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Abstract—Large Language Models (LLMs) offer significant
potential for clinical symptom extraction, but their deploy-
ment in healthcare settings is constrained by privacy concerns,
computational limitations, and operational costs. This study
investigates the optimization of compact LLMs for cancer toxicity
symptom extraction using a novel iterative refinement approach.
We employ a student-teacher architecture, where the teacher
model, GPT-4o, dynamically selects the most effective strategy
for the student models (Zephyr-7b-beta and Phi3-mini-128)
between prompt refinement, Retrieval-Augmented Generation
(RAG), and fine-tuning. Our experiments on 294 clinical notes
covering 12 post-radiotherapy toxicity symptoms demonstrate
the effectiveness of this approach. Using 5-fold cross-validation,
we observed significant improvements in F1 scores across all
symptoms. The Phi3 model showed an average F1 score increase
of 26%, while Zephyr achieved a 13% improvement. Notably,
these enhancements were achieved at substantially lower costs,
with Phi-3 being 48 times cheaper and Zephyr 30 times cheaper
than GPT-4o. These results highlight the potential of iterative re-
finement techniques to enhance the capabilities of compact LLMs
for clinical applications, offering a balance between performance,
cost-effectiveness, and privacy preservation in healthcare settings.

Index Terms—Prompt Refinement, Fine-tuning, Large Lan-
guage Models, Toxicity Symptom Extraction

I. INTRODUCTION

A. Optimized LLMs in Clinical Settings

Opportunities and Challenges: Large Language Models
(LLMs) have significant potential in clinical informatics by
processing the growing volume of unstructured data from
electronic health records (EHRs), clinical notes, and patient
reports [1]. Advanced natural language processing (NLP)
tools are crucial for extracting valuable information, such as
identifying symptoms, to improve patient care and support

clinical decision-making [2]. However, integrating LLMs into
healthcare is constrained by privacy concerns, computational
demands, and cost, as described in the following sections.
Privacy Concerns and Resource Limitations: A primary
concern for healthcare institutions is ensuring patient privacy
[3], which often necessitates deploying LLMs on-premises to
avoid transmitting sensitive data to external servers. However,
running large LLMs locally requires significant computa-
tional resources that many facilities cannot easily support.
Additionally, using advanced third-party models like GPT-
4, while powerful, is often financially unsustainable due to
high usage costs [4]. These constraints underscore the need
for cost-effective, locally deployable solutions that balance
performance and resource demands.
Smaller LLMs and Their Limitations: To address privacy
concerns, computational resource limitations, and cost con-
straints, healthcare institutions are exploring smaller LLMs
better suited for local deployment [5]. These models, with
fewer parameters than larger ones like GPT-4, help reduce
strain on resources and costs. However, they often show
reduced performance. For instance, while GPT-4 achieves 87%
and 86% accuracy on medical benchmarks like MedMCQA
and PubMedQA, smaller models typically score 20-30% lower
[6]. This performance gap highlights the challenges smaller
models face in tasks like medical QA and clinical reasoning.
Optimization Challenges: The main challenge is optimizing
smaller LLMs to accurately process clinical data despite
resource constraints. This is particularly important for tasks
like symptom extraction and interpretation, which are critical
in reducing medical errors. Medical errors cause 200,000
preventable deaths and harm 400,000 patients annually in the
U.S., costing the healthcare system $20 billion [7]. Improving
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the performance of smaller LLMs can help enhance patient
outcomes, lower costs, and ensure data privacy is maintained.

B. Clinical Symptom Extraction with LLMs

Recent studies have explored LLMs for extracting clinical
information from unstructured EHR texts. Mahbub et al.
[8] used zero-shot learning with Flan-T5 for SUD severity
extraction, outperforming rule-based approaches. Reese et al.
[9] found GPT-4’s performance in clinical diagnostics to be
sensitive to prompt formulation. Shyr et al. [10] demonstrated
GPT-3.5 Turbo’s efficacy in zero- and few-shot settings for rare
disease phenotype extraction. Guevara et al. [11] showed fine-
tuned Flan-T5 models’ superiority in extracting social deter-
minants of health, especially with synthetic data augmentation.
These studies underscore LLMs’ potential to enhance critical
health information extraction from clinical texts, improving
symptom and phenotype identification for effective radiation
oncology toxicity management.

C. Iterative LLM Refinement Techniques

Single LLM Refinement: Recent advancements in LLMs
have focused on iterative refinement techniques to enhance
performance across diverse tasks. Chen et al. [12] demon-
strated that multiple refinement rounds led to small but consis-
tent improvements, with COMETDA increasing from 0.8427
to 0.8478 and COMETQE from 0.1083 to 0.1153. Human
evaluations showed that 32% of evaluators preferred the re-
fined German-to-English translations, and 31% preferred the
refined Chinese-to-English translations, indicating improved
fluency and naturalness. Building on this concept, Xiong et
al. [13] developed the IPR framework, which outperformed es-
tablished baselines in complex interactive tasks. Madaan et al.
[14] further advanced this approach with Self-Refine, yielding
significant improvements of 32% in Sentiment Reversal, 49%
in Dialogue Response, and 30% in Constrained Generation,
without additional training data. Yan et al. [15] extended these
principles to enable resource-efficient performance enhance-
ments in less capable models. n the domain of bioinformat-
ics, Chen et al. [16] applied iterative prompt refinement to
substantially improve ChatGPT’s accuracy in extracting gene
relationships and biological pathways, increasing coverage by
about 11% in pathway reconstruction.
Collaborative LLM Refinement: Recent advancements have
explored collaborative frameworks utilizing multiple LLMs.
Lee et al. [17] introduced LLM2LLM, where a teacher LLM
augments small datasets to enhance student LLM performance
in low-data scenarios. Zhang et al. [18] developed TS-Align,
aligning LLMs with human preferences without manual an-
notations. Saha et al. [19] demonstrated improvements in
student LLM performance through teacher-generated person-
alized explanations. Yuan et al. [20] showed that teacher-
generated analogies substantially improve student LLMs’ sci-
entific concept comprehension and question-answering capa-
bilities. These studies collectively demonstrate the efficacy
of collaborative LLM frameworks in enhancing performance

across diverse domains and tasks, particularly in scenarios with
limited data or complex reasoning requirements.

D. LLM Refinement in Symptom Extraction

Khanmohammadi et al. [21] introduce a student-teacher
architecture for prostate cancer radiotherapy symptom ex-
traction, where the large-scale Mixtral model serves as the
student and GPT-4 as the teacher. Their approach focuses
specifically on iterative prompt refinement; the teacher model
repeatedly refines the prompts given to the student to improve
performance. While this method resulted in a significant
improvement, raising the average F1 score from 0.49 to 0.73,
its focus was on refining a single, large student model using
one primary technique. This foundational work establishes
the viability of the student-teacher paradigm for this task,
demonstrating that iterative prompt refinement can signifi-
cantly enhance performance in a specialized clinical domain.

E. Remaining Gaps

While recent studies have advanced LLM integration in
clinical symptom extraction, several areas require further in-
vestigation:

• Application of student-teacher frameworks to more com-
pact LLMs (<10 billion parameters) for on-premises
clinical deployment.

• Integrating RAG into the student-teacher framework for
improved clinical prompt optimization.

• Optimization of fine-tuning strategies for domain-specific
adaptations in clinical use.

• Expansion of the teacher model’s role in dynamically
guiding student learning process.

These directions address challenges in deploying efficient,
accurate, and privacy-preserving LLMs in clinical settings.

F. Contributions of This Work

This study investigates several aspects of the student-teacher
framework for clinical symptom extraction:

• Application of the framework to smaller LLMs (7 and
3.8 billion parameters) for clinical settings.

• Integration of RAG within prompt refinement to enhance
contextual understanding and accuracy.

• Exploration of iterative fine-tuning for domain adapta-
tions in clinical contexts.

• Implementation of an advanced student-teacher frame-
work where the teacher model optimizes refinement
strategies as a decision agent.

Project details, including full prompt templates, are avail-
able on GitHub: https://github.com/Ledengary/hybrid-llm-
refinement.

II. EXPERIMENTS

A. Data Description

Our dataset comprises D = {x1, x2, . . . , x294} clinical
notes from 100 unique prostate cancer patients treated with 78
Gy radiotherapy (RT) between 2013 and 2020, documented
beyond 6 months post-RT to focus on long-term toxicities.

https://github.com/Ledengary/hybrid-llm-refinement
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Fig. 1. The diagram illustrates the iterative refinement method, involving a student model (Phi3-mini-128 or Zephyr-7B-beta) and a teacher model (GPT-4o).
The process starts with the student model receiving clinical notes and a target symptom, generating initial labels and reasoning. The teacher model then
assesses performance and decides (B) between prompt refinement (A) and fine-tuning (C). The teacher model enhances prompts with RAG examples, selects
samples and hyperparameters for fine-tuning, and dynamically chooses between these methods in a hybrid approach. This process is applied iteratively to
improve the student model’s symptom extraction capabilities.

Patients contributed multiple notes over time. To avoid leakage
in 5-fold cross-validation, we enforced patient-level splits:
all notes from a patient (grouped by their surrogate Medical
Record Number) were assigned entirely to either training or
test folds. Each note xi is labeled with yi ∈ {−1, 0, 1}, where
yi = −1 indicates absence, yi = 0 unknown status, and yi = 1
presence of one of twelve common post-RT toxicities (S):
Cystitis, Dysuria, Erectile Dysfunction, Hematuria, Inconti-
nence, Nocturia, Proctitis, Rectal Bleeding, Stricture, Urgency,
Urinary Obstruction, and Urothelial Carcinoma. This explicit
“unknown” (yi = 0) label allows the model to abstain on
ambiguous or conflicting notes rather than forcing a decision.
To ensure patient privacy, we applied the Stanford & Penn
MIDRC Deidentifier [22] to automatically remove all protected
health information (PHI), replacing it with realistic surrogates
while maintaining clinical context.

To ensure robust evaluation, we employed stratified 5-
fold cross-validation, partitioning D into 5 disjoint subsets
D1, D2, . . . , D5, ensuring each subset maintained the same
symptom distribution as in the overall dataset. For each fold
k, the training set is defined as D(k)

train = D\Dk and the test set
as D

(k)
test = Dk, where k = 1, 2, . . . , 5, resulting in 236 notes

for training and 58 notes for testing.

In addition to the clinical notes, we utilized selected cat-
egories from the Massive Multitask Language Understanding
(MMLU) dataset [23] to form a clinical subset MM for fine-
tuning. The categories — anatomy, clinical knowledge, college
medicine, human sexuality, medical genetics, and professional
medicine — yielded 1225 records. Based on the Superficial
Alignment Hypothesis [24], which suggests that a model’s pre-

trained knowledge can be refined with a relatively small set of
examples, this subset was used to enhance the model’s clinical
knowledge for symptom extraction.

B. Data Preprocessing

Our preprocessing, designed to support the RAG compo-
nent, involves embedding each clinical note xi into a 768-
dimensional vector zi using Bio_ClinicalBERT:

zi = fBERT(xi) ∈ R768 (1)

In addition, GPT-4o generates context-reasoning pairs
CR(xi) = (ci, ri) for each note, where ci represents relevant
context and ri represents reasoning for the label yi. These em-
beddings and CR pairs are stored in a vector database, creating
a semantically rich dataset. This dataset serves as the input for
the iterative refinement process, allowing for context-aware
improvements in the student model’s performance within the
RAG framework.

C. Iterative Refinement

1) Concepts and Terminologies: The iterative refinement
process in a student-teacher framework has two main compo-
nents:
1. Student Model: The student model, such as Phi3-mini-
128 or Zephyr-7B-beta, is responsible for the initial task of
symptom extraction from clinical notes. Formally, let fstudent
represent the student model, which takes an input zi (the
embedded clinical note) and a prompt p, and generates an
output prediction ŷi:

ŷi = fstudent(zi, p) (2)



where zi ∈ R768 is the embedded vector of note xi and ŷi ∈
{−1, 0, 1} is the predicted label.
2. Teacher Model: The teacher model, fteacher, GPT-4o in our
case, oversees the refinement process. It evaluates the student
model’s performance using a performance metric such as the
macro F1-score s = F1-macro(Y, Ŷ ), where Y are the true
labels and Ŷ are the predicted labels from the student model.
The teacher iteratively refines the prompts or fine-tunes the
student model’s parameters to improve this performance score.

2) Iterative Refinement Process: The iterative refinement
process is as follows:
I. Initial Classification: The student model first processes the
notes for a specific symptom (S), using a structured prompt
to classify the presence of the symptom. At iteration t = 0,
the student model generates an initial prediction ŷ0i for each
note xi using an initial prompt p0:

ŷ0i = fstudent(zi, p0) (3)

The student model classifies each note as yes, no, or idk and
provides its reasoning. This initial classification forms the
baseline for further refinements in subsequent iterations.
II. Performance Evaluation: The student model’s outputs are
evaluated by comparing the predicted labels Ŷt = {ŷti} with
the ground truth Y . We denote st as the performance score at
iteration t, calculated using the defined macro F1-score.
III. Refinement by the Teacher: Based on the performance
score st and the reasoning provided by the student model,
the teacher model fteacher decides whether to refine the prompt
or fine-tune the model parameters. The teacher evaluates the
student’s current performance and action history to determine
the next refinement step.
IV. Action Selection: The teacher model fteacher chooses
between two refinement strategies: dt = Prompt Refinement
if prompt refinement is deemed more effective, and dt =
Fine-Tuning otherwise. In prompt refinement, the teacher gen-
erates a refined prompt pt+1, while in fine-tuning, it adjusts the
student model parameters θ by minimizing the loss L(Y, Ŷt)
using gradient descent with learning rate η:

θt+1 = θt − η∇θtL(Y, Ŷt) (4)

V. Iteration and Application: The selected refinement strat-
egy is applied, and the student model processes the data
again in the next iteration. If performance improves, a new
round begins. The process continues for 16 rounds per epoch,
with each iteration t yielding a new prompt pt or updated
parameters θt.
VI. Epoch Progression: Each epoch consists of 16 refinement
rounds. After each epoch, the best-performing prompt pbest
and the corresponding model parameters θbest are selected.
The process continues until no further improvement in st
is observed, indicating convergence. The final output is the
optimized student model fstudent with the best-performing
configuration.

D. Methods Investigated

1) Prompt Refinement Approach: The prompt refinement
approach is a key component of our iterative refinement
process, focusing on optimizing the prompts used by the
student models for symptom extraction. This approach consists
of two main steps:
I. Prompt Refinement: When this action is selected, the
teacher model fteacher (GPT-4o) refines the prompt pt used
by the student model. The refinement is based on the student
model’s current performance score st. The goal is to generate
an improved prompt pt+1 that better guides the student model
fstudent in extracting symptoms from clinical notes:

pt+1 = fteacher(st, pt) (5)

The teacher model analyzes the student’s performance and
generates a refined prompt aimed at improving the extraction
capabilities of the student model fstudent(zi, pt+1).
II. RAG Example Generation: After refining the prompt,
the next step involves generating RAG examples. For each
clinical note xi, the system queries a vector database to retrieve
semantically similar context-reasoning pairs CR(xi). These
pairs are represented as:

CR(xi) = {(ci1 , ri1), (ci2 , ri2), (ci3 , ri3)} (6)

where cj denotes the context, and rj represents the reasoning
associated with each retrieved note xj . The teacher model
utilizes these pairs to create examples that are used to further
refine the student model’s understanding. Next, the teacher
model fteacher uses the refined prompt pt+1 and the retrieved
CR(xi) pairs to generate between one and five (n) RAG ex-
amples E, which enhance the student model’s understanding:

E = fteacher(pt+1, CR(xi)) = {e1, . . . , en} (7)

The refined prompt pt+1 is updated by appending the gener-
ated RAG examples E, i.e., pt+1 = pt+1 + E, and used by
the student model in the next iteration of symptom extraction.

2) Fine-Tuning Approach: The fine-tuning approach adapts
the student model for improved clinical symptom extraction,
consisting of these steps:
I. Sample Selection: The teacher model fteacher strategically
selects samples from both the clinical MMLU dataset M
and the context-reasoning pairs CR derived from our clinical
notes. The sample selection is guided by the student model’s
performance on previous iterations, with a focus on areas
where the model has shown weakness or failure. The selected
samples directly address the student model’s shortcomings in
symptom identification and classification.
II. Fine-Tuning Configuration: Once the relevant samples
have been selected, the teacher model determines the optimal
hyperparameters for fine-tuning the student model fstudent. This
involves adjusting key parameters based on the architecture
and the target modules used in parameter-efficient fine-tuning
(PEFT), such as attention heads and transformer layers.

By using these tailored samples and fine-tuned hyperpa-
rameters, the student model undergoes targeted fine-tuning,
ensuring that the process addresses the identified weaknesses.



This approach leads to an efficient and effective improvement
in the model’s ability to accurately extract and classify symp-
toms from clinical notes.

3) Hybrid Approach: The hybrid approach combines the
strengths of prompt refinement and fine-tuning, enabling dy-
namic adaptation based on the model’s performance and needs.
Here, the teacher model acts as an intelligent agent, deciding
between prompt refinement and fine-tuning at each iteration.
The process is outlined as follows:
I. Action Selection: fteacher is presented with a comprehensive
prompt that includes: (a) the best-performing prompt so far,
(b) previous prompts that were less effective, (c) the student
model’s performance across all notes, including ground truth
labels, output labels, and reasoning, and (d) a history of
previous actions taken and their resulting performance metrics.
Based on this information, the teacher model selects an
action, denoted as at ∈ {Prompt Refinement,Fine-Tuning},
representing the refinement strategy for the next iteration. The
teacher model returns its decision as a JSON object, including
the chosen action at and a brief explanation for why it believes
this action is the most effective next step.
II. Action Execution: Based on the teacher’s decision at:
(a) if prompt refinement is chosen, the process proceeds as
described in Section II-D1, and (b) if fine-tuning is chosen,
the process proceeds as described in Section II-D2. To effec-
tively consider the history of previous interactions and actions
taken, we embedded this information directly into the prompt
provided to the teacher model. This embedded history includes
essential details of past refinements, such as the specific
actions taken (prompt refinement or fine-tuning), the resulting
performance metrics st, and the hyperparameters used in
previous iterations. By incorporating this historical context
within the prompt, we enable the teacher model to make
informed decisions based on prior outcomes without the need
for maintaining a costly and extensive chain of interactions.
This approach allows the teacher model to adapt its strategy in
subsequent rounds. For instance, if prompt refinement has been
attempted multiple times without significant improvement, the
teacher model might decide to switch to fine-tuning, or vice
versa. This method effectively balances the need for historical
context with the constraints of the model’s context window
and computational efficiency considerations.

E. Student and Teacher Evaluation Metrics

In this study, we evaluate our student models using a
stratified 5-fold cross-validation approach, measuring accuracy
and F1-macro scores after each symptom annotation. Final per-
formance metrics are reported as averages across all folds. We
assess computational costs based on prompt length and model
weights, calculating expenses for processing tokens with GPT-
4o at 5.00and15.00 per million input and output tokens,
respectively. Energy consumption is evaluated by tracking
power usage during model inference, converted to monetary
costs using the average U.S. electricity rate of 16.88 cents per
kilowatt-hour. To balance performance and cost-effectiveness,
we introduce a Performance-Cost Ratio (PCR), calculated by

dividing the performance metric (accuracy or F1-score) by
the associated cost. This approach, combining cross-validation
with cost analysis and PCR, ensures a thorough understanding
of both clinical efficacy and operational efficiency of the
student models in realistic healthcare settings.

III. RESULTS

Performance Improvement Across Refinement Techniques:
During the iterative refinement process, both student models
showed significant performance gains, with the choice of
technique yielding distinct outcomes. For the Zephyr model,
RAG refinement provided the largest improvement, increasing
the average F1 score from 0.32 to 0.73, a mean increase of
0.41. The hybrid method also showed strong improvement,
reaching a final score of 0.69 (a 0.38 mean increase), while
fine-tuning alone yielded more modest gains, ending at 0.46.

The smaller Phi-3 model demonstrated even greater respon-
siveness to refinement. The RAG approach lifted its score from
0.40 ± 0.20 to 0.87 ± 0.09, the largest overall improvement
with a mean increase of 0.46 and a standard deviation reduc-
tion of 0.11. The hybrid method was also highly effective,
achieving a final score of 0.80 ± 0.14. In contrast, fine-tuning
offered negligible performance gains for Phi-3, with a final
score of just 0.42 ± 0.20.
Test Set Performance and Cost Analysis: Figure 2 shows
Phi-3’s performance across refinement techniques, reporting
accuracy, F1-macro, and average cost per test note. The initial
average accuracy score for Phi-3 was 0.446. After refinement,
the Hybrid approach showed the highest improvement with
an average accuracy of 0.636, closely followed by RAG
at 0.629, while fine-tuning yielded minimal improvement
to 0.512. For F1-macro scores, the initial performance was
0.307, with the Hybrid method achieving the highest refined
average score of 0.567, followed by RAG at 0.509, while fine-
tuning showed almost no improvement. GPT-4o, tested with
both the initial Phi-3 prompt and the refined Hybrid prompt
(selected as it performed best in both accuracy and F1-macro),
demonstrated initial accuracy and F1-macro scores of 0.710
and 0.614 respectively, improving to 0.902 and 0.826 with the
refined prompt. Notably, the average costs per test note varied
significantly: GPT-4o was the most expensive at $7.23×10−2,
followed by fine-tuning at $3.7×10−3, Hybrid at $1.5×10−3,
and RAG being the most cost-effective at $1.3× 10−3.

For the Zephyr model, the initial average accuracy was
0.364 across all methods. Post-refinement, the RAG approach
demonstrated the highest improvement with an average accu-
racy of 0.593, followed by the Hybrid method at 0.573, while
fine-tuning showed minimal improvement to 0.413. For F1-
macro scores, the initial average performance was 0.315, with
RAG achieving the highest refined average score of 0.487,
followed by Hybrid at 0.442, and fine-tuning showing no
substantial improvement at 0.345. GPT-4o, evaluated using
both the initial Zephyr prompt and the refined RAG prompt
(chosen for its superior performance in both accuracy and
F1-macro), showed initial accuracy and F1-macro scores of
0.664 and 0.601 respectively, improving to 0.876 and 0.849



Fig. 2. Performance and cost analysis of Phi-3 and Zephyr models using 5-fold cross-validation. Left panels: Initial (brighter colors) and refined (darker
colors) performance scores (blue and green bars) and associated costs (red bars) across different refinement techniques: Hybrid, Finetuned, RAG, and GPT-4o.
Hatched bars represent F1-macro scores, smooth bars indicate accuracy. Values shown are averages across 12 toxicity symptoms, with each symptom’s score
being the mean of its 5-fold cross-validation results. Error bars represent standard deviations across symptoms. Right panel: Average Performance-Cost Ratio
for refined Phi-3 and Zephyr models, illustrating the balance between performance scores and associated costs.

with the refined prompt. The average costs per test note varied
considerably: GPT-4o was the most expensive at $6.70×10−2,
followed by fine-tuning at $4.2×10−3, Hybrid at $2.2×10−3,
and RAG being the most cost-effective at $1.2× 10−3.
Impact of RAG Examples: To validate RAG, we ran an
ablation comparing prompt refinement with and without RAG
examples. Removing them reduced F1 by 10% for Zephyr
and 13% for Phi-3, underscoring their crucial role in boosting
performance on clinical notes.
PCR Analysis: The right panel in Figure 2 presents the
average PCR for refined Phi-3 and Zephyr models across
the 12 toxicity symptoms. The updated results reveal a nu-
anced performance comparison between the two models. For
accuracy-based PCR, RAG yielded the highest values, with
Zephyr slightly outperforming Phi-3 (494 vs. 484), while the
Hybrid approach showed Phi-3 significantly ahead (424 vs.
250). Fine-tuning resulted in higher PCR for Phi-3 (138)
compared to Zephyr (98). F1-based PCR values followed a
similar pattern, with Zephyr marginally leading in RAG (406
vs. 392) and Phi-3 maintaining a substantial advantage in the
Hybrid approach (378 vs. 201). GPT-4, despite high perfor-
mance, had the lowest PCR due to its higher cost. These results
highlight RAG’s efficiency in balancing performance and cost
for both models, while demonstrating Phi-3’s clear advantage
in the Hybrid method. The performance gap between models
is less pronounced in RAG but more significant in the Hybrid
approach, particularly for F1-based metrics, with fine-tuning
showing moderate cost-effectiveness for both models.
Generalizability on Abstract Classification: To test gener-
alizability, we applied the framework to multi-class medical
abstract classification using the Schopf et al. [25] dataset,
where each abstract is labeled with one of five disease cat-
egories: neoplasms, digestive system diseases, nervous system
diseases, cardiovascular diseases, or general pathological
conditions. We trained the models on 10,000 samples with
seed 23 and evaluated the final F1-macro scores on the 2,888-
sample test set. The results are summarized in Table I. The

TABLE I
F1-MACRO SCORES ON MEDICAL ABSTRACT CLASSIFICATION

Language Model Initial Finetuned RAG Hybrid

Phi-3 0.42 0.46 0.55 0.59
Zephyr-7B 0.44 0.53 0.58 0.61

TABLE II
F1-MACRO SCORES FOR ZEPHYR ACROSS THREE SEEDS

Method Seed 23 Seed 42 Seed 84 Mean Std

Hybrid 0.44 0.39 0.51 0.45 0.05
Finetuned 0.34 0.33 0.42 0.36 0.04
RAG 0.48 0.51 0.39 0.46 0.05

framework produced consistent performance gains for both
models across all refinement methods. These positive results
on a dataset that differs in domain (abstracts vs. clinical
notes) and task complexity provide strong evidence that our
refinement methodology can be generalizable.
Stability Analysis Across Random Seeds: To rule out
random variation, we tested stability by re-running Zephyr
with three seeds (23, 42, 84). The final F1 scores for each
refinement method are reported in Table II. Final scores are
consistent across runs with low variance, confirming that re-
ported gains reflect stable effects of the refinement framework
rather than random initialization.

IV. LIMITATIONS

While our study shows promising results in optimizing com-
pact LLMs for clinical applications, several limitations remain.
The iterative refinement with GPT-4 incurs high API costs,
suggesting future work could explore more cost-effective,
locally-deployable models. Our focus on a basic classification
task in clinical notes sets a baseline but leaves room for more
complex healthcare applications. Additionally, experiments
were limited to prostate cancer radiotherapy; future studies
should test generalizability across diverse specialties.



V. CONCLUSION

This study investigated iterative refinement strategies for op-
timizing compact LLMs in clinical applications, with emphasis
on privacy, computation, and cost. Using a student–teacher
framework with Zephyr and Phi-3 as students and GPT-
4o as the teacher, we compared RAG, fine-tuning, and a
hybrid approach. RAG consistently improved accuracy and
F1-macro while maintaining low cost, and the hybrid method
yielded the strongest overall performance, particularly for Phi-
3. Notably, Phi-3 often surpassed Zephyr, underscoring that
refinement strategy can be more critical than model size.
Although GPT-4o achieved the highest performance, its cost
limited efficiency. These findings demonstrate that iterative
refinement can enable smaller LLMs to achieve competitive
performance with substantially greater efficiency, offering a
practical alternative to larger models in specialized domains.
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