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EGGen: Image Generation with Multi-entity Prior Learning
through Entity Guidance

Anonymous authors
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white/pink rose

[7-8] A white cloud
[9] A blue sky

BG: A green garden
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(a) Multiple entities with multiple attributes in a realistic style.

OursGliGen

[1] A golden dog
[2] A black cat

[3-4] A green tree
[5] A red house

BG: in green grass

53 4

21

Prompt

(b) Multiple entities with multiple attributes in a cartoon style.

Figure 1: EGGen’s generations using entity-level text prompts and predicted layout for image generation. Numbers with brief
prompts and boxes are displayed on the left image, which refer to specific entities. The layout of boxes can either be predicted
by Large Language Models (LLMs) or manually input.

ABSTRACT
Diffusion models have shown remarkable prowess in text-to-image
synthesis and editing, yet they often stumble when tasked with
interpreting complex prompts that describe multiple entities with
specific attributes and interrelations. The generated images often
contain inconsistent multi-entity representation (IMR), reflected as
inaccurate presentations of the multiple entities and their attributes.
Although providing spatial layout guidance improves the multi-
entity generation quality in existing works, it is still challenging to
handle the leakage attributes and avoid unnatural characteristics.
To address the IMR challenge, we first conduct in-depth analyses
of the diffusion process and attention operation, revealing that the
IMR challenges largely stem from the process of cross-attention
mechanisms. According to the analyses, we introduce the entity
guidance generation mechanism, which maintains the integrity of
the original diffusion model parameters by integrating plug-in net-
works. Our work advances the stable diffusionmodel by segmenting
comprehensive prompts into distinct entity-specific prompts with
bounding boxes, enabling a transition from multi-entity to single-
entity generation in cross-attention layers. More importantly, we
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introduce entity-centric cross-attention layers that focus on indi-
vidual entities to preserve their uniqueness and accuracy, alongside
global entity alignment layers that refine cross-attention maps
using multi-entity priors for precise positioning and attribute ac-
curacy. Additionally, a linear attenuation module is integrated to
progressively reduce the influence of these layers during inference,
preventing oversaturation and preserving generation fidelity. Our
comprehensive experiments demonstrate that this entity guidance
generation enhances existing text-to-image models in generating
detailed, multi-entity images.
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Diffusion model, Text-to-image Generation, Multi-entity Genera-
tion

ACM Reference Format:
Anonymous authors. 2024. EGGen: Image Generation with Multi-entity
Prior Learning through Entity Guidance. In In Proceedings of 32th ACM
International Conference on Multimedia (MM ’24), 28 October - 1 November
2024, Melbourne, Australia. ACM, New York, NY, USA, 9 pages. https://doi.
org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The domain of text-to-image synthesis has experienced significant
progress, particularly through the integration of diffusion mod-
els [2, 3, 8, 18, 22, 23, 29]. These models have demonstrated excep-
tional proficiency in creating images that are both highly realistic
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(a) Position disorder and attribute leakage.
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(b) Occurrences of inaccurate entities.

Figure 2: The statistics of 1000 examples generated by SD V1.5 with the prompt of "A golden dog on the left and a black cat on
the right are playing in the yard".

and varied, based on text prompts. Nevertheless, despite their out-
standing performance, diffusion models like Stable Diffusion [22]
sometimes face challenges in accurately interpreting prompts when
they involve complex arrangements of multiple entities. These is-
sues mainly manifest as entity position disorder, attribute leakage
(i.e., misallocated attributes), and inaccurate presentation of enti-
ties (e.g., missing or redundant entities), as illustrated in Figure. 2.
These issues collectively lead to a mismatch between the intended
multi-entity compositions of the prompts and the actual image
outputs, highlighting the challenge of Inconsistent Multi-entity
Representation (IMR).

Previousmethods address the IMR issuemainly by relying on pre-
defined bounding boxes (i.e., layout) to constrain the multi-entities’
position and number at image spatial domain [1, 12, 13, 15, 26, 30].
While these methods afford SD models the capability to take care
of the entities’ specific positions and achieve improvement in the
results, it is still challenging to achieve natural entity placement
and precious attribute allocation and presentation without leak-
age. Although the bounding box-based hard assignment gives a
direct restriction on the coordinates of the entity in the spatial
domain, the interactions (e.g., the cross-attention operations) of
the long/complex text prompts and visual representations are still
handled as a whole, leading to mixture and confusion in the re-
sults [12], as discussed in Figure 3. Directly applying bounding
box-based constraints on the image spatial domain may also result
in unnatural artifacts on the generated images [13, 30].

The objective of our research is the generation of multiple en-
tities from complex text descriptions with bounding boxes, en-
hancing precision by addressing IMR issues in generative models
through fine-tuning adaptors while keeping the parameters of the
original diffusion model fixed. To understand potential IMR issues
during generation, we first analyze the cross-attention operations
of text-based generative models, conducting detailed analyses of
token-wise and step-wise cross-attention maps (see Sec. 3). The
token-wise analysis indicates that the prompt tokens for differ-
ent entities and their specific attributes are aggregated together to
control the generation of visual representations in SD, which can
easily lead to an entity coupling phenomenon marked by mis-
matched entity types and attributes blending across entities when
the prompts are complex. Our step-wise analysis of the diffusion
process reveals the problem of entity prematurity – the visual
patterns, e.g., the positioning and characteristics of entities, are

usually established prematurely in the early steps of the diffusion
process, with low-resolution attention maps. The improperly mixed
tokens of different entities (because of the entity coupling issue)
can lead to improper attention maps at an early stage (e.g., cross
attention at first several steps), resulting in generated images with
IMR, due to the prematurity.

Building on the outlined observations, we introduce an Entity
Guidance Generation (EGGen) mechanism to address IMR issues
within cross-attention layers. To handle the complex prompts in-
cluding descriptions of multiple entities, we first strategically seg-
ment a comprehensive prompt into distinct entity-specific prompts
with bounding boxes by the LLM, facilitating a shift from multi-
entity to single-entity generation within cross-attention layers.
To counteract entity coupling, we introduce Entity-centric Cross-
Atention (ECA) layers focused on individual entity prompts instead
of the general cross-attention operation, thereby safeguarding each
entity’s uniqueness and correctness of the type. Simultaneously,
Global Entity Alignment (GEA) layers serve as the refinement
of cross-attention maps within the standard cross-attention lay-
ers to use multi-entity priors (Holistically-Nested Edge Detection
(HED) [27]) as a ground truth for guiding accurate entity position-
ing and attribute delineation. Targeting the entity prematurity, a
Linear Attenuation (LA) module is integrated to linearly decrease
the impact of ECA and GEA layers as the step increases when infer-
ence, preventing oversaturation and ensuring generation fidelity.
In our experiments, our EGGen model demonstrates precise posi-
tional control and attribute accuracy in generating multiple entities
through entity guidance, as evidenced on T2I-CompBench [9] and
visual case studies. Especially, Figure 1 illustrates the generation of
multiple entities with precise attribute control in both realistic and
cartoon styles.

The key contributions of our work are summarized as follows:
• We explored the underlying causes of IMR issues through the
study of token-wise and step-wise attention maps, identifying
the effect of entity coupling and entity prematurity.

• Our EGGen model advances a stable diffusion approach by seg-
menting comprehensive prompts into entity prompts with bound-
ing boxes, transferring the multi-entity generation to single-
entity generation within cross-attention layers.

• Combined with ECA, GEA, and LA, our EGGen model achieves
precise positional control and attribute accuracy in the generation
of multiple entities.

2024-04-13 10:56. Page 2 of 1–9.
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2 RELATEDWORK
Text-to-Image Generation. In the swiftly evolving field of text-
based image generation, an array of model architectures and learn-
ing paradigms have surfaced, as evidenced by a series of pivotal
studies [2–5, 10, 17, 19–21, 28, 29, 32]. Initially, GAN-based mod-
els [19, 28, 32] were at the forefront, setting foundational bench-
marks for the quality and diversity of the images. Recently, the
advent of diffusion models [18, 22, 23] marked a significant leap for-
ward, enhancing the fidelity and realism achievable in text-to-image
generation. These models operate on the principle of structured de-
noising [8] with latent diffusion [22], which begins with initializing
random noise in a latent space. This noise is then systematically
refined through a denoising process, transforming it into visually
detailed images by incorporating textual conditions. This method
enhances both diversity and realism in generated images, making
latent diffusion models a powerful player in generative AI.
Multi-entity Generation. Multi-entity synthesis is an area of
significant interest due to its potential and broad applications in in-
dustries. Most efforts [1, 12, 13, 15, 26, 30] to address the challenges
of diffusion models in accurately representing multiple entities
with special attributes. For instance, GLIGEN [12] adopted bound-
ing box coordinates as grounding tokens and integrated them into
a gated self-attention mechanism to enhance positioning accuracy.
Furthermore, the LLM-grounded diffusion model [13] used DDIM
inversion to create initial latents for each entity and then applied
the GLIGEN model for precise layout arrangement. Detect guid-
ance [15] integrated a latent object detection model to separate
different objects during the generation process, then masked the
conflicting prompts and enhanced related ones. Despite existing
methods of generating images with correct positions, challenges
persist, especially in generating images that accurately blend at-
tributes frommultiple entities. Our work is focused on investigating
the underlying reasons behind the challenges of synthesizing mul-
tiple entities and conducting a divide-and-conquer mechanism to
enhance entity-centric modeling in cross-attention operations.

3 ANALYSES ON IMR CHALLENGE
Inconsistent Multi-entity Representation. Our approach be-
gins with a thorough examination of the creation of multiple enti-
ties during the diffusion process. To understand the issues of the
multi-entity generation, we conduct a statistical analysis on 1000
generated images using the prompt "A golden dog on the left and
a black cat on the right are playing in the yard." with the SD V1.5
model, selecting different random seeds for each trial. The diverse
outcomes of this experiment are illustrated in Figure 2, which re-
veals approximately 50% cases with inaccurate entities, 50% cases
with attributes leakage, and around 70% cases with position
disorder. These findings indicate a challenge of inconsistent multi-
entity representation, often resulting in a low likelihood of fully
adhering to the intended multi-entity compositions of the prompts.
Entity Coupling. Building on the insights from Hertz et al. [6]
regarding the 32× 32 resolution of cross-attention maps, we further
investigate certain phenomena in diffusionmodels. This exploration
involves analyzing token-wise attention maps within the U-Net ar-
chitecture, as demonstrated in Figure 3, aiming to uncover the token
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0.02/0.54

dog

0.01/0.03

left

0.01/0.06

black

0.02/1.00

cat

0.01/0.05

right

0.02/0.11

yard

(a) A good case: each entity and its attributes have stronger contours.
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yard

(b) Single cat.
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(c) Redundant dogs.
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right
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yard

(d) Mismatch: one entity has a strong contour of the other entity.

Figure 3: Token-wise attention maps (32× 32) across all times-
tamps of a diffusion process, showcasing semantic relation-
ships that exhibit the entity coupling of tokens.
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(d) 16 × 16.

Figure 4: Step-wise attention maps in the low-resolution lay-
ers by inference steps ({1, 2, 4, 8, 16, 32}), showcasing the entity
prematurity of cross-attention.

impact of inconsistent representations of multiple entities. Our ob-
servations highlight semantic relationships that exhibit the entity
coupling of cross-attention across tokens and their impact on the
accuracy of generating images with multiple entities. In good case
(Figure 3a), when one entity exhibits relatively weak signals in the
attention map of another, the coupling between entities is deemed
acceptable and not harmful, as each entity and its attributes are
delineated by its stronger signal in the attention maps. In contrast,
failing cases reveal: (1) Position disorder: The attention map’s
marked insufficiency in responding to spatial tokens like left and
right underscores diffusion models’ difficulties with spatial interpre-
tation (Figure 3a and 3d). (2) Inaccurate entities: The appearance
of unusual targets in the scene complicates the model’s capacity to

2024-04-13 10:56. Page 3 of 1–9.
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Text Encoder
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(b)

(c) (d)

Figure 5: Overview of the proposed learnable entity guidance generation in the frozen pre-trained latent diffusion model. (a)
The up-middle part indicates the proposed ECA and GEA plugged into the U-Net framework of GLIGEN model; (b) The left
part shows the process of prompt decoupling; (c) The down-middle part indicates the divide and conquer process of the ECA
layer based on the entity prompts; (d) The right part shows the GEA layer refines cross-attention maps with the global prompt.

distinguish between entities, while entity coupling causes loss of
control over the presence or absence of targets (Figure 3b and 3c).
(3) Attribute leakage: The entity coupling incorrectly aligns the
entity of the "cat" strongly on the map of the "dog" token, leading
to the golden attribute mistakenly associating with cat (Figure 3d).
Entity Prematurity. Previous research [1, 25] has highlighted that
the minimum resolution of cross-attention layers dictates contour
definition, whereas higher resolution layers are responsible for de-
tails. Our investigation extends these findings by examining the
step-wise attention map in the low-resolution layers, as shown in
Figure 4. From Figure 4, we observe that positioning and quantity
of entities are established at a low resolution early in the process,
sometimes as early as step 1, while detailed attributes like colors
then play a pivotal role in later stages to refine the image’s ap-
pearance. Furthermore, the phenomenon of entity coupling also
persists throughout the inference process, contributing to inaccu-
rate entities. The entire process appears to resemble the Entity
Prematurity of cross-attention.

Based on both token-wise and steps-wise analysis on attention
maps, we learn that the challenge of inconsistent multi-entity repre-
sentation primarily arises from the entity coupling and prematurity
of cross-attention, resulting in the inaccuracy of multiple entity gen-
eration. In response, we propose the Entity Guidance Generation
(EGGen) strategy to tackle these specific challenges.

4 PROPOSED APPROACH
In this section, we present an overview outlining the comprehen-
sive mechanism of our approach. This is followed by a detailed
examination of the entity-centric cross-attention and the alignment
of attention refinement. We conclude with an explanation of the
overall optimization strategy.

4.1 Overview
In the task of text-to-image generation, diffusion models aim to
accurately transform textual prompts into corresponding images.
The latent diffusion architecture integrates textual information y
into the image synthesis process via a cross-attention layer. Initially,
textual prompts are encoded into embeddings s ∈ R𝑛×𝑑 , which are
then mapped through the cross-attention mechanism, involving
queryQ𝑖 ∈ Rℎ𝑤𝑖×𝑑𝑖 , keyK𝑖 ∈ R𝑛×𝑑𝑖 , and valueV𝑖 ∈ R𝑛×𝑑𝑖 vectors,
to produce attentionmapsA𝑖 ∈ Rℎ𝑤𝑖×𝑛 . Both key and value vectors
are generated from the text-conditioned embeddings. To address
the IMR challenge of the SD models highlighted in Section 3, we
introduce the EGGen methodology, which builds on the strengths
of the pre-trained GLIGEN SD model [12], as detailed in Figure 5.

The process of the proposed EGGen can be divided into (1)
Prompt decoupling: an LLM is utilized to reorganize the provided
prompt into a global prompt, and separate entity prompts with spa-
tial locations (marked by the bounding boxes). This organization
enables the direct association of attributes with their respective
entities, enhancing the model’s ability to recognize each entity.
These spatial locations of entities are then also fed into the gated
attention to secure the precise positioning of the coordinates. (2)
Entity-centric cross-attention: the entity-centric cross-attention
layer is introduced that focuses on the entity prompts related to
each entity, ensuring that the distinctiveness of each entity is main-
tained. Additionally, we apply box masking within each feature
map to isolate sections corresponding to other entities, followed by
an aggregation process yielding an integrated latent feature cen-
tered around each entity. (3) Global entity alignment: the global
entity alignment layer is implemented alongside the original cross-
attention layers that process the global prompt. The GEA serves
as a refinement step, using multi-entity prior information (such as

2024-04-13 10:56. Page 4 of 1–9.
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HED images) as ground truth to guide the correct positioning of
each entity and separate attributes from other entities.

In the subsequent section, we will provide a detailed exposition
of these modules and their underlying rationales, alongside the
overall optimization process.

4.2 Prompt Decoupling
Frequently, the challenge for diffusion models in accurately recog-
nizing and attributing unique characteristics arises from prompt
ambiguity, where entities and their attributes are intertwined. How-
ever, LLMs possess the capability to discern individual entities
and predict the overall spatial layout of an image. Capitalizing on
this strength, we decouple the prompt to reorganize the original
prompt into a global prompt and entity prompts for each entity.
Such segmentation facilitates a direct linkage of attributes to their
corresponding entities, thereby improving the model’s proficiency
in distinctly recognizing and interpreting each entity.

Specifically, we employ advanced language comprehension and
inferential capabilities of the LLM (such as GPT-4) to discern the
entities and their attributes within the given prompt y, leading to
the generation of reorganized global prompt ŷ and entity prompts
ỹ, expressed as:

ŷ = 𝐿𝐿𝑀 (y) = 𝑦1 + 𝑦2 + . . . + 𝑦𝑁 , (1)

ỹ = {𝑦 𝑗 }𝑁𝑗=1 = {𝑦1, 𝑦2, ..., 𝑦𝑁 } = F𝑟𝑒 ({𝑦1, 𝑦2, ..., 𝑦𝑁 }), (2)
where𝑁 signifies the total comprising𝑁 −1 foreground entities and
one background element, and the F𝑟𝑒 is the re-caption operation,
which enables the generation of denser, fine-grained details for
each entity prompt. This global prompt offers a concise summary,
highlighting key attributes for each entity. The re-caption operation
enables the generated prompt of denser, fine-grained details for
each entity. Additionally, we enhance each entity with bounding
box attributes, predicted by the language model after it assesses the
image’s overall layout, allowing text-to-image model to interpret
prompts with greater accuracy, as detailed below:

B = {𝐵 𝑗 }𝑁−1
𝑗=1 = {[𝑠𝑡𝑎𝑟𝑡 𝑗𝑥 , 𝑠𝑡𝑎𝑟𝑡

𝑗
𝑦, 𝑒𝑛𝑑

𝑗
𝑥 , 𝑒𝑛𝑑

𝑗
𝑦]}𝑁−1

𝑗=1 . (3)

An example of the prompt decoupling is illustrated on the left
part of Figure 5. For further details on employing LLMs refer to
the Appendix.

4.3 Entity-centric Cross Attention
Even with prompts clearly outlining entities and their attributes, dif-
fusion models can struggle with entity coupling in cross-attention
layers without a mechanism to handle this hierarchical information.
In our approach, we introduce entity-centric cross-attention layers
inserted ahead of the original cross-attention layers. The ECA layer
shares weights with the original cross-attention, allowing for inter-
action between the feature latent and specific entity prompts. This
ensures that each unique entity and its attributes are preserved.
The process can be formulated as

f̃𝐸𝑖 = 𝜙𝑖

(
softmax

(
Q̃𝑖 K̃𝑇𝑖√

𝑑𝑖

)
Ṽ𝑖

)
, (4)

where 𝑖 represents the 𝑖th layer cross-attention in the UNet and𝜙𝑖 (·)
is the original Multilayer Perceptron (MLP) layer. The new queries

HED

Entity Alignment Loss16 x 16 8 x 8 

Image

U-Net

162 82 322 642 642 162 322 

Figure 6: Entity guidance of downscale HED soft edge with
corresponding scale attention maps (ℎ𝑤1 = [162, 82]) in each
cross-attention layer of the U-Net architecture.

Q̃𝑖 ∈ R𝑁×ℎ𝑤𝑖×𝑑𝑖 are generated to correspond with the transformed
latent representations f𝑖 ∈ Rℎ𝑤𝑖×𝑑𝑖 , reflected by 𝑁 duplicates. Keys
K̃𝑖 ∈ R𝑁×𝑛×𝑑𝑖 and values Ṽ𝑖 ∈ R𝑁×𝑛×𝑑𝑖 are created through linear
projections of entity text-conditioned embeddings s̃ ∈ R𝑁×𝑛×𝑑 ,
which originate from the entity prompts ỹ.

Moreover, we utilize bounding boxes B as masks within the
cross-attention layers to ensure accurate spatial representation of
entities. These bounding boxes are resized to match the dimensions
of the attentionmaps, effectively transforming them to a compatible
size of ℎ𝑤𝑖 , and creating a mask M𝑖 ∈ R𝑁×ℎ𝑤𝑖 . We then consol-
idate the feature latents across the 𝑁 dimension after masking,
and apply 𝜙𝐸

𝑖
network to average the entity-centric feature latents

f̃ ∈ Rℎ𝑤𝑖×𝑑𝑖 by summarizing the input f𝑖 . The aggregation process
is mathematically represented as:

f̃𝑖 = 𝛾 × tanh(𝛼𝑖 ) × 𝜙𝐸𝑖 (Sum(M𝑖 ⊙ f̃𝐸𝑖 )) + f𝑖 , (5)

where 𝛾 is a fixed scalar setting to 1 in training and 𝛼𝑖 is a learnable
scalar which is initialized as 0. This whole design of the ECA layers
tackles entity coupling by isolating each entity with its designated
prompt. The aggregation with bounding masks further guarantees
the precision and uniqueness of each entity’s depiction, emphasiz-
ing their distinct attributes.

4.4 Global Entity Alignment
Generating entities independently and merging them directly, with-
out accounting for their interactions, can lead to sub-optimal inte-
gration. Merely using a cross-attention layer followed by a global
prompt to interact with all entities within the same context may
result in inaccuracies and attribute leakage since it does not address
the problem of entity coupling. We address the sub-optimal inte-
gration by implementing a global entity alignment, as illustrated in
the right part of Figure 5. This involves refining the cross-attention
maps A𝑖 ∈ R𝑚×ℎ𝑤𝑖×𝑑𝑖 (𝑚 represents the total number of valid to-
kens for N entities in the global prompt.) to better correspond with
entity tokens through a CNN network 𝜙𝐺

𝑖
. Additionally, we repli-

cate bounding box masks M𝑖 ∈ R𝑁×ℎ𝑤𝑖 to M̂𝑖 ∈ R𝑚×ℎ𝑤𝑖 ensuring
that the attention maps for𝑚 entity tokens are constrained to their
specific spatial positions, thereby mitigating attribute leakage,

Â𝑖 = 𝛾 × tanh(𝛽𝑖 ) × (M̂ ⊙ 𝜙𝐺𝑖 (A𝑖 )) + A𝑖 , (6)
2024-04-13 10:56. Page 5 of 1–9.
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where 𝛾 is set as a fixed scalar 1 in training and 𝛼𝑖 is a learnable
scalar which is initialized as 0.

To further refine the attention maps for accurately capturing
the intricate details of multiple entities, we employ a multi-entity
prior learning strategy as guidance. We adopt HED [27] soft edge
images as the prior information, which detect the contour C ∈
Rℎ×𝑤×1 over original images. According to the entity prematurity
in Section 3, these HED images inform entity-focused attention
maps Â𝑖 in cross-attention layers at 8×8 and 16×16 resolutions for
processing efficiency. The choice of HED images is due to their ease
of processing and richness in information, which benefits our fine-
tuned layers’ learning process, ensuring that the attention maps
are precisely aligned. Further details on this process are depicted
in Figure 6 and this alignment can be defined as:

L𝑖
ℎ𝑒𝑑

(Ĉ𝑖 , Â𝑖 ) =
1
𝑚

[
1 − D(Ĉ𝑖 , Â𝑖 )

]
, (7)

where Ĉ𝑖 ∈ R𝑚×ℎ𝑤𝑖×1 is a segmented contour representation by
B from C, resized to the target resolution of 8 × 8 or 16 × 16 and
replicated to align with the𝑚 dimension of Â𝑖 , and D(·, ·) denotes
the cosine similarity function, evaluated for each token’s corre-
sponding segment at the resolution ℎ𝑤𝑖 . By minimizing this cosine
distance, we refine the focus of the entity-centric attention map on
prior entity-specific information, directing the synthesis of detailed
entity structures while limiting refinement to areas associated with
grouped tokens.

4.5 Overall Optimization
Meanwhile, the denoising loss is also incorporated into the training
process to further ensure the quality of the synthesized images.
Therefore, the overall optimization objective can be expressed as
follows:

L𝑙𝑑𝑚 = E𝑥,𝜖∼N(0,1) [∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡)∥22] , (8)

L = 𝜆
∑︁
𝑖∈𝐿

L𝑖
ℎ𝑒𝑑

+ L𝑙𝑑𝑚 , (9)

where 𝐿 denotes the number of U-Net layers at resolutions of 8 × 8
and 16× 16, and 𝜆 denotes the entity guidance loss weight. Notably,
the HED images are exclusively employed during the training phase
to enhance the model’s awareness of contours and are not utilized
during inference.

When inference, equally weighting ECA and GEA can exces-
sively influence the rendering of details, occasionally resulting in
oversaturated images compared to traditional text-to-image mod-
els. According to entity prematurity, entities and their contours are
identified early in the inference process. To mitigate this, we imple-
ment linear attenuation during inference, gradually reducing the
𝛾 to 0:

𝛾 (𝑡) = (𝑇𝑠 − 𝑡)/𝑇𝑠 , (10)

where 𝑇𝑠 is the total steps of inference, commonly setting to 50 in
the standard inference of the diffusion model and 𝑡 ∈ [1, 50]. This
strategy could well remain the entity guidance within the models
while decreasing the over-saturation of the generations. After the
overall optimization, the EGGen effectively addresses the issue of
inconsistent multi-entity depictions, ensuring the generated images
are both semantically consistent and visually detailed.

5 EXPERIMENTS
5.1 Implementation Details
Baselines. We utilize the layout advancements from GLIGEN [12]
as a base model to fine-tune our approach. We further extend our
comparison with a spectrum of alternative approaches. Within the
realm of training-free methods, we compare: (1) BoxDiff [26]; (2)
Backward Guidance [1]; (3) LLM-grounded Diffusion [13]. In the
domain of training-based methods, our analysis encompasses: (1)
ReCo [30]; (2) GLIGEN [12]; (3) Detect Guidance [15].
Datasets. We use the 414K text-image pairs as training datasets,
which are reorganized by ReCo [30] from COCO 2014 [14] train
set. To comprehensively illustrate the effectiveness of our proposed
method, we adopt T2I-CompBench [9] as the test dataset, which
consists of 6,000 compositional text prompts from 3 categories (at-
tribute binding, entity relationships, and complex compositions)
and 6 sub-categories (color binding, shape binding, texture bind-
ing, spatial relationships, non-spatial relationships, and complex
compositions).
EvaluationMetrics. We follow the evaluation of T2I-CompBench [9]
over the consistency between images and multi-entity prompts re-
garding Attribute Binding, entity Relationship, and Complex, which
comprehensively utilizes various metrics, including B-VQA [11],
UniDet [31] and Clip-score [7].
Implementation Details. The total trainable parameters are the
three-layer MLP from the proposed ECA layers and the four-layer
CNN network in GEA. At the same time, ECA and GEA modules
are exclusively implemented at resolutions of 8× 8 and 16× 16. The
utilized LLM is the GPT-4-Vision for its robustness and exceptional
performance. During training, we use the AdamW optimizer [16]
with a fixed learning rate of 0.00001 and weight decay of 0.01 for
10 epochs, and we set 𝜆 = 10 for loss control. In the inference stage,
we adopt DDIM sampler [24] with 50 steps and set the guidance
scale to 7.5. All experiments are performed on 8 × Nvidia Tesla
V100 GPUs. See the Appendix for more implementation details.

5.2 Main Results
Qualitative Evaluation. Given the varied capabilities of different
models, we employ prompts that describe two entities to guarantee
a fair comparison, and the visual comparisons are showcased in Fig-
ure 7. In the cases examined, while most approaches demonstrate
the capacity to accurately position entities at appropriate coordi-
nates, they occasionally place the wrong type of entities and assign
undetermined attributes. Conversely, our method successfully posi-
tions the correct entity along with its attributes in these scenarios.
For instance, the golden dog and the black cat exhibit different
vivid attitudes while strictly following the prompt requirement of
the dog on the left and the cat on the right. For an illustration of
our EGGen’s capability to generate multiple entities, please see
the examples featured in Figure 1. Further visual examples can be
found in the Appendix.
Quantitative Evaluation. We conduct comparisons with prior
state-of-the-art (SOTA) multi-entity text-to-image models across
three key compositional scenarios on the T2I-CompBench. From
the results, as shown in Table 1, our approach demonstrates better

2024-04-13 10:56. Page 6 of 1–9.
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Prompt: A golden dog on the left and a black cat on the right are playing in the green yard.
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SD Ours

Prompt: A blue motorcycle is parking to the right of a red car in a gray parking lot.
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Figure 7: Qualitative comparison with baseline methods. More examples across domains are included in the Appendix.
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Table 1: Evaluation results on T2I-CompBench. Our method demonstrates better
comprehensive performance compared with other multi-entity SD-based methods.

Model Attribute Leakage Entity Relationship Complex↑
Color ↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑

SD-v1.5 [22] 0.2365 0.4054 0.3954 0.1303 0.2864 0.2959
BoxDiff [26] 0.4153 0.4563 0.4959 0.2182 0.2621 0.2906
Backward Guidance [1] 0.3505 0.4085 0.3738 0.1706 0.2739 0.2619
LLM-grounded [13] 0.3007 0.5082 0.5071 0.3977 0.2740 0.2805

GLIGEN [12] 0.2552 0.4511 0.5097 0.3269 0.2880 0.2756
ReCo [30] 0.4059 0.4817 0.5545 0.2689 0.2856 0.2984
Detect Guidance [15] 0.4210 0.5122 0.6136 0.1268 0.2813 0.3450
Ours 0.4586 0.4946 0.6164 0.4018 0.3176 0.3794

1&1 G&B L&R All
Category

0

500

1000

C
ou
nt
s

482 516

325
224

990 975 981 968

EGGen SD

Figure 8: The comparison between the
count of the different categories of 1000
examples generated by ourmodel and SD
V1.5 following the setting in Figure 2.

comprehensive performance in five scenarios, exhibiting superior
fidelity and precision in aligning with the text prompts. Notably, our
method achieved the highest scores in scenarios involving color
and texture, underscoring its remarkable capability to precisely
interpret and replicate the colors and textures described in the text
inputs. These benefits from our strategy of separating the prompts
into a global prompt and individual entity prompts. We utilize the
ECA to process each entity singularly, preserving its uniqueness
and ensuring the correct types, while the GEA refines the attention
map, precisely guiding the delineation of attributes. Notably, our
method slightly underperformans in the shape domain over LLM-
grounded [13] and Detect Guidance [15]. The shape attribute can
be inherently more complex to interpret from the text than colors
or textures, so it can easily be compounded by the interaction of
the mask within the GEA, causing deformation of shape. We will
address this complexity in future iterations.

5.3 Ablation Study and Analysis
In this validation, we conducted an ablation study by individu-
ally removing various modules to assess their impact, with the
results presented in Figure 9 and Table 2. The data reveals that 1)
the absence of the ECA results in the sole use of the global cross-
attention layer, which proves insufficient for accurately identifying
and correctly positioning each entity; 2) removing GEA leads to
a reliance on undifferentiated global prompts within the original
cross-attention mechanism, which in turn results in attribute leak-
age and the generation of inaccurate entities; 3) eliminating the LA
module precipitates a marked increase in image over-saturation and
a discernible degradation in visual quality. This effect aligns with
the observation of entity prematurity. Our ablation study highlights
the critical roles of the ECA, GEA, and LAmodules in enhancing the
accuracy, attribute fidelity, and visual quality of our model. These
findings underscore the importance of these modules in achieving
superior performance in multi-entity generation.

To conclude this section, we replicate the statistical analysis
experiment similar to that depicted in Figure 2, generating 1,000 ex-
amples based on the same prompt. The outcomes of this experiment
are illustrated in Figure 8. In scenarios involving the generation of
images with two simple entities, such as a dog and a cat, our method

Table 2: Ablation study with results on T2I-CompBench in
themetrics of Color, Spatial, andComplex. Baseline represents
the GLIGEN model; Other models represents GLIGEN model
plus corresponding modules.

Model Color ↑ Spatial ↑ Complex ↑
Baseline 0.2552 0.3269 0.2756
GEA+LA 0.3549 0.3564 0.3142
ECA+LA 0.4123 0.3789 0.3325
ECA+GEA 0.4427 0.3922 0.3665
ECA+GEA+LA 0.4586 0.4018 0.3794

GEA+LABaseline ECA+LA ECA+GEA GEA+ECA+LA

Figure 9: Visual comparison of different proposed modules.

demonstrates a high level of consistency between the text prompts
and the resulting images, underscoring its robustness in addressing
the challenge of inconsistent multi-entity representation.

6 CONCLUSION
In this paper, our study addressed the challenge of IMR in diffusion-
based text-to-image synthesis after analyzing the effect of entity
coupling and entity prematurity. By integrating the EGGen mech-
anism within cross-attention operations, we effectively improved
entity positioning and attribute accuracy while maintaining gener-
ation fidelity. Our approach leverages ECA layers and GEA layers
to ensure precise entity isolation and attribute delineation, com-
plemented by an LA module that mitigates the impact of these
adaptations over successive generation steps. Through rigorous
testing on T2I-CompBench and detailed visual case studies, our
method demonstrates a substantial enhancement in handling com-
plex multi-entity prompts, providing a promising avenue for future
research in advanced image synthesis.
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