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Abstract

As part of the effort to understand how the brain learns, ongoing research seeks to
combine biological knowledge with current artificial intelligence (AI) modeling
in an attempt to find an efficient biologically plausible learning scheme. Current
models often use a cortical-like combination of bottom-up (BU) and top-down
(TD) processing, where the TD part carries feedback signals for learning. However,
in the visual cortex, the TD pathway plays a second major role in visual attention,
by guiding the visual process toward locations and tasks of interest. A biological
model should therefore integrate both learning and visual guidance. We introduce a
model that uses a cortical-like combination of BU and TD processing that naturally
integrates the two major functions of the TD stream. This integration is achieved
through an appropriate connectivity pattern between the BU and TD streams,
a novel processing cycle that uses the TD stream twice, and a ’Counter-Hebb’
learning mechanism that operates across both streams. We show that the ’Counter-
Hebb’ mechanism can provide an exact backpropagation synaptic modification.
Additionally, our model can effectively guide the visual stream to perform a task
of interest, achieving competitive performance on standard multi-task learning
benchmarks compared to AI models. The successful combination of learning and
visual guidance could provide a new view on combining BU and TD processing
in human vision and suggests possible directions for both biologically plausible
models and artificial instructed models, such as vision-language models (VLMs).

1 Introduction

Understanding how the human brain learns has been a longstanding pursuit in both neuroscience
and artificial intelligence (AI). An extensive research area at this intersection is the development
of biologically plausible models of cortical learning, particularly in visual processes [Lee et al.,
2015, Lillicrap et al., 2016, Scellier and Bengio, 2017, Whittington and Bogacz, 2017, Bozkurt
et al., 2024]. While the ultimate goal is to develop a detailed biological model, current research
primarily focuses on potential schemes for modifying synaptic weights during learning, including
how these modifications are determined and how they propagate through the cortical network (the
credit assignment problem) [Whittington and Bogacz, 2019].

Biologically plausible learning models typically incorporate a combination of feedforward (bottom-
up) and feedback (top-down) pathways, with the top-down (TD) stream playing a central role in the
learning process, similar to the structure of the human cortex [Lillicrap et al., 2020, Song et al., 2021].
However, a key distinction between these models and the cortex is that, while most biological models
primarily use the TD stream to propagate feedback signals, in the cortex, the TD stream also plays a
crucial role in perception by directing attention [Manita et al., 2015].

Top-down attention is an essential part of human vision and has been extensively studied in human
physiology, anatomy, and psychophysics [Treisman and Gelade, 1980, Itti and Koch, 2001, Carrasco,
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2011]. Studies indicate that the TD stream directs visual processes toward selected locations and
tasks, actively shaping the neural activity in the bottom-up (BU) stream and creating task-dependent
representations in the cortex [Gilbert and Li, 2013, Harel et al., 2014]. Consequently, current
biologically plausible models have been criticized for not involving the TD stream in ongoing visual
processes [Lillicrap et al., 2020], and the challenge of incorporating the TD stream into feedforward
BU processing remains an open research question [Zagha, 2020, Kreiman and Serre, 2020].

Our work addresses this gap and, to our knowledge, introduces the first biologically plausible learning
model where the TD stream not only carries feedback signals but also performs visual guidance.
This model tackles two key challenges that must be addressed together: first, attention guidance,
understanding how the TD stream guides BU neural processing, and second, learning, determining
synaptic modifications and solving the credit assignment problem in this guided processing context.

The dual role of the TD component in our model, involving both attention guidance and learning,
may offer a more accurate depiction of bi-directional cortical processing and learning compared to
existing models. For learning, we suggest a ’Counter-Hebb’ mechanism, a modification of classical
Hebbian learning [Hebb, 2005]. We show that this model can approximate the backpropagation
(BP) synaptic modification [Rumelhart et al., 1986], and can provide an exact equivalence to BP
under a symmetry assumption. Regarding its biological plausibility, we address the weight symmetry
problem between forward and backward paths and use local synaptic updates dependent only on
neurons associated with the modified synapse. Moreover, our method offers a possible solution to the
long-standing challenge of integrating the TD stream into ongoing visual processing [Zagha, 2020,
Kreiman and Serre, 2020, Lillicrap et al., 2020]. In the context of guidance, we demonstrate that the
TD stream can be used both for learning and for directing the BU stream to perform tasks of interest
by selecting a sparse, task-specific sub-network within the full BU network. We further show that
this model achieves competitive results on standard multi-task learning benchmarks.

Beyond brain-related aspects, it is noteworthy that the integration of guidance is becoming a central
aspect in recent AI models, particularly in Large Language Models (LLMs) and Vision-Language
Models (VLMs). A fundamental characteristic of VLMs, similar to the brain, is their ability to
focus on specific tasks of interest [Huang et al., 2023, Liu et al., 2024]. In these models, guidance is
achieved through instructions that propagate through a language stream, which interacts with a visual
component, allowing the model to dynamically adjust its attention to focus on the particular visual
elements relevant to the task. This represents a significant shift from earlier computer vision models,
where outputs relied exclusively on visual input and task instructions were implicitly embedded in the
model design, with each task handled by a separate model. The parallel between AI advancements
and brain modeling may deepen our understanding of the human brain and inspire the development
of more advanced, human-like AI systems.

The key contributions of our work include:

• We propose the first biologically motivated learning model for instructed vision.
• We present a unified feedback mechanism that combines error propagation for synaptic

learning with Top-Down attention to guide visual processing based on instructions.
• We suggest a Counter-Hebb learning procedure as a possible local synaptic modification

that can perform exact backpropagation learning.

The code for reproducing the experiments and creating BU-TD models for guided models is available
at https://github.com/royabel/Top-Down-Networks.

2 Related work

The fields of brain modeling and AI have fruitful interactions going in both directions [Yamins
and DiCarlo, 2016, Bowers, 2017, Yildirim et al., 2019]. Particularly, the study of biologically
plausible learning models aims to deepen our understanding of the learning mechanisms in the
human brain and enhance learning techniques for artificial neural network models. While artificial
models primarily employ the backpropagation (BP) algorithm for learning [Rumelhart et al., 1986], a
direct implementation of BP in biological models is generally considered biologically implausible
[Whittington and Bogacz, 2019, Lillicrap et al., 2020]. Nevertheless, the integration of BP with
biological principles, such as Hebb’s plasticity rule [Hebb, 2005], has inspired the development of
diverse biologically plausible learning approaches.
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These learning methods are often compared to learning with BP, aiming to achieve similar performance
in a more biologically plausible way. For instance, Equilibrium Propagation methods [Scellier and
Bengio, 2017] suggest updating synaptic weights once the model reaches a stable equilibrium
state under a given input. Equilibrium Propagation methods have been shown to produce weight
updates equivalent to those in BP under specific conditions [Ernoult et al., 2019], and approximate
BP in other cases [Millidge et al., 2020]. The Predictive Coding approach suggests that in visual
processing, feedback connections carry predictions of neural activities, whereas feedforward streams
carry the residual errors between these predictions and the actual neural activities [Rao and Ballard,
1999]. It has been demonstrated that when predictive coding is used to train a neural network in a
supervised learning setting, it can produce parameter updates that approximate those computed by
backpropagation [Whittington and Bogacz, 2017, Millidge et al., 2022a]. These results have been
further developed under additional assumptions, leading to predictive coding variants that produce the
exact same parameter updates as backpropagation [Song et al., 2020, Salvatori et al., 2022]. However,
the modifications necessary for these methods to approximate or be equivalent to backpropagation
are criticized for reducing their biological plausibility [Rosenbaum, 2022, Golkar et al., 2022].

Among biologically plausible approaches, Feedback Alignment and Target Propagation approaches
are the most similar to our method. Like backpropagation, these approaches involve a forward (BU)
stream that generates predictions from an input signal, followed by a backward (TD) stream that
propagates feedback. While BP propagates gradients backward using the same weights as the forward
path, feedback alignment methods propose propagating gradient-like signals through the TD stream
with a separate set of weights, removing the symmetric weight structure of BP [Lillicrap et al., 2016,
Nøkland, 2016, Song et al., 2021]. The target propagation methods suggest propagating backward
targets for the forward path instead of gradients [Bengio, 2014, Lee et al., 2015, Meulemans et al.,
2020]. Both feedback alignment and target propagation methods can approximate the BP update
under specific conditions [Akrout et al., 2019, Ahmad et al., 2020, Ernoult et al., 2022]. Nevertheless,
current models lack the extensive BU-TD interactions observed in the brain, which are essential for
guiding attention in visual processes [Harel et al., 2014, Manita et al., 2015, Lillicrap et al., 2020].

2.1 Guided visual processing

Human cortical processing uses a combination of bottom-up (BU) and top-down (TD) processing
streams. In the visual brain, the BU stream proceeds from low-level sensory regions to high-level,
more cognitive areas, while in the TD stream processing flows in the opposite direction [Dehaene
et al., 2021]. In human vision, the TD stream is involved in TD attention, guiding the visual process
and directing it toward tasks of interest [Goddard et al., 2022, Shahdloo et al., 2022]. For example, at
the physiological level, it has been shown, in behaving primate studies, that given the same image,
but with different tasks, the activation along the BU stream changes, modulated by TD activation, to
focus on the instructed task [Gilbert and Li, 2013].

The ability to guide visual processing to extract specific aspects of the image is essential because a
single image encompasses a wealth of information regarding objects, their parts and sub-parts, their
properties, and inter-relations. Consequently, for complex images, it becomes difficult to extract and
represent all the possibly meaningful information through a single visual representation [Huang et al.,
2023]. There are two approaches to address this challenge: one is to employ specialized models, each
tailored to specific visual tasks, and the other is to develop general-purpose vision models that can
selectively focus on relevant visual information

Empirical studies in artificial models have demonstrated that guiding the model’s attention to selected
locations or tasks offers advantages over non-guided, pure BU models [Tsotsos, 2021, Pang et al.,
2021, Ullman et al., 2023]. Furthermore, as opposed to earlier computer vision models, which relied
solely on visual inputs without guidance, recent Vision Language Models (VLMs) have integrated
instruction guidance mechanisms into their visual processing [Bai et al., 2023, Zhu et al., 2023,
Liu et al., 2024, Dai et al., 2024]. The processing of visual information in VLMs integrates a
language stream that interacts with a visual stream and guides it to perform selected tasks. As a
result, these models have been shown to have high generalization and zero-shot capabilities. The
importance of guidance mechanisms in both the human cortex and AI models highlights the need for
biologically inspired learning models that incorporate these mechanisms to neuroscience implications
and potential advancements of artificial models. While our focus in this paper centers on vision, it is
worth noting that our method can be applied to guided processing in other domains as well.
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3 The bottom-up top-down model

This section introduces the proposed structure of the Bottom-Up (BU) and Top-Down (TD) networks.
A BU network with L hidden layers is a function that maps an input vector x := h0 to an output
vector y, such that for each layer 0 ≤ l < L: the hidden values are defined to be:

hl+1 := σ (fl+1(h0, h1, ..., hl)) (1)

The functions fl are linear, and the activation function σ is an element-wise function that may be
non-linear. To predict an output, we use a prediction head Hpred, which is a small network, typically
one to two layers, that maps the last hidden layer hL to the predicted output: y = Hpred(hL).

For a given BU network, we define a symmetric TD network (denoted with upper bars) as the reverse-
architecture network, that maps an input vector ȳ to an output vector x̄ := h̄0. The TD network is
constructed based on the BU architecture as follows: The input (e.g. the prediction error) ȳ is mapped
to the top-level hidden layer h̄L of the TD network via the TD prediction head: h̄L = H̄pred(ȳ), and
then for every 0 ≤ l < L:

h̄l := σ̄
(
f̄l+1(h̄L, h̄L−1, ..., h̄l+1)

)
(2)

The TD network satisfies two conditions. First, we restrict h̄l for each l so that hl and h̄l will have
the same size (the same number of neurons). This allows us to define pairs of corresponding neurons,
assigning each BU neuron hl,i in layer l a ’counter neuron’ h̄l,i in the TD network. We also use the
following notation for simplicity: ¯̄h := h. Additionally, we restrict f̄l to have the same connectivity
structure as fl, but with the opposite direction: each pair of TD neurons is linked if and only if a link
exists between their corresponding BU counter neurons. For example, given a fully connected layer
hl = fl(hl−1) = Wlhl−1, the corresponding TD layer f̄l is defined to be also a fully connected layer
h̄l−1 = f̄l(h̄l) = W̄lh̄l such that the shape of the TD weights matrix W̄l is equal to the shape of the
transposed BU weights matrix Wl

T .

3.1 Activation functions and biases

The activation functions σ, σ̄, may be any element-wise functions. In this work, we focus on two
functions. The first is ReLU which is commonly used for neural networks ReLU(x) := x · I{x>0}.

The second is the Gated Linear Unit (GaLU) [Fiat et al., 2019], which, in our model, leverages lateral
connectivity between the BU and TD streams by gating neurons’ activity based on the activation of
their counter neurons.

GaLU(x) := GaLU(x, x̄) := x · I{x̄>0} =

{
x x̄ > 0

0 x̄ ≤ 0
(3)

Where x̄ is the counter neuron of x (either a BU or a TD neuron), and I is an indicator function.

GaLU introduces bidirectional lateral connectivity between the BU and TD networks by temporarily
turning off neurons based on the values of their counter neurons. As a result, each network can
effectively guide its counterpart to operate on a specific partial sub-network.

In this paper, we omit bias terms to simplify the model. Nevertheless, biases can be implicitly
expressed using the above notations by having additional neurons and weights, as commonly practiced
[Lee et al., 2015, Ahmad et al., 2020]. In addition, we allow two modes of biases. The first is the
standard bias mechanism, in which biases contribute to the output. The second mode is ’bias-blocking’
[Akrout et al., 2019] in which all bias terms are zeroed.

4 Counter-Hebbian learning

In this section, we formulate the Counter-Hebb learning. The Counter-Hebb (CH) rule updates
each synapse based on the activities of its pre-synaptic neuron and its post-synaptic counter neuron.
Consider a given weights matrix W such that b = Wa. The (i, j)-th entry in that matrix, W (t)

ij ,
represents the strength of the synapse connecting the pre-synaptic neuron aj to the post-synaptic
neuron bi at time t. Then the update rule is:

∆W
(t+1)
ij := W

(t+1)
ij −W

(t)
ij = η · aj · b̄i (4)
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where η is the learning rate, and b̄i is the counter neuron of bi. This rule applies to all weights
including both up-streams and down-streams, updating both W and W̄ identically, see Figure 1.

There is a close connection between this rule and the classic Hebb rule. In both cases, the brain
strengthens synapses (weights) between neurons that are co-activated, and the modifications of each
synapse are determined entirely by the activation values of neurons in the network associated directly
with the changing synapse. However, the difference lies in the neurons connected to that synapse.
Classic Hebbian proposes that the forward-firing of a post-synaptic neuron also propagates backward
to the synapse. Thereby, synapse strength increases when a pre-synaptic neuron’s firing is often
followed by the firing of the post-synaptic neuron within a defined time interval [Magee and Johnston,
1997, Hebb, 2005]. In contrast, the Counter-Hebb modification does not depend on the cell’s firing
propagating back to its dendrites but suggests a contribution from the counter post-synaptic neuron
via a lateral connection. Similar to Hebb’s rule, the resulting synaptic modification also depends on
the coincidence of two firing neurons, but the post-synaptic cell is replaced by its counterpart. See
Figure 1 for a visual illustration of the Counter-Hebb update compared with the classic Hebb.

Therefore, the CH rule modifies the classical Hebb rule by integrating feedback streams that can
carry error information into the learning process. The feasibility of synaptic plasticity that depends
on the coincidence of two signals from feedforward and feedback sources is supported by empirical
findings, such as those from CA1 hippocampal cells [Markov et al., 2014, Cornford et al., 2019].

Figure 1: The Counter-Hebb update rule in comparison with the classical Hebb rule. The classical
Hebbrule (on the left), with a focus on a single upstream synapse Wij (outlined by a circle), connecting
a pre-synaptic neuron aj with a post-synaptic neuron bi. The synapse Wij is updated based on the
activity of both associated neurons aj and bi. While neuron aj is directly associated with the synapse
Wij , neuron bi is assumed to transmit its information through propagation down the dendritic tree
to synapse Wij (orange arrow). In contrast, the Counter-Hebb update rule (on the right), relies on a
contribution from the counterpart downstream (marked in orange), mediated via lateral connections.
Compared with the Hebb rule, the signal from aj is combined with the signal from neuron b̄i rather
than neuron bi. Notably, the resulting Counter-Hebb rule naturally applies an identical update to both
Wij and its counter synapse W̄ji.

4.1 The Counter-Hebb learning algorithm and backpropagation

This section presents the full Counter-Hebbian (CH) learning algorithm. The learning algorithm is
described in Algorithm 1. Similar to the backpropagation algorithm, the CH algorithm involves a
single forward pass performed by the BU network to compute predictions from an input signal. Sub-
sequently, a single backward pass is conducted using the TD network to propagate error information,
and the weights are updated according to the CH update rule.

A special case occurs when the BU and TD networks have symmetric weights, (identical values).
While symmetric BU and TD weights might, at first, seem unrealistic in the brain, symmetry is
actually implicitly encouraged by the CH update. The CH update naturally applies an identical
update to both the BU and the TD weights, see Figure 1. Therefore, as training progresses, assuming
close-to-zero initial weights (a common practice), the BU and TD weights gradually become more
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Algorithm 1 Counter-Hebb Learning
1: Input: data x, ground truth label ỹ
2: Forward: y = BU(x)
3: Compute error: e = error(y, ỹ)
4: Backward: x̄ = TD(e)
5: Counter-Hebb Update: update W and W̄

symmetric, as the value of the weights will be dominant by the values of the updates. Additionally,
at any point during the training, if the BU and TD weights are symmetric, they will maintain this
symmetry during the entire learning.

Given symmetric BU and TD weights, under the following standard conditions: 1) The BU network
uses ReLU non-linearity 2) The error function computes the negative gradients of a loss function
L with respect to the BU output, for example, error(y, ỹ) = ỹ − y for Mean Squared Error loss
3) The TD network uses GaLU non-linearity and bias-blocking mode (see Section 3.1). Then the
TD backward step in Algorithm 1 is mathematically equivalent to the backward computation of the
BP algorithm [Rumelhart et al., 1986]. As a result, in this configuration, Counter-Hebb learning
effectively replicates the exact BP update, performing similarly to BP and preserving its mathematical
properties. Moreover, relaxing the symmetry constraint under the above conditions results in a
learning algorithm that approximates BP in the non-symmetric case. For a detailed explanation of
this equivalence and approximation see Appendix A.1. Like some previous models, the CH has the
desired property, as a biological model, of locality: the synaptic modifications are determined entirely
by the activation values of neurons directly associated with the synapse.

5 Instruction-based learning

In the previous section, we described how the TD network can be used for learning a pure BU model.
In this section, we describe how the model performs visual guidance. The TD network in our model
can guide the BU network to perform multiple tasks by selecting a sub-network for each learned task
(where sub-networks can overlap). In this setting, the objective is to predict an output y given an
input x and a task t. To accommodate this, the model has one additional head, resulting in two heads:
a prediction head, and an instruction head. Each head consists of two parts: one for the BU network
and the other for the TD network, preserving the symmetrical structure and lateral connectivity of the
BU-TD core, see Appendix A.2 for more details on the heads.

The prediction head Hpred, of one linear layer, is responsible for generating predictions and providing
feedback, as discussed in section 3. The instruction head, Hinstruct, employs a 2-layer MLP for
specifying the selected task, projecting instructional information to the visual space (and vice versa),
similarly to instruction processing in VLMs. More specifically, the instruction head takes a task
representation t as input and maps it to the top-level TD layer h̄L. We use one-hot encoding for
representing the tasks, however, more complex embedding could also be explored, such as a projection
from an LLM. Note that in our experiments, we allow only one head to participate in each pass of the
model (either the prediction or instruction head), refer to Fig 2 for an illustration of how the two
heads are utilized in learning instruction-based models.

The instruction-based learning algorithm is shown in Algorithm 2. This algorithm consists of two
passes for prediction (a TD followed by BU) followed by an additional TD pass for the learning,
thereby extending Algorithm 1 by adding an instruction-processing step that selects a task-specific
sub-network. Given a task t, the TD instruction head is used to propagate the task representation
along the TD network. Since each task activates different patterns, the activated neurons (i.e., with
activation value larger than 0) define a task-dependent sub-network. By running the BU network with
GaLU activation, the BU computation is gated to propagate the input x along the corresponding BU
sub-network. In this manner, the resulting algorithm learns for each task a different predictor which
is conditioned on the task, resembling a modular architecture where different modules are dedicated
to each task. See Fig 2 for a visualization of this guided process.

Extending upon the results of section 4.1, with the constraint of symmetric BU and TD weights, both
BP and CH learning produce identical updates within this guided learning framework, despite using
the TD stream twice, see Appendix A.1 for more details. This equivalence provides mathematical
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Algorithm 2 Instruction-Based Learning
1: Input: data x, task t, ground truth label ỹ
2: Top-Down: x̄ = TD(t; H̄instruct; σ̄ = ReLU)
3: Bottom-Up: y = BU(x; Hpred; σ = GaLU ◦ReLU)
4: Compute error: e = error(y, ỹ)
5: Backward: x̄ = TD(e; H̄pred; σ̄ = GaLU)
6: Counter-Hebb Update: update W and W̄

Figure 2: The instruction-based learning algorithm. The three columns represent three passes of our
model (left to right): TD → BU → TD, where the first two passes provide a prediction output given
an image and a task, and the last TD pass (in green frame) is used for learning. In inference, The
BU visual process is guided by the TD network according to the given task. More specifically, The
TD network propagates instruction signals downward followed by a guided BU process of the input
image to compute predictions. By applying ReLU non-linearity, the input task selectively activates
a subset of neurons (i.e. non-zero values), composing a sub-network within the full network. The
BU network then processes an input image using a composition of ReLU and GaLU. The GaLU
function (dashed arrows) gates the BU computation to operate only on the selected sub-network that
was activated by the task. For learning, the same TD network is then reused to propagate prediction
error signals with GaLU exclusively (no ReLU). Finally, the ’Counter-Hebb’ learning rule adjusts
both networks’ weights based on the activation values of their neurons. Therefore, in contrast with
standard models, the entire computation, including the learning, is carried out by neurons in the
network, and no additional computation is used for learning (e.g. backpropagation)

guarantees to learning guided vision using a single TD network for both guidance and learning.
Furthermore, symmetric weights have computational advantages. It enables extending standard BU
architectures to instruction-based models without any additional parameters. For a given BU network,
a complementary symmetric TD network can be constructed, sharing the same BU parameters. This
TD network can guide the BU process of the original network to perform a given instruction.

6 Empirical results

In this section, we evaluate our BU-TD model, learned via Counter-Hebbian learning, in two settings:
1) unguided visual processing, to show that CH learning is capable of learning vision models 2)
guided visual processing, to evaluate the ability of our model to guide the visual process according to
instructions. Our goal is not to improve upon state-of-the-art models, but to show that the model, with
a single top-down pathway for both error and instruction propagation, is comparable with current AI
models, and capable of performing well two different functions: learning and directing attention.

6.1 Unguided visual processing

In the unguided experiments, we evaluate the performance of the Counter-Hebb learning on standard
image classification benchmarks: MNIST [LeCun et al., 1998], Fashion-MNIST [Xiao et al., 2017],
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Table 1: Unguided learning results: mean and standard deviation of the test accuracy (in percentages)
across 10 runs. The proposed CH learning algorithm is compared with BP and other biological
state-of-the-art methods. The baseline results were taken from Bozkurt et al. [2024].

Method MNIST Fashion MNIST CIFAR10

CIM [2024] 97.71 ± 0.1 88.14 ± 0.3 51.86 ± 0.3
EP [2017] 97.61 ± 0.1 88.06 ± 0.7 49.28 ± 0.5
CSM [2021] 98.08 ± 0.1 88.73 ± 0.2 40.79
PC [2017] 98.17 ± 0.2 89.31 ± 0.4 -
PC-Nudge [2022b] 97.71 ± 0.1 88.49 ± 0.3 48.58 ± 0.7
FA [2016] 97.95 ± 0.08 88.38 ± 0.9 52.37 ± 0.4
BP 98.27 ± 0.03 89.41 ± 0.2 53.96 ± 0.3

BP (ours) 98.33 ± 0.04 89.94 ± 0.2 55.47 ± 0.3
CH Sym Init 98.34 ± 0.06 89.99 ± 0.2 55.54 ± 0.3
CH Asym Init 98.17 ± 0.06 89.27 ± 0.1 54.28 ± 0.2

and CIFAR10 [Krizhevsky et al., 2009]. We followed the same experiments as Bozkurt et al. [2024]
and used two-layer fully connected networks, with a hidden layer of size 500 for both MNIST
and Fashion-MNIST datasets and size 1,000 for CIFAR10. Further details including the full set of
hyperparameters can be found in Appendix A.4.2. We compare CH learning using the Cross-Entropy
loss with backpropagation and other biological learning methods.

We examine two settings of CH learning, one where the BU and TD weights are initialized with
symmetrical values, denoted as ’Sym Init’, and the other where the weights are initialized differently,
referred to as ’Asym Init’. The results, shown in Table 1, empirically validate that CH learning is
equivalent to BP in the symmetric case, and approximates BP in the asymmetric case. Moreover, CH
learning achieves comparable or superior performance compared with other biological methods. We
further show the robustness of CH on other architectures and settings, such as convolutional networks,
loss functions, and regularization. The results and additional information regarding these experiments
can be found in Appendix A.4.2.

6.2 Guided visual processing

In the guided experiments, we evaluate our model on two common multi-task learning (MTL)
benchmarks. Since current biological methods are not capable of guided processing, we compare
CH with non-biological state-of-the-art optimization methods as reported by Kurin et al. [2022],
replicating their setup and using their reported results.

The Multi-MNIST dataset contains images of two overlaid digits, where the task indicates whether
to classify the left or the right digit. Similar to the baselines, our BU network employs a simple
architecture composed of two convolutional layers followed by a single fully-connected layer, with
ReLU non-linearity, along with an additional fully-connected linear layer as the decoder (prediction
head). To adapt this architecture to the BU-TD structure, we replace all max-pool layers with strided
convolution layers, that perform a similar function as proposed by [Ayachi et al., 2020]. Since the
BU-TD model uses only sparse sub-networks within the full network, we increased the number of
channels in each convolution layer, however, the actual network size is effectively smaller compared
with the baselines, see Appendix A.6 for an analysis of the actual size of the sub-networks.

The CelebA dataset is a more challenging large-scale benchmark, comprising head shots of celebrities,
along with the indication of the presence or absence of 40 different attributes. Each task is a binary
classification problem for an attribute. As done in previous work [Kurin et al., 2022], we employ
a ResNet-18 [He et al., 2016] architecture (without the final layer) with batch normalization layers
[Ioffe and Szegedy, 2015], and a linear decoder. Additionally, we remove the last average pooling
layer to support the symmetric BU-TD structure.

Unlike the baselines, we do not use any learning ’tricks’ such as dropout layers, regularization,
or early stopping. Additionally, while the baseline models require a separate decoder (prediction
head) for each task, our BU-TD model can use a single shared decoder for all tasks. Further details,
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Table 2: Guided processing results: mean and 95% confidence interval of the avg. task test accuracy
(in percentages) across 10 runs for Multi-MNIST and 5 runs for CelebA. The proposed CH learning
algorithm is compared with non-biological state-of-the-art methods, as reported in Kurin et al..

Method Multi-MNIST CelebA

BP (Unit. Scal. [2022]) 94.76 ± 0.44 90.90 ± 0.08
IMTL [2021] 94.87 ± 0.25 90.93 ± 0.08
MGDA [2018] 94.78 ± 0.20 90.22 ± 0.10
GradDrop [2020] 93.47 ± 1.30 90.98 ± 0.03
PCGrad [2020] 94.79 ± 0.36 90.93 ± 0.11
RLW Diri. [2021] 94.30 ± 0.30 90.99 ± 0.08
RLW Norm. [2021] 93.99 ± 0.89 90.95 ± 0.10

CH Asym Init 88.92 ± 2.15 79.25 ± 1.63
CH Sym Init 94.20 ± 0.30 89.69 ± 0.12

including exact architectures, hyper-parameters, and additional experiments with a single decoder,
and varied network sizes, are provided in Appendix A.4.

The results, presented in Table 2, show that the proposed model successfully incorporates the two
different TD functions, directing attention, and learning. The BU-TD model can achieve competitive
performance compared with leading non-biological state-of-the-art methods. The proposed method
may offer additional useful computational properties, such as compactness, see Appendix A.6.

6.3 Weight symmetry

Weight symmetry poses a significant challenge in biological learning models, as copying the same
weights across different locations is unrealistic in the brain, referred to as the ’weight transport’
problem Grossberg [1987]. Therefore, unlike backpropagation, biological models use different
weights for feedforward and feedback streams. In this section, we further explore the effect of
deviation from weight symmetry on the model performance, focusing on both symmetry in the
initialization of the weights, and symmetry in the subsequent updates. We use below the terms
’symmetric model’ for models with symmetric weight initialization, ’asymmetric models’ for weights
initialized far from symmetry, and ’weak symmetric’ for models initialized symmetrically (or nearly
symmetric), but are subject to noisy, asymmetric updates. See Appendix A.5 for more details and
additional experiments.

The results, presented in Table 3 and Appendix A.5, demonstrate that initial weight symmetry is
more critical for approximating backpropagation performance than gradually converging to symmetry
later in the learning process. The experiments show that performance degradation in the asymmetric
case becomes more pronounced as task complexity and model size increase, even with weight decay
applied to ensure convergence to symmetry. The results also show that our model demonstrates better
scalability with asymmetric weights compared with some alternative methods, such as feedback
alignment. In contrast, in the weak symmetric case, where weights do not maintain symmetry due to
noise in updates, performance consistently remains nearly identical to standard back-propagation
across all experiments. These results indicate that exact weight symmetry is not mandatory for
backpropagation approximation. We hypothesize that Counter-Hebb learning, like backpropagation,
depends on proper weight initialization to achieve optimal results, in addition to weight symmetry.
By the time that symmetry of the weights is obtained, the weights may drift from their optimal
initialization. This case will be similar to starting the standard backpropagation from non-optimal
initialization conditions, leading in both cases to suboptimal performance. For more details regarding
the effects of asymmetry see Appendix A.5.1.

7 Limitations

There are two directions that should be improved in the current model, one regarding performance and
the second concerning biological aspects. In the asymmetric case, similar to other biologically inspired
methods [Ernoult et al., 2022], we observe increasing performance gaps as task and model complexity
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Table 3: Comparing different weight asymmetry settings: mean accuracy and 95% confidence interval
(in percentages) across 5 runs evaluated on CIFAR10 using ResNet18.

Metric Train Accuracy Test Accuracy

CH Symmetric (BP) 100.00 ± 0.00 72.06 ± 0.69
CH Asymmetric 99.70 ± 0.15 61.58 ± 0.79
CH Asymmetric + WD 99.77 ± 0.18 62.05 ± 1.03
CH Weak Symmetric 100.00 ± 0.00 71.98 ± 0.17
Feedback Alignment 22.79 ± 1.90 23.11 ± 2.01

increase. However, the learning parameters, including the weight initialization scheme, have been
carefully optimized for backpropagation (symmetric weights) over the years. Therefore, examining
the effects of tuning parameters in the asymmetric case could improve performance. On the biological
side, the plausibility of the model should be further explored. The main issue we identify (in ours and
other models) is that propagating error signals along the TD stream requires the representation of
both positive and negative values in neuronal activity [Lillicrap et al., 2020]. Following initial work,
we suggest that this could be obtained by ‘on’ and ‘off’ channels [Ringach, 2004], where negative
values in the ‘on’ channel are represented by positive values in the complementary ‘off’ channel.

8 Discussion

In this paper, we proposed the first biologically-motivated learning model for instructed visual
processing. Similar to the visual cortex, it uses a bottom-up (BU) top-down (TD) structure, which,
unlike previous learning models, uses the TD stream in ongoing visual processing by directing
attention, e.g. to tasks and locations of interest.

Modeling guided visual learning is challenging since the prediction of the model depends on both the
BU processing of the image and the task selected by a top-down instruction. The error signal needs,
therefore, to propagate through both the BU and TD pathways, and at the same time the network
is required to preserve the neural activations from the prediction phase since they determine the
required changes in synaptic weights (Fig. 1). These requirements place significant constraints on
the structure of the model network, however, our model meets the requirements and, as supported by
mathematical foundations and empirical experiments, succeeds in learning guided vision for multiple
tasks. Since the cortex performs similar guided vision, the proposed model may suggest a sketch
model for the combination of the BU and TD streams in the visual cortex. Furthermore, the model
shares a similar general structure with VLMs, in the sense of using two parallel streams, a visual one
together with a more cognitive one. Since the human brain excels at combining visual and cognitive
information in visual perception, the combination of instructed VLMs with principles from human
BU-TD processing can offer a promising direction for future studies.

The model also suggests a Counter-Hebbian learning process in addition to the classical Hebb rule,
where synapses are modified by combining a pre-synaptic signal with a signal coming from the
appropriate counter stream. The existence of CH learning may be tested biologically by the controlled
activation of selected layers. For example, cortical layer 3B receives feedforward connections from
layer 4 while feedback connections arrive to layer 2/3A [Markov et al., 2014]. The counter-Hebbian
model predicts that it may be possible to modify the forward synapses from layer 4 to layer 3B by
simultaneous activation of the two inputs.

Counter-Hebb learning provides new directions for addressing the weight symmetry problem in
biological learning models. Our findings indicate that exact weight symmetry is not crucial for achiev-
ing performance comparable to backpropagation and performance is more significantly influenced
by the choice of weight initialization than by the precise symmetry in the weights. This suggests
that discussions around biological feasibility in learning models should focus on obtaining nearly
symmetric weights at initialization, rather than starting with asymmetric weights and relying on
convergence to symmetry.
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A Appendix

A.1 Equivalent to the backpropagation algorithm

In this section, we give a detailed explanation for the equivalence between the proposed Counter-
Hebbian (CH) learning and Back-Propagation (BP), discussed in section 4.1. BP is a key component
of current learning algorithms for artificial neural networks, and modern deep learning models are
typically optimized using end-to-end BP and a global loss function [LeCun et al., 2015]. BP is an
efficient algorithm to compute gradients, designed especially for deep neural networks [Rumelhart
et al., 1986]. The algorithm uses the chain rule to back-propagate error signals through the network,
thus computing the gradients of a loss function L with respect to all parameters through a single
backward pass.

A.1.1 Symmetric weights

Given a feedforward BU network architecture, as described in section 3, Then, the BP backward
pass propagates error signals δ through the network from the output layer according to:

δl−1 :=
∂fl

∂hl−1
δl = σ′(hl−1)W

T
l δl (5)

Where the initial δ values, that correspond to the output layer, are the derivative of the loss with
respect to the output layer: δL = ∂Loss

∂hL
. This construction of δ enables an easy way to compute the

gradients with respect to each parameter:

∇Loss(Wl) =
∂L

∂Wl
= δlh

T
l−1 (6)

Given the following conditions:

• Symmetric BU and TD weights, W = W̄T

• The BU network uses ReLU non-linearity, σ = ReLU

• The error function computes the negative gradients of a loss function L with respect to the
BU output, e = error(y, ỹ) = −∂L(y,ỹ)

∂y

• The TD network uses GaLU non-linearity, σ̄ = GaLU , and bias-blocking mode (see Section
3.1)

The TD process done in the backward step in Algorithm 1 makes the exact same computation as BP
at each layer:

h̄l−1 := GaLU(W̄lh̄l) = σ′(hl−1)W
T
l h̄l (7)

This similarity is since the BU and TD weights are symmetric, i.e. WT
l = W̄l, and the GaLU function

effectively applies a product of x with an indicator function which is exactly the gradient of the
ReLU function, thus the GaLU operation is equivalent to multiplication with the derivatives of the
BU ReLU function.

Therefore, since the input to the TD network is the negative derivative of the loss function with
respect to the output, the TD neurons have the same values as the BP signals, up to a different sign:

h̄l = −δl (8)

As a result, the update derived from our CH learning is equivalent to BP in this symmetric case and
also performs a Gradient Descent (GD) update:

∆Wl = ηh̄lh
T
l−1 = −ηδlh

T
l−1 = −η∇Loss(Wl) (9)

Moreover, when exploring the non-symmetric case, which has the same conditions as above but the
symmetric constraint, we get that CH learning approximates the BP update as the learning progresses.
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A.1.2 Asymmetric weights

In the asymmetric case, the BU and TD weights are initialized with different values. Consider a
BU weight matrix W and its counter TD weights W̄ , where both weights were initialized i.i.d from
a uniform distribution U [−a, a], where a is a small positive scalar (a common practice). At each
time step t during the learning, the Counter-Hebb update applies a symmetrical update (up to the
transposed dimensions of the matrices):

∆W (t) = ∆W̄ (t) (10)

Consequently, in each time step, the difference between the two weight matrices remains constant,
and is determined by the initialization of the weight, thus is bounded:∣∣∣W (t)

ij − W̄
(t)
ji

∣∣∣ = ∣∣∣∣∣
(
W

(0)
ij +

t∑
k=1

∆W
(k)
ij

)
−

(
W̄

(0)
ji +

t∑
k=1

∆W̄
(k)
ji

)∣∣∣∣∣ =
=
∣∣∣W (0)

ij − W̄
(0)
ji

∣∣∣ <= 2a

Notably, the weight initialization scheme is controlled, therefore the value a can be controlled.
Furthermore, a common belief is that high-magnitude weights of a trained network, are the weights
that are important for the learned task. Pruning techniques have shown that those weights alone are
sufficient for achieving results as good a full model consisting of all the weights [Frankle and Carbin,
2018]. Hence, focusing on a specific important weight (that has a high magnitude)

∣∣∣W (t)
ij

∣∣∣≫ 0, then∣∣∣∣∣W
(t)
ij − W̄

(t)
ji

W
(t)
ij

∣∣∣∣∣ <=

∣∣∣∣∣ 2a

W
(t)
ij

∣∣∣∣∣ ≈ 0

Therefore, as the training progresses, assuming close to zero weight initialization, the difference
between the BU and TD weights will be negligible for the dominant BU weights that are important
for the task. Consequently, as the training proceeds, the Counter-Hebb learning gradually pushes the
BU and TD weights towards symmetry, and the CH update rule approximates the BP update.

Moreover, we can make the weights converge to exact symmetry by adding a weight decay mechanism.
Denoted the original update at time t by A(t), the new updates at time t will be ∆W

(t)
l = A(t)−

λW (t) and ∆W̄
(t)T
l = A(t)− λW̄

(t)T
l . Thus,∣∣∣W (t) − W̄ (t)T
∣∣∣ = ∣∣∣(1− λ)tW (0) − (1− λ)tW̄ (0)T

∣∣∣ t→∞−−−→ 0

Therefore, similarly to the results shown by Akrout et al. [2019], initializing the BU and TD weights
with different values will converge to symmetric BU and TD weights, in which the CH learning
is equivalent to backpropagation. Hence, in that non-symmetric case, the Counter-Hebb learning
algorithm approximates the BP and approaches the exact BP.

A.1.3 Guided visual processing

Extending upon the above results to the guided learning framework, under the same constraints of the
symmetric case, both BP and CH learning yield identical updates.

The guided learning algorithm consists of two passes for prediction, a TD pass followed by a BU
pass. Hence, updating this model via BP requires computing the gradients of the loss function with
respect to both the TD and BU computations.

Notably, the first TD computation in the prediction phase, is connected to the final prediction only
through the gating functions on the computation graph, see Figure 2. Moreover, the gradients of
this function with respect to the gate x̄ are always zero. Therefore, this TD computation does not
contribute any gradients to the prediction process:

∇Loss(W̄l) =
∂L

∂W̄l
= 0 (11)
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Focusing on the BU computation, given the constraint of symmetric BU and TD weights, the
results from the non-guided scenario indicate that the last TD pass in our algorithm, used for error
propagation, computes the exact backpropagation signals relative to the BU computation.

Consequently, given the constraint of symmetric weights, for example, obtained by sharing the same
weights across the two streams, the BP algorithm actually updates both the BU and TD weights
according only to the gradients of the BU pass. Hence the backpropagation update is identical to the
Counter-Hebb learning update, and we got an equivalence in the guided processing framework.

A.2 The model heads

In this section, we describe the structure of the heads in our proposed BU-TD model. The BU-TD
core network consists of two symmetric neural networks that are connected via lateral connections,
as described in 3. This core network is extended by two heads: a prediction head, and an instruction
head, each employing an additional small BU-TD neural network. The instruction head employs a
2-layer Multi-Layer Perceptron (MLP), while the prediction head utilizes a single linear layer. Similar
to the core, the heads consist of two connected parts: one for the BU network and the other for the
TD network, thus preserving the symmetrical structure and lateral connectivity of the BU-TD model.

This results in two pairs of symmetric heads. The first pair is for the predictions: Hpred in the
BU stream, and its symmetric counterpart in the TD stream H̄pred. The second pair is for the
instructions: Hinstruct in the BU stream, and its symmetric counterpart in the TD stream H̄instruct.
The prediction head is responsible for model predictions. In the BU stream, it generates predictions
based on input data, while in the TD stream, it delivers prediction error information. On the other
hand, the instruction head bridges the instructional space with visual concepts. The TD stream maps
task representations into the model’s hidden space, while the BU stream maps the visual space into
the instructional space.

Only one head can participate in each pass of the network (either BU pass or TD pass), where heads
can be alternated, with a different head chosen in each pass. For instance in the Counter-Hebb guided
learning algorithm, the first TD pass uses the instruction head, while the following two passes (BU
followed by a TD) use the prediction head.

A.3 Datasets

Similar to other biologically motivated learning methods, we compare CH learning with BP on
standard image classification benchmarks: MNIST [LeCun et al., 1998], Fashion-MNIST [Xiao
et al., 2017], and CIFAR10 [Krizhevsky et al., 2009]. In addition, we use two common multi-task
learning (MTL) benchmarks, the Multi-MNIST [Sabour et al., 2017] dataset, and the CelebA [Liu
et al., 2015] dataset, to evaluate the ability of our model to guide the visual process according to
instruction signals.

Multi-MNIST, introduced by [Sabour et al., 2017] and modified by Sener and Koltun [2018], is
a simple two-task supervised learning benchmark dataset constructed by uniformly sampling two
overlayed MNIST [LeCun et al., 1998] digits. One digit is placed in the top-left corner, while the other
is in the bottom-right corner. Each of the two overlaid images corresponds to a 10-class classification
task. We generated the dataset using the code provided by Kurin et al. [2022], which samples the
training set from the first 50,000 MNIST training images, and the test set from the original MNIST
test set. We omitted the validation set, and the hyper-parameters were tuned based solely on the
training set.

The CelebA dataset [Liu et al., 2015] (with standard training, and test splits) comprises more than
200,000 face images of celebrities along with annotations for 40 attributes, such as the presence
of eyeglasses, gender, smiling, and more. Within the context of Multi-Task Learning research,
it is frequently approached as a 40-task classification challenge, where each task involves binary
classification for one of the attributes.
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Table 4: Unguided learning results: mean and standard deviation of the test accuracy (in percentages)
across 10 runs. The proposed CH learning algorithm is compared with BP and other biological
state-of-the-art methods. The baseline results were taken from Bozkurt et al. [2024].

Method MNIST Fashion MNIST CIFAR10

CIM [2024] 97.71 ± 0.1 88.14 ± 0.3 51.86 ± 0.3
EP [2017] 97.61 ± 0.1 88.06 ± 0.7 49.28 ± 0.5
CSM [2021] 98.08 ± 0.1 88.73 ± 0.2 40.79
PC [2017] 98.17 ± 0.2 89.31 ± 0.4 -
PC-Nudge [2022b] 97.71 ± 0.1 88.49 ± 0.3 48.58 ± 0.7
FA [2016] (Cross-Entropy loss) 97.95 ± 0.08 88.38 ± 0.9 52.37 ± 0.4
FA [2016] (MSE loss) 97.99 ± 0.03 88.72 ± 0.5 50.75 ± 0.4
BP (Cross-Entropy loss) 98.27 ± 0.03 89.41 ± 0.2 53.96 ± 0.3
BP (MSE loss) 97.58 ± 0.01 88.39 ± 0.1 52.75 ± 0.1

BP (ours) (Cross-Entropy loss) 98.33 ± 0.04 89.94 ± 0.2 55.47 ± 0.3
CH Sym Init (Cross-Entropy loss) 98.34 ± 0.06 89.99 ± 0.2 55.54 ± 0.3
CH Asym Init (Cross-Entropy loss) 98.17 ± 0.06 89.27 ± 0.1 54.28 ± 0.2

BP (ours) (MSE loss) 98.36 ± 0.08 90.16 ± 0.2 54.50 ± 0.4
CH Sym Init (MSE loss) 98.37 ± 0.07 90.13 ± 0.2 54.56 ± 0.3
CH Asym Init (MSE loss) 98.21 ± 0.06 89.54 ± 0.2 53.09 ± 0.3

A.4 Experimental settings and results

A.4.1 Computational resources

All the experiments were conducted using either NVIDIA RTX 6000 GPU or NVIDIA RTX 8000
GPU. For all experiments but CelebA, a single NVIDIA RTX 6000 GPU was used, with the exper-
iments utilizing only a fraction of its capacity. In the case of the CelebA dataset, either a single
NVIDIA RTX 8000 GPU or two NVIDIA RTX 6000 GPUs were used.

A.4.2 Image classification

In the unguided regime, we evaluated the Counter-Hebb learning on the task of image classification
and compared it with backpropagation and other biologically plausible learning algorithms under the
same settings. The following results extend the results shown in Table 1 by evaluating the results
obtained when learning with the MSE loss, in addition to the Cross-entropy loss reported in the main
text. Note that there are two variations of CIM [Bozkurt et al., 2024], we report here the highest score
obtained among the CIM experiments.

We repeat the same experiments as conducted in Bozkurt et al. [2024], our BU network employs a
two-layer fully connected network, with a hidden layer of size 500 for both MNIST and Fashion-
MNIST datasets and size 1,000 for CIFAR10. The standard Adam optimizer [Ruder, 2016] was used
to optimize both the Cross-Entropy loss and MSE loss without any regularization. We trained for 50
epochs with an exponential learning rate decay with γ = 0.95. The initial learning rate was 10−4,
and the batch size 20. All hyper-parameters but the initial learning rate were taken from the baseline
experiments and were not optimized. The initial lr was selected from 1 · 10−3, 5 · 10−4, 1 · 10−4

according to the best test results on the CIFAR dataset The results are presented in Table 4.

The results, shown in table 4, empirically validate that CH learning is equivalent to BP in the
symmetric case, and approximates BP in the asymmetric case for both Cross-Entropy and MSE loss.
Furthermore, the proposed asymmetric CH learning method shows a significantly smaller gap from
BP compared with the other biological learning methods.

A.4.3 Image classification with convolutional networks

The above experiments show that asymmetric CH learning approximates backpropagation well for
fully connected networks (Multi-Layer Perceptron). Since biologically plausible learning methods
often struggle to scale to larger networks and other types of architectures such as convolutional
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networks [Ernoult et al., 2022], we conducted additional experiments to assess the robustness of CH
in other settings. We examine the effects of varying the number of channels in each convolution layer
and adding a weight decay regularization term on performance. All other settings remain the same,
with only one parameter changed at a time.

For these experiments, we used the exact architecture and most hyper-parameters that were chosen for
the Multi-MNIST benchmark. We ran two-layer convolutional networks on the MNIST and CIFAR10
benchmarks. Unlike the guided experiments, conducted on the Multi-MNIST benchmark, in these
experiments, we used 32 channels for the convolution layers and increased the batch size to 256 for
both MNIST and CIFAR10. The models were trained for 100 epochs, although most converged much
faster.

The results shown in Figures 3, 4, 5, 6, compare different weight decay values and show that
CH learning in the asymmetric case approximates the symmetric case (which is equivalent to
backpropagation). Furthermore, in the backpropagation case, we observed a significant degradation in
performance when increasing the weight decay term, up to the level where the model is not learning
and the performances are near chance. Surprisingly, the asymmetric case is much more robust to this
effect.

Figure 3: MNIST results: comparing different weight decay values and presenting the mean perfor-
mance including std per training epoch averaged across 5 runs.
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Figure 4: MNIST results: comparing different weight decay values and presenting the mean perfor-
mance including std per training epoch averaged across 5 runs. Focusing on less weight decay factors,
and starting from the 4th iteration for better visualization of the differences
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Figure 5: CIFAR10 results: comparing different weight decay values and presenting the mean
performance including std per training epoch averaged across 5 runs.
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Figure 6: CIFAR10 results: comparing different weight decay values and presenting the mean
performance including std per training epoch averaged across 5 runs. Focusing on less weight decay
factors, and starting from the 4th iteration for better visualization of the differences

The results shown in Figures 7, 8, 9, compare different numbers of channels for each convolution
layer. Similar to prior works [Ernoult et al., 2022], we observe that the gap between the symmetric and
non-symmetric case increases as the capacity of the network increases, indicating that in large-scale
tasks, backpropagation performs better than the asymmetric case.
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Figure 7: MNIST results: comparing different channels and presenting the mean performance
including std per training epoch averaged across 5 runs.
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Figure 8: MNIST results: comparing different channels and presenting the mean performance
including std per training epoch averaged across 5 runs. Starting from the 10th iteration for better
visualization of the differences
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Figure 9: CIFAR results: comparing different channels and presenting the mean performance
including std per training epoch across 5 runs.

A.4.4 Guided visual processing settings

In the guided experiments, we evaluate our model on Multi-MNIST and CelebA, two common
multi-task learning (MTL) benchmarks. Since current biological methods are not capable of guided
processing, we compare CH with state-of-the-art non-biological optimization methods as reported by
Kurin et al. [2022], replicating their setup and use their reported results.

However, in contrast to the baseline multi-task learning methods, we do not use any learning
’tricks’ such as dropout layers, regularization, or special optimizers. Instead, our model is trained
straightforwardly using the Adam optimizer [Ruder, 2016]. Another distinction from the baseline
methods is that we do not use a validation set. As a result, we do not use an early stopping mechanism,
and report the final results obtained from the last epoch which might introduce some noisiness.
Furthermore, all hyper-parameters were only lightly tuned based solely on the training set.

A.4.5 Multi-MNIST

Similar to the baseline experiments conducted in [Kurin et al., 2022], our BU network employs a
simple architecture composed of 2 convolutional layers followed by a single fully-connected layer and
ReLU non-linearity, along with an additional fully-connected layer as the decoder. Each convolution
layer includes 100 channels, and a 5 × 5 kernel (a single stride and no padding). Similar to the
baseline, the last fully connected layer size is 50. Additionally, to support the BU-TD structure, we
replace all max-pool layers with strided convolution layers. The strided convolution layers have 2× 2
kernel size with a stride of 2 (similarly to the max pool operation).

The standard Adam optimizer [Ruder, 2016] was used to optimize the Cross-Entropy loss without
any regularization, as opposed to the baseline. Similar to the compared methods, we trained for 100
epochs with an exponential learning rate decay with γ = 0.95. The initial learning rate was 5 · 10−4,
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and the batch size was 64. We have chosen the learning rate from [0.005, 0.001, 0.0005, 0.0001]
based on the convergence rate on the train set.

In the experiments below, we keep all the settings above and evaluate the impact of using a single
decoder as well as varying the number of channels in each convolution layer on the performance. The
results shown in Figures 10, 11 demonstrate the robustness of the instruction-based method in a
vanilla setting (as opposed to the baselines compared in the main text).

We observe that increasing the capacity of the model (number of channels) (Fig 10) increases the
performance. Interestingly, in the asymmetric case, further increasing the capacity beyond a certain
point reduces the performance.

Furthermore, when the model uses a single decoder (Fig 11) for both tasks, similar performances are
maintained. This is a very important finding that highlights the ability of the TD stream to guide the
BU stream. When employing a single decoder, the same network is used for both tasks (there are no
task-specific parameters), thus the model cannot rely on task-specific parameters to handle multiple
tasks.

Figure 10: Multi-MNIST results: mean and std of the average task accuracy and loss per training
epoch (starting from the 10th). Comparing different numbers of channels. On the left is the number
of channels at the first convolution layer, while on the right is the number of channels at the second
layer
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Figure 11: Multi-MNIST (single decoder) results: mean and std of the average task accuracy and loss
per training epoch (starting from the 10th). Comparing different number of channels when the model
uses a single decoder.

A.4.6 CelebA

As done in previous work [Kurin et al., 2022], we employ a ResNet-18 [He et al., 2016] (without the
final layer) with batch normalization layers [Ioffe and Szegedy, 2015], and the decoder is a single
linear fully-connected layer with a single neuron output for binary classification. Additionally, we
remove the last average pooling layer to support the symmetric BU-TD structure.

Batch normalization operates without reliance on learnable parameters, instead utilizing aggregated
statistics such as the mean activation value of neurons across multiple iterations. Consequently, we
implement distinct batch normalization for the BU and TD networks, with each network gathering
statistics relevant to its own operations.

The standard Adam optimizer [Ruder, 2016] was used to optimize the Binary-Cross-Entropy loss
without any regularization. Similar to the compared methods, we trained for 50 epochs with an
exponential learning rate decay with γ = 0.95. The initial learning rate was 5 · 10−4 which is chosen
from [0.005, 0.001, 0.0005, 0.0001] based on the convergence rate on the train set. The batch size is
slightly smaller than the baselines in order to fit the GPU memory, and is set to 100 when the BU and
TD networks share the same set of weights, and 64 otherwise.

Statistics of the average task test accuracy obtained from the last epoch (no early stopping) with 5
repetitions are reported in table 5. We compare the BU-TD model across multiple configurations, as
described in Appendix A.4. In addition, we plot the test results during the training process, sampled
every 5 epochs, in Figures 12, 13.
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Method CelebA Test Accuracy

symmetric weights 89.51 ± 0.21
multi-decoders 89.69 ± 0.12
asymmetric weights 79.25 ± 1.63

Table 5: CelebA results: mean and 95% confidence interval of the avg. task test accuracy (in
percentages) across 5 runs.

Figure 12: CelebA results: mean and std of the average task accuracy and loss on the test set per
training epoch (sampled every 5 epochs).

Figure 13: CelebA results: mean and std of the average task accuracy and loss on the test set per
training epoch (sampled every 5 epochs). Within this figure, we omit the results of the asymmetric
model due to being far from the other models. This allows for clearer observation of the distinctions
among the remaining models. Additionally, on the right, presented the results starting from the 10th
epoch.
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The results on the CelebA dataset, which is more challenging are consistent with the Multi-MNIST
results, demonstrating the BU-TD model’s ability to scale and solve complex tasks through Counter-
Hebb learning.

A.5 Asymmetric weights

Weight symmetry poses a significant challenge in biological learning models, as copying weights
across different locations is unrealistic in the brain, referred to as the ’weight transport’ problem
Grossberg [1987]. Therefore, unlike backpropagation, biological models use different weights for
feedforward and feedback streams.

The experiments above showed increasing performance gaps with asymmetric weights compared
to symmetric weights as task and model complexity increase. This phenomenon aligns with other
biologically inspired methods. In this section, we further explore the effect of deviation weight sym-
metry on the model performance, focusing on both symmetry in the initialization of the weights, and
symmetry in the subsequent updates. We use the terms ’symmetric model’ for models with symmetric
weight initialization and symmetric updates, ’asymmetric models’ for weights initialized far from
symmetry and symmetric updates. Additionally we introduced a new ’weak symmetric’ scenario for
models initialized symmetrically (or nearly symmetric), but are subject to noisy, asymmetric updates.
For convenience, an overview of all scenarios is described in Table 6.

In the proposed weak symmetry scenario, the BU and TD weights are initialized symmetrically (or
nearly symmetric), but we introduce noise to the Counter-Hebb update, simulating a more realistic
case of noisy update where the BU and TD weight adjustments are not identical. Hence, the weights
do not maintain symmetry during the learning. Specifically, at each update step, the update value of
each weight is multiplied by a random (can be relatively large) noise from a N (1, σ) distribution,
with a different random variable for each weight. It is worth noting that weak symmetry can also
simulate a scenario in which weights are initialized asymmetrically with close to zero values, and by
the time we start learning a task, the brain has already undergone some weight updates.

The results shown in Figures 14, 15 compare different magnitudes of noise applied to the Counter-
Hebb update. It is shown that a weak symmetry is sufficient for achieving a similar performance as
backpropagation (referred to as a 0 noise in the figures), even with a relatively large magnitude of
noise. Since as the training progresses the results gradually become less symmetric, it demonstrates
the ability of CH learning to converge to good solutions even when the BU and TD weights are not
symmetric and have different values.
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Figure 14: MNIST results: comparing different magnitudes of noise and presenting the mean
performance including std per training epoch averaged across 5 runs. Starting from the 10th iteration
for better visualization of the differences
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Figure 15: CIFAR results: comparing different magnitudes of noise and presenting the mean
performance including std per training epoch averaged across 5 runs. Starting from the 10th iteration
for better visualization of the differences

In addition, we evaluate the weak symmetric scenario in the guided-vision settings on the Multi-
MNIST dataset. The results shown in Fig 16 demonstrate that an exact symmetry is not required
by our model to perform similarly to backpropagation on a guided vision task, achieving similar
performance despite using the TD network for both feedback propagation and guiding attention. The
weak symmetry experiments achieve competitive (and even slightly higher) performances compared
to exact symmetric weights. The dashed line indicates the final performance of the symmetric case.
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Figure 16: Multi-MNIST (weak symmetry) results: mean and std of the average task accuracy and
loss per training epoch (starting from the 10th). Comparing different magnitudes of noise in the weak
symmetry case. The dashed line indicates the final performance of the symmetric case.

To investigate the effect of deviation from weight symmetry on a larger model, we further compare
the different weight asymmetry settings using the same ResNet18-like architecture from the CelebA
experiments. Specifically, we evaluate Counter-Hebb learning on the CIFAR10 dataset under the
following scenarios:

• symmetric

• asymmetric

• asymmetric with a weight decay term with magnitude of 10−2 and 10−3

• weak symmetric weights (noise std of 0.05)

• noisy symmetric scenario which is similar to the weak symmetry but with noise applied
to the weight initialization as well to start with asymmetric weights. Here, weights were
initially set symmetrically, then each weight is multiplied by random noise with an std of
0.05.

Additionally, we compare our model to the feedback alignment method [Lillicrap et al., 2016], as
it achieved the highest performance among other biologically inspired methods in our non-guided
experiments (Table 1). All models were trained for 50 epochs using the Cross Entropy loss, with a
batch size was 128, learning rate of 10−4, and an exponential learning rate decay with γ = 0.95.
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Figure 17: Comparing different weight symmetry using ResNet18 on CIFAR10 and presenting the
mean accuracy including std per training epoch averaged across 5 runs.
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Figure 18: Comparing different weight symmetry using ResNet18 on CIFAR10 and presenting the
mean accuracy including std per training epoch averaged across 5 runs. Excluding FA and starting
from the 4th iteration for better visualization of the differences

The results presented in Figures 17, 18 show that initial weight symmetry is more critical for
approximating backpropagation performance than gradually converging to symmetry later in the
learning process. The asymmetric case is worse than the symmetric case both in terms of convergence
speed and final results. Applying a weight decay term, which guarantees convergence to symmetric
weights, does not appear to have a significant effect or improve results. The results also show that our
model demonstrates significantly better scalability compared to the feedback alignment. In contrast,
both in the weak symmetric case and the noisy symmetric case, where weights do not maintain
symmetry due to noise, performance remains nearly identical to the symmetric case. These results
indicate that exact weight symmetry is not necessary for backpropagation approximation.

A.5.1 Asymmetric weights summary

The empirical experiments confirmed that symmetric Counter-Hebb learning is equivalent to learning
with backpropagation. However, copying the same weights across different locations is unrealistic in
the brain, referred to as the ’weight transport’ problem Grossberg [1987]. Therefore, we explored the
effect of deviation from weight symmetry on the model performance, focusing on both symmetry
in the initialization of the weights, and symmetry in the subsequent updates. See Table 6 for an
overview of these scenarios. In the asymmetric scenario, where weights are initialized far from
symmetric but become more symmetric over training due to the symmetric updates, performance can
approximate backpropagation on simple models and tasks. However, as task complexity and model
size increase, performance begins to fall compared to backpropagation.
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Table 6: Overview of the different weight symmetry settings used in our experiments. The columns
indicate the name of the method, the weights initialization scheme, whether the updates are symmetric
or noisy, the state of the weights at the end of the training, and whether the final performance is
similar to learning with backpropagation in order, respectively

Method Weight Init. Updates Eventually Symmetric Performance

Symmetric sym sym yes ✓
Asymmetric asym sym no ✓–

Asym + WD asym sym yes ✓–

Weak Sym sym nearly sym nearly sym ✓
Noisy Sym nearly sym nearly sym nearly sym ✓

Adding a weight decay term guarantees convergence to weight symmetry, making the Counter-Hebb
update approach the backpropagation update. Yet, the experiments show that late convergence
to backpropagation alone does not ensure comparable performance. We hypothesize that, like
backpropagation, Counter-Hebb and other biologically inspired learning models rely on proper
weight initialization to achieve optimal results. By the time that symmetry of the weights is obtained,
the weights may drift from their optimal initialization. This case will be similar to starting the standard
backpropagation from non-optimal initialization conditions, leading in both cases to suboptimal
performance.

In contrast, the weak symmetric and noisy symmetric scenarios, where weights remain close but do not
converge to an exact symmetry, effectively approximate backpropagation and consistently maintain
nearly identical performance. These findings suggest that exact weight symmetry is not essential
for achieving performance comparable to backpropagation. Since Counter-Hebb naturally applies
symmetric updates, performance appears more dependent on the initial weight configuration than
on later symmetry convergence. Thus, discussions of biological feasibility in learning models may
focus on achieving near-symmetric weight initialization, rather than starting with highly asymmetric
weights and relying on convergence to symmetry.

A.6 Sub-networks analysis

In our experiments, the model has exhibited the capability to solve multiple tasks by assigning a
distinct task-specific sub-network for each task. In this section, we analyze the resulting sub-networks
focusing on the Multi-MNIST experiment, where two tasks: "left" and "right" are involved. For the
purpose of this analysis, we have evaluated a BU-TD model with symmetric weights and a single
decoder. Our analysis shows the characteristics of the different sub-networks learned by the model
and how they evolved during the learning process. Specifically, we have extracted for each task its
corresponding sub-network every 3 epochs. Then we evaluated the size of the sub-networks and
examined the level of overlap between them. The analysis is presented in Fig 19. The findings
collectively provide insights into the learning dynamics of the model and its ability to develop
task-specific representations.

From the figure, several findings can be drawn:

• Dynamic Nature of Sub-Networks: The sub-networks exhibit changes throughout the learn-
ing process, indicating that the model adapts and refines its sub-networks representations.
This adaptation occurs especially in the earlier epochs of the training.

• Sparsity in Sub-Networks: A notable characteristic of the sub-networks is their sparsity
(row 1)- a small percentage of active neurons. The percentage of active neurons drastically
decreases at the early iterations until reaching a plateau. The level of sparsity is lower at the
first layer as it represents the image signal and needs to capture a large number of pixels.

• Fixed top-level hidden layer: The top-level hidden layer is obtained by passing the task via
the task head function. Since we do not update the task head during the training, This layer
remains fixed during the learning.

• Similarity Between Sub-Networks: Despite the sparsity of the sub-networks, they demon-
strate some degree of similarity (row 2). This outcome is likely due to the major correlation
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between the "left" and "right" tasks, as both tasks aim to identify one out of the same ten
digits. The first hidden layer (layer 0) exhibits a degree of similarity, likely arising from
the overlap between the two digits. The following hidden layer (layer 1) shows the least
similarity. The similarity then increases as moving deeper into the network. A possible
explanation could be that early layers focus on the low-level image features at different
image locations (left/right), while deeper layers focus on the high-level features for the
classification of the identified digit.

The results show that the sub-networks are adjusted during the process, their separation can change at
different layers and can depend on the similarity of the tasks.

Figure 19: Analysis of the different sub-networks learned by the model and how they evolved during
the learning process. We sampled the task-dependent sub-networks for each task Every 3 epochs
during learning the Multi-MNIST data set. The columns in the figures represent the different hidden
layers in the network, ordered from the first hidden layer on the left to the top hidden layer on the right.
The X-axis of all figures represents the epochs during training. The first row shows the percentage of
neurons that are being used in each sub-network for every layer. The second row shows the cosine
similarity between the binary masking vectors of the two tasks, where 1 indicates an active neuron
that is being used in the sub-network and 0 denotes an inactive one.

Therefore, the proposed method may offer some additional useful computational properties. In
contrast to the compared baselines that require the full network for inference, our BU visual process
is guided to operate only on a sparse sub-network, resulting in only a portion of the model that is used
during inference. Consequently, after training, we can omit the unused parts of the model, resulting in
a compact representation of the model, which is efficient both in terms of computation and memory.
For example, we can drop approximately 80% of the network when running the model in inference
on Multi-MNIST. Furthermore, the compactness indicates the capacity of the model to accommodate
a larger number of tasks within the same network.

A.6.1 Functional sparse sub-networks

There has been a growing interest in the use of functional sparse sub-networks, following the Lottery-
Ticket Hypothesis [Frankle and Carbin, 2018]. The hypothesis suggests that large dense networks
contain smaller sub-networks that can be learned in isolation and match the performance of the
full network on the learned task. This hypothesis has been supported by empirical evidence and
was proven under certain conditions [Malach et al., 2020]. However, finding such sub-networks
is challenging and is an active area of current research [Chen et al., 2021, Morcos et al., 2019,
Ramanujan et al., 2020, Tanaka et al., 2020, Yu et al., 2022].
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In this paper, we propose to extend this hypothesis suggesting that a sufficiently large network
contains multiple overlapping sub-networks, each dedicated to a different task, resembling a sparse
modular architecture. Our work suggests that these sub-networks can be naturally revealed by
the same top-down mechanism used for propagating feedback signals in conventional networks
(backpropagation). These findings, which are inspired by the observation of a unified top-down
mechanism for both learning and guiding attention, highlight the potential benefits of the interactions
between artificial intelligence and the human brain.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction are clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a separated Limitations section dedicated to the limitations of the
work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

39



Answer: [NA]
Justification: The paper does not include proofs. All mathematical results are provided with
the proper assumptions, and a detailed explanation.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We release a code for creating the proposed model and reproduce the experi-
ments. In addition we provide detailed instructions for how to replicate the results
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in the supplemental material and will be uploaded to
GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting are presented in the core paper, and the full details
are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: the results are accompanied by confidence intervals achieved through multiple
trials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources for each experiment are reported in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The owners of assets used in the paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code and model are well documented. The documentation is on the
supplemental materials and will be upload to GitHub.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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