈HU2

k , µ∈RU

[
L(g, µ) +

1

γ

∑
(i,j)∈U2

||gij ||2Hk

]
, (3)

where L represents the loss functional, || · ||2Hk
represents the squared Hilbert space norm, and

γ ∈ R+ represents the regularization hyperparameter. In this paper, we adopt the least squares
contrast for point processes, denoted by LLS(g, µ), as a loss functional, which takes a quadratic
form in terms of the triggering kernels and baseline intensities,

LLS(g, µ) =
∑
i∈U

[∫ T

0

(
µi+

∑
n∈N

giun(t− tn)10<t−tn≤A

)2

dt

− 2
∑

n′∈Ni

(
µi +

∑
n∈N

giun
(tn′ − tn)10<tn′−tn≤A

)]
,

(4)

where 1(·) denotes the indicator, and N = {tn}N(T )
n=1 represents the whole evet times observed. Here,

a finite support window A ∈ R+ for the triggering kernels is introduced, as is commonly done in
Hawkes process modeling to reduce computational cost (Bonnet et al., 2023; Halpin, 2013). The-
orem 1 establishes a novel representer theorem for the functional optimization problem defined in
(3-4). Notably, all dual coefficients are analytically fixed to unity, eliminating the need for their op-
timization. While the proof relies on the path integral representation (Kim, 2021), for completeness,
we also provide an alternative derivation through Mercer’s theorem (Mercer, 1909) in Appendix E.
Theorem 1. Given the estimation of the baseline intensity {µ̂i}i∈U , the solutions of the functional
optimization problem (3-4), denoted as {ĝij(·)}(i,j)∈U2 , involve the representer theorem under a set
of equivalent kernels2, {hj(·, ·)}j∈U , and their dual coefficients are equal to unity:

ĝij(s) =
∑
n∈Ni

αij
n hj(s, tn)− µ̂i

∫ T

0

hj(s, t)dt, αij
n = 1, s ∈ T , (i, j) ∈ U2, (5)

where {αij
n } denote the dual coefficients, and the equivalent kernels {hj(·, ·)}j∈U are defined

through a system of Fredholm integral equations,

1

γ
hj(s, s

′) +
∑
l∈U

∫ T

0

Vjl(s, t)hl(t, s
′)dt =

∑
n∈Nj

k(s, s′ − tn)10<s′−tn≤A,

Vjl(s, t) =
∑
n∈Nj

∑
n′∈Nl

k(s, t+ tn′− tn)1max(tn,tn′ )<t+tn′≤min(T,A+tn,A+tn′ ).

(6)

Proof. Let K · (s) =
∫
T · k(s, t)dt be the integral operator with RKHS kernel k(·, ·), and K∗ ·(s) =∫

T · k∗(s, t)dt be its inverse operator. Then, through the path integral representation (Kim, 2021),
the squared RKHS norm term can be represented in a functional form,∑

(i,j)∈U2

||gij ||2Hk
=

∑
(i,j)∈U2

∫∫
T ×T

k∗(s, t)gij(s)gij(t)dsdt.

2Following Flaxman et al. (2017), we call the transformed kernel functions where a representer theorem
holds the equivalent kernels.
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Using the representation, the functional derivatives of the least squares term and the penalization
term in (3), with respect to gij(·), can be written as follows:

δLLS

δgij(s)
= 2

∫ T

0

(
µ̂i +

∑
n′∈N

giun′ (t− tn′)10<t−tn′≤A

) ∑
n∈Nj

δ(s− (t− tn))10<t−tn≤Adt

− 2
∑

n′∈Ni

∑
n∈Nj

δ(s− (tn′ − tn))10<tn′−tn≤A,

δ

δgij(s)

∑
i,j

∥gij∥2Hk
=

δ

δgij(s)

∫∫
T ×T

k∗(t, t′)gij(t)gij(t
′)dtdt′ = 2

∫
T
k∗(s, t)gij(t)dt,

where δ(·) denotes the Dirac delta function. The optimal estimator ĝij(·) should solve the equation
where the functional derivative of the penalized least squares contrast is equal to zero:

δ

δgij(s)

[
LLS(g, µ̂) +

1

γ

∑
i,j

∥gij∥2Hk

]∣∣∣∣
g=ĝ

= 0, s ∈ T , (i, j) ∈ U2.

Then applying operator K to the equation leads to the following simultaneous Fredholm integral
equations of the second kind:

1

γ
ĝij(s) +

∑
l∈U

∫ T

0

Vjl(s, t)ĝil(t)dt

=
∑

n′∈Ni

∑
n∈Nj

k(s, tn′−tn)10<tn′−tn≤A − µ̂i

∑
n∈Nj

∫ T

0

k(s, t− tn)10<t−tn≤Adt,

(7)

where Vjl(s, t) is defined in (6), the second term on the left-hand side of Equation (7) is derived
using the following relation,∑
n′∈N

∑
n∈Nj

∫ T

0

ĝiun′ (t− tn′)k(s, t− tn)10<t−tn≤A10<t−tn′≤Adt

=
∑
l∈U

∑
n∈Nj

∑
n′∈Nl

∫ T−tn′

−tn′

ĝil(t)k(s, t+ tn′− tn)10<t−tn+tn′≤A10<t≤Adt (t− tn′ → t)

=
∑
l∈U

∫ T

0

ĝil(t)
∑
n∈Nj

∑
n′∈Nl

k(s, t+ tn′− tn)1max(tn,tn′ )<t+tn′≤min(T,A+tn,A+tn′ ) dt,

and the relation, (KK∗)·(s) =
∫
T ·δ(s − t)dt, was used. Equation (7) indicates that the optimal

estimator ĝij(·) admits a linear representation in terms of a set of transformed kernel functions,
{hij(·, ·)}(i,j)∈U2 , as

ĝij(s) =
∑
n∈Ni

hij(s, tn)− µ̂i

∫ T

0

hij(s, t)dt, s ∈ T , (i, j) ∈ U2,

where the transformed kernel functions are defined by a system of simultaneous Fredholm integral
equations,

1

γ
hij(s, s

′) +
∑
l∈U

∫ T

0

Vjl(s, t)hil(t, s
′)dt =

∑
n∈Nj

k(s, s′ − tn)10<s′−tn≤A. (8)

Since the coefficients in Equation (8) are independent of the index i, its solution hij(·, ·) is also
independent of i, allowing us to write as hij(·, ·) = hj(·, ·). This completes the proof. ■

While Bonnet & Sangnier (2025) has also explored representer theorems under the least squares
contrast for linear Hawkes processes, their formulation relies on a discretized approximation (see
Proposition 1 in (Bonnet & Sangnier, 2025)), which introduces additional optimization over dual
coefficients and obscures the elegant mathematical properties of the least squares contrast. To the
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best of our knowledge, this work is the first to establish a representer theorem for the non-discretized
penalized least squares formulation of linear Hawkes processes.

In Theorem 1, the optimal estimators of baseline intensities, {µ̂i}i∈U are treated as given constants.
Proposition 2 demonstrates that by substituting Equation (5) into Equation (3), {µ̂i}i∈U can be
obtained in closed form in terms of the equivalent kernels. The proof is provided in Appendix B.
Proposition 2. The solutions, {µ̂i}i∈U , of the functional optimization problem (3-4) have closed
forms in terms of the equivalent kernels defined by Equation (6) as follows:

µ̂i =
|Ni| −

∑
n∈N

∑
n′∈Ni

∫ T

0
hun(t− tn, tn′)10<t−tn≤Adt

T −
∑

n∈N
∫ T

0

∫ T

0
hun

(t− tn, s)10<t−tn≤Adtds
, i ∈ U , (9)

where |Ni| denotes the numbe of observed events associated with dimension i.

2.3 CONSTRUCTION OF EQUIVALENT KERNELS

In Section 2.2, we showed that the optimal estimators of g and µ can be expressed in closed form
using the equivalent kernels {hj(·, ·)}j∈U . However, obtaining {hj(·, ·)}j∈U in practice requires
solving the coupled integral equations (6), which is generally a non-trivial task. In Proposition
3, we propose a solution based on the degenerate kernel approximation methods (Atkinson, 2010;
Polyanin & Manzhirov, 1998). The proof is provided in Appendix C.
Proposition 3. Let an RKHS kernel k(·, ·) have a degenerate form with M feature maps {ϕm(s)},

k(s, s′) =

M∑
m=1

ϕm(s)ϕm(s′) = ϕ(s)⊤ϕ(s′), (10)

where ϕ(s) = (ϕ1(s), . . . , ϕM (s))⊤. Then the solution of the simultaneous Fredholm integral
equations (6) can be obtained in closed form as follows:

hj(s, s
′) = ϕ(s)⊤

[( 1

γ
IMU +Ξ

)−1

ϕ̃(s′)

]
1+(j−1)M :jM

, j ∈ U , (11)

where [·]a:b denotes the slice of matrix between the a-th row and the b-th one, IMU ∈ RMU×MU

denotes the identity matrix, Ξ = [Ξij ] ∈ RMU×MU is defined as a symmetric block matrix whose
(i, j)-th block is given by an M -by-M submatrix,

Ξij =
∑
n∈Ni

∑
n′∈Nj

1max(tn,tn′ )<min(T,A+tn,A+tn′ )

∫ min(T,A+tn,A+tn′ )

max(tn,tn′ )

ϕ(t− tn)ϕ(t− tn′)⊤dt, (12)

and ϕ̃(s) : T → RMU denotes a concatenated vector function,

ϕ̃(s) =
[
ϕ̃1(s) | ϕ̃2(s) | . . . | ϕ̃U (s)

]
, ϕ̃i(s) =

∑
n∈Ni

ϕ(s− tn)10<s−tn≤A. (13)

Proposition 4 shows that substituting the equivalent kernels (11) into Equations (5) and (9), we can
obtain the optimal estimators in terms of the feature maps. The proof is provided in Appendix D.
Proposition 4. For a degenerate form of RKHS kernel in (10), the optimal estimators, ĝ and µ̂, are
obtained in closed form in terms of the feature maps:

ĝij(s) = ϕ(s)⊤
[( 1

γ
IMU +Ξ

)−1( ∑
n∈Ni

ϕ̃(tn)− µ̂i

∫ T

0

ϕ̃(t)dt
)]

1+(j−1)M :jM

,

µ̂i =
|Ni| −

(∫ T

0
ϕ̃(t)dt

)⊤( 1
γ IMU +Ξ

)−1(∑
n∈Ni

ϕ̃(tn)
)

T −
(∫ T

0
ϕ̃(t)dt

)⊤( 1
γ IMU +Ξ

)−1(∫ T

0
ϕ̃(t)dt

) .

(14)

In this paper, we assume that RKHS kernels are shift-invariant, i.e., k(s, s′) = k(|s − s′|), which
includes popular kernels such as Gaussian, Matérn, and Laplace kernels. We employ the random
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Fourier feature method (Rahimi & Recht, 2007), approximating the shift-invariant RKHS kernel as
a sum of Fourier features sampled from the Fourier transform of the kernel, denoted by k̃(ω), as

ϕm(s) =

√
2

M
cos(ωms+ θm), ωm =

{
∼ k̃(ω) m ≤ M

2

ωm−M
2

m > M
2

, θm =

{
0 m ≤ M

2

−π
2 m > M

2

. (15)

To enhance the approximation accuracy of the random Fourier features, we employed the quasi-
Monte Carlo feature maps (Yang et al., 2014), and used M = 100 in Section 4. Then the integral
operations appeared in (12) and (14) can be performed analytically as follows:∫ T

0

ϕ̃i(s)ds =

√
2

M

1

ω
◦
[
sin

(
ω ·min(T,A− tn) + θ

)
− sin

(
θ
)]

∈ RM ,∫ b

a

ϕ(t− tn)ϕ(t− tn′)⊤dt =
b− a

M

[
ζ(ω,ω⊤,θ,θ⊤) + ζ(ω,−ω⊤,θ,−θ⊤)

]
∈ RM×M ,

(16)

where ◦ denotes the Hadamard product, ω = (ω1, . . . , ωM )⊤, θ = (θ1, . . . , θM )⊤, and

ζ(ω, ω′, θ, θ′) = cos
[
(b+ a)(ω + ω′)/2 + θ + θ′ − ωtn − ω′tn′

]
sinc

[
(b− a)(ω + ω′)/2

]
. (17)

Here, sinc(x) = sin(x)/x is the unnormalized sinc function. As a result, the optimal estimators are
obtained in closed form without requiring any discretization approximation of the integral operators.
It is worth noting that the number of feature maps, M , required to approximate a one-dimensional
RKHS kernel remains modest regardless of the data size, whereas the number of discretization nodes
needed for accurate integral evaluations grows with the data size. See Section 3 for details.

2.4 COMPLEXITY ANALYSIS

The computational complexity of obtaining our estimators in Equation (14) is O(N2M2U2 +
M3U3), where N = max(|N1|, . . . , |NU |): the first term arises from the computation of Ξ, and the
second from the inversion of

(
γ−1IMU +Ξ

)
. Its memory complexity is O(M2U2), which stems of

Ξ. In contrast, the prior kernel-based method (Bonnet & Sangnier, 2025) requires the computation
of O(N4U2P ), where P denotes the number of iterations needed for convergence in an iterative
optimization algorithm. Its memory complexity is O(N2U2). Therefore, our approach achieves
significantly better scalability with respect to the data size compared to the previous method, mak-
ing it well-suited for large-scale data scenarios. Moreover, our method requires only a single matrix
inversion and avoids the need to carefully tune convergence criteria and learning rates, offering a
more stable and practical solution, which is in contrast to the prior kernel method-based method that
relies on iterative optimization.

3 RELATED WORK

Hawkes processes (Hawkes, 1971), particularly in the multivariate setting, have been extensively
studied due to their expressive power in modeling self- and mutually-exciting temporal dynamics
on networks. One of the simplest approaches to learning the triggering kernels in Hawkes processes
is parametric modeling, where exponential kernels are particularly popular owing to their ability to
compactly encode interaction strength and temporal decay. In the case of linear Hawkes processes
(1), maximum likelihood estimation has been the gold standard (Bacry et al., 2015; Ozaki, 1979;
Zhou et al., 2013). However, several alternative estimation strategies have been proposed, including
least squares-based approaches that exploit analytic tractability (Bacry et al., 2020), spectral methods
(Adamopoulos, 1976), and moment-matching methods (Da Fonseca & Zaatour, 2014).

Most of the above models assume mutual excitation, i.e., non-negative triggering kernels. Recently,
however, Bonnet et al. (2023) introduced a flexible non-linear Hawkes model (see Equation (18))
with exponential triggering kernels, which enables us to estimate both excitatory and inhibitory in-
teractions efficiently within exponential forms. While the complexity of model fitting scales linearly
with the number of events, the model requires processing event times successively to evaluate the
likelihood function and is therefore difficult to parallelize across multiple cores, limiting scalability.

In the nonparametric regime, a wide variety of methods have been explored for linear Hawkes pro-
cesses, which include piece-wise constant (Reynaud-Bouret et al., 2014) and Gaussian mixture (Xu
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et al., 2016) representations of triggering kernels, and the estimation method via the solution of
Wiener–Hopf equations (Bacry & Muzy, 2016). For non-linear Hawkes processes, nonparametric
formulations such as those using Bernstein-type polynomials (Lemonnier & Vayatis, 2014) and B-
spline expansions (Cai et al., 2024) have been proposed. Additionally, many neural network-based
models have been developed to learn event dynamics directly from data, ranging from RNN-based
approaches (Mei & Eisner, 2017) to Transformers (Zuo et al., 2020). For a more comprehensive
survey, we refer readers to (Bonnet & Sangnier, 2025; Bonnet et al., 2023).

While prior works using reproducing kernel Hilbert spaces (RKHSs) remain relatively underex-
plored in the context of Hawkes processes, two notable exceptions exist. Yang et al. (2017) propose
an online estimation method in RKHS under a regret minimization framework, which fundamentally
differs from the batch learning setting considered in this paper. Bonnet & Sangnier (2025), on the
other hand, considered a non-linear multivariate Hawkes process,

λi(t) = φ

(
µi +

∑
j∈U

∫ t

0

gij(t− s)dNj(s)

)
, t ∈ R+, i ∈ U := J1, UK, (18)

where φ(x) = log(1 + ewx)/w is a non-negative soft-plus function (w = 100), and demonstrated
a representer theorem for the problem by adopting an approximate likelihood function (Lemonnier
& Vayatis, 2014) or an upper bound on the least squares loss (Lemonnier & Vayatis, 2014) as the
objective. Specifically, they showed that in both cases, the optimal estimator of each triggering
kernel admits a linear representation in terms of RKHS kernels as follows:

ĝij(·) = αij
0

∑
n∈Nj

∫ T

0

k(·, t− tn)10<t−tn≤Adt+
∑
n∈Ni

αnj
1

∑
n′∈Nj

k(·, tn − tn′)10<tn−tn′≤A, (19)

where {αij
0 , α

nj
1 } denote dual coefficients of dimension U(N(T ) + U). Rather than solving the

associated dual optimization problem directly, they adopted the linear representation (19) as a semi-
parametric model and estimated the dual coefficients by maximizing the objective in (3), where the
integrals in the loss functionals (2) were evaluated via discretization approximation. For a detailed
formulation of the resulting objective function, see Section 3.3 of (Bonnet & Sangnier, 2025).

While the approach (18-19) exhibits strong empirical performance, it involves solving a non-linear
optimization problem over dual coefficients, which demands the computation of O(N4U2) for each
evaluation of the objective function, resulting in significant scalability challenges for large-scale
datasets, as is often the case in multivariate Hawkes processes. What makes the situation worse
is that the intensity functions in Hawkes processes is usually discontinuous at the observed event
times, and to accurately evaluate the integrals of the intensity functions in the loss functionals (2), a
dense set of discretization nodes is required along with the number of events increasing. As a result,
the computational cost can grow significantly as the dataset becomes larger.

4 EXPERIMENTS

We evaluated the validity of our proposed method (Ours) by comparing it with prior parametric
and non-parametric approaches. In accordance with Bonnet & Sangnier (2025), we adopted the
following four approaches as baselines: Exp is the state-of-the-art parametric approach based on
a non-linear Hawkes process with exponential triggering kernels (Bonnet et al., 2023); Gau is a
non-parametric approach based on a linear Hawkes process (Xu et al., 2016), where the triggering
kernels are represented as Gaussian mixtures; Ber is a non-parametric approach based on a non-
linear Hawkes process (Lemonnier & Vayatis, 2014), where the triggering kernels are represented as
Bernstein-type polynomials; Bonnet is the state-of-the-art kernel method-based approach (Bonnet
& Sangnier, 2025), which assumes the triggering kernels lie in an RKHS. For Bonnet, the node
size of discretization approximation was set at max(1000, 2|N1|, . . . , 2|NU |) folowing (Bonnet &
Sangnier, 2025). For Ours and Bonnet, a Gaussian RKHS kernel was employed: k(s, s′) =

e−(β|s−s′|)2 , where β is the inverse scale hyperparameter. For Gau and Ber, the number of basis
functions was set at 50. For the models except Exp, the support window A was set at 5.

Except for Exp, the models have hyperparameters to optimize. Gau and Ber have the regulariza-
tion hyperparameter γ for a quadratic penalty on the coefficients of mixture models, and Ours and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Results of Exp (Bonnet et al., 2023), Gau (Xu et al., 2016), Ber (Lemonnier & Vayatis,
2014), Bonnet (Bonnet & Sangnier, 2025), and Ours on mutually-exciting scenario across 10
trials with standard errors in brackets. Ñ is the average data size per trial. cpu is the CPU time
in seconds. The performances not significantly (p ≥ 0.01) different from the best one under the
Mann-Whitney U test (Holm, 1979) are shown in bold.

Exp Gau Ber Bonnet Ours
T Ñ ∆2 cpu ∆2 cpu ∆2 cpu ∆2 cpu ∆2 cpu

2000 1318 0.29 46.1 0.20 3.42 0.51 4.06 0.21 135 0.38 3.16
(0.01) (23.3) (0.02) (1.33) (0.16) (2.03) (0.05) (144) (0.15) (2.42)

3000 2055 0.29 74.7 0.19 4.94 0.69 6.61 0.19 272 0.27 4.76
(0.00) (41.3) (0.02) (3.00) (0.50) (4.71) (0.04) (298) (0.06) (3.97)

5000 4081 0.28 134 0.18 12.2 0.30 19.0 0.15 1358 0.20 10.7
(0.00) (64.9) (0.01) (8.91) (0.06) (15.4) (0.02) (1270) (0.06) (7.71)

7000 5380 0.28 180.4 0.18 17.3 0.27 29.0 0.14 2070 0.16 13.1
(0.00) (56.6) (0.02) (8.00) (0.04) (16.1) (0.04) (1210) (0.04) (5.55)

Table 2: Results on refractory scenario data across 10 trials. Notations follow Table 1.

Exp Gau Ber Bonnet Ours
T Ñ ∆2 cpu ∆2 cpu ∆2 cpu ∆2 cpu ∆2 cpu

2000 2050 2.19 124 1.51 7.03 1.23 10.8 0.63 413 0.95 5.04
(0.03) (61.3) (0.02) (3.58) (0.31) (6.19) (0.19) (291) (0.24) (3.92)

3000 2956 2.19 183 1.50 10.8 0.96 18.5 0.56 927 0.85 7.66
(0.02) (47.9) (0.02) (4.11) (0.14) (7.58) (0.22) (460) (0.19) (4.74)

5000 5222 2.20 355 1.47 24.7 0.82 44.0 0.44 3197 0.59 14.9
(0.02) (74.0) (0.01) (8.41) (0.16) (15.8) (0.18) (1323) (0.13) (5.48)

7000 6887 2.20 503 1.47 37.3 0.71 74.7 0.41 5884 0.50 16.1
(0.02) (108) (0.01) (14.5) (0.09) (29.0) (0.19) (2972) (0.07) (5.26)

Bonnet have the inverse scale hyperparameter β in addition to γ. We optimized the hyperparame-
ters on the grids of γ ∈ {0.1, 0.5, 1.0} and β ∈ {0.5, 1.0, 1.5}, based on the negative log-likelihood
(Gau, Ber, Bonnet) and the least squares loss (Ours) minimization. Specifically, for a sequence
of events observed in an interval [0, T ], each model was fitted with the events in [0, 0.8T], evaluated
the negative log-likelihood/least squares loss for the rest of the data in [0.8T, T ], and the hyperpa-
rameters to minimize the criteria were chosen.

Predictive performance was assessed using the integrated squared error (∆2) defined as follows:

∆2 =
∑
i∈U

∑
j∈U

∫ A

0

∣∣gij(s)− ĝij(s)
∣∣2ds, (20)

where A = 5, and gij(s) and ĝij(s) denote the true and estimated triggering kernels, respectively.
Efficiency was evaluated based on the CPU time, denoted by cpu, required to execute the model
fitting given the optimized hyperparameters.

The four baselines were implemented using the Python code in Bonnet & Sangnier (2025) (MIT
License), and our model using TensorFlow-2.10 (Abadi et al., 2015). All the experiments were
executed on a MacBook Pro equipped with a 12-core CPU (Apple M2 Max), with the GPU disabled.

4.1 MUTUALLY-EXCITING SCENARIO

We consider synthetic data generated from a 3-variate linear Hawkes process (1) with baseline in-
tensities, µi = 0.01 for i ∈ U , and mutually-exciting triggering kernels (gij > 0) defined as follows:

g11(s) = 0.5e−s g12(s) = 0.5e−10(s−1)2 g13(s) = 0.5e−20(s−3)2

g21(s) = 2−5s−1 g22(s) = 0.3e−0.5s g23(s) = 0.5e−20(s−2)2

g31(s) = 0.2e−3(s−2)2 g32(s) = 0.25(1 + cos(πs))e−x g33(s) = 0.5e−s

, (21)

of which setting is a modification of the one that appeared in Bonnet & Sangnier (2025). We simu-
lated 10 trial sequences of events over the interval [0, T ] and performed the estimation of triggering

8
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kernels 10 times using the compared methods. To clarify the model efficiency regarding data size,
we set the horizon at T ∈ [2000, 3000, 5000, 7000].

Table 1 displays the predictive error and computational efficiency on the mutually-exciting scenario
dataset. Some estimation results are displayed in Appendix A. The results demonstrate that, given a
sufficiently large amount of data, our proposal achieved comparable predictive accuracy to Bonnet,
the SOTA kernel-based approach, while requiring several orders of magnitude less computation
time for model fitting. In small data regimes, Bonnet tended to achieve higher accuracy than
Ours, which may be attributed to the theoretical advantage of negative log-likelihood over least
squares loss in reducing estimation biases (Bacry et al., 2016). Gau consistently achieved high
predictive accuracy with small computation time, because it is the only baseline specifically designed
for mutually-exciting interactions, aligned with the underlying process. Exp performed well only
for the exponential triggering kernels {gii(·)}i∈U (see Appendix A).

4.2 REFRACTORY SCENARIO

Refractory phenomena arise in point processes exhibiting short-term self-inhibition, where the oc-
currence of an event temporarily suppresses the likelihood of subsequent events. Such behavior is
observed in neuronal spike trains (Berry & Meister, 1997) and in sequences of mainshock events
(Rotondi & Varini, 2019). Here, we consider synthetic data generated from a 3-variate non-linear
Hawkes process (18) with short-term self-inhibition adopted in (Bonnet & Sangnier, 2025),

g11(s) = (8s2 − 1)1x≤0.5 + e−2.5(x−0.5)1x>0.5,

g22(s) = g33(s) = (8s2 − 1)1x≤0.5 + e−(x−0.5)1x>0.5,
(22)

and various non-inhibitory inter-interactions,

g12(s) = 0.6e−10(s−1)2 g13(s) = 0.8e−20(s−3)2 g21(s) = 0.6·2−5s

g23(s) = 0.8e−20(s−2)2 g31(s) = 0 g32(s) = 0
. (23)

The remaining experimental conditions follow those of the mutually-exciting scenario. We adopted
the soft-plus function as the link function, which is consistent with the assumption in Bonnet.

Table 2 presents the predictive error and computational efficiency on the refractory scenario dataset.
Some estimation results are displayed in Appendix A. As shown, Ours was outperformed by
Bonnet in terms of accuracy on small datasets, but the gap became less significant as the dataset
size increased. In contrast to the mutually-exciting scenario, Gau performed poorly here due to its
inability to model inhibitory interaction. While Ber succeeded in reconstructing the inhibitory in-
teractions, it still fell short of the kernel method-based approaches in terms of accuracy. Increasing
the component number may improve Ber’s performance, but at the cost of higher computational
time. Our proposed method was the fastest, achieving a speed-up of several hundred times com-
pared to the SOTA Bonnet. Note that Ber exhibited unstable behavior in some trials, where ∆2

exceeded 1000. Such outlier samples were excluded from the results in Table 2.

5 CONCLUSION

We have proposed a novel penalized least squares loss formulation for estimating triggering kernels
in multivariate Hawkes processes that reside in an RKHS. We demonstrated that a novel representer
theorem holds for the optimization problem and derived a feasible estimator based on kernel meth-
ods. We evaluated the proposed estimator on synthetic data, confirming that it achieved comparable
predictive accuracy while being substantially faster than the state-of-the-art kernel method estimator.

Limitations: Our proposed method is based on a linear Hawkes process, which does not guarantee
the non-negativity of the intensity function. As a result, when using the estimated triggering kernel
to predict future intensity values, post-hoc clippings such as applying max(λ(t), 0) are required.
If it is known a priori that the underlying triggering kernels are excitatory, it is more appropriate
to enforce non-negativity directly on the estimated triggering kernels. Moreover, the computational
complexity of our method scales cubically with the dimensionalityU of the Hawkes process, making
it less suitable for high-dimensional processes, while it empirically works robustly for moderate U
(see Appendix F.2). This issue, stemming from the matrix inversion, may be mitigated using iterative
solvers such as the conjugate gradient method.
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REPRODUCIBILITY STATEMENT

We provide detailed implementation instructions and reproducibility guidelines in Section 4, and the
full implementation (python code) is submitted as supplementary materials.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to polish writing and correct typos.
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Emmanuel Bacry, Stéphane Gaı̈ffas, Iacopo Mastromatteo, and Jean-François Muzy. Mean-field
inference of Hawkes point processes. Journal of Physics A: Mathematical and Theoretical, 49
(17):174006, 2016.
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José Da Fonseca and Riadh Zaatour. Hawkes process: Fast calibration, application to trade cluster-
ing, and diffusive limit. Journal of Futures Markets, 34(6):548–579, 2014.

Daryl J Daley and David Vere-Jones. An Introduction to the Theory of Point Processes: Volume I:
Elementary Theory and Methods. Springer Science & Business Media, 2006.

Seth Flaxman, Yee Whye Teh, and Dino Sejdinovic. Poisson intensity estimation with reproducing
kernels. In Artificial Intelligence and Statistics, pp. 270–279. PMLR, 2017.

Felipe Gerhard, Moritz Deger, and Wilson Truccolo. On the stability and dynamics of stochastic
spiking neuron models: Nonlinear Hawkes process and point process GLMs. PLoS Computa-
tional Biology, 13(2):e1005390, 2017.

Peter F. Halpin. A scalable EM algorithm for Hawkes processes. In New Developments in Quantita-
tive Psychology: Presentations from the 77th Annual Psychometric Society Meeting, pp. 403–414.
Springer, 2013.

Niels Richard Hansen, Patricia Reynaud-Bouret, and Vincent Rivoirard. Lasso and probabilistic
inequalities for multivariate point processes. Bernoulli, 21(1):83–143, 2015.

Alan G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,
58(1):83–90, 1971.

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics, pp. 65–70, 1979.

Hideaki Kim. Fast Bayesian inference for Gaussian Cox processes via path integral formulation. In
Advances in Neural Information Processing Systems 34, 2021.

Hideaki Kim. Survival permanental processes for survival analysis with time-varying covariates.
Advances in Neural Information Processing Systems 36, 2023.

Hideaki Kim, Taichi Asami, and Hiroyuki Toda. Fast Bayesian estimation of point process intensity
as function of covariates. In Advances in Neural Information Processing Systems 35, 2022.

Remi Lemonnier and Nicolas Vayatis. Nonparametric Markovian learning of triggering kernels for
mutually exciting and mutually inhibiting multivariate Hawkes processes. In Machine Learning
and Knowledge Discovery in Databases, pp. 161–176. Springer, 2014.

Miao Liu, Girish Chowdhary, Bruno Castra Da Silva, Shih-Yuan Liu, and Jonathan P. How. Gaussian
processes for learning and control: A tutorial with examples. IEEE Control Systems Magazine,
38(5):53–86, 2018.

Weifeng Liu, Jose C. Principe, and Simon Haykin. Kernel Adaptive Filtering: A Comprehensive
Introduction. John Wiley & Sons, 2011.

Hongyuan Mei and Jason M. Eisner. The neural Hawkes process: A neurally self-modulating mul-
tivariate point process. In Advances in Neural Information Processing Systems 30, 2017.

James Mercer. Xvi. functions of positive and negative type, and their connection the theory of inte-
gral equations. Philosophical Transactions of the Royal Society of London. Series A, containing
papers of a mathematical or physical character, 209(441-458):415–446, 1909.

Yosihiko Ogata. The asymptotic behaviour of maximum likelihood estimators for stationary point
processes. Annals of the Institute of Statistical Mathematics, 30:243–261, 1978.

Yosihiko Ogata. Statistical models for earthquake occurrences and residual analysis for point pro-
cesses. Journal of the American Statistical Association, 83(401):9–27, 1988.

Tohru Ozaki. Maximum likelihood estimation of Hawkes’ self-exciting point processes. Annals of
the Institute of Statistical Mathematics, 31:145–155, 1979.

Andrei D. Polyanin and Alexander V. Manzhirov. Handbook of Integral Equations. CRC press,
1998.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems 20, 2007.

Patricia Reynaud-Bouret, Vincent Rivoirard, Franck Grammont, and Christine Tuleau-Malot.
Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis. The Journal
of Mathematical Neuroscience, 4:1–41, 2014.

Renata. Rotondi and Elisa Varini. Failure models driven by a self-correcting point process in earth-
quake occurrence modeling. Stochastic Environmental Research and Risk Assessment, 33(3):
709–724, 2019.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT press, 2018.

Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A generalized representer theorem. In
International Conference on Computational Learning Theory, pp. 416–426. Springer, 2001.

Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel Methods in Computational Biology.
MIT press, 2004.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge Univer-
sity Press, 2004.

Hiroyuki Takeda, Sina Farsiu, and Peyman Milanfar. Kernel regression for image processing and
reconstruction. IEEE Transactions on Image Processing, 16(2):349–366, 2007.

Sara van de Geer. Empirical Processes in M-estimation, volume 6. Cambridge University Press,
2000.

Grace Wahba. Spline Models for Observational Data, volume 59. SIAM, 1990.

Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. Learning Granger causality for Hawkes
processes. In International Conference on Machine Learning, pp. 1717–1726. PMLR, 2016.

Jiyan Yang, Vikas Sindhwani, Haim Avron, and Michael Mahoney. Quasi-Monte Carlo feature
maps for shift-invariant kernels. In International Conference on Machine Learning, pp. 485–493.
PMLR, 2014.

Yingxiang Yang, Jalal Etesami, Niao He, and Negar Kiyavash. Online learning for multivariate
Hawkes processes. In Advances in Neural Information Processing Systems 30, 2017.

Ke Zhou, Hongyuan Zha, and Le Song. Learning social infectivity in sparse low-rank networks
using multi-dimensional Hawkes processes. In Artificial Intelligence and Statistics, pp. 641–649.
PMLR, 2013.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer Hawkes
process. In International Conference on Machine Learning, pp. 11692–11702. PMLR, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EXAMPLES OF THE ESTIMATED TRIGGERING KERNELS ON SYNTHETIC
DATA
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Figure A1: Examples of the estimated triggering kernels in the mutually-exciting scenario. Dashed
lines represent the true triggering kernels.
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Figure A2: Examples of the estimated triggering kernels in the refractory scenario. Dashed lines
represent the true triggering kernels.
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B PROOF OF PROPOSITION 2

Proof. Given the estimated baseline intensities {µ̂i}i∈U , the optimal estimators of the triggering
kernels, {ĝij(·)}(i,j)∈U2 , are determined by the equations,

δ

δgij(s)

[
LLS(g, µ̂) +

1

γ

∑
(i,j)∈U2

∥gij∥2Hk

]∣∣∣∣
g=ĝ

= 0, s ∈ T , (i, j) ∈ U2. (B1)

These equations are equivalently expressed as:∫ T

0

(
µ̂i +

∑
n′∈N

ĝiun′ (t− tn′)10<t−tn′≤A

) ∑
n∈Nj

δ(s− (t− tn))10<t−tn≤Adt

−
∑

n′∈Ni

∑
n∈Nj

δ(s− (tn′ − tn))10<tn′−tn≤A +
1

γ

∫
T
k∗(s, t)ĝij(t)dt = 0.

(B2)

Applying the operator
∫
T ·ĝij(s)ds to both sides of Equations (B2) yields the following representa-

tion of the RKHS regularization term under the estimated triggering kernels:
1

γ
∥ĝij∥2Hk

=
1

γ

∫∫
T ×T

k∗(s, t)ĝij(s)ĝij(t)dsdt

=
∑

n′∈Ni

∑
n∈Nj

ĝij(tn′ − tn)10<tn′−tn≤A

−
∫ T

0

(
µ̂i +

∑
n′∈N

ĝiun′ (t− tn′)10<t−tn′≤A

) ∑
n∈Nj

ĝij(t− tn)10<t−tn≤Adt.

(B3)

Substituting this representation into the objective function in (3) leads to:

LLS(ĝ, µ̂) +
1

γ

∑
(i,j)∈U2

∥ĝij∥2Hk

=
∑
i∈U

[∫ T

0

(
µ̂i+

∑
n∈N

ĝiun
(t−tn)10<t−tn≤A

)2

dt+
∑

n′∈Ni

∑
n∈N

ĝiun
(tn′−tn)10<tn′−tn≤A

− 2
∑

n′∈Ni

(
µ̂i +

∑
n∈N

ĝiun
(tn′ − tn)10<tn′−tn≤A

)
−
∫ T

0

(
µ̂i +

∑
n′∈N

ĝiun′ (t− tn′)10<t−tn′≤A

) ∑
n∈N

ĝiun
(t− tn)10<t−tn≤Adt

]

=
∑
i∈U

[
T µ̂2

i + µ̂i

∫ T

0

∑
n∈N

ĝiun
(t− tn)10<t−tn≤Adt− 2|Ni|µ̂i

−
∑

n′∈Ni

∑
n∈N

ĝiun(tn′ − tn)10<tn′−tn≤A

]
.

(B4)

By invoking the representer theorem (5), the objective can be rewritten as a function of the estimated
baseline intensities:

Z(µ̂) = LLS(ĝ(µ̂), µ̂) +
1

γ

∑
(i,j)∈U2

∥ĝij(µ̂)∥2Hk

=
∑
i∈U

[
µ̂2
i

(
T −

∑
n∈N

∫ T

0

∫ T

0

hun
(t− tn, s)10<t−tn≤Adtds

)

− µ̂i

(
2|Ni| −

∑
n∈N

∑
n′∈Ni

∫ T

0

hun
(t− tn, tn′)10<t−tn≤Adt

−
∑
n∈N

∑
n′∈Ni

∫ T

0

hun
(tn′ − tn, t)10<tn′−tn≤Adt

)]
+ C,

(B5)
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where C is the constant term. Z(µ̂) can be more simplified as

Z(µ̂) =
∑
i∈U

[
µ̂2
i

(
T −

∑
n∈N

∫ T

0

∫ T

0

hun
(t− tn, s)10<t−tn≤Adtds

)

− 2µ̂i

(
|Ni| −

∑
n∈N

∑
n′∈Ni

∫ T

0

hun
(t− tn, tn′)10<t−tn≤Adt

)]
+ C,

(B6)

where the identity∑
n∈N

∑
n′∈Ni

∫ T

0

hun
(t− tn, tn′)10<t−tn≤Adt

=
∑
n∈N

∑
n′∈Ni

∫ T

0

hun
(tn′ − tn, t)10<tn′−tn≤Adt,

(B7)

is used (for proof, see Appendix D). Finally, the optimal estimators µ̂i should solve the equation
where the functional derivative of Z(µ̂) regarding µi is equal to zero (dZ/dµi = 0), which leads to
the following representation in terms of the equivalent kernels:

µ̂i =
|Ni| −

∑
n∈N

∑
n′∈Ni

∫ T

0
hun

(t− tn, tn′)10<t−tn≤Adt

T −
∑

n∈N
∫ T

0

∫ T

0
hun(t− tn, s)10<t−tn≤Adtds

, i ∈ U . (B8)

This completes the proof. ■

C PROOF OF PROPOSITION 3

Proof. For an RKHS kernel k(·, ·) with the degenerate form given in Equation (10), the coefficient
functions, {Vjl(s, t)}(j,l)∈U2 , appearing in the system of integral equations (6) can also be expressed
in degenerate forms as follows:

Vjl(s, t) =

M∑
m=1

ϕm(s)ψjl
m(t),

ψjl
m(t) =

∑
n∈Nj

∑
n′∈Nl

ϕm(t+ tn′− tn)1max(tn,tn′ )<t+tn′≤min(T,A+tn,A+tn′ ).

(C1)

Substituting Equation (C1) into Equation (6), we find that the solutions, {hj(s, s′)}j∈U , admit de-
generate forms as

hj(s, s
′) = γ

∑
n∈Nj

k(s, s′ − tn)10<s′−tn≤A − γ
∑
l∈U

∫ T

0

Vjl(s, t)hl(t, s
′)dt,

= γ

M∑
m=1

ϕm(s)

[ ∑
n∈Nj

ϕm(s′ − tn)10<s′−tn≤A −
∑
l∈U

∫ T

0

ψjl
m(t)hl(t, s

′)dt

]

=

M∑
m=1

ϕm(s)cjm(s′),

(C2)

where {cjm(s′)}(m,j)∈J1,MK×U are unknown coefficient functions. By substituting Equations (C2)
and (C1) into Equation (6), we obtain the following linear system that the coefficient functions must
satisfy:∑
m

ϕm(s)

[
1

γ
cjm(s′) +

∑
l∈U

∫ T

0

ψjl
m(t)

∑
m′

ϕm′(t)clm′(s′)dt−
∑
n∈Nj

ϕm(s′ − tn)10<s′−tn≤A

]
= 0,

∴ 1

γ
cjm(s) +

∑
l∈U

∑
m′

clm′(s)

∫ T

0

ψjl
m(t)ϕm′(t)dt−

∑
n∈Nj

ϕm(s− tn)10<s−tn≤A = 0, (C3)
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for (m, j) ∈ J1,MK×U . Let us define the MU -dimensional stacked vector of coefficient functions
as

c̃(s) = (c11(s), c
1
2(s), . . . , c

1
M (s), c21(s), c

2
2(s), . . . , c

2
M (s), c31(s), . . . , c

U
M (s))⊤. (C4)

Then, the linear system can be written compactly as( 1

γ
IMU +Ξ

)
c̃(s) = ϕ̃(s), (C5)

where ϕ̃(s) and Ξ are defined in Equations (12) and (13), respectively. Substituting Equation C5)
into Equation (C2) yields the solution to the system of integral equations (6) as,

hj(s, s
′) =

M∑
m=1

ϕm(s)cjm(s′)

= ϕ(s)⊤
[
c(s′)

]
1+(j−1)M :jM

= ϕ(s)⊤
[( 1

γ
IMU +Ξ

)−1

ϕ̃(s′)

]
1+(j−1)M :jM

.

(C6)

This completes the proof. ■

D PROOF OF PROPOSITION 4

Proof. Substituting Equation (11) into Equation (5) yields the expression for the estimated triggering
kernels in terms of the feature maps:

ĝij(s) = ϕ(s)⊤
[( 1

γ
IMU +Ξ

)−1( ∑
n∈Ni

ϕ̃(tn)− µ̂i

∫ T

0

ϕ̃(t)dt
)]

1+(j−1)M :jM

. (D1)

By using Equation (11), the double integral in the denominator of Equation (9) can be rewritten
using the feature maps as follows:∑

n∈N

∫ T

0

∫ T

0

hun
(t− tn, s)10<t−tn≤Adtds

=
∑
n∈N

[∫ T

0

ϕ(t− tn)10<t−tn≤Adt

]⊤[( 1

γ
IMU +Ξ

)−1
∫ T

0

ϕ̃(s)ds

]
1+(un−1)M :unM

=
∑
l∈U

[ ∑
n∈Nl

∫ T

0

ϕ(t− tn)10<t−tn≤Adt

]⊤[( 1

γ
IMU +Ξ

)−1
∫ T

0

ϕ̃(s)ds

]
1+(l−1)M :lM

=
∑
l∈U

[∫ T

0

ϕ̃l(t)dt

]⊤[( 1

γ
IMU +Ξ

)−1
∫ T

0

ϕ̃(s)ds

]
1+(l−1)M :lM

=

(∫ T

0

ϕ̃(t)dt

)⊤(
1

γ
IMU +Ξ

)−1(∫ T

0

ϕ̃(t)dt

)
. (D2)

Similarly, the integral term in the numerator of Equation (9) becomes,∑
n∈N

∑
n′∈Ni

∫ T

0

hun
(t− tn, tn′)10<t−tn≤Adt

=
∑
n∈N

[∫ T

0

ϕ(t− tn)10<t−tn≤Adt

]⊤[( 1

γ
IMU +Ξ

)−1( ∑
n′∈Ni

ϕ̃(tn′)
)]

1+(un−1)M :unM

=
∑
l∈U

(∫ T

0

ϕ̃l(t)dt

)⊤[( 1

γ
IMU +Ξ

)−1( ∑
n′∈Ni

ϕ̃(tn′)
)]

1+(l−1)M :lM

=

(∫ T

0

ϕ̃(t)dt

)⊤(
1

γ
IMU +Ξ

)−1( ∑
n′∈Ni

ϕ̃(tn′)dt

)
. (D3)

This completes the proof. ■
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Furthermore, from Equation (D3) and the following identity:∑
n∈N

∑
n′∈Ni

∫ T

0

hun(tn′ − tn, t)10<tn′−tn≤Adt

=
∑
n∈N

[ ∑
n′∈Ni

ϕ(tn′ − tn)10<tn′−tn≤A

]⊤[( 1

γ
IMU +Ξ

)−1(∫ T

0

ϕ̃(t)dt
)]

1+(un−1)M :unM

=
∑
l∈U

[ ∑
n′∈Ni

∑
n∈Nl

ϕ(tn′ − tn)10<tn′−tn≤A

]⊤[( 1

γ
IMU +Ξ

)−1(∫ T

0

ϕ̃(t)dt
)]

1+(l−1)M :lM

=
∑
l∈U

[ ∑
n′∈Ni

ϕ̃l(tn′)

]⊤[( 1

γ
IMU +Ξ

)−1(∫ T

0

ϕ̃(t)dt
)]

1+(l−1)M :lM

=

( ∑
n′∈Ni

ϕ̃(tn′)dt

)⊤(
1

γ
IMU +Ξ

)−1(∫ T

0

ϕ̃(t)dt

)

=

(∫ T

0

ϕ̃(t)dt

)⊤(
1

γ
IMU +Ξ

)−1( ∑
n′∈Ni

ϕ̃(tn′)dt

)
,

where the final equality holds because
(
γ−1IMU +Ξ

)
is symmetric, we obtain the relation in Equa-

tion (B7), which holds for any M ≤ ∞ and feature map ϕ(s).

E PROOF OF THEOREM 1 VIA MERCER’S THEOREM

Proof. Through Mercer’s theorem, the RKHS kernel k(·, ·) can be expressed through its Mercer’s
expansion:

k(t, s) =

∞∑
m=1

em(t)em(s),

∫
T
em(t)em′(t)dt = ηmδmm′ , (E1)

where {em(·)}∞m=1 and {ηm}∞m=1 denote the eigenfunctions and the eigenvalues, respectively, of
the integral operator

∫
T · k(t, s)ds. Accordingly, the triggering kernels in the RKHS, {gij(·) ∈

Hk}(i,j)∈U2 , and their squared RKHS norms, ||gij ||2Hk
, admit the representation

gij(s) =

∞∑
m=1

bmij em(s), ||gij ||2Hk
=

∞∑
m=1

(bmij )
2, (i, j) ∈ U2, (E2)

where b = {bmij ∈ R} is the expansion coefficient. Using this representation, the optimization
problem (3-4) can be reformulated as follows:

b̂, µ̂ =argmin
b, µ

[
LLS(b, µ) +

1

γ

∑
(i,j)∈U2

∞∑
m=1

(bmij )
2

]
, (E3)

where

LLS(b, µ) =
∑
i∈U

[∫ T

0

(
µi +

∑
n∈N

∞∑
m=1

bmiun
em(t− tn)10<t−tn≤A

)2

dt

− 2
∑

n′∈Ni

(
µi +

∑
n∈N

∞∑
m=1

bmiun
em(tn′ − tn)10<tn′−tn≤A

)]
.

(E4)

Given the estimate of the baseline intensity µ̂, the optimal coefficient vector b̂ must satisfy the
equation obtained by setting the gradient of the objective with respect to b equal to zero:

∂

∂bmij

[
LLS(b, µ̂) +

1

γ

∑
(i,j)∈U2

∞∑
m′=1

(bm
′

ij )2
]∣∣∣∣

b=b̂

= 0, (i, j) ∈ U2, m ∈ {1, 2, . . . }. (E5)
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Table F3: Average CPU time in seconds across 10 trials. Ñ denotes the average data size per trial.

Bonnet Ours
T Ñ cpu cpu

10000 8248 9250 19.1
15000 12748 26406 29.5

Table F4: Average CPU time in seconds across 5 trials.

Exp Gau Ber Bonnet Ours
U cpu cpu cpu cpu cpu

3 124 7.03 10.8 413 5.04
15 1369 300 254 8513 29.9

Equation (E5) can be written explicitly as

1

2

∂

∂bmij

[
LLS(b, µ̂) +

1

γ

∑
(i,j)∈U2

∞∑
m′=1

(bm
′

ij )2
]∣∣∣∣

b=b̂

=

∫ T

0

(
µ̂i +

∑
n′∈N

∞∑
m′=1

b̂m
′

iun′ em′(t− tn′)10<t−tn′≤A

) ∑
n∈Nj

em(t− tn)10<t−tn≤Adt

−
∑

n′∈Ni

∑
n∈Nj

em(tn′ − tn)10<tn′−tn≤A +
1

γ
b̂mij

= 0.

(E6)

Operating
∑∞

m=1 · em(s) on both sides of Equation (E6) yields the following system of Fredholm
integral equations of the second kind:

µ̂i

∑
n∈Nj

∫ T

0

k(s, t− tn)10<t−tn≤Adt+
∑
l∈U

∫ T

0

Vjl(s, t)ĝil(t)dt

−
∑

n′∈Ni

∑
n∈Nj

k(s, tn′ − tn)10<tn′−tn≤A +
1

γ
ĝij(s) = 0,

(E7)

where we used the relation, ĝij(s) =
∑∞

m=1 b̂
m
ij em(s), and the kernel trick, k(t, s) =∑∞

m=1 em(t)em(s); here, Vjl(s, t) is defined in Equation (6). The resulting system of integral
equations coincides with Equation (7) in the proof shown in the main text. Therefore, the remainder
of the proof proceeds as in Equations (7-8), which completes the proof. ■

F ADDITIONAL EXPERIMENTS

F.1 SCALABILITY ON LARGER DATA SIZE

In Section 2.4, we discussed the scalability of the proposed method on the data size. To confirm it,
we conducted an additional experiment in the refractory scenario with T ∈ {10000, 15000}, and
evaluated the CPU times of Ours and Bonnet on these larger datasets. The results in Table F3
demonstrate that Ours remains scalable for the larger data sizes.

F.2 SCALABILITY ON LARGER DIMENSIONALITY

The computational cost of our method (Ours) scales cubically with the dimensionalityU , which is a
disadvantage compared to the quadratic scaling of the prior kernel method (Bonnet). We conducted
an additional experiment under a refractory scenario with T = 2000 and U = 15 to examine this

18
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issue. The triggering kernel matrix was constructed as a U × U block-diagonal matrix obtained by
placing copies of the 3 × 3 triggering kernel matrix, g(s) = [gij(s)]ij , used in Section 4.2, along
the diagonal. We fixed the hyperparameters to (γ, β) = (1, 1) and evaluated only the computation
time.

The results in Table F4 (note that the U = 3 case is identical to that reported in Table 2 for T
= 2000) show that all methods exhibited an increase in computation time as U grows. However,
the increase for Ours is more moderate compared to the conventional methods (Exp, Gau, Ber,
and Bonnet). Although this trend may contradict the complexity analysis presented in Section
2.4, it can be attributed to the fact that our method relies solely on matrix additions and matrix
inversions (performed via Cholesky decomposition), which are highly amenable to parallelization
across multiple CPU cores.

F.3 EFFECTS OF HYPERPARAMETER GRID ON PERFORMANCE

For the proposed model Ours, we conducted an additional experiment under the refractory scenario
with T = 5000, where the grid was refined from 3 × 3 to 10 × 10. The resulting squared error ∆2

was 0.58 ± 0.12, which represents only a marginal improvement over the 3 × 3 grid (0.59 ± 0.13).
This result suggests that the performance in Tables 1-2, especially the gap between Bonnet and
Ours, could not be solely attributed to the hyperparameter tuning strategy. Since Bonnet is based
on the likelihood function, it is expected to achieve higher accuracy than Ours, which relies on the
least squares loss. Note that maximum likelihood estimation is known to be statistically efficient
asymptotically for Hawkes processes (see (Ogata, 1978)).
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