
Published in Transactions on Machine Learning Research (11/2023)

Understanding Curriculum Learning in Policy Optimization
for Online Combinatorial Optimization

Runlong Zhou vectorzh@cs.washington.edu
University of Washington

Zelin He zelinh2@uw.edu
University of Washington

Yuandong Tian yuandong@fb.com
Facebook AI Research

Yi Wu jxwuyi@gmail.com
Tsinghua University

Simon S. Du ssdu@cs.washington.edu
University of Washington

Reviewed on OpenReview: https: // openreview. net/ forum? id= gKEbBKRUjA

Abstract

Over the recent years, reinforcement learning (RL) starts to show promising results in tack-
ling combinatorial optimization (CO) problems, in particular when coupled with curriculum
learning to facilitate training. Despite emerging empirical evidence, theoretical study on why
RL helps is still at its early stage. This paper presents the first systematic study on policy
optimization methods for online CO problems. We show that online CO problems can be
naturally formulated as latent Markov Decision Processes (LMDPs), and prove convergence
bounds on natural policy gradient (NPG) for solving LMDPs. Furthermore, our theory
explains the benefit of curriculum learning: it can find a strong sampling policy and reduce
the distribution shift, a critical quantity that governs the convergence rate in our theorem.
For a canonical online CO problem, the Best Choice Problem (BCP), we formally prove that
distribution shift is reduced exponentially with curriculum learning even if the curriculum
is a randomly generated BCP on a smaller scale. Our theory also shows we can simplify the
curriculum learning scheme used in prior work from multi-step to single-step. Lastly, we
provide extensive experiments on the Best Choice Problem, Online Knapsack, and AdWords
to verify our findings.

1 Introduction

In recent years, machine learning techniques have shown promising results in solving combinatorial opti-
mization (CO) problems, including traveling salesman problem (TSP, Kool et al. (2019)), maximum cut
(Khalil et al., 2017) and satisfiability problem (Selsam et al., 2019). While in the worst case some CO prob-
lems are NP-hard, in practice, the probability that we need to solve the worst-case problem instance is low
(Cappart et al., 2021). Machine learning techniques are able to find generic models which have exceptional
performance on the majority of a class of CO problems.

A significant subclass of CO problems is called online CO problems, which has gained much attention
(Grötschel et al., 2001; Huang, 2019; Garg et al., 2008). Online CO problems entail a sequential decision-
making process, which perfectly matches the nature of reinforcement learning (RL).

1

https://openreview.net/forum?id=gKEbBKRUjA

Published in Transactions on Machine Learning Research (11/2023)

This paper concerns using RL to tackle online CO problems. RL is often coupled with specialized techniques
including (a particular type of) Curriculum Learning (Kong et al., 2019), human feedback and correction
(Pérez-Dattari et al. (2018), Scholten et al. (2019)), and policy aggregation (boosting, Brukhim et al. (2021)).
Practitioners use these techniques to accelerate the training speed.

While these hybrid techniques enjoy empirical success, the theoretical understanding is still limited: it is
unclear when and why they improve the performance. In this paper, we particularly focus on RL with
Curriculum Learning (Bengio et al. (2009), also named “bootstrapping” in Kong et al. (2019)): train the
agent from an easy task and gradually increase the difficulty until the target task. Interestingly, these
techniques exploit the special structures of online CO problems.

Main contributions. In this paper, we initiate the formal study on using RL to tackle online CO problems,
with a particular emphasis on understanding the specialized techniques developed in this emerging subarea.
Our contributions are summarized below.

‚ Formalization. For online CO problems, we want to learn a single policy that enjoys good perfor-
mance over a distribution of problem instances. This motivates us to use Latent Markov Decision Process
(LMDP) (Kwon et al., 2021a) instead of standard MDP formulation. We give concrete examples, the Best
Choice Problem (BCP, also known as the Secretary Problem), Online Knapsack, and AdWords (Online Match-
ing and Ad Allocation, ADW), to show how LMDP models online CO problems. With this formulation, we
can systematically analyze RL algorithms.

‚ Provable efficiency of policy optimization. By leveraging recent theory on Natural Policy Gradient
for standard MDP Agarwal et al. (2021), we analyze the performance of NPG for LMDP. The performance
bound is characterized by the number of iterations, the excess risk of policy evaluation, the transfer error,
and the relative condition number κ that characterizes the distribution shift between the sampling policy
and the optimal policy. We also take into account the effect of entropy regularization. To our knowledge,
this is the first performance bound of policy optimization methods on LMDP.

‚ Understanding and simplifying Curriculum Learning. Using our performance guarantee on NPG for
LMDP, we study when and why Curriculum Learning is beneficial to RL for online CO problems. Our main
finding is that the main effect of Curriculum Learning is to give a stronger sampling policy. Under certain
circumstances, Curriculum Learning reduces the relative condition number κ, improving the convergence
rate. For BCP, we provably show that Curriculum Learning can exponentially reduce κ compared with
using the naïve sampling policy. Surprisingly, this means even a randomly constructed curriculum of BCP
accelerates the training exponentially. As a direct implication, we show that the multi-step Curriculum
Learning proposed in Kong et al. (2019) can be significantly simplified into a single-step scheme. Lastly,
to obtain a complete understanding, we study the failure mode of Curriculum Learning, in a way to help
practitioners to decide whether to use Curriculum Learning based on their prior knowledge. To verify our
theories, we conduct extensive experiments on three classical online CO problems [BCP, Online Knapsack
(decision version, OKD), and ADW (decision version)] and carefully track the dependency between the
performance of the policy and κ.

2 Related Works

Combinatorial Optimization problems. CO has been a long lasting field of people’s interest. There
are a rich literature regarding CO problems such as traveling salesman problem (Flood (1956); Bellmore &
Nemhauser (1968)), maximum cut (Karp (1972); Goemans & Williamson (1995)), and satisfiability problem
(Cook (1971); Trakhtenbrot (1984)).

RL for CO. There have been rich literature studying RL for CO problems, e.g., using Pointer Network
in REINFORCE and Actor-Critic for routing problems (Nazari et al., 2018), combining Graph Attention
Network with Monte Carlo Tree Search for TSP (Drori et al., 2020) and incorporating Structure-to-Vector
Network in Deep Q-networks for maximum independent set problems (Cappart et al., 2019). Bello et al.
(2017) proposed a framework to tackle CO problems using RL and neural networks. Kool et al. (2019)
combined REINFORCE and attention technique to learn routing problems. Vesselinova et al. (2020) and
Mazyavkina et al. (2021) are taxonomic surveys of RL approaches for graph problems. Bengio et al. (2020)

2

Published in Transactions on Machine Learning Research (11/2023)

summarized learning methods, algorithmic structures, objective design and discussed generalization. In
particular scaling to larger problems was mentioned as a major challenge. Compared to supervised learning,
RL not only mimics existing heuristics, but also discover novel ones that humans have not thought of, for
example chip design (Mirhoseini et al., 2021) and compiler optimization (Zhou et al., 2020b). Theoretically,
there is a line of work on analyzing data-driven approach to combinatorial problems (Balcan, 2020). However,
to our knowledge, the theoretical analysis for RL-based method is still missing.

Kong et al. (2019) focused on using RL to tackle online CO problems, which means that the agent must
make sequential and irrevocable decisions. They encoded the input in a length-independent manner. For
example, the i-th element of a n-length sequence is encoded by the fraction i{n and other features, so that
the agent can generalize to unseen n, paving the way for Curriculum Learning. Three online CO problems
were mentioned in their paper: ADW, Online Knapsack, and BCP. Currently, Online Matching (ADW)
and Online Knapsack have only approximation algorithms (Huang et al., 2019; Albers et al., 2021). There
are also other works about RL for online CO problems. Alomrani et al. (2021) uses deep-RL for Online
Matching. Oren et al. (2021) studies Parallel Machine Job Scheduling problem (PMSP) and Capacitated
Vehicle Routing problem (CVRP), which are both online CO problems, using offline-learning and Monte
Carlo Tree Search.

LMDP. We provide the exact definition of LMDP in Section 4.1. As studied by Steimle et al. (2021), in
the general cases, optimal policies for LMDPs are history-dependent. This is different from standard MDP
cases where there always exists an optimal history-independent policy. They showed that even finding the
optimal history-independent policy is NP-hard. Kwon et al. (2021a) investigated the sample complexity
and regret bounds of LMDP in the history-independent policy class. They presented an exponential lower-
bound for a general LMDP and derived algorithms with polynomial sample complexities for cases with
special assumptions. Kwon et al. (2021b) showed that in reward-mixing MDPs, where MDPs share the same
transition model, a polynomial sample complexity is achievable without any assumption to find an optimal
history-independent policy.

Convergence rate for policy gradient methods. There is line of work on the convergence rates of policy
gradient methods for standard MDPs (Bhandari & Russo (2021), Wang et al. (2020), Liu et al. (2020), Ding
et al. (2021), Zhang et al. (2021)). For softmax tabular parameterization, NPG can obtain an Op1{T q rate
(Agarwal et al., 2021) where T is the number of iterations; with entropy regularization, both PG and NPG
achieves linear convergence (Mei et al., 2020; Cen et al., 2021). For log-linear policies, sample-based NPG
makes an Op1{

?
T q convergence rate, with assumptions on ϵstat, ϵbias and κ (Agarwal et al., 2021) (see our

Definition 4); exact NPG with entropy regularization enjoys a linear convergence rate up to ϵbias (Cayci
et al., 2021). We extend the analysis to LMDP.

Curriculum Learning. There are a rich body of literature on Curriculum Learning (Zhou et al., 2021b;a;
2020a; Ao et al., 2021; Willems et al., 2020; Graves et al., 2017). As surveyed in Bengio et al. (2009),
Curriculum Learning has been applied to training deep neural networks and non-convex optimizations and
improves the convergence in several cases. Narvekar et al. (2020) rigorously modeled curriculum as a di-
rected acyclic graph and surveyed work on curriculum design. Kong et al. (2019) proposed a bootstrapping
(Curriculum Learning) approach: gradually increase the problem size after the model works sufficiently well
on the current problem size.

3 Motivating Online CO Problems

Online CO problems are a natural class of problems that admit constructions of small-scale instances, because
the hardness of them can be characterized by the input length, and instances of different scales are similar.
This property simplifies the construction of curricula and underscores curriculum learning. We also believe
online CO problems make the use of LMDP suitable, because under a proper distribution twmu, instances
in a large portion of the probability space have similar near optimal solutions.

In this section we introduce three motivating online CO problems. We are interested in these problems
because they have all been extensively studied. Furthermore, they were studied in Kong et al. (2019), the

3

Published in Transactions on Machine Learning Research (11/2023)

paper that motivates our work. They also have real-world applications, e.g., auction design (Babaioff et al.,
2007) and advertisement targeting (Mehta et al., 2007).

3.1 The Best Choice Problem (BCP)1

In BCP, the goal is to maximize the probability of choosing the maximum among n different numbers, where
n is known. They arrive sequentially and when the i-th number shows up, the decision-maker observes the
relative ranking Xi among the first i numbers, which means being the Xith-best so far. A decision that
whether to accept or reject the i-th number must be made immediately when it comes, and such decisions
cannot be revoked. Once one number is accepted, the game ends immediately.

The ordering of the numbers is unknown. There are in total n! permutations, and an instance of BCP is
drawn from an unknown distribution over these permutations. In the classical BCP, each permutation is
sampled with equal probability. The optimal solution for the classical BCP is the well-known 1{e-threshold
strategy: reject all the first tn{eu numbers, then accept the first one which is the best so-far. In this paper,
we also study some different distributions.

3.2 Online Knapsack (decision version, OKD)

In Online Knapsack problems the decision-maker observes n (which is known) items arriving sequentially,
each with value vi and size si revealed upon arrival. A decision to either accept or reject the i-th item must
be made immediately when it arrives, and such decisions cannot be revoked. At any time the accepted items
should have their total size no larger than a known budget B.

The goal of standard Online Knapsack is to maximize the total value of accepted items. In this paper, we
study its decision version, whose goal is to maximize the probability of total value reaching a known target
V .

We assume that all values and sizes are sampled independently from two fixed distributions, namely
v1, v2, . . . , vn

i.i.d.
„ Fv and s1, s2, . . . , sn

i.i.d.
„ Fs. In Kong et al. (2019) the experiments were carried out

with Fv “ Fs “ Unifr0,1s, and we also study other distributions.

Remark 1. A challenge in OKD is the sparse reward: the only signal is reward 1 when the total value of
accepted items first exceeds V (see the detailed formulation in Appendix C.2), unlike in Online Knapsack the
reward of vi is given instantly after the i-th item is successfully accepted. This makes random exploration
hardly get reward signals, necessitating Curriculum Learning.

3.3 AdWords (decision version, ADW)

In ADW, there are n advertisers each with budget 1 and m ad slots. Each ad slot j arrives sequentially
along with a vector pv1,j , v2,j , . . . , vn,jq where vi,j is the value that advertiser i wants to pay for ad slot j.
Once an ad slot arrives, it must be irrevocably allocated to an advertiser or not allocated at all. If ad slot j
is allocated to advertiser i and the remaining budget of advertiser i is not less than vi,j , the total revenue
increases by vi,j while advertiser i’s budget decreases by vi,j .

We assume that for any advertiser i, vi,1, vi,2, . . . , vi,m
i.i.d.
„ Fi. Kong et al. (2019) studied a very special case

called online b-matching where Fi is a Bernoulli distribution. We study different distributions.

The objective of the standard ADW is to maximize the total revenue. For a similar reason as in OKD, we set
a known target V for the decision version. The goal of ADW is to maximize the probability of total revenue
reaching V .

1We follow the statement in Kong et al. (2019) that BCP (secretary problem) is a CO problem. It is categorized as an
optimal stopping problem.

4

Published in Transactions on Machine Learning Research (11/2023)

4 Problem Setup

In this section, we first introduce LMDP and why it naturally formulates online CO problems. Then we list
necessary components required by Natural Policy Gradient for LMDP (Algorithm 1).

Notations. For any positive integer n, we denote rns :“ t1, 2, . . . , nu. For any vector x P Rn, we denote
xb :“ x b x “ xxJ as the self-outer-product of x. Further for any y P Rm, we denote px ˝ yqpi, jq :“ xpiqypjq.

4.1 Latent Markov Decision Process

Tackling an online CO problem entails handling a family of problem instances, and each instance can be
modeled as a Markov Decision Process. For online CO problems, we want to find one algorithm that works
for a family of problem instances and performs well on average over an (unknown) distribution over this
family. To this end, we adopt the concept of Latent MDP which naturally models online CO problems.

Latent MDP (Kwon et al., 2021a) is a collection of MDPs M “ tM1, M2, . . . , MM u. All the MDPs share
state set S, action set A and horizon H. Each MDP Mm “ pS, A, H, νm, Pm, rmq has its own initial state
distribution νm P ∆pSq, transition Pm : S ˆ A Ñ ∆pSq and reward rm : S ˆ A Ñ r0, 1s, where ∆pSq is the
probability simplex over S. Let w1, w2, . . . , wM be the mixing weights of MDPs such that wm ą 0 for any m
and

řM
m“1 wm “ 1. At the start of every episode, one MDP Mm P M is randomly chosen with probability

wm.

Due to the time and space complexities of finding the optimal history-dependent policies, we stay in line
with Kong et al. (2019) and care only about finding the optimal history-independent policy. Let Π “ tπ :
S Ñ ∆pAqu denote the class of all the history-independent policies.

Log-linear policy. Let ϕ : S ˆ A Ñ Rd be a feature mapping function where d denotes the dimension of
feature space. Assume that }ϕps, aq}2 ď B. A log-linear policy is of the form:

πθpa|sq “
exppθJϕps, aqq

ř

a1PA exppθJϕps, a1qq
, where θ P Rd.

Remark 2. Log-linear parameterization is a generalization of softmax tabular parameterization by setting
d “ |S||A| and ϕps, aq “ One-hotps, aq. They are “scalable”: if ϕ extracts important features from different
S ˆ As with a fixed dimension d ! |S||A|, then a single πθ can generalize.

Value function, Q-function and advantage function. The expected reward of executing π on Mm

is defined via value functions. We incorporate entropy regularization for completeness because prior works
(especially empirical works) used it to facilitate training. Due to space limit, we defer all the entropy
regularized notations, algorithm and theorem to Appendix A. We define the value function:

V π
m,hpsq :“ EMm,π

«

h´1
ÿ

t“0
rmpst, atq

ˇ

ˇ

ˇ

ˇ

ˇ

s0 “ s

ff

,

where the expectation is with respect to the randomness of trajectory induced by π in Mm. Denote V π :“
řM

m“1 wm

ř

s0PS νmps0qV π
m,Hps0q, then we need to find π‹ “ arg maxπPΠ V π. Denote V ‹ :“ V π‹ .

The Q-function can be defined in a similar manner:

Qπ
m,hps, aq :“ EMm,π

«

h´1
ÿ

t“0
rmpst, atq

ˇ

ˇ

ˇ

ˇ

ˇ

ps0, a0q “ ps, aq

ff

,

and the advantage function is defined as Aπ
m,hps, aq :“ Qπ

m,hps, aq ´ V π
m,hpsq.

Modeling BCP. For BCP, each instance is a permutation of length n, and in each round an instance is
drawn from an unknown distribution over all permutations. In the i-th step for i P rns, the state encodes
the i-th number and its relative ranking so far. The transition is deterministic according to the problem

5

Published in Transactions on Machine Learning Research (11/2023)

definition. A reward of 1 is given if and only if the maximum is accepted. We model the distribution as
follows: for the i-th number, it has probability Pi to be the best so-far and is independent of other i1. Hence,
the weight of each instance is simply the product of the probabilities on each position. The classical BCP
satisfies Pi “ 1{i.

Modeling OKD. For OKD, each instance is a sequence of items with values and sizes drawn from unknown
distributions Fv and Fs. In the i-th step for i P rns, the state encodes the information of i-th item’s value
and size, the remaining budget, and the remaining target value to fulfill. The transition is also deterministic
according to the problem definition, and a reward of 1 is given if and only if the agent obtains the target
value for the first time. Fv “ Fs “ Unifr0,1s in Kong et al. (2019).

Modeling ADW. For ADW, each instance is a n ˆ m matrix pvi,jqpi,jqPrnsˆrms, with each row i subject to
a distribution Fi. In the j-th step for j P rms, the state encodes the value vector pv1,j , v2,j , . . . , vn,jq, the
remaining budget vector pB1, B2, . . . , Bnq, and the remaining target revenue to fulfill. The transition is also
deterministic according to the problem definition, and a reward of 1 is given if and only if the agent obtains
the target revenue for the first time.

4.2 Algorithm components

In this subsection we will introduce some necessary notations used by our main algorithm.
Definition 1 (Visitation Distribution). The state visitation distribution and state-action visitation distri-
bution at step h ě 0 with respect to π in Mm are defined as

dπ
m,hpsq :“ PMm,πpsh “ sq,

dπ
m,hps, aq :“ PMm,πpsh “ s, ah “ aq.

We will encounter a grafted distribution rdπ
m,hps, aq “ dπ

m,hpsq ˝ UnifApaq which in general is not the state-
action visitation distribution with respect to any policy. However, it can be attained by first acting under π
for h steps to get states then sample actions from the uniform distribution UnifA. This distribution will be
useful when we apply a variant of NPG, where the sampling policy is fixed.

Denote d♣
m,h :“ d

π♣
m,h and d♣ as short for td♣

m,hu1ďmďM,0ďhďH´1, here ♣ can be any symbol.

We also need the following definitions for NPG, which are different from the standard versions for discounted
MDP because weights twmu must be incorporated in the definitions to deal with LMDP. In the following
definitions, let v be the collection of any distribution, which will be instantiated by d‹, dt, etc. in the
remaining sections.
Definition 2 (Compatible Function Approximation Loss). Let g be the parameter update weight, then NPG
is related to finding the minimizer for the following function:

Lpg; θ, vq :“
M
ÿ

m“1

wm

H
ÿ

h“1

Es,a„vm,H´h

„

´

Aπθ

m,hps, aq ´ gJ∇θ ln πθpa|sq

¯2
ȷ

.

Definition 3 (Generic Fisher Information Matrix).

Σθ
v :“

M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„vm,H´h

“

p∇θ ln πθpa|sqqb
‰

.

Particularly, denote F pθq “ Σθ
dθ as the Fisher information matrix induced by πθ.

5 Learning Procedure

In this section we introduce the algorithms: NPG supporting any customized sampler, and our proposed
Curriculum Learning framework.

6

Published in Transactions on Machine Learning Research (11/2023)

Natural Policy Gradient. The learning procedure generates a series of parameters and policies. Starting
from θ0, the algorithm updates the parameter by setting θt`1 “ θt ` ηgt, where η is a predefined constant
learning rate, and gt is the update weight. Denote πt :“ πθt , V t :“ V πt and At

m,h :“ Aπt

m,h for convenience.
We adopt NPG (Kakade, 2002) because it is efficient in training parameterized policies and admits clean
theoretical analysis. NPG satisfies gt P arg ming Lpg; θt, dθt q (see Appendix D.1 for explanation). When we
only have samples, we use the approximate version of NPG: gt « arg mingPG Lpg; θt, dθt q, where G “ tx :
}x}2 ď Gu for some hyper-parameter G.

We also introduce a variant of NPG: instead of sampling from dθt using the current policy πt, we sample
from rdπs using a fixed sampling policy πs. The update rule is gt « arg mingPG Lpg; θt, rdπs q. This version
makes a closed-form analysis for BCP possible.

The main algorithm is shown in Algorithm 1. It admits two types of training: ① If πs “ None, it calls
Algorithm 4 (deferred to Appendix A) to sample s, a „ dθt ; ② If πs ‰ None, it then calls Algorithm 4 to
sample s, a „ rdπs . Algorithm 4 also returns an unbiased estimation of Aπt

H´hps, aq.

In both cases, we denote dt as the sampling distribution and Σt as the induced Fisher Information Matrix
used in step t, i.e. dt :“ dθt , Σt :“ F pθtq if πs “ None; dt :“ rdπs , Σt :“ Σθt

rdπs
otherwise. The update rule

can be written in a unified way as gt « arg mingPG Lpg; θt, dtq. This is equivalent to solving a constrained
quadratic optimization and we can use existing solvers.
Remark 3. Algorithm 1 is different from Algorithm 4 of Agarwal et al. (2021) in that we use a “batched”
update while they used successive Projected Gradient Descents (PGD). This is an important implementation
technique to speed up training in our experiments.

Curriculum Learning. We use Curriculum Learning to facilitate training. Algorithm 2 is our proposed
training framework, which first constructs an easy environment E1 and trains a (near-)optimal policy πs of it.
The design of E1 is problem-dependent. For the problems described in this paper (BCP, OKD, and ADW)
as well as any similar problems (online load balancing, online set cover, etc.), we can use n, the sequence
length of online decision-making, to represent the difficulty. For these problems, we construct E1 to be the
environment with n smaller than that of E. For other problems, we first find the hyperparameters controlling
the difficulty of the problem, e.g., the sequence length, the action space size, the number of interaction steps,
then reduce these hyperparameters to construct a smaller scale and simpler problem.

In the target environment E, we either use πs to sample data while training a new policy from scratch, or
simply continue training πs. To be specific and provide clarity for the results in Section 7, we name a few
training modes (without regularization) here, and the rest are in Table 1 in Appendix C.

curl, the standard Curriculum Learning, runs Algorithm 2 with samp “ pi_t; fix_samp_curl stands for
the fixed sampler Curriculum Learning, running Algorithm 2 with samp “ pi_s. direct means directly
learning in E without curriculum, i.e., running Algorithm 1 with πs “ None; naive_samp also directly learns
in E, while using πs “ naïve random policy to sample data in Algorithm 1.

6 Performance Analysis

Our analysis contains two important components, namely the sub-optimality gap guarantee of the NPG
we proposed, and the efficacy guarantee of Curriculum Learning on BCP. The first component can also be
extended to history-dependent policies with features being the tensor products of features from each time
step (exponentially large).

6.1 Natural Policy Gradient for Latent MDP

Let g‹
t P arg mingPG Lpg; θt, dtq denote the true minimizer. We have the following definitions:

Definition 4. Define for 0 ď t ď T :

‚ (Excess risk) ϵstat :“ maxt ErLpgt; θt, dtq ´ Lpg‹
t ; θt, dtqs;

‚ (Transfer error) ϵbias :“ maxt ErLpg‹
t ; θt, d‹qs;

7

Published in Transactions on Machine Learning Research (11/2023)

Algorithm 1 NPG (Full version: Algorithm 3)
1: Input: Environment E; learning rate η; episode number T ; batch size N ; initialization θ0; sampler πs; optimiza-

tion domain G.
2: for t Ð 0, 1, . . . , T ´ 1 do
3: For 0 ď n ď N ´ 1 and 0 ď h ď H ´ 1, sample pa

pnq

h , s
pnq

h q and estimate pA
pnq

H´h using Algorithm 4.
4: Calculate:

pFt Ð

N´1
ÿ

n“0

H´1
ÿ

h“0

p∇θ ln πθt pa
pnq

h |s
pnq

h qq
b,

p∇t Ð

N´1
ÿ

n“0

H´1
ÿ

h“0

pA
pnq

H´h∇θ ln πθt pa
pnq

h |s
pnq

h q.

5: Call any solver to get pgt Ð arg mingPG gJ
pFtg ´ 2gJ

p∇t.
6: Update θt`1 Ð θt ` ηpgt.
7: end for
8: Return: θT .

Algorithm 2 Curriculum learning framework.
1: Input: Environment E; learning rate η; episode number T ; batch size N ; sampler type samp P t pi_s, pi_t u;

optimization domain G.
2: Construct an environment E1 with a task easier than E. This environment should have optimal policy similar to

that of E.
3: θs Ð NPG (E1, η, T, N, 0d, None, G) (Algorithm 1).
4: if samp “pi_s then
5: θT Ð NPG (E, η, T, N, 0d, πs, G).
6: else
7: θT Ð NPG (E, η, T, N, θs, None, G).
8: end if
9: Return: θT .

‚ (Relative condition number) κ :“ maxt E
„

supxPRd

xJΣθt
d‹ x

xJΣtx

ȷ

. Note that term inside the expectation is a

random quantity as θt is random.

The expectation is with respect to the randomness in the sequence of weights g0, g1, . . . , gT .

All the quantities are commonly used in literature mentioned in Section 2. ϵstat is due to that the minimizer gt

from samples may not minimize the population loss L. ϵbias quantifies the approximation error due to feature
maps. κ characterizes the distribution mismatch between dt and d‹ and is a key quantity in Curriculum
Learning and will be studied in more details in the following sections.

Our main result is based on a fitting error which depicts the closeness between π‹ and any policy π.
Definition 5 (Fitting Error). Suppose the update rule is θt`1 “ θt ` ηgt, define

errt :“
M
ÿ

m“1

wm

H
ÿ

h“1

Eps,aq„d‹
m,H´h

”

At
m,hps, aq ´ gJ

t ∇θ ln πtpa|sq

ı

.

Theorem 6 shows the convergence rate of Algorithm 1, and its proof is deferred to Appendix A.3.
Theorem 6. With Definitions 4, 5 and 9, Algorithm 1 enjoys the following performance bound:

E
„

min
0ďtďT

V ‹ ´ V t

ȷ

ď
Φpπ0q

ηT
` η

B2G2

2
`

1
T

T
ÿ

t“0

Ererrts

ď
Φpπ0q

ηT
` η

B2G2

2
`

a

Hϵbias `
a

Hκϵstat,

where Φpπ0q is the Lyapunov potential function which is only relevant to the initialization.

8

Published in Transactions on Machine Learning Research (11/2023)

Remark 4. ① For the results of sample-based NPG with entropy regularization for LMDP, please see
Appendix A. ② Taking η “ Θp1{

?
T q gives an Op1{

?
T q rate, matching the result in Agarwal et al. (2021).

③ ϵstat can be reduced using a larger batch size N (Lemma 20) that ϵstat “ rOp1{
?

Nq. ④ If some dt

(especially the initialization d0) is far away from d‹, κ may be extremely large (Section 6.2 as an example).
If we can find a policy whose κ is small with a single curriculum, we do not need the multi-step curriculum
learning procedure used in Kong et al. (2019).

6.2 Curriculum learning for BCP

For BCP, there exists a threshold policy that is optimal (Beckmann, 1990). Suppose the threshold is p P p0, 1q,
then the policy is: accept the i-th number if and only if i{n ą p and Xi “ 1. For the classical BCP where
all the n! instances have equal probability, the optimal threshold is 1{e.

To show that curriculum learning makes the training converge faster, Theorem 6 gives a direct hint: cur-
riculum learning produces a good sampler leading to much smaller κ than that of a naïve random sampler.
Here we focus on the cases where samp “ pi_s because the sampler is fixed, while when samp “ pi_t it is
impossible to analyze a dynamic procedure. We show Theorem 7 to characterize κ in BCP. Its full statement
and proof is deferred to Appendix B.
Theorem 7. Assume that each number is independent of others and the i-th number has a probability Pi of
being the maximum so far (Section 4.1). Assume the optimal policy is a p-threshold policy and the sampling
policy is a q-threshold policy. There exists a policy parameterization such that:

κcurl “ Θ
˜#

śtnpu

j“tnqu`1
1

1´Pj
, q ď p,

1, q ą p,

¸

,

κnaïve “ Θ

¨

˝2tnpu max

$

&

%

1, max
iětnpu`2

i´1
ź

j“tnpu`1

2p1 ´ Pjq

,

.

-

˛

‚, (1)

where κcurl and κnaïve are κ of the sampling policy and the naïve random policy, respectively.

To understand how curriculum learning influences κ, we apply Theorem 7 to three concrete cases. They
show that, when the state distribution induced by the optimal policy in the small problem is similar to that
in the original large problem, then a single-step curriculum suffices (cf. ④ of Remark 4).

The classical case: an exponential improvement. We study the classical BCP first, where all the n!
permutations are sampled with equal probability. The probability series for this case is Pi “ 1{i. Substituting
them into Equation (1) directly gives:

κcurl “

#

tn{eu

tnqu
, q ď 1

e ,

1, q ą 1
e ,

κnaïve “ 2n´1 tn{eu

n ´ 1 .

Except for the corner case where q ă 1{n, we have that κcurl “ Opnq while κnaïve “ Ωp2nq. Notice that any
distribution with Pi ď 1{i leads to an exponential improvement.

A more general case. Now we try to loosen the condition where Pi ď 1{i. Let us consider the case where
Pi ď 1{2 for i ě 2 (by definition P1 is always equal to 1). Equation (1) now becomes:

κcurl ď

"

2tnpu´tnqu, q ď p,
1, q ą p,

κnaïve ě 2tnpu.

Clearly, κcurl ď κnaïve always holds. When q is close to p, the difference is exponential in tnqu.

Failure mode of Curriculum Learning. Lastly we show further relaxing the assumption on Pi leads to
failure cases. The extreme case is that all Pi “ 1, i.e., the maximum number always comes as the last one.
Suppose q ă 1 ´ 1{n, then dπq p1q “ 0. Hence κcurl “ 8, larger than κnaïve “ 2n´1. From Equation (1),
κnaïve ď 2n´1. Similar as Section 3 of Beckmann (1990), the optimal threshold p satisfies:

n
ÿ

i“tnpu`2

Pi

1 ´ Pi
ď 1 ă

n
ÿ

i“tnpu`1

Pi

1 ´ Pi
.

9

Published in Transactions on Machine Learning Research (11/2023)

Figure 1: One experiment of BCP. The x-axis is the number of trajectories, i.e., number of episodes ˆ

horizon ˆ batch size. Dashed lines represent only final phase training and solid lines represent
Curriculum Learning. The shadowed area shows the 95% confidence interval for the expectation. The
explanation for different modes can be found in Section 5. The reference policy is the optimal threshold
policy.

Figure 2: One experiment of OKD. Legend description is the same as that of Figure 1. The reference policy
is the bang-per-buck algorithm for Online Knapsack (Section 3.1 of Kong et al. (2019)).

So letting Pn ą 1{2 results in p P r1 ´ 1{n, 1q. Further, if q ă 1 ´ 1{n and Pj ą 1 ´ 2´ n
n´tnqu´1 for any

tnqu ` 1 ď j ď n ´ 1, then from Equation (1), κcurl ą 2n ą κnaïve. This means that Curriculum Learning
can always be manipulated adversarially. Sometimes there is hardly any reasonable curriculum.

Remark 5. Here we only provide theoretical explanations for BCP when samp “ pi_s, because κ is highly
problem-dependent, and the analytical forms for κ is tractable when the sampler is fixed. For samp “ pi_t
and other CO problems such as OKD, however, we do not have analytical forms, so we resort to empirical
studies (Section 7).

7 Experiments

The experiments’ formulations are modified from Kong et al. (2019). Due to page limit, more formulation de-
tails and results are presented in Appendix C, and code can be found at https://github.com/zhourunlong/
RL-for-Combinatorial-Optimization. In Curriculum Learning the entire training process splits into at
most two phases. We call the training on curriculum (small scale instances) “warm-up phase” and the train-
ing on large scale instances “final phase”. If the training is directly on large scale instances, we still call it
“final phase” for convenience. For each problem, we run multiple experiments using different distributions
of instances. Each experiment contains multiple training methods, e.g., direct training, curriculum learning,
etc. To highlight the effect of curriculum learning, we omit the results regarding regularization, and they
can be found in supplementary files. All the trainings in the same experiment have the same distributions
over LMDPs for final phase and warm-up phase (if any), respectively.

10

https://github.com/zhourunlong/RL-for-Combinatorial-Optimization
https://github.com/zhourunlong/RL-for-Combinatorial-Optimization

Published in Transactions on Machine Learning Research (11/2023)

Figure 3: One experiment of ADW. Legend description is the same as that of Figure 1. The reference
policy is obtained by running a curl procedure. The ln κ and avgperrtq curves are then plotted with the
above reference policy hard-coded into the environment.

The Best Choice Problem (BCP). We show one of the four experiments in Figure 1. Aside from
reward and ln κ, we plot the weighted average of errt according to Theorem 6: avgperrtq “

řt
i“0 erri{T .

All the instance distributions are generated from parameterized series tPnu with fixed random seeds, which
guarantees reproducibility and comparability. Aside from the fact that the curriculum is a smaller BCP,
there is no other explicit relationship between the curriculum and the target environment, so the curriculum
can be viewed as random and independent. The experiments clearly demonstrate that curriculum learning
can boost the performance by a large margin and curriculum learning indeed dramatically reduces κ, even
the curriculum is randomly generated.

Online Knapsack (decision version, OKD). We show one of the three experiments in Figure 2. ln κ
and avg(errt) are with respect to the reference policy, a bang-per-buck algorithm, which is not the optimal
policy. Thus, they are only for reference. The curriculum generation is also parameterized, random and
independent of the target environment. The experiments again demonstrate the effectiveness of curriculum
learning and curriculum learning indeed dramatically reduces κ.

AdWords (decision version, ADW). We show one of the two experiments in Figure 3. The reference
policy is obtained by using curriculum learning and training until nearly convergence. The curriculum
generation is also parameterized, random and independent of the target environment. The experiments
again demonstrate the effectiveness of curriculum learning.

8 Conclusion

We showed online CO problems could be naturally formulated as LMDPs, and we analyzed the convergence
rate of NPG for LMDPs. Our theory shows the main benefit of curriculum learning is finding a stronger
sampling strategy, especially for classical BCP any curriculum exponentially improves the learning rate. Our
empirical results on BCP, OKD, and ADW also corroborated our findings. Our work is the first attempt to
systematically study techniques devoted to using RL to tackle online CO problems, which we believe is a
fruitful direction worth further investigations.

Acknowledgement

SSD acknowledges the support of NSF IIS 2110170, NSF DMS 2134106, NSF CCF 2212261, NSF IIS 2143493,
NSF CCF 2019844, NSF IIS 2229881.

References

Alekh Agarwal, Sham M. Kakade, J. Lee, and Gaurav Mahajan. On the theory of policy gradient methods:
Optimality, approximation, and distribution shift. J. Mach. Learn. Res., 22:98:1–98:76, 2021.

11

Published in Transactions on Machine Learning Research (11/2023)

Susanne Albers, Arindam Khan, and Leon Ladewig. Improved online algorithms for knapsack and gap in
the random order model. Algorithmica, 83:1750 – 1785, 2021.

Mohammad Ali Alomrani, Reza Moravej, and Elias B Khalil. Deep policies for online bipartite matching:
A reinforcement learning approach. arXiv preprint arXiv:2109.10380, 2021.

Shuang Ao, Tianyi Zhou, Guodong Long, Qinghua Lu, Liming Zhu, and Jing Jiang. CO-PILOT: COl-
laborative planning and reinforcement learning on sub-task curriculum. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021.
URL https://openreview.net/forum?id=uz_2t6VZby.

Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert D. Kleinberg. A knapsack secretary problem
with applications. In APPROX-RANDOM, 2007.

Maria-Florina Balcan. Data-driven algorithm design. arXiv preprint arXiv:2011.07177, 2020.

M.J. Beckmann. Dynamic programming and the secretary problem. Computers & Mathematics with Appli-
cations, 19(11):25–28, 1990. ISSN 0898-1221. doi: https://doi.org/10.1016/0898-1221(90)90145-A. URL
https://www.sciencedirect.com/science/article/pii/089812219090145A.

M. Bellmore and G. L. Nemhauser. The traveling salesman problem: A survey. Operations Research, 16(3):
538–558, 1968. ISSN 0030364X, 15265463. URL http://www.jstor.org/stable/168581.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial opti-
mization with reinforcement learning, 2017.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings
of the 26th Annual International Conference on Machine Learning, ICML ’09, pp. 41–48, New York, NY,
USA, 2009. Association for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553380.
URL https://doi.org/10.1145/1553374.1553380.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290, 08 2020. doi: 10.1016/j.
ejor.2020.07.063.

Jalaj Bhandari and Daniel Russo. On the linear convergence of policy gradient methods for finite mdps.
In Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pp. 2386–
2394. PMLR, 13–15 Apr 2021. URL https://proceedings.mlr.press/v130/bhandari21a.html.

Nataly Brukhim, Elad Hazan, and Karan Singh. A boosting approach to reinforcement learning, 2021.

Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin Rousseau. Improving optimiza-
tion bounds using machine learning: Decision diagrams meet deep reinforcement learning. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):1443–1451, Jul. 2019. doi: 10.1609/aaai.v33i01.
33011443. URL https://ojs.aaai.org/index.php/AAAI/article/view/3956.

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar Veličković.
Combinatorial optimization and reasoning with graph neural networks. In Zhi-Hua Zhou (ed.), Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4348–4355. Inter-
national Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/595.
URL https://doi.org/10.24963/ijcai.2021/595. Survey Track.

Semih Cayci, Niao He, and R. Srikant. Linear convergence of entropy-regularized natural policy gradient
with linear function approximation, 2021.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of natural policy
gradient methods with entropy regularization. Operations Research, 12 2021. doi: 10.1287/opre.2021.2151.

12

https://openreview.net/forum?id=uz_2t6VZby
https://www.sciencedirect.com/science/article/pii/089812219090145A
http://www.jstor.org/stable/168581
https://doi.org/10.1145/1553374.1553380
https://proceedings.mlr.press/v130/bhandari21a.html
https://ojs.aaai.org/index.php/AAAI/article/view/3956
https://doi.org/10.24963/ijcai.2021/595

Published in Transactions on Machine Learning Research (11/2023)

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM
Symposium on Theory of Computing, STOC ’71, pp. 151–158, New York, NY, USA, 1971. Association for
Computing Machinery. ISBN 9781450374644. doi: 10.1145/800157.805047. URL https://doi.org/10.
1145/800157.805047.

Yuhao Ding, Junzi Zhang, and Javad Lavaei. On the global convergence of momentum-based policy gradient,
2021.

Iddo Drori, Anant Kharkar, William R. Sickinger, Brandon Kates, Qiang Ma, Suwen Ge, Eden Dolev,
Brenda L Dietrich, David P. Williamson, and Madeleine Udell. Learning to solve combinatorial optimiza-
tion problems on real-world graphs in linear time. 2020 19th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 19–24, 2020.

Merrill M. Flood. The traveling-salesman problem. Operations Research, 4(1):61–75, 1956. ISSN 0030364X,
15265463. URL http://www.jstor.org/stable/167517.

Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski. Stochastic analyses for online com-
binatorial optimization problems. 2008.

Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, nov 1995. ISSN 0004-
5411. doi: 10.1145/227683.227684. URL https://doi.org/10.1145/227683.227684.

Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Automated cur-
riculum learning for neural networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pp. 1311–1320. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/graves17a.html.

Martin Grötschel, Sven O Krumke, Jörg Rambau, Thomas Winter, and Uwe T Zimmermann. Combinatorial
online optimization in real time. Online optimization of large scale systems, pp. 679–704, 2001.

Zhiyi Huang. Online combinatorial optimization problems with non-linear objectives. In Nonlinear Combi-
natorial Optimization, pp. 179–205. Springer, 2019.

Zhiyi Huang, Peng Binghui, Zhihao Tang, Runzhou Tao, Xiaowei Wu, and Yuhao Zhang. Tight Competitive
Ratios of Classic Matching Algorithms in the Fully Online Model, pp. 2875–2886. 01 2019. ISBN 978-1-
61197-548-2. doi: 10.1137/1.9781611975482.178.

Sham M Kakade. A natural policy gradient. In T. Dietterich, S. Becker, and Z. Ghahramani (eds.), Advances
in Neural Information Processing Systems, volume 14. MIT Press, 2002. URL https://proceedings.
neurips.cc/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf.

Richard Karp. Reducibility among combinatorial problems. volume 40, pp. 85–103, 01 1972. ISBN 978-3-
540-68274-5. doi: 10.1007/978-3-540-68279-0_8.

Elias Boutros Khalil, Hanjun Dai, Yuyu Zhang, Bistra N. Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In NIPS, 2017.

Weiwei Kong, Christopher Liaw, Aranyak Mehta, and D. Sivakumar. A new dog learns old tricks: Rl finds
classic optimization algorithms. In ICLR, 2019.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In ICLR, 2019.

Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. Rl for latent mdps: Re-
gret guarantees and a lower bound. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 24523–
24534. Curran Associates, Inc., 2021a. URL https://proceedings.neurips.cc/paper/2021/file/
cd755a6c6b699f3262bcc2aa46ab507e-Paper.pdf.

13

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
http://www.jstor.org/stable/167517
https://doi.org/10.1145/227683.227684
https://proceedings.mlr.press/v70/graves17a.html
https://proceedings.neurips.cc/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/cd755a6c6b699f3262bcc2aa46ab507e-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/cd755a6c6b699f3262bcc2aa46ab507e-Paper.pdf

Published in Transactions on Machine Learning Research (11/2023)

Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. Reinforcement learning in
reward-mixing mdps. In NeurIPS, 2021b.

Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-reduced)
policy gradient and natural policy gradient methods. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
7624–7636. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
56577889b3c1cd083b6d7b32d32f99d5-Paper.pdf.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 05 2021. doi:
10.1016/j.cor.2021.105400.

Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized online match-
ing. Journal of the ACM (JACM), 54(5):22–es, 2007.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence rates
of softmax policy gradient methods. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pp. 6820–6829. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/mei20b.html.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim M. Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa,
Will Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter, and Jeff Dean. A
graph placement methodology for fast chip design. Nature, 594 7862:207–212, 2021.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone. Cur-
riculum learning for reinforcement learning domains: A framework and survey. J. Mach. Learn. Res., 21:
181:1–181:50, 2020.

M. Nazari, Afshin Oroojlooy, Lawrence V. Snyder, and Martin Takác. Reinforcement learning for solving
the vehicle routing problem. In NeurIPS, 2018.

Joel Oren, Chana Ross, Maksym Lefarov, Felix Richter, Ayal Taitler, Zohar Feldman, Christian Daniel,
and Dotan Di Castro. Solo: Search online, learn offline for combinatorial optimization problems. ArXiv,
abs/2104.01646, 2021.

Rodrigo Pérez-Dattari, Carlos Celemin, Javier Ruiz del Solar, and Jens Kober. Interactive learning with
corrective feedback for policies based on deep neural networks. In ISER, 2018.

Jan Scholten, Daan Wout, Carlos Celemin, and Jens Kober. Deep reinforcement learning with feedback-
based exploration. 2019 IEEE 58th Conference on Decision and Control (CDC), Dec 2019. doi: 10.1109/
cdc40024.2019.9029503. URL http://dx.doi.org/10.1109/CDC40024.2019.9029503.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L. Dill. Learn-
ing a SAT solver from single-bit supervision. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=HJMC_iA5tm.

Lauren N. Steimle, David L. Kaufman, and Brian T. Denton. Multi-model markov decision processes. IISE
Transactions, 53(10):1124–1139, 2021. doi: 10.1080/24725854.2021.1895454. URL https://doi.org/10.
1080/24725854.2021.1895454.

B.A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches) algorithms. Annals of
the History of Computing, 6(4):384–400, 1984. doi: 10.1109/MAHC.1984.10036.

Natalia Vesselinova, Rebecca Steinert, Daniel F. Perez-Ramirez, and Magnus Boman. Learning combinatorial
optimization on graphs: A survey with applications to networking. IEEE Access, 8:120388–120416, 2020.

14

https://proceedings.neurips.cc/paper/2020/file/56577889b3c1cd083b6d7b32d32f99d5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/56577889b3c1cd083b6d7b32d32f99d5-Paper.pdf
http://proceedings.mlr.press/v119/mei20b.html
http://dx.doi.org/10.1109/CDC40024.2019.9029503
https://openreview.net/forum?id=HJMC_iA5tm
https://doi.org/10.1080/24725854.2021.1895454
https://doi.org/10.1080/24725854.2021.1895454

Published in Transactions on Machine Learning Research (11/2023)

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global opti-
mality and rates of convergence. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=BJgQfkSYDS.

Lucas Willems, Salem Lahlou, and Yoshua Bengio. Mastering rate based curriculum learning, 2020.

Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and Stephen Boyd. Sample efficient reinforcement learning
with reinforce. In AAAI, 2021.

Tianyi Zhou, Shengjie Wang, and Jeffrey Bilmes. Curriculum learning by dynamic instance hardness. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Infor-
mation Processing Systems, volume 33, pp. 8602–8613. Curran Associates, Inc., 2020a. URL https:
//proceedings.neurips.cc/paper/2020/file/62000dee5a05a6a71de3a6127a68778a-Paper.pdf.

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Curriculum learning by optimizing learning dynamics. In
Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th International Conference on Ar-
tificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pp. 433–441.
PMLR, 13–15 Apr 2021a. URL https://proceedings.mlr.press/v130/zhou21a.html.

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Robust curriculum learning: from clean label detection
to noisy label self-correction. In International Conference on Learning Representations, 2021b. URL
https://openreview.net/forum?id=lmTWnm3coJJ.

Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao Liu,
Phitchaya Phothilimtha, Shen Wang, Anna Goldie, Azalia Mirhoseini, and James Laudon. Trans-
ferable graph optimizers for ml compilers. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
can, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 13844–
13855. Curran Associates, Inc., 2020b. URL https://proceedings.neurips.cc/paper/2020/file/
9f29450d2eb58feb555078bdefe28aa5-Paper.pdf.

A Full Results of the Main Algorithm and Theorem for Entropy Regularization

A.1 Notations and Definitions

Entropy regularized value function, Q-function and advantage function. We incorporate entropy
regularization for completeness because prior works (especially empirical works) used it to facilitate training.
We define the value function in a unified way: V π,λ

m,hpsq is defined as the sum of future λ-regularized rewards
starting from s and executing π for h steps in Mm, i.e.,

V π,λ
m,hpsq :“ EMm,π

«

h´1
ÿ

t“0
rπ,λ

m pst, atq

ˇ

ˇ

ˇ

ˇ

ˇ

s0 “ s

ff

,

where rπ,λ
m ps, aq :“ rmps, aq ` λ ln 1

πpa|sq
, and the expectation is with respect to the randomness of trajectory

induced by π in Mm. Clearly, V π
m,hpsq “ V π,0

m,hpsq.

For any Mm, π, h, with Hpπp¨|sqq :“
ř

aPA πpa|sq ln 1
πpa|sq

P r0, ln |A|s we define

Hπ
m,hpsq :“ EMm,π

«

h´1
ÿ

t“0
Hpπp¨|stqq

ˇ

ˇ

ˇ

ˇ

ˇ

s0 “ s

ff

.

In fact, V π,λ
m,hpsq “ V π

m,hpsq ` λHπ
m,hpsq.

Denote V π,λ :“
řM

m“1 wm

ř

s0PS νmps0qV π,λ
m,Hps0q then V π “ V π,0. The original goal is to find π‹ “

arg maxπPΠ V π. Under regularization, we seek for π‹
λ “ arg maxπPΠ V π,λ instead. Denote V ‹,λ “ V π‹

λ,λ.

15

https://openreview.net/forum?id=BJgQfkSYDS
https://proceedings.neurips.cc/paper/2020/file/62000dee5a05a6a71de3a6127a68778a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/62000dee5a05a6a71de3a6127a68778a-Paper.pdf
https://proceedings.mlr.press/v130/zhou21a.html
https://openreview.net/forum?id=lmTWnm3coJJ
https://proceedings.neurips.cc/paper/2020/file/9f29450d2eb58feb555078bdefe28aa5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9f29450d2eb58feb555078bdefe28aa5-Paper.pdf

Published in Transactions on Machine Learning Research (11/2023)

Since V ‹ ď V π‹,λ ď V ‹,λ ď V π‹

λ ` λH ln |A|, the regularized optimal policy π‹
λ can be nearly optimal as

long as the regularization coefficient λ is small enough. For notational ease, we abuse π‹ with π‹
λ.

The Q-function can be defined in a similar manner:

Qπ,λ
m,hps, aq :“ EMm,π

«

h´1
ÿ

t“0
rπ,λ

m pst, atq

ˇ

ˇ

ˇ

ˇ

ˇ

ps0, a0q “ ps, aq

ff

,

and the advantage function is defined as Aπ,λ
m,hps, aq :“ Qπ,λ

m,hps, aq ´ V π,λ
m,hpsq.

Denote πt :“ πθt
, V t,λ :“ V πt,λ and At,λ

m,h :“ Aπt,λ
m,h for convenience.

Definition 8 (Definition 2 with entropy regularization). Let g be the parameter update weight, then NPG
is related to finding the minimizer for the following function:

Lpg; θ, vq :“
M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„vm,H´h

„

´

Aπθ,λ
m,h ps, aq ´ gJ∇θ ln πθpa|sq

¯2
ȷ

.

Definition 9 (Lyapunov Potential Function (Cayci et al., 2021)). We define the potential function Φ : Π Ñ R
as follows: for any π P Π,

Φpπq “

M
ÿ

m“1
wm

H´1
ÿ

h“0
Eps,aq„d‹

m,h

„

ln π‹pa|sq

πpa|sq

ȷ

.

A.2 Algorithms

Algorithm 3 is the full version of Algorithm 1, with support of entropy regularization. Algorithm 4 is the
skipped sampling function.

A.3 Performance of Natural Policy Gradient for LMDP

We restate Theorem 6 with entropy regularization.
Theorem 6 (Full Statement of Theorem 6). With Definitions 4, 5 and 9, Algorithm 3 enjoys the following
performance bound:

E
„

min
0ďtďT

V ‹,λ ´ V t,λ

ȷ

ď
λp1 ´ ηλqT `1Φpπ0q

1 ´ p1 ´ ηλqT `1 ` η
B2G2

2 `

řT
t“0p1 ´ ηλqT ´tErerrts
řT

t1“0p1 ´ ηλqT ´t1

ď
λp1 ´ ηλqT `1Φpπ0q

1 ´ p1 ´ ηλqT `1 ` η
B2G2

2 `
a

Hϵbias `
a

Hκϵstat.

Proof. Here we make shorthands for the sub-optimality gap and potential function: ∆t :“ V ‹,λ ´ V t,λ and
Φt :“ Φpπtq. From Lemma 16 we have

η∆t ď p1 ´ ηλqΦt ´ Φt`1 ` ηerrt ` η2 B2G2

2 .

Taking expectation over the update weights, we have

Erη∆ts ď p1 ´ ηλqErΦts ´ ErΦt`1s ` ηErerrts ` η2 B2G2

2 .

Thus,

E

«

η
T

ÿ

t“0
p1 ´ ηλqT ´t∆t

ff

ď

T
ÿ

t“0
p1 ´ ηλqT ´t`1ErΦts ´

T
ÿ

t“0
p1 ´ ηλqT ´tErΦt`1s

16

Published in Transactions on Machine Learning Research (11/2023)

Algorithm 3 NPG: Sample-based NPG (full version).
1: Input: Environment E; learning rate η; episode number T ; batch size N ; initialization θ0; sampler πs;

regularization coefficient λ; entropy clip bound U ; optimization domain G.
2: for t Ð 0, 1, . . . , T ´ 1 do
3: Initialize pFt Ð 0dˆd, p∇t Ð 0d.
4: for n Ð 0, 1, . . . , N ´ 1 do
5: for h Ð 0, 1, . . . , H ´ 1 do
6: if πs is not None then
7: sh, ah, pAH´hpsh, ahq Ð Sample pE, πs, True, πt, h, λ, Uq (see Algorithm 4).

// s, a „ rdπs

m,h, estimate At,λ
m,H´hps, aq.

8: else
9: sh, ah, pAH´hpsh, ahq Ð Sample pE, πt, False, πt, h, λ, Uq.

// s, a „ dθt

m,h, estimate At,λ
m,H´hps, aq.

10: end if
11: end for
12: Update:

pFt Ð pFt `

H´1
ÿ

h“0
∇θ ln πθt

pah|shq p∇θ ln πθt
pah|shqq

J
,

p∇t Ð p∇t `

H´1
ÿ

h“0

pAH´hpsh, ahq∇θ ln πθt
pah|shq.

13: end for
14: Call any solver to get pgt Ð arg mingPG gJ

pFtg ´ 2gJ
p∇t.

15: Update θt`1 Ð θt ` ηpgt.
16: end for
17: Return: θT .

` η
T

ÿ

t“0
p1 ´ ηλqT ´tErerrts ` η2 B2G2

2

T
ÿ

t“0
p1 ´ ηλqT ´t

“ p1 ´ ηλqT `1Φ0 ´ ErΦT `1s ` η
T

ÿ

t“0
p1 ´ ηλqT ´tErerrts ` η2 B2G2

2

T
ÿ

t“0
p1 ´ ηλqT ´t

ď p1 ´ ηλqT `1Φ0 ` η
T

ÿ

t“0
p1 ´ ηλqT ´tErerrts ` η2 B2G2

2

T
ÿ

t“0
p1 ´ ηλqT ´t,

where the last step uses the fact that Φpπq ě 0. This is a weighted average, so by normalizing the coefficients,

E
„

min
0ďtďT

∆t

ȷ

ď
λp1 ´ ηλqT `1Φ0

1 ´ p1 ´ ηλqT `1 ` η
B2G2

2 `

řT
t“0p1 ´ ηλqT ´tErerrts
řT

t1“0p1 ´ ηλqT ´t1

ď
λp1 ´ ηλqT `1Φ0

1 ´ p1 ´ ηλqT `1 ` η
B2G2

2 `
a

Hϵbias `
a

Hκϵstat,

where the last step comes from Lemma 17 and Jensen’s inequality. This completes the proof.

Aside from Remark 4, we have extra remarks:
Remark 6. ① This is the first result for LMDP and sample-based NPG with entropy regularization. ② For
any fixed λ ą 0 we have a linear convergence, which matches the result of discounted infinite horizon MDP
(Theorem 1 in Cayci et al. (2021)); the limit when λ tends to 0 is Op1{pηT q ` ηq (which implies an Op1{

?
T q

rate), matching the result in Agarwal et al. (2021).

17

Published in Transactions on Machine Learning Research (11/2023)

Algorithm 4 Sample: Sampler for s „ d
πsamp
m,h where m „ Multinomial pw1, . . . , wM q, a „ UnifA if unif “

True and a „ πsampp¨|sq otherwise, and estimate of At,λ
m,H´hps, aq.

1: Input: Environment E; sampler policy πsamp; whether to sample uniform actions after state unif ;
current policy πt; time step h; regularization coefficient λ; entropy clip bound U .

2: E.reset().
3: for i Ð 0, 1, . . . , h ´ 1 do
4: si Ð E.get_state().
5: Sample action ai „ πsampp¨|siq and E.execute(ai).
6: end for
7: sh Ð E.get_state().
8: if unif = True then
9: ah „ UnifA.

10: else
11: ah „ πsampp¨|shq.
12: end if
13: ps, aq Ð psh, ahq.
14: Get a random number p „ Unifr0, 1s.
15: if p ă 1

2 then
16: Override ah „ πtp¨|shq.
17: Set importance weight C Ð ´2.
18: rh Ð E.execute(ah).
19: Initialize cumulative reward R Ð rh ` λHpπtp¨|shqq.
20: else
21: C Ð 2.
22: rh Ð E.execute(ah).
23: R Ð rh ` λ mintln 1

πtpah|shq
, Uu.

24: end if
25: for i Ð h ` 1, h ` 2, . . . , H ´ 1 do
26: si Ð E.get_state().
27: ai „ πtp¨|siq and rh Ð E.execute(ai).
28: R Ð R ` ri ` λHpπtp¨|siqq.
29: end for
30: Return: s, a, pAt,λ

H´hps, aq “ CR.

B Results of Curriculum Learning for the Best Choice Problem (BCP)

Theorem 7 (Formal statement of Theorem 7). For BCP, set samp “ pi_s in Algorithm 2. Assume that
each number is independent from others and the i-th number has probability Pi of being the best so far (see
formulation in Section 4.1 and Appendix C.1). Assume the optimal policy is a p-threshold policy and the
sampling policy is a q-threshold policy. There exists a policy parameterization and quantities

kcurl “

#

śtnpu

j“tnqu`1
1

1´Pj
, q ď p,

1, q ą p,
knaïve “ 2tnpu max

$

&

%

1, max
iětnpu`2

i´1
ź

j“tnpu`1
2p1 ´ Pjq

,

.

-

,

such that kcurl ď κcurl ď 2kcurl and knaïve ď κnaïve ď 2knaïve. Here κcurl and κnaïve correspond to κ induced
by the q-threshold policy and the naïve random policy respectively.

Proof. We need to calculate three state-action visitation distributions: that induced by the optimal policy,
d‹; that induced by the sampler which is the optimal for the curriculum, rdcurl; and that induced by the naïve
random sampler, rdnaïve. This then boils down to calculating the state(-action) visitation distribution under
two types of policies: any threshold policy and the naïve random policy.

18

Published in Transactions on Machine Learning Research (11/2023)

For any policy π, denote dπpi{nq as the probability for the agent acting under π to see states i{n with
arbitrary xi. We do not need to take the terminal state g into consideration, since it stays in a zero-reward
loop and contributes 0 to Lpg; θ, dq. We use the LMDP distribution parameterization tPnu described in
Section 7.

Denote πp as the p-threshold policy, i.e. accept if and only if i{n ą p and xi “ 1. Then

dπp

ˆ

i

n

˙

“ Ppreject all previous i ´ 1 states|πpq

“

i´1
ź

j“1

ˆ

P
ˆ

j

n
, 1

˙

1

„

j

n
ď p

ȷ

` 1 ´ P
ˆ

j

n
, 1

˙˙

“

i´1
ź

j“tnpu`1

ˆ

1 ´ P
ˆ

j

n
, 1

˙˙

“

i´1
ź

j“tnpu`1
p1 ´ Pjq.

Denote πnaïve as the naïve random policy, i.e., accept any number with probability 1{2 regardless of the
state. Then

dπnaïve

ˆ

i

n

˙

“ Ppreject all previous i ´ 1 states|πnaïveq “
1

2i´1 .

For any π, we can see that the state visitation distribution satisfies dπ pi{n, 1q “ Pid
π pi{nq and dπ pi{n, 0q “

p1 ´ Piqd
π pi{nq.

To show the possible largest difference, we use a parameterization that for each state s, ϕpsq “ One-hotpsq.
The policy is then satisfied into

πθpaccept|sq “
exppθJϕpsqq

exppθJϕpsqq ` 1 , πθpreject|sq “
1

exppθJϕpsqq ` 1 ,

because there are only two actions. Denote πθpsq “ πθpaccept|sq, we have

∇θ ln πθpaccept|sq “ p1 ´ πθpsqqϕpsq, ∇θ ln πθpreject|sq “ ´πθpsqϕpsq.

Now suppose the optimal threshold and the threshold learned through curriculum are p and q, then

Σθ
d‹ “

ÿ

sPS
dπp psq

`

πppsqp1 ´ πθpsqq2 ` p1 ´ πppsqqπθpsq2˘

ϕpsqϕpsqJ,

Σθ
rdcurl “

ÿ

sPS
dπq psq

ˆ

1
2 p1 ´ πθpsqq2 `

1
2πθpsq2

˙

ϕpsqϕpsqJ,

Σθ
rdnaïve “

ÿ

sPS
dnaïvepsq

ˆ

1
2 p1 ´ πθpsqq2 `

1
2πθpsq2

˙

ϕpsqϕpsqJ.

Denote κ♣pθq “ supxPRd
xJΣθ

d‹ x

xJΣθ
rd♣ x

. From parameterization we know all ϕpsq are orthogonal. Abusing πq with
πcurl, we have

κ♣pθq “ max
sPS

dπp psq
`

π‹psqp1 ´ πθpsqq2 ` p1 ´ π‹psqqπθpsq2˘

d♣psq
` 1

2 p1 ´ πθpsqq2 ` 1
2 πθpsq2

˘ .

We can separately consider each s P S because of the orthogonal features. Observe that πppsq P t0, 1u, so
for s P S, its corresponding term in κ♣pθq is maximized when πθpsq “ 1 ´ πppsq and is equal to 2 dπp psq

d♣psq
.

19

Published in Transactions on Machine Learning Research (11/2023)

By definition, κ♣ “ max0ďtďT Erκ♣pθtqs. Since θ0 “ 0d, we have κ♣ ě κ♣p0dq where πθpsq “ 1{2 and the
corresponding term is dπp psq

d♣psq
. So

max
sPS

dπp psq

d♣psq
ď κ♣ ď 2 max

sPS

dπp psq

d♣psq
.

We now have an order-accurate result k♣ “ maxsPS
dπp psq

d♣psq
for κ♣. Direct computation gives

kcurl “

#

śtnpu

j“tnqu`1
1

1´Pj
, q ď p,

1, q ą p,

knaïve “ 2tnpu max

$

&

%

1, max
iětnpu`2

i´1
ź

j“tnpu`1
2p1 ´ Pjq

,

.

-

.

This completes the proof.

C Full Experiments

Here are all the experiments not shown in Section 7. All the experiments were run on a server with
CPU AMD Ryzen 9 3950X, GPU NVIDIA GeForce 2080 Super and 128G memory. For legend descrip-
tion please refer to the caption of Figure 1. For code please refer to https://github.com/zhourunlong/
RL-for-Combinatorial-Optimization.

Policy parameterization.

• For BCP and OKD, there are exactly two actions, so we can use ϕpsq “ ϕps, acceptq ´ ϕps, rejectq

instead of ϕps, acceptq and ϕps, rejectq. Now the policy is πθpaccept|sq “
exppθJϕpsqq

exppθJϕpsqq`1 and
πθpreject|sq “ 1

exppθJϕpsqq`1 .

• For ADW, there are n ` 1 actions (n for assigning a slot to advertisers and 1 for not assigning it).
So, we must follow the canonical form of log-linear policies.

Training schemes. We ran nine experiments in total, four for BCP, three for OKD, and two for ADW.
The difference between the experiments of the same problem lies in the distribution over instances (i.e.,
twmu). In the following subsections, we will introduce how we parameterized the distribution in detail. In
a single experiment, we ran eight setups, each representing a combination of sampler policies, initialization
policies of the final phase, and whether we used regularization. For visual clarity, we did not plot setups
with entropy regularization, but the readers can plot it using plot.py in the supplementary files. We make
a detailed list of the training schemes in Table 1.

C.1 The Best Choice Problem (BCP)

State and action spaces. States with Xi ą 1 are the same. To make the problem “scale-invariant”, we
use i{n to represent i. So the states are s “ pi{n, xi “ 1rXi “ 1sq. There is an additional terminal state
g “ p0, 0q. For each state, the agent can either accept or reject.

Transition and reward. Any action in g leads back to g. Once the agent accepts the i-th number, the
state transits into g, and reward is 1 if i is the maximum in the instance. If the agent rejects, then the state
goes to ppi ` 1q{n, xi`1q if i ă n and g if i “ n. For all other cases, rewards are 0.

Feature mapping. Recall that all states are of the form pf, xq where f P r0, 1s, x P t0, 1u. We set a
degree d0 and the feature mapping is constructed as the collection of polynomial bases with degree less than
d0 (d “ 2d0):

ϕpf, xq “ p1, f, . . . , fd0´1, x, fx, . . . , fd0´1xq.

20

https://github.com/zhourunlong/RL-for-Combinatorial-Optimization
https://github.com/zhourunlong/RL-for-Combinatorial-Optimization

Published in Transactions on Machine Learning Research (11/2023)

Abbreviation Detailed setup Script

fix_samp_curl Fixed sampler curriculum learning. In
the warm-up phase, train a policy πs from
scratch (with zero initialization in parame-
ters) using a small environment E1. In the
final phase, change to the true environment
E, use πs as the sampler policy to train a
policy from scratch.

Run Alg. 2 with
samp “ pi_s and
λ “ 0.

fix_samp_curl_reg The same as fix_samp_curl, but add en-
tropy regularization to both phases.

Run Alg. 2 with
samp “ pi_s and
λ ‰ 0.

direct Direct learning. Only the final phase.
Train a policy from scratch directly in E.

Run Alg. 1 with
θ0 “ 0d, πs “ None
and λ “ 0.

direct_reg The same as direct, but add entropy
regularization.

Run Alg. 1 with
θ0 “ 0d, πs “ None
and λ ‰ 0.

naive_samp Learning with the naïve sampler. Only
the final phase. Use the naïve random pol-
icy as the sampler to train a policy from
scratch in E.

Run Alg. 1 with
θ0 “ 0d, πs “ naïve
random policy and
λ “ 0.

naive_samp_reg The same as naive_samp, but add entropy
regularization.

Run Alg. 1 with
θ0 “ 0d, πs “ naive
random policy and
λ ‰ 0.

curl Curriculum learning. In the warm-up
phase, train a policy πs from scratch in E1.
In the final phase, change to E and con-
tinue on training πs.

Run Alg. 2 with
samp “ pi_t and
λ “ 0.

curl_reg The same as curl, but add entropy
regularization.

Run Alg. 2 with
samp “ pi_t and
λ ‰ 0.

reference This is the reference policy. For BCP, it
is exactly the optimal policy since it can be
calculated. For OKD, it is a bang-per-buck
policy and is not the optimal policy (whose
exact form is not clear). For ADW, it is the
near optimal policy in our restricted policy
/ feature class (trained using curriculum
learning).

N/A

Table 1: Detailed setups for each training scheme.

LMDP distribution. We model the distribution as follows: for each i, we can have xi “ 1 with probability
Pi and is independent from other i1. By definition, P1 “ 1 while other Pi can be arbitrary. The classical BCP
satisfies Pi “ 1{i. We also experimented on three other distributions (so in total there are four experiments),
each with a series of numbers p2, p3, . . . , pn

i.i.d.
„ Unifr0,1s and set Pi “ 1{i2pi`0.25.

21

Published in Transactions on Machine Learning Research (11/2023)

For each experiment, we run eight setups, each with different combinations of sampler policies, initialization
policies of the final phase, and the value of regularization coefficient λ. For the warm-up phases we set
n “ 10 and for final phases n “ 100.

Results. Figure 4 (with its full view Figure 5), Figure 6, Figure 7, along with Figure 1 (with seed
2018011309) show four experiments of BCP. They shared a learning rate of 0.2, batch size of 100 per
step in horizon, final n “ 100 and warm-up n “ 10 (if applied curriculum learning). 2

The experiment in Figure 4 was done in the classical BCP environment, i.e., all permutations have probability
1{n! to be sampled. Experiments Figure 1, Figure 6 and Figure 7 were done with other distributions: the
only differences are the random seeds, which we fixed and used to generate Pis for reproducibility.

The experiment of classical BCP was run until the direct training of n “ 100 converges, while all other
experiments were run to a maximum episode of 30000 (hence sample number of THb “ 30000 ˆ 100 ˆ 100 “

3 ˆ 108).

The optimal policy was derived from dynamic programming.

Figure 4: Classical BCP, truncated to 3 ˆ 108 samples.

Figure 5: Classical BCP, full view.

2All the four trainings shown in the figures have their counterparts with regularization (λ “ 0.01). Check the supplementary
files and use TensorBoard for visualization.

22

Published in Transactions on Machine Learning Research (11/2023)

Figure 6: BCP, with seed 20000308.

Figure 7: BCP, with seed 19283746.

C.2 Online Knapsack (decision version, OKD)

State and action spaces. The states are represented as

s “

˜

i

n
, si, vi,

ři´1
j“1 xjsj

B
,

ři´1
j“1 xjvj

V

¸

,

where xj “ 1ritem j was successfully chosens for 1 ď j ď i ´ 1 (in the instance). There is an additional
terminal state g “ p0, 0, 0, 0, 0q. For each state (including g for simplicity), the agent can either accept or
reject.

Transition and reward. The transition is implied by the definition of the problem. Any action in terminal
state g leads back to g. The item is successfully chosen if and only if the agent accepts and the budget is
sufficient. A reward of 1 is given only the first time

ři
j“1 xivi ě V , and then the state goes to g. For all

other cases, reward is 0.

Feature mapping. Suppose the state is pf, s, v, r, qq. We set a degree d0 and the feature mapping is
constructed as the collection of polynomial bases with degree less than d0 (d “ d5

0): ϕpf, s, v, r, qq “

pf if sisviv rir qiq qif ,is,iv,ir,iq
where i♣ P t0, 1, . . . , d0 ´ 1u.

LMDP distribution. In Section 3.2 the values and sizes are sampled from Fv and Fs. If Fv or
Fs is not Unifr0,1s, we model the distribution as: first set a granularity gran and take gran numbers
p1, p2, . . . , pgran

i.i.d.
„ Unifr0,1s. pi represents the (unnormalized) probability that x P ppi ´ 1q{gran, i{granq.

To sample, we take i „ Multinomialpp1, p2, . . . , pgranq and return x „ pi ´ 1 ` Unifr0,1sq{gran.

For each experiment, we ran four setups, each with different combinations of sampler policies and initializa-
tion policies of the final phase. For the warm-up phases n “ 10 and for final phases we set n “ 100 in all

23

Published in Transactions on Machine Learning Research (11/2023)

experiments, while B and V vary. In one experiment it satisfies that B{n are close for warm-up and final,
and V {B increases from warm-up to final.

Results. Figure 8, Figure 9, along with Figure 2 (with Fv “ Fs “ Unifr0,1s) show three experiments of
OKD. They shared a learning rate of 0.1, batch size of 100 per step in horizon, final n “ 100 and warm-up
n “ 10 (if applied curriculum learning).

Experiments in Figure 8 and Figure 9 were done with other value and size distributions: the only differences
are the random seeds, which we fixed and used to generate Fv and Fs for reproducibility.

All experiments were run to a maximum episode of 50000 (hence sample number of THb “ 50000ˆ100ˆ100 “

5 ˆ 108).

The reference policy is a bang-per-buck algorithm (Section 3.1 of Kong et al. (2019)): given a threshold r,
accept i-th item if vi{si ě r. We searched for the optimal r with respect to Online Knapsack because we
found that in general the reward is unimodal to r and contains no “plain area”, so we can easily apply
ternary search (the reward of OKD contains “plain area”).

Figure 8: OKD, with seed 2018011309.

Figure 9: OKD, with seed 20000308.

C.3 AdWords (decision version, ADW)

State and action spaces. The states are represented as

s “

ˆ

j

m
, v1,j , v2,j , . . . , vn,j , B1, B2, . . . , Bn,

Vj

V

˙

,

where Vj is equal to the total revenue up until now. There is an additional terminal state g “ 02n`2. For
each state (including g for simplicity), the agent has n ` 1 actions, with 0 representing not assigning the slot
and 1, . . . , n representing assigning to the corresponding advertiser.

24

Published in Transactions on Machine Learning Research (11/2023)

Transition and reward. The transition is implied by the definition of the problem. Any action in terminal
state g leads back to g. The slot j is successfully assigned to advertiser i if and only if the action is i and
Bi ě vi,j . The next state is then with Bi Ð Bi ´ vi,j and Vj Ð Vj ` vi,j . A reward of 1 is given only the
first time Vj ` vi,j ě V , and then the state goes to g. For all other cases, reward is 0.

Feature mapping. The feature design in ADW is a bit tricky, since the state dimension is super large.
We simplify the setting by assuming all the advertisers are symmetric, so we design a function ϕ and for
action 1 ď i ď n,

ϕs,i “ ϕ

ˆ

j

m
, vi,j , Bi,

Vj

V

˙

,

and

ϕs,0 “ ϕ

ˆ

j

m
, 0, 0,

Vj

V

˙

.

Actually, not assigning the slot is equal to assigning the slot to a virtual advertiser with value 0.

We set a degree d0 and ϕpf, v, B, qq is constructed as the collection of polynomial bases with degree less than
d0 (d “ d4

0): ϕpf, v, B, qq “ pf if viv BiB qiq qif ,iv,iB ,iq where i♣ P t0, 1, . . . , d0 ´ 1u.

LMDP distribution. In Section 3.3 the values vi,j are sampled from Fi. If Fi is not Unifr0,1s, we model
the distribution in the same manner as in OKD. For each experiment, we ran four setups, each with different
combinations of sampler policies and initialization policies of the final phase.

In the experiment depicted in Figure 3: For the warm-up phases we set pn, mq “ p3, 6q and V “ 2.7. For
final phases we set pn, mq “ p10, 20q and V “ 9. The distributions are parameterized random ones with
gran “ 10.

In the experiment depicted in Figure 10: For the warm-up phases we set pn, mq “ p3, 6q and V “ 2.64. For
final phases we set pn, mq “ p8, 32q and V “ 7.04. The distributions are specially designed distributions,
with probability p it has a 0.4 value, and the rest 1 ´ p mass is random on p0.6, 1q. This distribution type
has a special near optimal policy class: either pick two 0.4, or pick anything in p0.8, 1q.

Results. Figure 3 and Figure 10 are experiments of ADW. They shared a learning rate of 0.1 and batch
size of 100 per step in horizon.

The reference policy is obtained by first running a curriculum learning, then using the learned policy as the
reference policy. This is because after we simplify the feature representation, we need to compare with the
near optimal policy inside this restricted policy / feature class.

Figure 10: ADW, with seed 19260817 and special distributions.

25

Published in Transactions on Machine Learning Research (11/2023)

D Technical Details and Lemmas

D.1 Natural Policy Gradient for LMDP

This section is a complement to Section 5. We give details about the correctness of Natural Policy Gradient
for LMDP.

Theorem 12 is the finite-horizon Policy Gradient Theorem for LMDP, which takes the mixing weight twmu

into consideration.

According to Agarwal et al. (2021), the unconstrained, full-information NPG update weight satisfies
F pθtqgt “ ∇θV t,λ. Lemma 13 and Lemma 14 together show that: it is equivalent to finding a minimizer of
the fitting compatible function approximation loss (Definition 8).
Theorem 12 (Policy Gradient Theorem for LMDP). For any policy πθ parameterized by θ, and any 1 ď

m ď M ,

∇θ

´

Es0„νm

”

V πθ,λ
m,H ps0q

ı¯

“

H
ÿ

h“1
Es,a„dθ

m,H´h

”

Qπθ,λ
m,h ps, aq∇θ ln πθpa|sq

ı

.

As a result,

∇θV πθ,λ “

M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„dθ

m,H´h

”

Qπθ,λ
m,h ps, aq∇θ ln πθpa|sq

ı

.

Proof. For any 1 ď h ď H and s P S, since V πθ,λ
m,h psq “

ř

aPA πθpa|sqQπθ,λ
m,h ps, aq, we have

∇θV πθ,λ
m,h psq “

ÿ

aPA

´

Qπθ,λ
m,h ps, aq∇θπθpa|sq ` πθpa|sq∇θQπθ,λ

m,h ps, aq

¯

.

Hence
H
ÿ

h“1

ÿ

sPS
dθ

m,H´hpsq∇θV πθ,λ
m,h psq “

H
ÿ

h“1

ÿ

sPS
dθ

m,H´hpsq
ÿ

aPA

´

Qπθ,λ
m,h ps, aq∇θπθpa|sq ` πθpa|sq∇θQπθ,λ

m,h ps, aq

¯

“

H
ÿ

h“1

ÿ

sPS
dθ

m,H´hpsq
ÿ

aPA
πθpa|sqQπθ,λ

m,h ps, aq∇θ ln πθpa|sq

`

H
ÿ

h“1

ÿ

sPS
dθ

m,H´hpsq
ÿ

aPA
πθpa|sq∇θQπθ,λ

m,h ps, aq

“

H
ÿ

h“1
Es,a„dθ

m,H´h

”

Qπθ,λ
m,h ps, aq∇θ ln πθpa|sq

ı

`

H
ÿ

h“1

ÿ

sPS
dθ

m,H´hpsq
ÿ

aPA
πθpa|sq∇θQπθ,λ

m,h ps, aq.

Next we focus on the second term. From the Bellman equation,

∇θQπθ,λ
m,h ps, aq “ ∇θ

˜

rθps, aq ´ λ ln πθpa|sq `
ÿ

s1PS
P ps1|s, aqV πθ,λ

m,h´1ps1q

¸

“ ´λ∇θ ln πθpa|sq `
ÿ

s1PS
P ps1|s, aq∇θV πθ,λ

m,h´1ps1q.

Particularly, ∇θQπ,λ
i,1 ps, aq “ ´λ∇θ ln πθpa|sq. So

H
ÿ

h“1

ÿ

sPS
dθ

m,H´hpsq
ÿ

aPA
πθpa|sq∇θQπθ,λ

m,h ps, aq

26

Published in Transactions on Machine Learning Research (11/2023)

“

H
ÿ

h“1

ÿ

sPS
dθ

m,H´hpsq
ÿ

aPA
πθpa|sq

˜

´λ∇θ ln πθpa|sq `
ÿ

s1PS
P ps1|s, aq∇θV πθ,λ

m,h´1ps1q

¸

“ ´λ
H
ÿ

h“1

ÿ

sPS
dθ

m,H´hpsq
ÿ

aPA
∇θπθpa|sq

looooooomooooooon

“0

`

H
ÿ

h“2

ÿ

s1PS
∇θV πθ,λ

m,h´1ps1q
ÿ

sPS
dθ

m,H´hpsq
ÿ

aPA
πθpa|sqP ps1|s, aq

loooooooooooooooooooooomoooooooooooooooooooooon

“dθ
m,H´h`1ps1q

“

H
ÿ

h“2

ÿ

s1PS
dθ

m,H´h`1ps1q∇θV πθ,λ
m,h´1ps1q

“

H
ÿ

h“1

ÿ

sPS
dθ

m,H´hpsq∇θV πθ,λ
m,h psq ´

ÿ

s0PS
νmps0q∇θV πθ,λ

m,H ps0q,

where we used the definition of d and νm. So by rearranging the terms, we complete the proof.

Lemma 13. Suppose Γ P Rnˆm, D “ diagpd1, d2, . . . , dmq P Rmˆm where di ě 0 and q P Rm, then
x “ pΓDΓJq:ΓDq is a solution to the equation ΓDΓJx “ ΓDq.

Proof. Denote D1{2 “ diagp
?

d1,
?

d2, . . . ,
?

dmq, P “ ΓD1{2, p “ D1{2q, then the equation is reduced to
PP Jx “ Pp. Suppose the singular value decomposition of P is UΣV J where U P Rnˆn, Σ P Rnˆm, V P

Rmˆm where U and V are unitary, and singular values are σ1, σ2, . . . , σk. So PP J “ UpΣΣJqUJ and
pPP Jq: “ UpΣΣJq:UJ. Notice that

ΣΣJ “ diagpσ2
1 , σ2

2 , . . . , σ2
k, 0, . . . , 0q P Rnˆn,

we can then derive the pseudo-inverse of this particular diagonal matrix as

pΣΣJq: “ diagpσ´2
1 , σ´2

2 , . . . , σ´2
k , 0, . . . , 0q.

It is then easy to verify that pΣΣJqpΣΣJq:Σ “ Σ. Finally,

PP Jx “ pPP JqrpPP Jq:Pps

“ UpΣΣJqUJUpΣΣJq:UJUΣV Jp

“ UpΣΣJqpΣΣJq:ΣV Jp

“ UΣV Jp

“ Pp.

This completes the proof.

Lemma 14 (NPG Update Rule). The update rule θ Ð θ ` ηF pθq:∇θV πθ,λ where

F pθq “

M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„dθ

m,H´h

”

p∇θ ln πθpa|sqq
b

ı

is equivalent to θ Ð θ ` ηg‹, where g‹ is a minimizer of the function

Lpgq “

M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„dθ

m,H´h

„

´

Aπθ,λ
m,h ps, aq ´ gJ∇θ ln πθpa|sq

¯2
ȷ

.

Proof.

∇gLpgq “ ´2
M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„dθ

m,H´h

”´

Aπθ,λ
m,h ps, aq ´ gJ∇θ ln πθpa|sq

¯

∇θ ln πθpa|sq

ı

.

27

Published in Transactions on Machine Learning Research (11/2023)

Suppose g‹ is any minimizer of Lpgq, we have ∇gLpg‹q “ 0, hence

M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„dθ

m,H´h

“`

g‹J∇θ ln πθpa|sq
˘

∇θ ln πθpa|sq
‰

“

M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„dθ

m,H´h

”

Aπθ,λ
m,h ps, aq∇θ ln πθpa|sq

ı

“

M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„dθ

m,H´h

”

Qπθ,λ
m,h ps, aq∇θ ln πθpa|sq

ı

.

Since puJvqv “ pvvJqu, then

F pθqg‹ “ ∇θV πθ,λ.

Now we assign 1, 2, . . . , MHSA as indices to all pm, h, s, aq P t1, . . . , Mu ˆ t1, . . . , Hu ˆ S ˆ A, and set

γj “ ∇θ ln πθpa|sq,

dj “ wmdθ
m,H´hps, aq,

qj “ Qπθ,λ
m,h ps, aq,

where j is the index assigned to pm, h, s, aq. Then F pθq “ ΦDΦJ and ∇θV θ “ ΦDq where

Γ “ rγ1, γ2, . . . , γMHSAs P RdˆMHSA,

D “ diagpd1, d2, . . . , dMHSAq P RMHSAˆMHSA,

q “ rq1, q2, . . . , qMHSAsJ P RMHSA.

We now conclude the proof by utilizing Lemma 13.

D.2 Auxiliary lemmas used in the main results

Lemma 15 (Performance Difference Lemma). For any two policies π1 and π2, and any 1 ď m ď M ,

Es0„νm

”

V π1,λ
m,H ps0q ´ V π2,λ

m,H ps0q

ı

“

H
ÿ

h“1
Es,a„d

π1
m,H´h

„

Aπ2,λ
m,h ps, aq ` λ ln π2pa|sq

π1pa|sq

ȷ

.

As a result,

V π1,λ ´ V π2,λ “

M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„d

π1
m,H´h

„

Aπ2,λ
m,h ps, aq ` λ ln π2pa|sq

π1pa|sq

ȷ

.

Proof. First we fix s0. By definition of the value function, we have

V π1,λ
m,H ps0q ´ V π2,λ

m,H ps0q

“ E

«

H´1
ÿ

h“0
rmpsh, ahq ´ λ ln π1pah|shq

ˇ

ˇ

ˇ

ˇ

ˇ

Mm, π1, s0

ff

´ V π2,λ
m,H ps0q

“ E

«

H´1
ÿ

h“0
rmpsh, ahq ´ λ ln π1pah|shq ` V π2,λ

m,H`1´hpsh`1q ´ V π2,λ
m,H´hpshq

ˇ

ˇ

ˇ

ˇ

ˇ

Mm, π1, s0

ff

“ E

«

H´1
ÿ

h“0
E

”

rmpsh, ahq ´ λ ln π2pah|shq ` V π2,λ
m,H`1´hpsh`1q

ˇ

ˇ

ˇ
Mm, π2, sh, ah

ı

ˇ

ˇ

ˇ

ˇ

ˇ

Mm, π1, s0

ff

28

Published in Transactions on Machine Learning Research (11/2023)

` E

«

H´1
ÿ

h“0
´V π2,λ

m,H´hpshq ` λ ln π2pah|shq

π1pah|shq

ˇ

ˇ

ˇ

ˇ

ˇ

Mm, π1, s0

ff

,

where the last step uses law of iterated expectations. Since

E
”

rmpsh, ahq ´ λ ln π2pah|shq ` V π2,λ
m,H`1´hpsh`1q

ˇ

ˇ

ˇ
Mm, π2, sh, ah

ı

“ Qπ2,λ
m,H´hpsh, ahq,

we have

V π1,λ
m,H ps0q ´ V π2,λ

m,H ps0q “ E

«

H´1
ÿ

h“0
Qπ2,λ

m,H´hpsh, ahq ´ V π2,λ
m,H´hpshq ` λ ln π2pah|shq

π1pah|shq

ˇ

ˇ

ˇ

ˇ

ˇ

Mm, π1, s0

ff

“ E

«

H´1
ÿ

h“0
Aπ2,λ

m,H´hpsh, ahq ` λ ln π2pah|shq

π1pah|shq

ˇ

ˇ

ˇ

ˇ

ˇ

Mm, π1, s0

ff

.

By taking expectation over s0, we have

Es0„νm

”

V π1,λ
m,H ps0q ´ V π2,λ

m,H ps0q

ı

“ E

«

H´1
ÿ

h“0
Aπ2,λ

m,H´hpsh, ahq ` λ ln π2pah|shq

π1pah|shq

ˇ

ˇ

ˇ

ˇ

ˇ

Mm, π1

ff

“

H´1
ÿ

h“0

ÿ

ps,aqPSˆA

dπ1
m,hps, aq

ˆ

Aπ2,λ
m,H´hps, aq ` λ ln π2pa|sq

π1pa|sq

˙

.

The proof is completed by reversing the order of h.

Lemma 16 (Lyapunov Drift). Recall definitions in Definitions 5 and 9. We have that:

Φpπt`1q ´ Φpπtq ď ´ηλΦpπtq ` ηerrt ´ η
`

V ‹,λ ´ V t,λ
˘

`
η2B2}gt}

2
2

2 .

Proof. Denote Φt :“ Φpπtq. This proof follows a similar manner as in that of Lemma 6 in Cayci et al. (2021).
By smoothness (see Remark 6.7 in Agarwal et al. (2021)),

ln πtpa|sq

πt`1pa|sq
ď pθt ´ θt`1qJ∇θ ln πtpa|sq `

B2

2 }θt`1 ´ θt}
2
2

“ ´ηgJ
t ∇θ ln πtpa|sq `

η2B2}gt}
2
2

2 .

By the definition of Φ,

Φt`1 ´ Φt “

M
ÿ

m“1
wm

H
ÿ

h“1
Eps,aq„d‹

m,H´h

„

ln πtpa|sq

πt`1pa|sq

ȷ

ď ´η
M
ÿ

m“1
wm

H
ÿ

h“1
Eps,aq„d‹

m,H´h

“

gJ
t ∇θ ln πtpa|sq

‰

`
η2B2}gt}

2
2

2 .

By the definition of errt, Lemma 15 and again the definition of Φ, we finally have

Φt`1 ´ Φt ď η
M
ÿ

m“1
wm

H
ÿ

h“1
Eps,aq„d‹

m,H´h

”

At,λ
m,hps, aq ´ gJ

t ∇θ ln πtpa|sq

ı

´ η
M
ÿ

m“1
wm

H
ÿ

h“1
Eps,aq„d‹

m,H´h

„

At,λ
m,hps, aq ` λ ln πtpa|sq

π‹pa|sq

ȷ

´ ηλ
M
ÿ

m“1
wm

H
ÿ

h“1
Eps,aq„d‹

m,H´h

„

ln π‹pa|sq

πtpa|sq

ȷ

`
η2B2}gt}

2
2

2

29

Published in Transactions on Machine Learning Research (11/2023)

“ ηerrt ´ η
`

V ‹,λ ´ V t,λ
˘

´ ηλΦt `
η2B2}gt}

2
2

2 ,

which completes the proof.

Lemma 17. Recall that g‹
t is the true minimizer of Lpg; θt, dtq in domain G. errt defined in Definition 5

satisfies

errt ď
a

HLpg‹
t ; θt, d‹q `

a

HκpLpgt; θt, dtq ´ Lpg‹
t ; θt, dtqq.

Proof. The proof is similar to that of Theorem 6.1 in Agarwal et al. (2021). We make the following decom-
position of errt:

errt “

M
ÿ

m“1
wm

H´1
ÿ

h“0
Eps,aq„d‹

m,h

”

At,λ
m,hps, aq ´ g‹J

t ∇θ ln πtpa|sq

ı

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

①

`

M
ÿ

m“1
wm

H´1
ÿ

h“0
Eps,aq„d‹

m,h

“

pg‹
t ´ gtq

J∇θ ln πtpa|sq
‰

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

②

.

Since
řM

m“1 wm

řH´1
h“0

ř

ps,aqPSˆA d‹
m,hps, aq “ H, normalize the coefficients and apply Jensen’s inequality,

then

① ď

g

f

f

e

M
ÿ

m“1
wm

H´1
ÿ

h“0

ÿ

ps,aqPSˆA

d‹
m,hps, aq ¨

g

f

f

e

M
ÿ

m“1
wm

H´1
ÿ

h“0
Eps,aq„d‹

m,h

„

´

At,λ
m,hps, aq ´ g‹J

t ∇θ ln πtpa|sq

¯2
ȷ

“
a

HLpg‹
t ; θt, d‹q.

Similarly,

② ď

g

f

f

eH
M
ÿ

m“1
wm

H´1
ÿ

h“0
Eps,aq„d‹

m,h

”

ppg‹
t ´ gtq

J∇θ ln πtpa|sqq
2
ı

“

g

f

f

eH
M
ÿ

m“1
wm

H´1
ÿ

h“0
Eps,aq„d‹

m,h
rpg‹

t ´ gtq
J∇θ ln πtpa|sqp∇θ ln πtpa|sqqJpg‹

t ´ gtqs

(i)
“

b

H}g‹
t ´ gt}

2
Σt

d‹

ď

b

Hκ}g‹
t ´ gt}

2
Σt

,

where in (i), for vector v, denote }v}A “
?

vJAv for a symmetric positive semi-definite matrix A. Due to
that g‹

t minimizes Lpg; θt, dtq over the set G, the first-order optimality condition implies that

pg ´ g‹
t qJ∇gLpg‹

t ; θt, dtq ě 0

for any g. Therefore,

Lpg; θt, dtq ´ Lpg‹
t ; θt, dtq

“

M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„dt

m,H´h

„

´

At,λ
m,hps, aq ´ g‹J

t ∇ ln πtpa|sq ` pg‹
t ´ gqJ∇ ln πtpa|sq

¯2
ȷ

´ Lpg‹
t ; θt, dtq

“

M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„dt

m,H´h

”

`

pg‹
t ´ gqJ∇θ ln πtpa|sq

˘2ı

30

Published in Transactions on Machine Learning Research (11/2023)

` pg ´ g‹
t qJ

˜

´2
M
ÿ

m“1
wm

H
ÿ

h“1
Es,a„dt

m,H´h

”´

At,λ
m,hps, aq ´ g‹J

t ∇θ ln πtpa|sq

¯

∇θ ln πtpa|sq

ı

¸

“ }g‹
t ´ g}2

Σt
` pg ´ g‹

t qJ∇gLpg‹
t ; θt, dtq

ě }g‹
t ´ g}2

Σt
.

So finally we have

errt ď
a

HLpg‹
t ; θt, d‹q `

a

HκpLpgt; θt, dtq ´ Lpg‹
t ; θt, dtqq.

This completes the proof.

D.3 Bounding ϵstat

Lemma 18 (Hoeffding’s Inequality). Suppose X1, X2, . . . , Xn are i.i.d. random variables taking values in
ra, bs, with expectation µ. Let X̄ denote their average, then for any ϵ ě 0,

P
`
ˇ

ˇX̄ ´ µ
ˇ

ˇ ě ϵ
˘

ď 2 exp
ˆ

´
2nϵ2

pb ´ aq2

˙

.

Lemma 19. For any policy π, any state s P S and any U ě ln |A| ´ 1,

0 ď
ÿ

aPA
πpa|sq ln 1

πpa|sq
´

ÿ

aPA
πpa|sq min

"

ln 1
πpa|sq

, U

*

ď
|A|

eU`1 .

Proof. The first inequality is straightforward, so we focus on the second part. Set A1 “ ta P A : ln 1
πpa|sq

ą

Uu “ ta P A : πpa|sq ă 1
eU u and p “

ř

aPA1 πpa|sq, then
ÿ

aPA
πpa|sq ln 1

πpa|sq
´

ÿ

aPA
πpa|sq min

"

ln 1
πpa|sq

, U

*

“
ÿ

aPA1

πpa|sq ln 1
πpa|sq

´
ÿ

aPA1

πpa|sqU

“ p
ÿ

aPA1

πpa|sq

p
ln 1

πpa|sq
´ pU

ď p ln
˜

ÿ

aPA1

πpa|sq

p

1
πpa|sq

¸

´ pU

ď p ln |A|

p
´ pU,

where the penultimate step comes from concavity of ln x and Jensen’s inequality. Let fppq “ p ln |A|

p ´ pU ,
then f 1ppq “ ln |A| ´ U ´ 1 ´ ln p. Recall that U ě ln |A| ´ 1, so fppq increases when p P p0, |A|

eU`1 q and
decreases when p P p

|A|

eU`1 , 1q. Since fp
|A|

eU`1 q “
|A|

eU`1 we complete the proof.

Lemma 20 (Loss Function Concentration). If set πs “ None and U ě ln |A| ´ 1, then with probability
1 ´ 2pT ` 1q exp

´

´ 2Nϵ2

C2

¯

, the update weight sequence of Algorithm 3 satisfies: for any 0 ď t ď T ,

Lppgt; θt, dθt q ´ Lpg‹
t ; θt, dθt q ď 2ϵ `

8λGB|A|

eU`1 ,

where

C “ 16HGBr1 ` λU ` Hp1 ` λ ln |A|qs ` 4HG2B2.

If πs ‰ None and λ “ 0, then with probability 1 ´ 2pT ` 1q exp
´

´ 2Nϵ2

C2

¯

, the update weight sequence of
Algorithm 3 satisfies: for any 0 ď t ď T ,

Lppgt; θt, rdπs q ´ Lpg‹
t ; θt, rdπs q ď 2ϵ,

31

Published in Transactions on Machine Learning Research (11/2023)

where

C “ 16H2GB ` 4HG2B2.

Proof. We first prove the πs “ None case. For time step t, Algorithm 3 samples HN trajectories. Abusing
the notation, denote

pFt “
1
N

N
ÿ

n“1

H´1
ÿ

h“0
∇θ ln πθpan,h|sn,hq p∇θ ln πθpan,h|sn,hqq

J
,

p∇t “
1
N

N
ÿ

n“1

H´1
ÿ

h“0

pAn,H´hpsn,h, an,hq∇θ ln πθpan,h|sn,hq,

pLpgq “

M
ÿ

m“1
wm

H
ÿ

h“1
E

s,a„d
θt
m,H´h

”

At,λ
m,hps, aq2

ı

loooooooooooooooooooooooomoooooooooooooooooooooooon

①

` gJ
pFtg ´ 2gJ

p∇t
loooooooomoooooooon

②

.

Notice that ① is a constant. From Algorithm 3, pgt is the minimizer of ② (hence pLpgq) inside the ball G. From
∇θ ln πθpa|sq “ ϕps, aq ´ Ea1„πθp¨|sqrϕps, a1qs, }ϕps, aq}2 ď B, }g}2 ď G, we know that

ˇ

ˇgJ∇θ ln πθpa|sq
ˇ

ˇ ď

2GB. So 0 ď gJ
pFtg ď 4HG2B2. From Algorithm 4, we know that any sampled pA satisfies | pA| ď 2r1 ` λU `

Hp1 ` λ ln |A|qs. So |gJ
p∇t| ď 4HGBr1 ` λU ` Hp1 ` λ ln |A|qs. We first have that

´8HGBr1 ` λU ` Hp1 ` λ ln |A|qs ď ② ď 8HGBr1 ` λU ` Hp1 ` λ ln |A|qs ` 4HG2B2. (2)

To apply any standard concentration inequality, we next need to calculate the expectation of ②. According
to Monte Carlo sampling and Lemma 19, for any 1 ď m ď M, 1 ď h ď H and ps, aq P S ˆ A, we have

At,λ
m,hps, aq ´

λ|A|

eU`1 ď E
”

pAt,λ
m,hps, aq

ı

ď At,λ
m,hps, aq.

Denote ∇t as the exact policy gradient at time step t, then
ˇ

ˇ

ˇ
E

”

gJ
p∇t

ı

´ gJ∇t

ˇ

ˇ

ˇ
ď }g}2

›

›

›
E

”

p∇t

ı

´ ∇t

›

›

›

2

ď }g}2 ¨ H}∇θ ln πθpa|sq}2

›

›

›
E

”

pAps, aq

ı

´ Aps, aq

›

›

›

8

ď
2λGB|A|

eU`1 .

Since Monte Carlo sampling correctly estimates state-action visitation distribution, E
”

pFt

ı

“ F pθtq. Notice

that gJ
pFtg is linear in entries of pFt, we have E

”

gJ
pFtg

ı

“ gJF pθtqg. Now we are in the position to show
that

ˇ

ˇ

ˇ
E

”

pLpgq

ı

´ Lpgq

ˇ

ˇ

ˇ
ď

4λGB|A|

eU`1 .

Hoeffding’s inequality (Lemma 18) gives

P
´

ˇ

ˇ

ˇ

pLpgq ´ E
”

pLpgq

ı
ˇ

ˇ

ˇ
ě ϵ

¯

ď 2 exp
ˆ

´
2Nϵ2

C2

˙

.

where from Equation (2),

C “ 16HGBr1 ` λU ` Hp1 ` λ ln |A|qs ` 4HG2B2.

32

Published in Transactions on Machine Learning Research (11/2023)

After applying union bound for all t, with probability 1 ´ 2pT ` 1q exp
´

´ 2Nϵ2

C2

¯

the following holds for any
g P G:

ˇ

ˇ

ˇ

pLpg; θt, dθt q ´ Lpg; θt, dθt q

ˇ

ˇ

ˇ
ď ϵ `

4λGB|A|

eU`1 .

Hence

Lppgt; θt, dθt q ď pLppgt; θt, dθt q ` ϵ `
4λGB|A|

eU`1

ď pLpg‹
t ; θt, dθt q ` ϵ `

4λGB|A|

eU`1

ď Lpg‹
t ; θt, dθt q ` 2ϵ `

8λGB|A|

eU`1 .

For πs ‰ None and λ “ 0, we notice that | pA| ď 2H and hence ´8H2GB ď ② ď 8H2GB ` 4HG2B2.
Moreover, E

”

pAt,λ
m,hps, aq

ı

“ At,λ
m,hps, aq. So by slightly modifying the proof we can get the result.

33

	Introduction
	Related Works
	Motivating Online CO Problems
	The Best Choice Problem (BCP)We follow the statement in papernewdog that BCP (secretary problem) is a CO problem. It is categorized as an optimal stopping problem.
	Online Knapsack (decision version, OKD)
	AdWords (decision version, ADW)

	Problem Setup
	Latent Markov Decision Process
	Algorithm components

	Learning Procedure
	Performance Analysis
	Natural Policy Gradient for Latent MDP
	Curriculum learning for BCP

	Experiments
	Conclusion
	Full Results of the Main Algorithm and Theorem for Entropy Regularization
	Notations and Definitions
	Algorithms
	Performance of Natural Policy Gradient for LMDP

	Results of Curriculum Learning for the Best Choice Problem (BCP)
	Full Experiments
	The Best Choice Problem (BCP)
	Online Knapsack (decision version, OKD)
	AdWords (decision version, ADW)

	Technical Details and Lemmas
	Natural Policy Gradient for LMDP
	Auxiliary lemmas used in the main results
	Bounding stat

