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Extended Abstract
Boolean networks were first introduced by Kauffman as models for gene regulatory networks [1].
These models have gained popularity because of their simplicity and ability to capture the
complex behaviors of biological systems. Currently, the repository Biodivine Boolean Models
contains more than 230 Boolean network models [2].

A systematic investigation of these biological models suggests that they are incredibly ro-
bust. In particular, they are resilient to perturbations and tend to reach the same phenotype
despite small disturbances. An explanation of this phenomenon was first given by Kauffman,
who showed empirically that a network’s connectivity determines the stability of the Boolean
network [1]. This was further expanded on by Derrida, who provided a theoretical explanation
for the effect of connectivity [3]. This was succeeded by many works that looked at various
features of biological networks to prove empirically the relation between a network parameter
and stability.

Building upon this foundational understanding of robustness in Boolean networks, our work
delves into the intrinsic trade-off between phenotypic complexity and network stability. Using
tools from analytic number theory and coding theory [4–6], we prove and extend a conjecture
by Willadsen, Triesch, and Wiles. Specifically, we show that network entropy, a measure of
complexity, sets a tight upper limit on network stability (see Figure 1). We further demonstrate
that this upper bound takes the form of a straight line with a negative slope, where the slope
depends on the size of the network. As a consequence, we derive the Pareto frontier between
complexity and stability, allowing us to determine exactly how much stability is achievable for
any given level of complexity.
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Figure 1: Coherence versus entropy. We plotted data from 50,000 randomly generated
Boolean networks, each with 12 nodes. In these networks, every node is regulated by two
others using a random, non-degenerate function. The dashed red line shows the theoretical
upper bound we derived. We clearly observe that coherence never exceeds this bound, and in
fact, some networks come very close to it, demonstrating that the bound is not only valid but
also tight.
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