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Abstract
Pretrained large language models (LLMs) have001
demonstrated remarkable success across var-002
ious language modeling tasks. However,003
they continue to face inherent limitations in004
achieving state-of-the-art performance on many005
domain-specific applications. Previous re-006
search has explored diverse methodologies to007
enhance the performance of LLMs on down-008
stream tasks. In this paper, we propose in-009
tegrating recurrent neural networks (RNNs)010
with LLMs and investigate whether this inte-011
gration improves language modeling perfor-012
mance. Particularly, LLMs are employed to013
generate rich and meaningful word embed-014
dings, while RNNs excel at capturing the con-015
textual semantics of long-range dependencies.016
The resulting LLM-RNN model leverages the017
complementary strengths of sequential and018
Transformer-based architectures to achieve en-019
hanced performance. We conducted exten-020
sive experiments with rigorous hyperparameter021
tuning on multiple benchmark and real-world022
datasets. The experimental results highlight023
the superiority of the integrated LLM-RNN024
model in commonsense reasoning, code under-025
standing, and biomedical reasoning tasks. Our026
codes are available at https://github.com/027
mostafiz26/CouplingRNNsLLMs.028

1 Introduction029

Large Language Models (LLMs) have demon-030

strated exceptional performance and general ca-031

pability in various NLP tasks including biomedical032

text retrieval (Xu et al., 2024), question answering033

(Robinson and Wingate, 2023), sentiment analysis034

(Cai et al., 2024; Chang et al., 2024), code under-035

standing (Du et al., 2024), code summarization and036

generation (Yan et al., 2024; Riddell et al., 2024),037

text summarization, generation, and translation (Tu038

et al., 2024; Papi et al., 2024; He et al., 2024).039

Moreover, incorporating larger training data has040

led to a substantial increase in model size, equip-041

ping LLMs with emergent capabilities (Wei et al.,042

2022b) and laying the foundation for advancements 043

toward artificial general intelligence (Bubeck et al., 044

2023). Consequently, LLMs have garnered sig- 045

nificant attention from both academia (Wei et al., 046

2022a; Zhao et al., 2023) and industry (Anil et al., 047

2023; Achiam et al., 2023). 048

Given the widespread success of LLMs, numer- 049

ous methodologies and techniques have been de- 050

veloped to adapt these general-purpose models to 051

domain-specific downstream tasks. Beyond the 052

conventional model fine-tuning approach, where 053

all parameters are adjusted during training (Howard 054

and Ruder, 2018), prompt-based adaptation meth- 055

ods have been introduced to modulate the behavior 056

of frozen LLMs using carefully designed prompts 057

(Li and Liang, 2021; Tian et al., 2024; Brown et al., 058

2020; Lester et al., 2021). Additionally, low-rank 059

adaptation techniques allow the pretrained model 060

weights to remain fixed while introducing trainable 061

rank-decomposition matrices, significantly reduc- 062

ing the number of trainable parameters (Hu et al., 063

2021). Rather than modifying the core parame- 064

ters of LLMs, these approaches freeze the model 065

and typically introduce additional trainable com- 066

ponents. Moreover, various innovations, such as 067

incorporating knowledge graph representations of 068

text, feature hybridization, sequential model (i.e., 069

RNNs) integration, and layer-specific adjustments, 070

are being explored to enhance the structural and 071

functional capabilities of LLMs (Md. Mostafizer 072

et al., 2021; Bugueño and de Melo, 2023; Rahman 073

et al., 2024a). 074

Despite the remarkable success of LLMs in ad- 075

dressing a variety of real-world applications and 076

adapting to specific downstream tasks, they con- 077

tinue to exhibit inherent limitations in accurately 078

capturing and providing grounded knowledge (Pan 079

et al., 2024; Lewis et al., 2020). Challenges such as 080

lexical diversity, the presence of long dependencies, 081

unfamiliar symbols and words in text, and imbal- 082

anced datasets pose significant obstacles for LLMs, 083
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particularly in sentiment analysis (Chang et al.,084

2024; Rahman et al., 2024a). Poria et al., 2020085

have highlighted existing challenges and proposed086

new research directions in this area. Additionally,087

while LLMs can generate complex code, such out-088

puts often lack clarity and maintainability (Imai,089

2022; Ziegler et al., 2022), creating challenges for090

programmers in debugging, maintenance, and ex-091

tensibility (Liang et al., 2024; Vaithilingam et al.,092

2022). However, these limitations can be alleviated093

by incorporating context-aware, domain-specific094

information. Motivated by these observations, we095

pose the following research question:096

Coupling RNNs with LLMs: Does Their097

Integration Improve Language Modeling098

Performance?099

To address this question, our study investi-100

gates the integration of recurrent neural networks101

(RNNs) with domain-specific LLMs, including102

RoBERTa, BioLinkBERT, CodeBERT, CodeT5,103

and CodeT5+, to evaluate their performance on104

commonsense reasoning, biomedical reasoning,105

and code understanding tasks. Specifically, we in-106

corporate RNN variants such as LSTM, BiLSTM,107

GRU, and BiGRU, conducting extensive hyper-108

parameter tuning to optimize model performance.109

The proposed hybrid model, LLM-RNN, combines110

a pretrained LLM, which includes both encoder111

and decoder components, with RNN architectures.112

The LLM serves as the primary encoder, tokenizing113

and transforming input sequences into meaningful114

embeddings. These embeddings are passed through115

a dropout layer to mitigate overfitting before be-116

ing processed by the RNN. The RNN captures se-117

quential dependencies in the text, enhancing the118

model’s ability to understand structural and logical119

relationships. Finally, a dense layer maps the RNN120

outputs to target class labels, with a Softmax func-121

tion applied to produce probability distributions for122

downstream tasks.123

We conducted extensive experiments on multiple124

public datasets across three tasks: commonsense125

reasoning, code understanding, and biomedical rea-126

soning. To achieve optimal performance, we fine-127

tuned the hyperparameters of our model. Our find-128

ings demonstrate that coupling RNNs with LLMs129

enables the model to better capture context, lead-130

ing to significant improvements in performance.131

Figure 1 presents the averaged accuracy compari-132

son between the LLM-RNN and stand-alone mod-133

els across the three tasks using multiple bench-134

mark datasets. Notably, LLM-RNN achieves ac-135
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Figure 1: Comparison of accuracy between LLM-RNN
models and stand-alone counterparts across three tasks,

evaluated on multiple benchmark datasets.

curacy improvements of approximately +1.22%, 136

+3.81%, and +0.37% for commonsense reasoning, 137

code understanding, and biomedical reasoning, re- 138

spectively, compared to stand-alone LLM models. 139

These results highlight the substantial benefits of 140

our approach. In summary, the key contributions 141

are: 142

• To the best of our knowledge, this work rep- 143

resents the first attempt to evaluate the perfor- 144

mance of coupling RNNs with LLMs across 145

multiple public datasets for diverse down- 146

stream tasks. 147

• We meticulously integrate RNN architectures 148

with LLMs, combining the complementary 149

strengths of transformer-based architectures 150

and the sequential learning capabilities of 151

RNNs. While LLMs generate rich, contextu- 152

ally relevant token embeddings, RNNs further 153

process these embeddings to capture the struc- 154

tural and sequential dependencies inherent in 155

text. This synergistic approach proves critical 156

for effectively addressing complex tasks. 157

• Extensive experiments across various datasets 158

and hyperparameter settings demonstrate the 159

superiority of coupling RNNs with LLMs. 160

This integration significantly enhances the 161

model’s ability to capture semantics, depen- 162

dencies, and relations more accurately, under- 163

scoring its effectiveness in diverse tasks. 164

2 Methodology 165

In this section, we describe the coupling of RNNs 166

with LLMs to create LLM-RNN model. This 167

model combines the strengths of the Transformer 168

and RNN architectures to improve efficiency and 169
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accuracy in downstream tasks. Figure 2 shows the170

framework of the LLM-RNN model.171

Figure 2: Framework of the proposed LLM-RNN model

2.1 Contextual Embedding with Large172

Language Model (LLM)173

LLM uses Byte Pair Encoding (BPE) for tokeniza-174

tion, ensuring efficient representation of the input175

while minimizing the out-of-vocabulary (OOV)176

issue. Let X = {x1, x2, . . . , xn} represent the177

raw input (e.g., code or text) sequence, and the178

tokenization process can be expressed as T =179

BPE(X) = {t1, t2, . . . , tn}, where T is the se-180

quence of tokens. Each token ti is mapped to an181

Input ID idi ∈ Z+, a Token type ID tti ∈ {0, 1},182

and an Attention mask ami ∈ {0, 1}, enabling183

focused self-attention. LLM employs a denois-184

ing objective based on span masking, where the185

masked sequence T ′ = {t1, . . . , [MASK], . . . , tn}186

is reconstructed to minimize the loss Lrecon =187

−
∑

i∈mask logP (ti | T ′), with P (ti | T ′) rep-188

resenting the probability of reconstructing the189

masked token. Using a Transformer architecture,190

token embeddings E(T ′) = {e1, e2, . . . , en} are191

derived, where ei = LLMEmbed(ti). These em-192

beddings are processed by the Transformer encoder193

to produce contextual representations H(T ′) =194

TransformerEncoder(E(T ′)) = {h1, h2, . . . , hn},195

with hi being the contextual embedding for ti. The196

overall objective combines the span reconstruc-197

tion loss with auxiliary tasks as L = Lrecon +198

Laux, where Laux includes tasks such as code199

completion. The pipeline can be summarized as200

T
BPE−−→ T ′ Embedding−−−−−−→ E(T ′)

Transformer Encoder−−−−−−−−−−−→201

H(T ′)
Reconstruction−−−−−−−−→ T , enabling robust contextual202

learning and efficient handling of code and text se-203

quences.204

2.2 Further Contextual Information 205

Processing with RNN Sequential Modeling 206

The LLM-RNN highlights the effectiveness of 207

RNN models in capturing rich contextual details, 208

establishing them as a popular choice for sequen- 209

tial data analysis tasks due to their enhanced perfor- 210

mance and resilience. The output embeddings from 211

the final layer L of the LLM model are represented 212

as a sequence H(L) = {h(L)1 , h
(L)
2 , . . . , h

(L)
n }, 213

where h(L)i ∈ Rd denotes the i-th embedding in 214

the sequence, and d is the dimensionality of the 215

embeddings. To reduce overfitting, a dropout op- 216

eration is applied to these embeddings, resulting 217

in h
drop
i = Dropout(h(L)i ), where h

drop
i ∈ Rd. 218

To align the dimensionality of the LLM output 219

embeddings with the input requirements of the 220

RNN, a linear transformation is applied to each 221

embedding: zi =Wlinearh
drop
i + blinear, where zi ∈ 222

RdRNN , Wlinear ∈ RdRNN×d is the weight matrix, and 223

blinear ∈ RdRNN is the bias vector. The sequence of 224

transformed embeddings {z1, z2, . . . , zn} is then 225

processed by the RNN, which computes the hid- 226

den states sequentially: hRNN
i = RNN(zi, h

RNN
i−1 ), 227

where hRNN
i ∈ RdRNN is the i-th hidden state, and 228

hRNN
i−1 is the hidden state from the previous time 229

step. The final output sequence of the RNN is given 230

byHRNN = {hRNN
1 , hRNN

2 , . . . , hRNN
n }, which com- 231

bines the contextual information from LLM with 232

the sequential dependencies modeled by the RNN 233

to enhance predictive performance. 234

2.3 FC and Classification Layers 235

A dropout layer is applied to HRNN, H ′ = 236

Dropout(HRNN), to mitigate overfitting, followed 237

by an FC layer that maps the RNN outputs to class 238

logits: 239

Zi = ReLU(WdenseH
′ + bdense) (1) 240

Finally, a softmax function is applied to the 241

dense layer output, producing a probability dis- 242

tribution over classes: 243

P (yi|X) = Softmax(WoZi + bo) (2) 244

3 Experimental Setup 245

In this section, we outline the experimental setup, 246

detailing the implementation environment, hyper- 247

parameter configurations, evaluation metrics, and 248

datasets utilized in our experiments. 249
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3.1 Implementation Details250

The experiments are conducted on a system run-251

ning Ubuntu 22.04.4 LTS (64-bit). The hardware252

configuration included an AMD Ryzen 9 3950X253

processor with 16 cores and 32 threads, 64 GB of254

RAM, and an NVIDIA GeForce RTX 3090 graph-255

ics card with 24 GB of dedicated memory. The256

system also featured a disk capacity of 500 GB,257

ensuring ample storage for experimental data and258

model training.259

3.2 Hyperparameters260

The performance of LLMs is highly dependent261

on selecting appropriate hyperparameters. In this262

study, we conducted extensive experiments with263

various hyperparameter configurations to evalu-264

ate model performance on commonsense reason-265

ing, code understanding, and biomedical reasoning266

tasks. Table 1 details the hyperparameters used267

for fine-tuning during model training. Each RNN268

model is paired with an LLM to form a hybrid269

model. For BiLSTM and BiGRU architectures,270

the number of RNN hidden units (h) is doubled271

(2× h) due to their bidirectional processing capa-272

bilities, which incorporate both forward (
−→
h ) and273

backward (
←−
h ) information. During training, cate-274

gorical cross-entropy is employed to calculate the275

loss, defined as follows:276

L(g) = −
K∑
j=1

uj log(ūj) (3)277

where g and K represent the model parameter and278

the number of classes, respectively, while uj and279

ūj denote the true and predicted labels for the jth280

sample.281

3.3 Metrics282

In this study, we undertake tasks such as common-283

sense reasoning, code defect detection, code clas-284

sification, and biomedical reasoning as part of our285

analysis. The performance of the models is evalu-286

ated using standard metrics (Rahman et al., 2024a;287

Younas et al., 2022), including accuracy (A), preci-288

sion (P), recall (R), and F1-score (F1). The accu-289

racy metric (A) is defined as follows:290

A =
1

N

|K|∑
l=1

∑
x:f(x)=l

H(f(x) = f̂(x)) (4)291

Parameter-Name Values
Pre-trained LLMs BERT, RoBERTa, Code-

BERT, BioLinkBERT, CodeT5,
CodeT5+

RNNs LSTM, BiLSTM, GRU, BiGRU
Optimizer (∆) AdamW, NAdam, RMSprop
Loss function (L) Categorical Cross Entropy

(cross_entropy)
Epochs (epoch) 5
Dropout (d) 0.1, 0.2
Learning rates (l) 1e4, 1e5, 2e5, 1e6

Hidden units (h) of
RNNs

128, 256, 512

Table 1: The list of hyperparameters for the experiments

Here, H is a function that returns 1 if the pre- 292

dicted class is correct and 0, otherwise. K repre- 293

sents the total number of classes, and f(x) ∈ K = 294

{1, 2, 3, · · · }. In addition to accuracy, weighted- 295

precision (Pψ), recall (Rψ), and F1-score (F1ψ) 296

are computed to provide an unbiased and compre- 297

hensive performance evaluation (Rahman et al., 298

2024a). 299

3.4 Datasets 300

In this study, we utilized five public datasets and 301

three real-world datasets to evaluate our approach 302

across the tasks of commonsense reasoning, code 303

understanding, and biomedical reasoning. For com- 304

monsense reasoning, we employed the IMDb, Twit- 305

ter US Airline, and Sentiment140 datasets. The 306

IMDb dataset (Maas et al., 2011) comprises 50,000 307

reviews evenly split between positive and negative 308

sentiments, providing a balanced dataset with 50% 309

of samples in each class. The Twitter US Airline 310

dataset (Tan et al., 2022) contains 14,640 tweets cat- 311

egorized into three sentiment classes: positive, neu- 312

tral, and negative. The Sentiment140 dataset (Go 313

et al., 2009) is a substantial collection of approxi- 314

mately 1.6 million tweets curated by Stanford Uni- 315

versity in 2009 for sentiment analysis. This dataset 316

is equally balanced, with 50% of tweets represent- 317

ing positive sentiment and 50% representing neg- 318

ative sentiment. For code understanding, we used 319

the defect detection, SearchAlg, SearchSortAlg, 320

and SearchSortGT datasets. The defect detection 321

benchmark dataset, sourced from CodeXGLUE 322

(Zhou et al., 2019), is utilized to assess the model’s 323

ability to identify code defects. The other three 324
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Figure 3: Best accuracy (A) scores achieved by BERT-base, BERT-LSTM, BERT-GRU, BERT-BiLSTM, RoBERTa-
base, RoBERTa-GRU, RoBERTa-LSTM, and RoBERTa-BiLSTM models under various hyperparameter settings:
l = 1e−4, 1e−5, 1e−6 and h = 128, 256, 512. The models are trained for 5 epochs using the AdamW optimizer on
the IMDb, Twitter US Airline, and Sentiment140 datasets.

Model IMDb Twitter US Airline Sentiment140
F1w Pw Rw F1w Pw Rw F1w Pw Rw

BERT-Base 90.96 90.96 90.96 75.88 76.62 75.27 81.31 81.56 81.35
-GRU 91.12 91.14 91.12 77.57 77.45 77.73 81.83 ↑ 81.84 81.83
-LSTM 91.32 ↑ 91.35 91.32 77.72 77.54 78.01 81.75 81.75 81.75
-BiLSTM 91.24 91.25 91.24 78.18 ↑ 78.01 78.42 81.81 81.81 81.81
RoBERTa-Base 91.31 91.44 91.32 80.12 80.70 79.78 82.17 82.21 82.17
-GRU 92.60 92.64 92.60 80.93 ↑ 81.47 80.60 82.32 ↑ 82.32 82.32
-LSTM 92.08 92.08 92.08 80.32 80.47 80.33 82.29 82.29 82.29
-BiLSTM 92.96 ↑ 92.96 92.96 80.73 80.94 80.74 82.25 82.25 82.25

Table 2: Quantitative results for commonsense reasoning using BERT-RNN and RoBERTa-RNN models, along
with their respective base models. All models are trained for 5 epochs on the IMDb, Twitter US Airline, and
Sentiment140 datasets.

datasets—SearchAlg, SearchSortAlg, and Search-325

SortGT—are collected from AOJ (Rahman et al.,326

2024b), a respected repository of real-world source327

code. Finally, the NCBI dataset (O’Leary et al.,328

2024) is used for the biomedical reasoning task. It329

comprises approximately 7,298 samples, and the330

NER entities are converted into three class labels.331

4 Results and Analysis332

We conducted comprehensive experiments using333

various LLMs to evaluate three reasoning tasks334

under different hyperparameter configurations on335

both benchmark and real-world datasets. Figure 3336

presents the accuracy scores of the best-performing337

BERT-RNN and RoBERTa-RNN1 models, along-338

side their corresponding BERT-base and RoBERTa-339

base counterparts, for the commonsense reasoning340

task on IMBd, Twitter, and Sentiment140 datasets.341

1RoBERTa-RNN encompasses four models, each integrat-
ing a different RNN variant: LSTM, GRU, BiLSTM, and
BiGRU. This similarly applies to the BERT-, CodeBERT-,
BioLinkBERT-, CodeT5-, and CodeT5+-RNN models.

Figure 3a demonstrates that the BERT-base model 342

achieved an accuracy of approximately 90.96%, 343

while the BERT-LSTM model attained 91.32%, 344

reflecting a 0.36% improvement. Similarly, the 345

RoBERTa-GRU model achieved an accuracy of 346

92.60%, marking a 1.28% improvement compared 347

to the RoBERTa-base model. Similar trends are 348

observed in the Twitter and Sentiment140 datasets, 349

as depicted in Figures 3b and 3c, respectively. In 350

these cases, integrating RNNs with either BERT 351

or RoBERTa consistently enhanced model per- 352

formance. Moreover, Figure 3 highlights that 353

RoBERTa-RNN models outperformed their BERT- 354

RNN counterparts, achieving superior accuracy 355

across three datasets. Additionally, Table 2 presents 356

the weighted F1w Pw, and Rw scores of the BERT- 357

RNN and RoBERTa-RNN models. The results 358

clearly demonstrate that coupling RNNs enhances 359

the performance of both BERT and RoBERTa mod- 360

els (indicated by the ↑) in commonsense reasoning 361

tasks. 362

For the code understanding task, we employed 363
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Model Learning
Rate (l) Optimizer

(∆)

Hidden
Units (h) A (%) F1 (%)

LLM RNN Weighted (ψ) Macro (µ)
RoBERTa - - - - 61.05 - -
CodeBERT - - - - 62.08 - -
CodeT5-Small - - - - 63.40 - -
CodeT5-Base - - - - 64.86 64.74 -
CodeT5+ - - - - 64.90 64.74 -
RoBERTa BiGRU 1e−5 NAdam 512 66.40 64.76 64.0
CodeBERT GRU 2e−5 AdamW 512 66.03 65.32 65.0
CodeT5 GRU 1e−4 AdamW 512 67.90 67.18 67.0
CodeT5+ BiGRU 2e−5 RMSProp 256 67.79 66.82 66.0

Table 3: Comparison of accuracy and F1 scores between top-performing models (RoBERTa-RNN, CodeBERT-RNN,
CodeT5-RNN, and CodeT5+-RNN) and state-of-the-art models on the defect detection dataset.
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Figure 4: Comparison of accuracy (A) scores for the top-performing RoBERTa-RNN, CodeBERT-RNN, CodeT5-
RNN, and CodeT5+-RNN models on the SearchAlg, SearchSortAlg, and SearchSortGTAlg datasets.

LLM RNN SearchAlg SearchSortAlg SearchSortGTAlg
F1ψ Pψ Rψ F1ψ Pψ Rψ F1ψ Pψ Rψ

RoBERTa

LSTM 93.48 93.67 93.44 95.62 95.72 95.69 95.19 95.51 95.19
Bi-LSTM 93.59 93.72 93.55 96.25 96.25 96.26 95.34 95.46 95.36
GRU 93.47 93.59 93.44 95.96 96.01 96.00 95.42 95.54 95.45
Bi-GRU 93.63 93.90 93.59 95.99 96.02 96.00 96.00 96.10 96.00

CodeBERT

LSTM 93.63 93.73 93.59 96.19 96.22 96.17 96.04 96.21 96.02
Bi-LSTM 94.04 94.11 94.01 96.34 96.37 96.33 95.75 95.86 95.75
GRU 93.85 93.91 93.82 96.09 96.11 96.10 96.04 96.13 96.05
Bi-GRU 94.01 94.15 93.97 96.28 96.29 96.30 95.71 95.83 95.75

CodeT5

LSTM 94.40 94.41 94.40 96.72 96.76 96.72 95.98 96.11 96.07
Bi-LSTM 95.12 95.15 95.12 96.68 96.68 96.68 96.01 96.06 96.07
GRU 94.17 94.25 94.17 96.31 96.43 96.31 95.25 95.26 95.44
Bi-GRU 94.86 94.86 94.86 96.28 96.29 96.32 94.98 95.15 95.06

CodeT5+
LSTM 94.00 94.02 93.99 95.97 96.05 95.97 96.05 96.17 96.08
Bi-LSTM 94.26 94.28 94.24 96.36 96.37 96.37 96.26 96.31 96.27
GRU 94.27 94.30 94.26 96.42 96.44 96.42 95.92 96.06 95.92
Bi-GRU 94.42 94.43 94.42 96.33 96.39 96.34 96.03 96.15 96.03

Table 4: Experimental results for the weighted F1ψ, Pψ, and Rψ metrics on real-world datasets using LLM-RNN
models
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four pretrained LLMs and conducted extensive ex-364

periments under various hyperparameter config-365

urations. Table 3 provides a comparative anal-366

ysis of the accuracy and F1 scores for the top-367

performing models and their base models on the368

defect detection dataset. Based on the results,369

we identified four top-performing models and370

their corresponding hyperparameter settings from371

RoBERTa-RNN, CodeBERT-RNN, CodeT5-RNN,372

and CodeT5+-RNN. Table 3 also includes the re-373

sults of base models, namely RoBERTa, Code-374

BERT, CodeT5, and CodeT5+. The base mod-375

els achieved notable accuracy scores of 61.05%,376

62.08%, 64.86%, and 64.90%, respectively. In377

contrast, the RoBERTa-BiGRU model achieved an378

accuracy of 66.40%, representing an improvement379

of approximately 5.35% (↑) over its standalone380

RoBERTa counterpart. Similarly, the CodeBERT-381

GRU model attained an accuracy of 66.03%, mark-382

ing a 3.95% (↑) improvement compared to its base383

model. The CodeT5-GRU and CodeT5+-BiGRU384

models achieved accuracies of 67.90% and 67.79%,385

respectively, reflecting improvements of 3.04% (↑)386

and 2.89% (↑) over their standalone counterparts.387

These results highlight the effectiveness of integrat-388

ing RNN architectures with LLMs, demonstrating389

significant enhancements in performance for code390

understanding tasks.391

To further assess the effectiveness of the mod-392

els, we conducted experiments with top-performing393

LLM-RNN models on three real-world datasets.394

Weighted scores for F1ψ, Pψ, and Rψ are com-395

puted, with most models achieving notable re-396

sults, as presented in Table 4. Figure 4 provides a397

comparative analysis of A scores across the three398

datasets. On the SearchAlg dataset, the CodeT5+-399

RNN model achieved an A score of 96.00%, out-400

performing all other models. A similar pattern was401

observed for the SearchSortAlg and SearchSortG-402

TAlg datasets, where CodeT5- and CodeT5+-RNN403

models consistently demonstrated superior perfor-404

mance.405

Figure 5 illustrates that integrating RNNs with406

LLMs enhances performance in biomedical reason-407

ing tasks. The RoBERTa-base model achieved an408

accuracy (A) of 88.15%, which is lower than that409

of the other models. In comparison, the RoBERTa-410

LSTM model improved A by approximately 0.60%411

(↑) compared to the RoBERTa-base model. Sim-412

ilarly, the BioLinkBERT-GRU model achieved a413

modest improvement of 0.14% over its base model.414

Furthermore, Table 5 provides detailed F1 and415
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Figure 5: Comparision of the accuracies of
RoBERTa-RNN and BioLinkBERT-RNN models on

NCBI dataset.

Model F1w Pw Rw

RoBERTa-Base 86.75 85.40 88.15
-GRU 86.85 85.36 88.40
-LSTM 87.02 85.37 88.75
-BiGRU 86.83 85.38 88.35
-BiLSTM 86.80 85.36 88.31
BioLinkBERT-Base 86.81 85.43 88.26
-GRU 86.86 85.39 88.40
-LSTM 86.84 85.42 88.33
-BiGRU 86.82 85.33 88.37
-BiLSTM 86.84 85.39 88.36

Table 5: Quantitative results for biomedical reasoning
using RoBERTa and BioLinkBERT models on the NCBI
dataset.

other evaluation metrics to offer a comprehensive 416

view of model performance. These results clearly 417

indicate that coupling RNNs with LLMs signif- 418

icantly boosts model performance in biomedical 419

reasoning tasks. 420

4.1 Hyperparameter Sensitivity 421

We conducted a sensitivity analysis focusing on 422

key hyperparameters: learning rates, optimizers, 423

and the number of RNN hidden units. The perfor- 424

mance of the LLM-RNN models was evaluated by 425

varying these parameters. Figure 6a illustrates that 426

the RoBERTa-BiLSTM model achieved optimal 427

performance on the Twitter dataset with a learning 428

rate of l = 1e−5 and hidden units h = 256, out- 429

performing other parameter configurations. For the 430

Sentiment140 dataset, the RoBERTa-GRU model 431

failed to achieve optimal results with a learning rate 432

of l = 1e−4, as shown in Figure 6b. This suggests 433

that a lower learning rate significantly enhances 434

the model’s performance. Additionally, Figure 7 435

7



presents a comparative analysis of accuracy (A)436

scores achieved with two top-performing optimiz-437

ers, ∆ = {AdamW, NAdam}. The results indicate438

that the models consistently delivered superior per-439

formance, except when the learning rate was set to440

l = 1e−6.441
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(a) RoBERTa-BiLSTM on
Twitter

h = 128 h = 256 h = 512

30

40

50

60

70

80

4
9
.8
3

4
9
.8
3

4
9
.8
3

8
2
.2
5

8
2
.3
2

8
2
.2
1

8
1
.6
2

8
1
.6
2

8
1
.6
3

A
(%

)

1e−4 1e−5 1e−6

(b) RoBERTa-GRU on
Sentiment140

Figure 6: Impact of hyperparameters on model perfor-
mance.
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Figure 7: Accuracy (A) of CodeT5-RNN models us-
ing two top optimizers ∆ ={AdamW, NAdam}, RNN
hidden units h = {128, 256, 512}, and learning rates
l = {1e−4, 2e−5, 1e−5, 1e−6} with the defect detec-
tion benchmark dataset.

4.2 Analysis of Training Parameters and442

Time Efficiency443

Figure 8 presents an analysis of training parame-444

ters and training times for the top-performing mod-445

els and their base counterparts. Notably, LLMs446

integrated with BiGRU exhibit the highest num-447

ber of training parameters. Among these, the448

RoBERTa and CodeBERT models each comprise449

approximately 125 million parameters, while the450

BioLinkBERT, CodeT5 and CodeT5+ models con-451

tain around 112 million parameters, as depicted452

in Figure 8a. Interestingly, despite having fewer453

parameters, the CodeT5 and CodeT5+ models,454

when combined with RNN variants, required sig-455

nificantly more training time compared to the456

RoBERTa and CodeBERT models, as shown in457

Figure 8b. This discrepancy can be attributed to458

architectural features, variations in tokenization 459

strategies, potentially less efficient computational 460

optimization when coupling RNNs with CodeT5 461

and CodeT5+, and specific hyperparameter set- 462

tings, all of which may collectively contribute to 463

the extended training time. 464
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Figure 8: Comparison of training parameters and train-
ing times between the top-performing models and their
respective base models.

5 Conclusion 465

In this paper, we explore the integration of recur- 466

rent neural networks (RNNs) with domain-specific 467

large language models (LLMs) to evaluate their 468

performance across commonsense reasoning, code 469

understanding, and biomedical reasoning tasks. In 470

the proposed LLM-RNN framework, the LLM tok- 471

enizes and transforms input sequences into mean- 472

ingful embeddings. These embeddings are further 473

processed by the RNN to capture sequential de- 474

pendencies, thereby enhancing the LLM’s capacity 475

to understand structural and logical relationships. 476

This approach enables pre-trained LLMs to acquire 477

additional knowledge from input data more effec- 478

tively. We pose the research question: “Coupling 479

RNNs with LLMs: Does Their Integration Improve 480

Language Modeling Performance?”. To address 481

this, we conduct extensive experiments across the 482

three aforementioned tasks. Our results demon- 483

strate that coupling RNNs with LLMs improves 484

accuracy by approximately +1.22%, +3.81%, and 485

+0.37% for commonsense reasoning, code under- 486

standing, and biomedical reasoning tasks, respec- 487

tively, compared to stand-alone LLM models. In 488

addition, we perform hyperparameter sensitivity 489

analysis and examine trainable parameters along- 490

side computational time to validate the effective- 491

ness and feasibility of the LLM-RNN integration. 492
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6 Limitations493

The empirical investigation of this study demon-494

strates that coupling RNNs with LLMs significantly495

enhances performance compared to stand-alone496

LLMs across various tasks on multiple benchmark497

datasets. However, the analysis is limited to four498

specific RNN variants and several pretrained LLMs,499

selected based on the tasks. The effectiveness of500

this coupling may vary due to several critical fac-501

tors. These include (i) differences in data prepro-502

cessing strategies, such as tokenization, normaliza-503

tion, and feature extraction, which can influence504

overall performance, (ii) the selection and tuning505

of hyperparameters, such as learning rate, batch506

size, and optimization strategies, play a pivotal507

role in the observed outcomes, (iii) variability in508

datasets, as the same tasks may be evaluated using509

different datasets, can also lead to discrepancies510

in results, (iv) the specific choice of RNN mod-511

els (e.g., LSTM, GRU) and LLMs (e.g., BERT,512

RoBERTa, CodeT5, BioLinkBERT), as well as513

their internal architectures, significantly affects per-514

formance, and (v) differences in how RNNs and515

LLMs are integrated, including layer connections516

and attention mechanisms, can influence the syn-517

ergy between the models. To gain a more compre-518

hensive understanding of this hybrid approach, fu-519

ture studies could explore a broader range of RNN520

and LLM variants, investigate alternative coupling521

strategies, and systematically assess the impact of522

these influencing factors.523
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