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Abstract

Pretrained large language models (LLMs) have
demonstrated remarkable success across var-
ious language modeling tasks. However,
they continue to face inherent limitations in
achieving state-of-the-art performance on many
domain-specific applications. Previous re-
search has explored diverse methodologies to
enhance the performance of LLMs on down-
stream tasks. In this paper, we propose in-
tegrating recurrent neural networks (RNNs)
with LLMs and investigate whether this inte-
gration improves language modeling perfor-
mance. Particularly, LLMs are employed to
generate rich and meaningful word embed-
dings, while RNNs excel at capturing the con-
textual semantics of long-range dependencies.
The resulting LLM-RNN model leverages the
complementary strengths of sequential and
Transformer-based architectures to achieve en-
hanced performance. We conducted exten-
sive experiments with rigorous hyperparameter
tuning on multiple benchmark and real-world
datasets. The experimental results highlight
the superiority of the integrated LLM-RNN
model in commonsense reasoning, code under-
standing, and biomedical reasoning tasks. Our
codes are available at https://github.com/
mostafiz26/CouplingRNNsLLMs.

1 Introduction

Large Language Models (LLMs) have demon-
strated exceptional performance and general ca-
pability in various NLP tasks including biomedical
text retrieval (Xu et al., 2024), question answering
(Robinson and Wingate, 2023), sentiment analysis
(Cai et al., 2024; Chang et al., 2024), code under-
standing (Du et al., 2024), code summarization and
generation (Yan et al., 2024; Riddell et al., 2024),
text summarization, generation, and translation (Tu
et al., 2024; Papi et al., 2024; He et al., 2024).
Moreover, incorporating larger training data has
led to a substantial increase in model size, equip-
ping LLMs with emergent capabilities (Wei et al.,

2022b) and laying the foundation for advancements
toward artificial general intelligence (Bubeck et al.,
2023). Consequently, LLMs have garnered sig-
nificant attention from both academia (Wei et al.,
2022a; Zhao et al., 2023) and industry (Anil et al.,
2023; Achiam et al., 2023).

Given the widespread success of LLMs, numer-
ous methodologies and techniques have been de-
veloped to adapt these general-purpose models to
domain-specific downstream tasks. Beyond the
conventional model fine-tuning approach, where
all parameters are adjusted during training (Howard
and Ruder, 2018), prompt-based adaptation meth-
ods have been introduced to modulate the behavior
of frozen LLMs using carefully designed prompts
(Li and Liang, 2021; Tian et al., 2024; Brown et al.,
2020; Lester et al., 2021). Additionally, low-rank
adaptation techniques allow the pretrained model
weights to remain fixed while introducing trainable
rank-decomposition matrices, significantly reduc-
ing the number of trainable parameters (Hu et al.,
2021). Rather than modifying the core parame-
ters of LLMs, these approaches freeze the model
and typically introduce additional trainable com-
ponents. Moreover, various innovations, such as
incorporating knowledge graph representations of
text, feature hybridization, sequential model (i.e.,
RNN5s) integration, and layer-specific adjustments,
are being explored to enhance the structural and
functional capabilities of LLMs (Md. Mostafizer
et al., 2021; Buguefio and de Melo, 2023; Rahman
et al., 2024a).

Despite the remarkable success of LLMs in ad-
dressing a variety of real-world applications and
adapting to specific downstream tasks, they con-
tinue to exhibit inherent limitations in accurately
capturing and providing grounded knowledge (Pan
et al., 2024; Lewis et al., 2020). Challenges such as
lexical diversity, the presence of long dependencies,
unfamiliar symbols and words in text, and imbal-
anced datasets pose significant obstacles for LLMs,
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particularly in sentiment analysis (Chang et al.,
2024; Rahman et al., 2024a). Poria et al., 2020
have highlighted existing challenges and proposed
new research directions in this area. Additionally,
while LLMs can generate complex code, such out-
puts often lack clarity and maintainability (Imai,
2022; Ziegler et al., 2022), creating challenges for
programmers in debugging, maintenance, and ex-
tensibility (Liang et al., 2024; Vaithilingam et al.,
2022). However, these limitations can be alleviated
by incorporating context-aware, domain-specific
information. Motivated by these observations, we
pose the following research question:

Coupling RNNs with LLMs: Does Their
Integration Improve Language Modeling
Performance?

To address this question, our study investi-
gates the integration of recurrent neural networks
(RNNs) with domain-specific LLMs, including
RoBERTa, BioLinkBERT, CodeBERT, CodeT?5,
and CodeT5™, to evaluate their performance on
commonsense reasoning, biomedical reasoning,
and code understanding tasks. Specifically, we in-
corporate RNN variants such as LSTM, BiLSTM,
GRU, and BiGRU, conducting extensive hyper-
parameter tuning to optimize model performance.
The proposed hybrid model, LLM-RNN, combines
a pretrained LLM, which includes both encoder
and decoder components, with RNN architectures.
The LLM serves as the primary encoder, tokenizing
and transforming input sequences into meaningful
embeddings. These embeddings are passed through
a dropout layer to mitigate overfitting before be-
ing processed by the RNN. The RNN captures se-
quential dependencies in the text, enhancing the
model’s ability to understand structural and logical
relationships. Finally, a dense layer maps the RNN
outputs to target class labels, with a Softmax func-
tion applied to produce probability distributions for
downstream tasks.

We conducted extensive experiments on multiple
public datasets across three tasks: commonsense
reasoning, code understanding, and biomedical rea-
soning. To achieve optimal performance, we fine-
tuned the hyperparameters of our model. Our find-
ings demonstrate that coupling RNNs with LLMs
enables the model to better capture context, lead-
ing to significant improvements in performance.
Figure 1 presents the averaged accuracy compari-
son between the LLM-RNN and stand-alone mod-
els across the three tasks using multiple bench-
mark datasets. Notably, LLM-RNN achieves ac-
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Figure 1: Comparison of accuracy between LLM-RNN
models and stand-alone counterparts across three tasks,
evaluated on multiple benchmark datasets.

curacy improvements of approximately +1.22%,
+3.81%, and +0.37 % for commonsense reasoning,
code understanding, and biomedical reasoning, re-
spectively, compared to stand-alone LLLM models.
These results highlight the substantial benefits of
our approach. In summary, the key contributions
are:

* To the best of our knowledge, this work rep-
resents the first attempt to evaluate the perfor-
mance of coupling RNNs with LLMs across
multiple public datasets for diverse down-
stream tasks.

* We meticulously integrate RNN architectures
with LLMs, combining the complementary
strengths of transformer-based architectures
and the sequential learning capabilities of
RNNs. While LLMs generate rich, contextu-
ally relevant token embeddings, RNNs further
process these embeddings to capture the struc-
tural and sequential dependencies inherent in
text. This synergistic approach proves critical
for effectively addressing complex tasks.

* Extensive experiments across various datasets
and hyperparameter settings demonstrate the
superiority of coupling RNNs with LLMs.
This integration significantly enhances the
model’s ability to capture semantics, depen-
dencies, and relations more accurately, under-
scoring its effectiveness in diverse tasks.

2 Methodology

In this section, we describe the coupling of RNNs
with LLMs to create LLM-RNN model. This
model combines the strengths of the Transformer
and RNN architectures to improve efficiency and



accuracy in downstream tasks. Figure 2 shows the
framework of the LLM-RNN model.
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Figure 2: Framework of the proposed LLM-RNN model

2.1 Contextual Embedding with Large
Language Model (LLM)

LLM uses Byte Pair Encoding (BPE) for tokeniza-
tion, ensuring efficient representation of the input
while minimizing the out-of-vocabulary (OOV)
issue. Let X = {z1,z2,...,2,} represent the
raw input (e.g., code or text) sequence, and the
tokenization process can be expressed as T =
BPE(X) = {ti,t2,...,tn}, where T is the se-
quence of tokens. Each token ¢; is mapped to an
Input ID id; € Z™, a Token type ID tt; € {0, 1},
and an Attention mask am; € {0,1}, enabling
focused self-attention. LLM employs a denois-
ing objective based on span masking, where the
masked sequence 7" = {t1,...,[MASK],...,t,}
is reconstructed to minimize the 10SS Liecon =
_Ziemask log P(t; ‘ T/)’ with P(tl ‘ T,) rep-
resenting the probability of reconstructing the
masked token. Using a Transformer architecture,
token embeddings E(T") = {ej,eq,...,e,} are
derived, where e; = LLMEmbed(¢;). These em-
beddings are processed by the Transformer encoder
to produce contextual representations H(7T") =
TransformerEncoder(E(T")) = {h1,ha, ..., hn},
with h; being the contextual embedding for ¢;. The
overall objective combines the span reconstruc-
tion loss with auxiliary tasks as £ = Liecon +
Laux, Where L, includes tasks such as code

completion. The pipeline can be summarized as
BPE Embedding E(T’)

T T

H(T") Reconstruction, enabling robust contextual
learning and efficient handling of code and text se-
quences.

Transformer Encoder

2.2 Further Contextual Information
Processing with RNN Sequential Modeling

The LLM-RNN highlights the effectiveness of
RNN models in capturing rich contextual details,
establishing them as a popular choice for sequen-
tial data analysis tasks due to their enhanced perfor-
mance and resilience. The output embeddings from
the final layer L of the LLM model are represented
as a sequence H) = {th), héL), ol hﬁf)},
where hEL) € R? denotes the i-th embedding in
the sequence, and d is the dimensionality of the
embeddings. To reduce overfitting, a dropout op-
eration is applied to these embeddings, resulting
in hgmp = Dropout(th)), where hgmp € R%
To align the dimensionality of the LLM output
embeddings with the input requirements of the
RNN, a linear transformation is applied to each
embedding: z; = T/Vlinearh?mp + biinear, Where z; €
RN Wiinear € RINWXD g the weight matrix, and
Blinear € RIRWN ig the bias vector. The sequence of
transformed embeddings {z1, 22, ..., z,} is then
processed by the RNN, which computes the hid-
den states sequentially: hRNN = RNN(z;, hRNN),
where hRNN € R jg the i-th hidden state, and
hfyfl is the hidden state from the previous time
step. The final output sequence of the RNN is given
by Hrnn = {AXNN RRNN 0 pRNNY which com-
bines the contextual information from LLM with
the sequential dependencies modeled by the RNN
to enhance predictive performance.

2.3 FC and Classification Layers

A dropout layer is applied to Hgrnn, H' =
Dropout( HrnN), to mitigate overfitting, followed
by an FC layer that maps the RNN outputs to class
logits:

Z; = ReLU(Wense H' + bgense) (1)

Finally, a softmax function is applied to the
dense layer output, producing a probability dis-
tribution over classes:

P(y;| X') = Softmax(W,Z; + b,) )

3 Experimental Setup

In this section, we outline the experimental setup,
detailing the implementation environment, hyper-
parameter configurations, evaluation metrics, and
datasets utilized in our experiments.



3.1 Implementation Details

The experiments are conducted on a system run-
ning Ubuntu 22.04.4 LTS (64-bit). The hardware
configuration included an AMD Ryzen 9 3950X
processor with 16 cores and 32 threads, 64 GB of
RAM, and an NVIDIA GeForce RTX 3090 graph-
ics card with 24 GB of dedicated memory. The
system also featured a disk capacity of 500 GB,
ensuring ample storage for experimental data and
model training.

3.2 Hyperparameters

The performance of LLMs is highly dependent
on selecting appropriate hyperparameters. In this
study, we conducted extensive experiments with
various hyperparameter configurations to evalu-
ate model performance on commonsense reason-
ing, code understanding, and biomedical reasoning
tasks. Table 1 details the hyperparameters used
for fine-tuning during model training. Each RNN
model is paired with an LLM to form a hybrid
model. For BiLSTM and BiGRU architectures,
the number of RNN hidden units (k) is doubled
(2 x h) due to their bidirectional processirg capa-
bilities, which incorporate both forward ( 2 ) and
backward ( h ) information. During training, cate-
gorical cross-entropy is employed to calculate the
loss, defined as follows:

K
L(g) ==Y ujlog(i;) 3)
j=1

where g and K represent the model parameter and
the number of classes, respectively, while u; and
u; denote the true and predicted labels for the j th
sample.

3.3 Maetrics

In this study, we undertake tasks such as common-
sense reasoning, code defect detection, code clas-
sification, and biomedical reasoning as part of our
analysis. The performance of the models is evalu-
ated using standard metrics (Rahman et al., 2024a;
Younas et al., 2022), including accuracy (A), preci-
sion (P), recall (R), and F1-score (F1). The accu-
racy metric (A) is defined as follows:

|K]|

1
A=S Y H(fE) =

=1 z:f(z)=l

f(x))

Parameter-Name Values

Pre-trained LLMs BERT, RoBERTa,

Code-

BERT, BioLinkBERT, CodeT?5,

CodeT5™
RNNs LSTM, BiLSTM, GRU, BiGRU
Optimizer (A) AdamW, NAdam, RMSprop

Loss function (£) Categorical  Cross

(cross_entropy)

Entropy

Epochs (epoch) 5

Dropout (d) 0.1,0.2

Learning rates (1) 1ed, 1eP, 2¢°, 18
Hidden units (h) of | 128,256, 512
RNNs

Table 1: The list of hyperparameters for the experiments

Here, H is a function that returns 1 if the pre-
dicted class is correct and 0, otherwise. K repre-
sents the total number of classes, and f(z) € K =
{1,2,3,---}. In addition to accuracy, weighted-
precision (Py), recall (Ry), and Fl-score (F1,)
are computed to provide an unbiased and compre-
hensive performance evaluation (Rahman et al.,
2024a).

3.4 Datasets

In this study, we utilized five public datasets and
three real-world datasets to evaluate our approach
across the tasks of commonsense reasoning, code
understanding, and biomedical reasoning. For com-
monsense reasoning, we employed the IMDb, Twit-
ter US Airline, and Sentiment140 datasets. The
IMDb dataset (Maas et al., 2011) comprises 50,000
reviews evenly split between positive and negative
sentiments, providing a balanced dataset with 50%
of samples in each class. The Twitter US Airline
dataset (Tan et al., 2022) contains 14,640 tweets cat-
egorized into three sentiment classes: positive, neu-
tral, and negative. The Sentiment140 dataset (Go
et al., 2009) is a substantial collection of approxi-
mately 1.6 million tweets curated by Stanford Uni-
versity in 2009 for sentiment analysis. This dataset
is equally balanced, with 50% of tweets represent-
ing positive sentiment and 50% representing neg-
ative sentiment. For code understanding, we used
the defect detection, SearchAlg, SearchSortAlg,
and SearchSortGT datasets. The defect detection
benchmark dataset, sourced from CodeXGLUE
(Zhou et al., 2019), is utilized to assess the model’s
ability to identify code defects. The other three
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Figure 3: Best accuracy (A) scores achieved by BERT-base, BERT-LSTM, BERT-GRU, BERT-BiLSTM, RoBERTa-
base, ROBERTa-GRU, RoBERTa-LSTM, and RoBERTa-BiLSTM models under various hyperparameter settings:
l=1e"* 1e 5, 1e % and h = 128,256, 512. The models are trained for 5 epochs using the AdamW optimizer on
the IMDD, Twitter US Airline, and Sentiment140 datasets.

Model IMDb Twitter US Airline Sentiment140
Fl, | P, | Ry | F1, | P, | Ry, || F1, [ P, | Ry
BERT-Base 90.96 | 90.96 | 90.96 || 75.88 | 76.62 | 75.27 || 81.31 | 81.56 | 81.35
-GRU 91.12 | 91.14 | 91.12 || 77.57 | 77.45 | 77.73 || 81.831 81.84 | 81.83
-LSTM 91.321 91.35 | 91.32 || 77.72 | 77.54 | 78.01 || 81.75 | 81.75 | 81.75
-BiLSTM 91.24 | 91.25 | 91.24 || 78.181 78.01 | 78.42 | 81.81 | 81.81 | 81.81
RoBERTa-Base 91.31 | 91.44 | 91.32 || 80.12 | 80.70 | 79.78 | 82.17 | 82.21 | 82.17
-GRU 92.60 | 92.64 | 92.60 || 80.931 81.47 | 80.60 | 82.321 82.32 | 82.32
-LST™M 92.08 | 92.08 | 92.08 || 80.32 | 80.47 | 80.33 || 82.29 | 82.29 | 82.29
-BiLSTM 92961 92.96 | 92.96 || 80.73 | 80.94 | 80.74 || 82.25 | 82.25 | 82.25

Table 2: Quantitative results for commonsense reasoning using BERT-RNN and RoBERTa-RNN models, along
with their respective base models. All models are trained for 5 epochs on the IMDb, Twitter US Airline, and

Sentiment140 datasets.

datasets—SearchAlg, SearchSortAlg, and Search-
SortGT—are collected from AOJ (Rahman et al.,
2024b), a respected repository of real-world source
code. Finally, the NCBI dataset (O’Leary et al.,
2024) is used for the biomedical reasoning task. It
comprises approximately 7,298 samples, and the
NER entities are converted into three class labels.

4 Results and Analysis

We conducted comprehensive experiments using
various LLMs to evaluate three reasoning tasks
under different hyperparameter configurations on
both benchmark and real-world datasets. Figure 3
presents the accuracy scores of the best-performing
BERT-RNN and RoBERTa-RNN'! models, along-
side their corresponding BERT-base and RoBERTa-
base counterparts, for the commonsense reasoning
task on IMBd, Twitter, and Sentiment140 datasets.

"RoBERTa-RNN encompasses four models, each integrat-
ing a different RNN variant: LSTM, GRU, BiLSTM, and
BiGRU. This similarly applies to the BERT-, CodeBERT-,
BioLinkBERT-, CodeT5-, and CodeT5"-RNN models.

Figure 3a demonstrates that the BERT-base model

achieved an accuracy of approximately 90.96%,
while the BERT-LSTM model attained 91.32%,
reflecting a 0.36% improvement. Similarly, the

RoBERTa-GRU model achieved an accuracy of
92.60%, marking a 1.28% improvement compared

to the RoOBERTa-base model. Similar trends are

observed in the Twitter and Sentiment140 datasets,
as depicted in Figures 3b and 3c, respectively. In

these cases, integrating RNNs with either BERT
or RoBERTa consistently enhanced model per-
formance. Moreover, Figure 3 highlights that
RoBERTa-RNN models outperformed their BERT-
RNN counterparts, achieving superior accuracy
across three datasets. Additionally, Table 2 presents
the weighted F1,, P,,, and R, scores of the BERT-
RNN and RoBERTa-RNN models. The results
clearly demonstrate that coupling RNNs enhances
the performance of both BERT and RoBERTa mod-
els (indicated by the 1) in commonsense reasoning
tasks.

For the code understanding task, we employed



Model L;:::gl)g ((Zp)timizer IE: :::?2) A (%) F1 (%)

LLM | RNN Weighted (1)) | Macro (1)
RoBERTa - - - - 61.05 - -
CodeBERT - - - - 62.08 - -
CodeT5-Small - - - - 63.40 - -
CodeT5-Base - - - - 64.86 64.74 -
CodeT5" - - - - 64.90 64.74 -
RoBERTa BiGRU le™® NAdam 512 66.40 64.76 64.0
CodeBERT GRU 2e° AdamW 512 66.03 65.32 65.0
CodeT5 GRU le~? AdamW 512 67.90 67.18 67.0
CodeT5" BiGRU 2e° RMSProp 256 67.79 66.82 66.0

Table 3: Comparison of accuracy and F1 scores between top-performing models (RoBERTa-RNN, CodeBERT-RNN,
CodeT5-RNN, and CodeT5T-RNN) and state-of-the-art models on the defect detection dataset.

RoBERTa CodeBERT CodeT5  (odeT5+ RoBERTa CodeBERT CodeT5  (odeT5T RoBERTa CodeBERT CodeTS  (odeT5+
’ E| Hrst™ ﬂ [ BiLST™M El [ cru ﬂ [] BicrU ‘ ’ El FLst™ ﬂ [ BiLST™M ﬂ H cru [l fl BicrU ‘ ’ LSTM ﬂ [ BiLST™M H A cru [l [ BiGrRU ‘
(a) SearchAlg (b) SearchSortAlg (c) SearchSortGTAlg

Figure 4: Comparison of accuracy (A) scores for the top-performing ROBERTa-RNN, CodeBERT-RNN, CodeT5-
RNN, and CodeT5+-RNN models on the SearchAlg, SearchSortAlg, and SearchSortGTAlg datasets.

SearchAlg SearchSortAlg SearchSortGTAlg

- o Fi, | Py [ Ry | F1, | Py, [ Ry [ F1, [ Py | Ry
LSTM 93.48 93.67 | 93.44 || 95.62 | 95.72 | 95.69 || 95.19 | 95.51 | 95.19

RoBERTa Bi-LSTM || 93.59 93.72 | 93.55 || 96.25 | 96.25 | 96.26 || 95.34 | 95.46 | 95.36
GRU 93.47 93.59 | 93.44 || 95.96 | 96.01 | 96.00 || 95.42 | 95.54 | 95.45

Bi-GRU 93.63 93.90 | 93.59 || 95.99 | 96.02 | 96.00 || 96.00 | 96.10 | 96.00

LSTM 93.63 93.73 | 93.59 || 96.19 | 96.22 | 96.17 || 96.04 | 96.21 | 96.02
CodeBERT Bi-LSTM || 94.04 94.11 | 94.01 || 96.34 | 96.37 | 96.33 || 95.75 | 95.86 | 95.75
GRU 93.85 9391 | 93.82 || 96.09 | 96.11 | 96.10 || 96.04 | 96.13 | 96.05

Bi-GRU 94.01 94.15 | 93.97 || 96.28 | 96.29 | 96.30 || 95.71 | 95.83 | 95.75

LSTM 94.40 94.41 | 94.40 || 96.72 | 96.76 | 96.72 || 9598 | 96.11 | 96.07

CodeT5 Bi-LSTM || 95.12 95.15 | 95.12 || 96.68 | 96.68 | 96.68 || 96.01 | 96.06 | 96.07
GRU 94.17 94.25 | 94.17 || 96.31 | 96.43 | 96.31 || 95.25 | 95.26 | 95.44

Bi-GRU 94.86 94.86 | 94.86 || 96.28 | 96.29 | 96.32 || 94.98 | 95.15 | 95.06

LSTM 94.00 94.02 | 93.99 || 95.97 | 96.05 | 95.97 || 96.05 | 96.17 | 96.08

CodeT5+ Bi-LSTM || 94.26 94.28 | 94.24 || 96.36 | 96.37 | 96.37 || 96.26 | 96.31 | 96.27
GRU 94.27 94.30 | 94.26 || 96.42 | 96.44 | 96.42 || 9592 | 96.06 | 95.92

Bi-GRU 94.42 94.43 | 94.42 || 96.33 | 96.39 | 96.34 || 96.03 | 96.15 | 96.03

Table 4: Experimental results for the weighted F11, P, and R, metrics on real-world datasets using LLM-RNN
models



four pretrained LLLMs and conducted extensive ex-
periments under various hyperparameter config-
urations. Table 3 provides a comparative anal-
ysis of the accuracy and F1 scores for the top-
performing models and their base models on the
defect detection dataset. Based on the results,
we identified four top-performing models and
their corresponding hyperparameter settings from
RoBERTa-RNN, CodeBERT-RNN, CodeT5-RNN,
and CodeT5"-RNN. Table 3 also includes the re-
sults of base models, namely RoBERTa, Code-
BERT, CodeT5, and CodeT5+. The base mod-
els achieved notable accuracy scores of 61.05%,
62.08%, 64.86%, and 64.90%, respectively. In
contrast, the ROBERTa-BiGRU model achieved an
accuracy of 66.40%, representing an improvement
of approximately 5.35% (1) over its standalone
RoBERTa counterpart. Similarly, the CodeBERT-
GRU model attained an accuracy of 66.03%, mark-
ing a 3.95% (1) improvement compared to its base
model. The CodeT5-GRU and CodeT5"-BiGRU
models achieved accuracies of 67.90% and 67.79%,
respectively, reflecting improvements of 3.04% (7)
and 2.89% (1) over their standalone counterparts.
These results highlight the effectiveness of integrat-
ing RNN architectures with LLMs, demonstrating
significant enhancements in performance for code
understanding tasks.

To further assess the effectiveness of the mod-
els, we conducted experiments with top-performing
LLM-RNN models on three real-world datasets.
Weighted scores for F11), Py, and Ry are com-
puted, with most models achieving notable re-
sults, as presented in Table 4. Figure 4 provides a
comparative analysis of A scores across the three
datasets. On the SearchAlg dataset, the CodeT5™" -
RNN model achieved an A score of 96.00%, out-
performing all other models. A similar pattern was
observed for the SearchSortAlg and SearchSortG-
TAlg datasets, where CodeT5- and CodeT5+-RNN
models consistently demonstrated superior perfor-
mance.

Figure 5 illustrates that integrating RNNs with
LLMs enhances performance in biomedical reason-
ing tasks. The RoBERTa-base model achieved an
accuracy (A) of 88.15%, which is lower than that
of the other models. In comparison, the RoBERTa-
LSTM model improved A by approximately 0.60%
(1) compared to the RoBERTa-base model. Sim-
ilarly, the BioLinkBERT-GRU model achieved a
modest improvement of 0.14% over its base model.
Furthermore, Table 5 provides detailed F1 and
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Figure 5: Comparision of the accuracies of
RoBERTa-RNN and BioLinkBERT-RNN models on

NCBI dataset.

Model | F1, | P, | Ry
RoBERTa-Base 86.75 | 85.40 | 88.15
-GRU 86.85 | 85.36 | 88.40
-LSTM 87.02 | 85.37 | 88.75
-BiGRU 86.83 | 85.38 | 88.35
-BiLSTM 86.80 | 85.36 | 88.31
BioLinkBERT-Base | 86.81 | 85.43 | 88.26
-GRU 86.86 | 85.39 | 88.40
-LSTM 86.84 | 85.42 | 88.33
-BiGRU 86.82 | 85.33 | 88.37
-BiLSTM 86.84 | 85.39 | 88.36

Table 5: Quantitative results for biomedical reasoning
using RoBERTa and BioLinkBERT models on the NCBI
dataset.

other evaluation metrics to offer a comprehensive
view of model performance. These results clearly
indicate that coupling RNNs with LLMs signif-
icantly boosts model performance in biomedical
reasoning tasks.

4.1 Hyperparameter Sensitivity

We conducted a sensitivity analysis focusing on
key hyperparameters: learning rates, optimizers,
and the number of RNN hidden units. The perfor-
mance of the LLM-RNN models was evaluated by
varying these parameters. Figure 6a illustrates that
the RoOBERTa-BiLSTM model achieved optimal
performance on the Twitter dataset with a learning
rate of [ = le~® and hidden units h = 256, out-
performing other parameter configurations. For the
Sentiment140 dataset, the ROBERTa-GRU model
failed to achieve optimal results with a learning rate
of | = 1e™4, as shown in Figure 6b. This suggests
that a lower learning rate significantly enhances
the model’s performance. Additionally, Figure 7



presents a comparative analysis of accuracy (A)
scores achieved with two top-performing optimiz-
ers, A = {AdamW, NAdam}. The results indicate
that the models consistently delivered superior per-
formance, except when the learning rate was set to

[ =1le 5.
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Figure 6: Impact of hyperparameters on model perfor-

mance.
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Figure 7: Accuracy (A) of CodeT5-RNN models us-
ing two top optimizers A ={ AdamW, NAdam}, RNN
hidden units h = {128, 256,512}, and learning rates
I ={le*, 2e75, 1le=5, 1e=6} with the defect detec-

tion benchmark dataset.

4.2 Analysis of Training Parameters and

Time Efficiency

Figure 8 presents an analysis of training parame-
ters and training times for the top-performing mod-
els and their base counterparts. Notably, LLMs
integrated with BiGRU exhibit the highest num-
ber of training parameters.
RoBERTa and CodeBERT models each comprise
approximately 125 million parameters, while the
BioLinkBERT, CodeT5 and CodeT5" models con-
tain around 112 million parameters, as depicted
in Figure 8a. Interestingly, despite having fewer
parameters, the CodeT5 and CodeT5" models,
when combined with RNN variants, required sig-
nificantly more training time compared to the
RoBERTa and CodeBERT models, as shown in
Figure 8b. This discrepancy can be attributed to

Among these, the

architectural features, variations in tokenization
strategies, potentially less efficient computational
optimization when coupling RNNs with CodeT5
and CodeT5™, and specific hyperparameter set-
tings, all of which may collectively contribute to

the extended training time.
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Figure 8: Comparison of training parameters and train-
ing times between the top-performing models and their

respective base models.

5 Conclusion

In this paper, we explore the integration of recur-
rent neural networks (RNNs) with domain-specific
large language models (LLMs) to evaluate their
performance across commonsense reasoning, code
understanding, and biomedical reasoning tasks. In
the proposed LLM-RNN framework, the LLM tok-
enizes and transforms input sequences into mean-
ingful embeddings. These embeddings are further
processed by the RNN to capture sequential de-
pendencies, thereby enhancing the LLM’s capacity
to understand structural and logical relationships.
This approach enables pre-trained LLMs to acquire
additional knowledge from input data more effec-
tively. We pose the research question: “Coupling
RNNs with LLMs: Does Their Integration Improve
Language Modeling Performance?”. To address
this, we conduct extensive experiments across the
Our results demon-
strate that coupling RNNs with LLMs improves
accuracy by approximately +1.22%, +3.81%, and
+0.37% for commonsense reasoning, code under-
standing, and biomedical reasoning tasks, respec-
tively, compared to stand-alone LLM models. In
addition, we perform hyperparameter sensitivity
analysis and examine trainable parameters along-
side computational time to validate the effective-
ness and feasibility of the LLM-RNN integration.

three aforementioned tasks.



6 Limitations

The empirical investigation of this study demon-
strates that coupling RNNs with LLMs significantly
enhances performance compared to stand-alone
LLMs across various tasks on multiple benchmark
datasets. However, the analysis is limited to four
specific RNN variants and several pretrained LLMs,
selected based on the tasks. The effectiveness of
this coupling may vary due to several critical fac-
tors. These include (7) differences in data prepro-
cessing strategies, such as tokenization, normaliza-
tion, and feature extraction, which can influence
overall performance, (¢7) the selection and tuning
of hyperparameters, such as learning rate, batch
size, and optimization strategies, play a pivotal
role in the observed outcomes, (i¢7) variability in
datasets, as the same tasks may be evaluated using
different datasets, can also lead to discrepancies
in results, (7v) the specific choice of RNN mod-
els (e.g., LSTM, GRU) and LLMs (e.g., BERT,
RoBERTa, CodeT5, BioLinkBERT), as well as
their internal architectures, significantly affects per-
formance, and (v) differences in how RNNs and
LLMs are integrated, including layer connections
and attention mechanisms, can influence the syn-
ergy between the models. To gain a more compre-
hensive understanding of this hybrid approach, fu-
ture studies could explore a broader range of RNN
and LLM variants, investigate alternative coupling
strategies, and systematically assess the impact of
these influencing factors.
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