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Abstract—Can we hope to provide provable security against
model extraction attacks? As a step towards a theoretical
study of this question, we unify and abstract a wide range of
“observational” model extraction defenses (OMEDs) — roughly,
those that attempt to detect model extraction by analyzing
the distribution over the adversary’s queries. To accompany
the abstract OMED, we define the notion of complete OMEDs
— when benign clients can freely interact with the model —
and sound OMEDs — when adversarial clients are caught and
prevented from reverse engineering the model. Our formalism
facilitates a simple argument for obtaining provable security
against model extraction by complete and sound OMEDs, using
(average-case) hardness assumptions for PAC-learning, in a way
that abstracts current techniques in the prior literature.

The main result of this work establishes a partial compu-
tational incompleteness theorem for the OMED: any efficient
OMED for a machine learning model computable by a polyno-
mial size decision tree that satisfies a basic form of completeness
cannot satisfy soundness, unless the subexponential Learning
Parity with Noise (LPN) assumption does not hold. To prove
the incompleteness theorem, we introduce a class of model
extraction attacks called natural Covert Learning attacks based
on a connection to the Covert Learning model of Canetti and
Karchmer (TCC ’21), and show that such attacks circumvent
any defense within our abstract mechanism in a black-box,
nonadaptive way. As a further technical contribution, we extend
the Covert Learning algorithm of Canetti and Karchmer to work
over any “concise” product distribution (albeit for juntas of a
logarithmic number of variables rather than polynomial size
decision trees), by showing that the technique of learning with
a distributional inverter of Binnendyk et al. (ALT ’22) remains
viable in the Covert Learning setting.

Index Terms—Model Extraction, Model Stealing, Covert
Learning, Adversarial Machine Learning, Provable Security.

I. INTRODUCTION

In a model extraction attack, an adversary maliciously
probes an interface to a machine learning model in an at-
tempt to extract the machine learning model itself. In many
cases, preventing model extraction helps increase security and
privacy, especially with respect to model inversion and adver-
sarial example attacks (see e.g. [1] and references therein).
Additionally, in Machine Learning as a Service (MLaaS), the
model is considered confidential as the server usually oper-
ates with a pay-per-query scheme. Therefore, maintaining the

secrecy of ML models by finding effective model extraction
defense mechanisms is paramount. Indeed, the problem of how
to defend against model extraction has been considered from
a practical perspective previously (e.g. [2]–[6]).

Most proposed model extraction defenses (MEDs) in the
literature belong to two types (except a few notable excep-
tions, see e.g. [7]). The first type aims to limit the amount
of information revealed by each client query. One intuitive
proposal for this type of defense is to add independent noise
(i.e. respond an incorrect prediction independently with some
probability) or even deliberately modify the underlying model.
This type of solution is not a focus of this work, because it
necessarily sacrifices predictive accuracy of the ML model,
and is therefore not an option for many ML systems where
accuracy is critical such as autonomous driving, medical
diagnosis, or malware detection.

The second type of MED that has been proposed aims
to separate “benign” clients — those that want to obtain
predictions but will not attempt to extract the model — and
“adverse” clients — clients that aim to extract the model. This
type of “observational” defense is the focus of the present
work (see Figure 1). A common implementation of the obser-
vational defense involves so-called “monitors” that, receive as
input a batch of queries submitted by the client, and compute
some statistic meant to measure the likelihood of adversarial
behavior, with the goal of rejecting a client’s requests when
the queries pass a certain threshold on the statistic (e.g. [2],
[5], [6]). Essentially, observational defenses aim to control the
distribution of the client’s queries, by classifying any clients
that fail to conform to the appropriate distributions as adverse,
and then prohibiting them from accessing the model. To date,
the choice of such appropriate distributions has been made
heuristically, for instance, in [5], an appropriate distribution
is one with the property that the distribution over hamming
distances between independent queries is normally distributed.

However, no formal definitions of security against model
extraction have been suggested, and there has not been much
formal work done in an effort to understand the theoretical
underpinnings of the proposed observational defenses. This
is highlighted by Vaikuntanathan as an open problem in [8].



Fig. 1. A depiction of the model extraction setting in the presence of an
OMED. The adverse client queries the ML model, attempting to extract
an approximation. The OMED watches over the interaction and outputs a
decision to accept (and forward the labels) or reject the client based on whether
or not it is deemed adverse or benign.

As a result, a “cat-and-mouse” progression of attacks and
defenses has developed, while no satisfying guarantees have
been discovered (for neither cat nor mouse).

A. Towards Provable Security Against Model Extraction

In contrast, a lofty goal inspired by the theory of Cryptog-
raphy would be to ultimately obtain provable security guar-
antees. For example, an initial attempt could try to leverage
zero-knowledge style simulation-based security, to obtain the
guarantee that a client learns nothing about the ML model that
they could not have already learned prior to the interaction
with the model. However, this is too strong of a goal, because
at the very least the client will learn some queried examples.1

What kind of guarantees could we feasibly hope to obtain,
then? One possible revised goal, could be to guarantee that
a client learns only as much as they could learn from a set
of random queries on the model. This privilege constitutes a
middle ground between the too restrictive full zero-knowledge
guarantee, and allowing a client total query access to the
model.

We observe that this notion of security appears to be im-
plicitly behind existing observational defenses. The literature
on practical observational defenses tends to cite the goal
of detecting model extraction, but the downstream effect is
that the observational defenses seek to exactly confine the
queries obtained by the client to some specific distributions (by
enforcing a particular benign behavior). The benign behavior
is enforced because the OMED will reject the client’s queries
if their distribution fails some chosen statistical test. Hence,
the idea of only serving clients confined to these benign

1For example, in the setting of Machine Learning as a Service (MLaaS),
the client must be granted “in good faith” at least some ability to learn
information, since otherwise the client may take business elsewhere.

query distributions undoubtedly assumes that whatever can be
deduced by a benign client about the model is indeed “secure.”

To think about this deeper, let us focus on the case of
observational defenses for binary classifiers. At first glance,
the beautiful learning theory of Vapnik and Chervonenkis —
which tells us that a number of samples proportional to the
VC dimension of the hypothesis class suffices for PAC learning
— seems to dash the hopes of using this model of security to
obtain any meaningful protection. Indeed, an adversary with
unbounded computational power could simply query the model
according to one of the appropriate distributions of random
examples for a sufficient number of times, and then apply a
PAC-learning algorithm. The output of the algorithm would
be a function which would be a strong approximation to the
underlying ML model with high confidence.

However, this view does not account for the complexity
of the implied model extraction attack: depending on the
complexity of the model, this type of attack may have super-
polynomial query and computational complexity. For instance,
for many important families of classifiers (e.g. boolean deci-
sion trees), no efficient (i.e., polynomial time) PAC-learning
algorithms are known despite intense effort from the learning
theory community (though they exist given superpolynomial
computational resources).2 In fact, no efficient algorithms are
known even when the queries are restricted to being uniformly
distributed, and the classifier itself is drawn from some kinds
of distributions (i.e., in an average-case way, see e.g. [11]).

Hence, this lends credence to the idea that the model
of security implicitly considered by observational defenses
might actually be effective in preventing unwanted model
extraction by computationally bounded adversaries, by forcing
the adversary to interact with the query interface in a way
that mimics uniformly random examples, or some other hard
example distribution. In this way, security against model
extraction by computationally bounded adversaries could be
provable in a complexity-theoretic way: one could hope to
give a reduction from PAC-learning to model extraction in the
presence of observational defenses. In other words, one could
hope to prove a theorem that says “any efficient algorithm
to learn an approximation of a proprietary ML model when
constrained by an observational defense yields a distribution-
specific PAC-learning algorithm (that is currently beyond all
known techniques).”3

2We note that there exist efficient learning algorithms for polynomial size
decision trees that use correlated queries [9] [10]. Therefore, these families of
classifiers are at least efficiently learnable by model owner who had this type
of data access, so the setting is still nontrivial (i.e., the model is not completely
unlearnable and therefore easy to defend against model extraction).

3One potential pitfall of the preceding discussion of provable security is that
due to the worst-case guarantees for PAC-learning, the described reduction
would not rule out the useless case that a single model is hard to extract
in the presence of observational defenses, but all others are easy. However,
even in an average-case or heuristic PAC-learning setting, where the concept
itself is drawn from a distribution (see [11], [12]), there is still a conjectured
cryptographic hardness of learning for sufficiently complex classes of concepts
and concept distributions. Therefore, we can continue to envision a reduction
from average-case learning to model extraction for most underlying ML
models (provided they are sufficiently complex to begin with).



Yet, for classes of ML models that are efficiently PAC-
learnable, the hope of any OMED is lost because of the VC
theory argument described in the earlier in the section. Thus,
for the reasons outlined, this paper focuses on polynomial time
adversaries who attempt to extract machine learning models
with evidence of (polynomial time) hardness of learning. A
concrete setting within focus that is handled in this paper is
a polynomial time adversary trying to steal a polynomial size
decision tree.

B. Our Contributions
Since we have established some faith behind the idea that

observational defenses might be effective against computation-
ally bounded adversaries (even in a provable way), a natural
follow-up question to consider is if and when observational
defenses can be efficiently implemented against those efficient
adversaries. Thus, we seek an answer to the following two-part
question:

Can we provide provable security against model
extraction attacks, for any ML model, using an
observational defense? If so, can it be efficiently
implemented?

In this work, we outline a framework for obtaining
cryptographic-strength provable security via an observational
defense. The framework is an abstraction of the prevailing
heuristics used in the literature on practical observational
defenses. Then, we provide a negative answer to the second
part of the question. We do this via the following program:

• We formally define a class of abstract MEDs by unifying
the common observational defense technique seen in the
literature.

• We formalize the concepts of complete and sound ob-
servational defenses, namely, the provable guarantees
that benign clients are accepted and may interact with
the machine learning interface, and adverse clients are
rejected. We show how our formalisms give a route
to obtaining a (very) basic form of provable security
against efficient model extraction attacks by relying on
the computational hardness of PAC-learning. Throughout
the paper, we argue that the proposed method is a useful
abstraction of the methods that are (implicitly) employed
by the literature on the construction of observational
defenses.

• Via a connection to the Covert Learning model of [13],
we give a method for generating provably good and
efficient attacks on the abstract defense, granted that
the defense is efficient and it satisfies a basic form
of completeness. We then obtain an attack on decision
tree models protected by the abstract class of MEDs
by an existing algorithm of [13]. The attack relies on
the subexponential Learning Parity with Noise (LPN)
assumption, and to the best of our knowledge, constitutes
the first provable and efficient attack on any large class
of MEDs, for a large class of ML models.

• Using the existence of the attack, we prove our main
result: informally, every efficient defense mechanism

(within the abstract class of MEDs) for decision tree
models which satisfies a basic notion of completeness
does not satisfy soundness, even for efficient attackers.
This result essentially prevents instantiating the described
method for provable security, assuming the basic notion
of completeness is satisfied.

• Finally, we extend the algorithm of [13] to work in
the more general setting of learning with respect to
“concise” product distributions, which gives a stronger
impossibility result on the viability of efficient OMEDs.
On the other hand, the new Covert Learning algorithm
works for concepts computable by O(log n)-juntas.4

In the next two sections, we discuss related work, starting
with a discussion on the nature of Covert Learning and the
connection to model extraction, and an overview of the tech-
niques used by [13] to obtain Covert Learning algorithms. We
then highlight more related work including other approaches to
security against model extraction and existing Covert Learning
algorithms.

C. Covert Learning, and the Relationship to Model Extraction
in the Presence of Observational Defenses

The Covert Learning model — a variant of Valiant’s PAC
model in the agnostic learning with membership queries
setting — formalizes a new type of privacy in learning theory.
Specifically, Covert Learning algorithms provide the guarantee
that the membership queries leak very little information about
the concept, with respect to a computationally bounded passive
adversary. In other words, the learner can PAC-learn the
concept in question (using knowledge of some internal ran-
domness only known to itself),5 while the adversary remains
nearly completely “in the dark” with respect to the concept,
even given a view of the entire transcript of membership
queries and oracle responses. Crucially, the adversary is not
privy to the secret randomness of the learning algorithm. At
its heart, the Covert Learning model uses the foundational
simulation paradigm of cryptography to achieve these goals.

Roughly, any membership query learning algorithm is a
Covert Learning algorithm if it has an accompanying simulator
which, when given access only to random examples (an “ideal”
learner), emulates the distribution over the membership queries
(the “real” learner) in a computational indistinguishable way.
In other words, the simulator is able to produce a “believ-
able” transcript of the interaction between the learner and
the concept oracle, without query access to the underlying
concept, but only (for instance) uniformly random examples.
For a concept class where access only to uniformly random
examples makes learning computationally hard, this proves

4Though not as ubiquitous as larger decision trees, small junta functions still
arise often in certain applications affected by model extraction. For example,
consider a cloud-based ML model that accepts data corresponding to large
strings of DNA, and labels them according to some genetic trait that is
determined only by a small “active” part of the DNA string.

5Note that, the internal randomness is not even shared with the concept
oracle. To use an analogy from Cryptography, Covert Learning is “public-
key” in nature, as opposed to “symmetric-key,” which might rely on shared
randomness between the learner and the concept oracle.



that the learning transcript reveals very little information to a
computationally bounded adversary. Hence, Covert Learning
algorithms are reserved for concept classes that are not (known
to be) efficiently learnable in the original PAC-model with
respect to a certain “hard example distribution.”

In this work, we focus on a special case of Covert Learning,
which we term natural Covert Learning. In natural Covert
Learning, rather than making necessary a simulator for the
interaction, we strengthen the requirement by asking simply
for the distribution over the membership queries to be com-
putationally indistinguishable from some pre-defined “hard
example distribution.” For concreteness, let us consider the
uniform distribution as the pre-defined “hard distribution.”
Also, we will consider a version that lives in the realizable
learning setting (rather than agnostic).

Fig. 2. A depiction of natural Covert Learning. A learning algorithm queries
an oracle for a concept at points of it’s choice, with the goal of obtaining an
approximation f̂ . Meanwhile, an eavesdropping adversary obtains a transcript
of the interaction with the oracle and tries to distinguish the transcript from
a set of random examples.

For this concrete case, Figure 2 provides a graphical
depiction. To explain a bit more formally, fix a concept
f : {0, 1}n → {−1, 1} contained in a concept class C,
and consider (for concreteness) the uniform distribution Un

over {0, 1}n. A learning algorithm under the Covert Learning
model is tasked with finding an hypothesis h : {0, 1} →
{−1, 1} that best approximates the concept D on unobserved
examples (x, f(x)), for x ∼ Un. This notion is captured by
a loss function, such as L(h) = Prx∼U [h(x) ̸= f(x)]. A
natural Covert Learning algorithm should then satisfy the PAC-
learning guarantee: output h such that Prx∼U [h(x) ̸= f(x)] ≤
ε with high probability (such an h is called ε-good). In order to
achieve this goal, the learner is given access to a membership
query oracle that labels a queried input x ∈ {0, 1}n with a
corresponding label f(x). However, the important part of nat-
ural Covert Learning is that, essentially, the joint distribution
over the membership queries made by the learner [x1, · · ·xm]
must be indistinguishable from [x1, · · ·xm] ∼ (Un)

m by
any computationally bounded adversary. The following is an

informal definition:

Definition I.1 (Natural Covert Learning — informal version of
Definition IV.1). A natural covert learning algorithm — for a
class of concepts C and a distribution D over examples —
is an algorithm that, for any f ∈ C and accuracy parameters
ε, δ, interacts with an oracle that labels queries to the concept
f such that the following are true:

• Learning: The learning algorithm outputs an ε-good
hypothesis for the concept with probability 1− δ.

• Privacy: The joint distribution over all queries
and responses to and from the oracle is com-
putationally indistinguishable from the distribution
(x1, f(x)), · · · (xm, f(xm)) for x1, · · ·xm ∼ (Dn)

m.

The conceptual crux of this work. There is a connection
between the adversary in Covert Learning — a distinguisher
that attempts to distinguish the membership queries made
by the learner algorithm from random examples, — and
the “adversary” in a model extraction attack — an OMED.
At first glance this sounds confusing, because normally the
adversary in model extraction is the malicious client that is
trying to reverse engineer the model. However, consider that
the job of the OMED is to somehow distinguish benign clients
from adverse clients. Thus, thinking from the perspective of
the actual adversary, i.e., the model extractor, the OMED is
adversarial in nature and has essentially the same job as the
natural Covert Learning adversary: to detect some property
about the client’s distribution of queries. This is even more
apparent by considering the similarities between Figure 1 and
Figure 2.

By exploiting this connection, we can show that natural
Covert Learning algorithms form a recipe for an attack that
can fool the OMED in the same way that they fool the Covert
Learning adversary. Plus, the Learning guarantee of natural
Covert Learning then allows us to still argue that the client
can extract the underlying model. Hence, we can show that
a single Covert Learning attack can achieve extraction while
“fooling” any OMED. That is, any OMED will output “accept”
with high probability even though an extraction attack is being
performed. Since the attack is completely black-box with re-
spect to the implementation of the OMED (it only requires that
the OMED is efficient and satisfies the completeness condition
for some basic distributions over queries), the existence of this
attack can be used to demonstrate the incompleteness of the
OMED.

On the need for Covert Learning instead of PAC-learning.
It is important to understand exactly how Covert Learning
algorithms add to this paper. In Section I-A, we touched on
the fact that all models are at risk of extraction by the very
fact that they are exposed by some interface — to repeat, the
VC argument outlined in Section I-A shows that, given enough
random access to the model, and enough computational power,
an adversary has a PAC-learning algorithm to obtain an
approximation to the underlying model. Additionally, since
the PAC-learning algorithm only uses random examples, then



the adversary can choose to make queries according to a
distribution that “passes” the OMED.

However, the VC argument in general relies on unbounded
computational power (only very simple concept classes are
known to be PAC-learnable in polynomial time from random
examples, e.g. linear models). Hence, the natural question
is whether there exists effective model extraction defenses
against polynomial time adversaries, as is customary in Mod-
ern Cryptography. Again, this is because many important
models (e.g. decision trees, low-depth circuits) are not known
to be PAC-learnable in polynomial time. On the other hand, a
class like decision trees is learnable in polynomial time when
using carefully synthesized membership queries. However,
classic membership query algorithms like the Kushilevitz-
Mansour algorithm [10] (which suffices to learn decision trees
in polynomial time) make queries that can be tested and
identified as problematic by the OMED.

Therefore, Covert Learning algorithms bridge the gap be-
tween these two settings; the Covert Learning algorithms
constitute attacks that are benign-looking, but are actually
adverse. In other words, they are polynomial time membership
query PAC-learning algorithms that synthesize queries in a
special way that is provably hard to distinguish from the classic
PAC-learning with random examples setting. This means that
Covert Learning attacks are both undetectable by an (efficient)
OMED, and run in polynomial time. The VC argument is
undetectable by the OMED, but is not efficient, while the
membership query attack is efficient, but is detectable by the
OMED.

Overview of the natural Covert Learning algorithm for
decision trees of [13]. Since we use the Covert Learning
algorithm for decision trees from [13] as a black box, let us
use the remainder of this section to provide a useful overview
of the algorithm.

The covert learning algorithm for decision trees begins by
using a “masked” Goldreich-Levin algorithm in order to obtain
large Fourier coefficients. The Goldreich-Levin algorithm [9]
is an algorithm that selects correlated queries in an ingenious
way to decode a noisy parity function. The algorithm can
also be used learn Fourier coefficients large (i.e., 1/poly(n)
magnitude) of any function f : {0, 1}n → {−1, 1}, in time
polynomial in n, and has been said to inspire the similar
Kushilevitz-Mansour algorithm [10].

The “masked query” technique of [13] works as follows:
for any given query x ∈ {0, 1}n, generate a pseudo-random
string by taking n samples from a carefully crafted Learning
Parity with Noise (LPN) distribution (see [14] for a useful
introduction on LPN). Letting the n samples be concatenated
into string y ∈ {0, 1}n, the masked query is taken as the bit-
wise xor m = x⊕y. It is easy to see that the LPN distribution
is pseudo-random, then so is the masked query m.

Mathematically, the string y can be written as y = As⊕ e,
where A is a random (but not uniformly random) n×n binary
matrix, e ∈ {0, 1}n is a noise vector sampled by taking an
n-wise direct product of a biased Bernoulli random variable

with small, constant mean, and s ∈ {0, 1}n is secret sampled
according to a “chopped tail” n-wise direct product Bernoulli
distribution with minimum entropy Θ(log2(n)/n). This LPN
distribution is due to [15], who show its pseudo-randomness
assuming the more standard subexponential LPN assumption
(defined formally as Definition IV.4).

Then, [13] show that, by augmenting an instance of the
Goldreich-Levin algorithm for learning large Fourier coeffi-
cients by masking each query xi with the mask yi = Asi⊕ei,
then the returned labels f(xi⊕yi) can be post-processed by re-
incorporating (to the ith query) the dependency on the secret
si, and using the approximate linearity of the LPN distribution
and large Fourier coefficients, to access a noisy version of f
(denoted f̃ ) which crucially has the property that any large
low-degree Fourier coefficient of f is also large for f̃ . The
technique fails at extracting large Fourier coefficients of any
degree, and instead obtaining only those with degree O(log n).
The reason for this is that the noise “overflows” for the higher
degree coefficients, while it remains manageable for low-
degree coefficients due to the low minimum entropy nature
of the LPN secret. Unfortunately, attempting to increase the
degree bound of O(log n) by further decreasing the minimum
entropy of the secret does not work without breaking the
pseudo-randomness of the masks.

Because each query is masked independently by a pseudo-
random string, it is straightforward to see how this Covert
Learning algorithm is also a natural Covert Learning algo-
rithm with the uniform distribution as the pre-defined “hard
distribution.”

Once the set of large O(log n)-degree Fourier coefficients
is found, one can estimate the magnitudes (using random
examples) of each Fourier coefficient, and them produce a
hypothesis which is the sign of linear combination of parity
functions. Under further analysis, the hypothesis obtains ag-
nostic learning guarantees for the hypothesis class of poly(n)
size decision trees.

D. More Related Work

Existing OMEDs We point the reader to Section B for a
detailed discussion on some of the practical OMEDs proposed
in the literature.

Secure inference for MLaaS A somewhat related approach
to improving the privacy of Machine Learning as a Service
(MLaaS) termed “secure inference” has been proposed. This
approach borrows from ideas in the field of Secure Function
Evaluation (where parties can securely compute a function
without revealing their inputs), and makes use of garbled
circuits [16] or fully homomorphic encryption [17]. However,
the principle guarantee of the “secure inference” approach
only provides hiding of information about the model beyond
what can be deduced from the query and the model’s output.
Hence, a secure inference approach to security against model
extraction would implicitly assume (incorrectly) that total
leakage from the predictions is little, and that recovering the
model from its predictions would be infeasible or impossible.
Therefore, the “secure inference” approach does not properly



prevent model extraction when considering clients who repeat-
edly interact with the service.

More natural Covert Learning attacks The works of [18]
and [19] introduce a method for sampling pairs of matrices
(A, T ) with entries in Zq , such that A is statistically close to
a uniformly random matrix, while M2 is a low-norm, full-rank
trapdoor matrix such that A · T is the all zero matrix. In [8],
Vaikuntanathan notes that this sampling algorithm gives an
easy, yet somewhat contrived model extraction attack. In fact,
it is a natural Covert Learning attack as well. More specifically,
for any ML model that is essentially a linear function over
Zq with added Gaussian noise e ∈ Zm

q ,6 the linear function
(denoted s ∈ Zn

q ) can be extracted by querying sA + e, and
then taking (sA + e)T = eT , which can then be used to
extract e via Gaussian elimination (T is full rank). Then, given
e, s is easily recoverable. However, A is statistically close to
uniformly random, so the queries are impossible to distinguish
from uniformly random queries with any significant advantage.
This statistical Covert Learning attack could rule out even
unbounded OMEDs, however it only works for the very
narrow class of noisy linear models, which do not appear
frequently in practice. The work of [13] discusses how to
similarly sample trapdoors for the low-noise LPN problem
of Alekhnovich [20].7 The techniques gives rise to another
natural Covert Learning attack for an LPN variant of the above
setting, however the queries are only computationally close to
uniform. For an elaboration of this technique, we refer the
reader to [13].

Related formalisms We note that the formalisms in this work
are inspired by the field of Interactive Proofs [21]. Also, the
work of [22], who work on protocols for verifying forecasting
algorithms, inspired the drive to prove computational incom-
pleteness theorems in this setting.

E. Organization

We define the abstract OMED and consider provable se-
curity in Section III. In Section IV we first show how to
obtain a generic attack on the OMED using a generic natural
Covert Learning, and then instantiate the generic implication
using the algorithm for Covert Learning of decision trees.
In Appendix A, we extend the Covert Learning algorithm
product distributions over queries, and obtain an extension of
the incompleteness result of OMEDs to this setting.

II. TECHNICAL PRELIMINARIES

We consider juntas, decision trees and disjunctive normal
form formulas (DNFs). A DNF is function represented by an
OR of ANDs. For example, f(x) = (x1 ∧ x7) ∨ (x5 ∧ ¬x2 ∧
¬x1) ∨ (¬x4 ∧ x2) where f : {0, 1}n → {0, 1}. The class
of DNFs also corresponds to depth two AC0, that is, depth
two alternating circuits with AND/OR/NOT gates. The size of
the DNF is the number of ANDs (also the number of terms,

6This setting is a bit contrived, since the typical ML models would rarely
resemble such a noisy inner product mod q.

7These techniques closely resembled that of the seminal work of
Alekhnovich [20].

or disjunctions), while the width of a DNF is the maximum
number of variables over all terms. For the definition of binary
decision tree, we refer the reader to chapter three of [23]. The
size of a decision tree is identified with the number of leaves
on the tree. A k-junta is a function that depends on at most
k variables of the input. A boolean function f : {0, 1}n →
{0, 1} depends on the ith variable if there exist inputs x, y
that are the same everywhere except the ith coordinate and
satisfy f(x) ̸= f(y). The variable xi is then called relevant.

A. Computational Indistinguishability

We will use the following standard notion of computational
indistinguishability.

Definition II.1 (Computational Indistinguishability). Let
{Xn}, {Yn} be sequences of distributions with Xn, Yn

ranging over {0, 1}m(n) for some m(n) = nO(1). {Xn}
and {Yn} are computationally indistinguishable if for every
polynomial time algorithm A and sufficiently large n,

|Pr[A(1n, Xn) = 1]− Pr[A(1n, Yn) = 1]| ≤ negl(n)

Often, n is clear from the context, so the subscript is omitted.

B. Learnability

We consider two notions of learnability of boolean concepts.
A boolean concept class C = {Cn}n∈N is a sequence of

sets where Cn is a set of boolean functions each taking x ∈
{0, 1}n as input, and outputting a label y ∈ {−1, 1}. Similarly,
a distribution class D = {Dn}n∈N is a sequence of sets of
distributions, where each Dn is a set of example distributions
over {0, 1}n.

We define the following learning models that are considered
in this work. The oracle EX(f,D) samples x ∼ D (for a
distribution D over {0, 1}n) and returns (x, f(x)). We will
write EX(f,D,m) to denote m independent sampled from
this oracle.

Definition II.2 (Efficient PAC Learning). A boolean concept
class C is PAC-learnable with respect to a distribution class
D if there exists an algorithm A such that for any n ∈ N,
distribution D ∈ Dn, concept f ∈ Cn, when A is given as
input n and ε, δ > 0, plus access to EX(f,D), it outputs a
function h such that

Pr
A

[
Pr
x∼D

[
f(x) ̸= h(x)

]
≤ ε

]
≥ 1− δ

We say that C is efficiently PAC-learnable with respect to
D if A runs in time polynomial in n, ε−1, δ−1, and the
number of accesses to EX(f,D) is bounded by a polynomial
in n, ε−1, δ−1.

The following definition of heuristic PAC learning due to
Nanashima [12] can be seen as a variant of many existing
average-case learning models, where the distribution over con-
cepts is fixed to be uniform. In his original work, Nanashima
defines a distribution over representation strings over concepts,
but in this work it suffices to consider a distribution over actual



concepts. The definition can also be interpreted as requiring
PAC-learning for all but some fraction of concepts in the class,
where this fraction is given as an input to the learner.

Definition II.3 (Efficient Heuristic PAC-learning — adapted
from [12]). Let C = {Cn}n∈N be a boolean concept class,
and let Un be the uniform distribution over Cn. We say that C
is heuristically PAC-learnable with respect to the distribution
class D if there exists an algorithm A such that for any n ∈
N, D ∈ Dn, when A is given as input n and ε, δ, η > 0, plus
access to EX(f,D) for some f sampeld uniformly at random
from Cn, it outputs a function h such that

Pr
f

[
Pr
A

[
Pr
z∼D

[
f(x) ̸= h(x)

]
≤ ε

]
≥ 1− δ

]
≥ 1− η

We say that C is efficiently heuristically PAC-learnable with
respect to D if A runs in time polynomial in n, η−1, ε−1, δ−1,
and the number of accesses to EX(f,D) is bounded by a
polynomial in n, η−1, ε−1, δ−1. Additionally, we say that C
is (efficiently) (ε′, η′)-heuristically PAC-learnable if we have
fixed the parameters ε = ε′, η = η′.

III. THE ABSTRACT OBSERVATIONAL MODEL
EXTRACTION DEFENSE

In this section, we formally introduce the Observational
Model Extraction Defense (OMED) as a unifying abstraction
for the current state of the art MEDs. The main purpose of this
section is to establish a formal framework for considering a
model extraction attack by an efficient client in the presence of
an OMED, and to explain a simple way to argue for provable
security in this framework. The argument for provable security
is meant to reflect the ideas that appear implicitly in the
literature for practical OMEDs (see e.g. Section B). However,
as we show later in the paper, it is not likely to be a route to
security that can be backed by a provable theory. Furthermore,
we do not claim that it is necessarily a very well-modelled way
of obtaining security in the first place.

Before we introduce OMEDs formally, let us describe the
setting of model extraction in the presence of an OMED in
more detail.

At a very high level, the setting begins by fixing an
ML model f : {0, 1}n → {−1, 1} (potentially from some
restricted class of functions). Then, we consider the case that
an efficient client, can interact via an oracle to the ML model
f . We denote this oracle by Of , and the client by C. The
goal of the benign client is to obtain some predictions f(x)
for queries x ∈ {0, 1}n. On the other hand, the goal of the
adversarial client is to output a function f̂ , that approximately
minimizes a loss function with respect to the model f . We
will refine the behavior of a client and the way it interacts
with the ML model after we define the OMED.

The important part is that the adverse client must be able
to perform the extraction in the presence of the OMED. In
particular, the OMED is able to view all the queries made by
C and the labels that would be returned (see Figure 3). The

OMED then (after performing arbitrary computations) outputs
a decision “accept” or “reject.” In the case of “accept,” the
OMED also forwards the labels back to the client. Otherwise,
no labels are returned back to the client.

Fig. 3. A depiction of the extraction setting. The adverse client queries the
model f , attempting to extract an approximation f̂ . The OMED watches over
the interaction and outputs a decision to accept (and forward the labels) or
reject the client based on whether or not it is deemed adverse or benign.

With this in mind, let us now formally define the OMED.
As noted in the introduction and in [24], defense mechanisms
for model extraction have mostly split into two tribes: reducing
the information gained per client query, and differentiating ma-
licious extraction adversaries from benign users. The OMED
mechanism abstracts the latter approach; the implementation
is left unspecified. Hence, we define an OMED abstractly as
follows.

Let F = {Fn}n∈N be a class of ML models, where each Fn

in the sequence is a set of functions taking as input an element
of the set {0, 1}n and giving output in the set {−1, 1}.

Definition III.1 (OMED). A probabilistic algorithm M is a
T (n)-OMED for a class of ML models F if for every n ∈
N, f ∈ Fn, M runs in time T (n) and takes as input a list
of examples S = [(x1, f(x1)), · · · (xmf(xm))] ⊆ ({0, 1}n ×
{−1, 1})m and outputs a decision σ ∈ {accept, reject}.

Sybil attacks, and other restrictions on the nature of the
syntax of OMED. The definition of the OMED is defined as
generally as possible from the perspective of the defense, but
makes a restriction on the client: the queries are requested
in large batches, rather than as an adaptive sequence. This
nonadaptive setting (with respect to the query selection) can
be viewed as unnecessarily restrictive on the client. However,
since we prove negative results on the possibility of MEDs
via OMEDs, the restriction on the client actually strengthens
our results. We note that, as we will see in the next section, a
benign client can arguably be considered one who essentially
requests queries selected independently from the same distri-
bution. In this case, adaptive query power inherently does not



add strength to the client.
Furthermore, the defense could be expanded to a multi-

client setting, where all clients must submit their batches
simultaneously. This is again a restriction on the power of the
client(s) (as opposed to multi-clients who do adaptively make
batch requests), and thus strengthens our negative results.

Finally, we mention that with respect to sybil attacks, the
underlying assumption for a sybil attack is that the MED will
not evaluate the queries requested by each identity jointly
(perhaps because the defense is assumed not to know the
identities of the participating attackers). However, we prove
our negative result on an OMED that always has access to
all queries made by the attacker(s). Hence, our attack works
in a more restrictive setting than sybil attacks. Alternatively,
one can view our attack as a 1-sybil attack, or a sybil attack
that works even when the defense knows the identity of every
sybil participating in the attack.

A. A Potential Route to Provable Security via OMED

Definition III.1 for the OMED makes no claims about
desirable properties given by the OMED. Thus, what prop-
erties should we expect from the OMED? As mentioned in
Section I-A, the goal of the OMED is not just to classify the
behavior of the clients, but to actually confine the clients to
certain predefined benign behaviors. However, it is not enough
to simply define security as the event that the client behavior
is benign, because this actually needs to be detected and then
enforced.

Therefore, it should be that a good OMED guarantees that
(with high probability) any benign client is accepted, while
any adverse client is rejected (and thus prevented from re-
verse engineering the underlying model). Naturally, the former
requirement resembles completeness in an interactive proof
system while the latter requirement resembles soundness.
Through this lens of Interactive Proofs, we will formalize a
notion of completeness and soundness.

First, let us explain how we model a client’s behavior in the
context of the model extraction setting depicted in Figure 3 in
more detail. It has been noted in the model extraction literature
(e.g. [5]) that defenses should consider how a client’s queries
relate to each other, rather than how they look individually.
This idea is implemented by assuming that a client’s queries
follow a distribution8. We adopt a similar idea in this work:
we assume that a client’s queries follow a distribution P over
the domain of the ML model. To this end, we now identify
a client C as a tuple (C,L) consisting of a polynomial time
samplable distribution over sets of m examples C, as well
as a probabilistic polynomial time algorithm L that takes as
input a list of m examples drawn according to C and labelled
by the ML model f , and outputs an approximate model f̂ .
Thus, informally, the our idea is that a benign client request
examples according to distributions that share some abstract
property. We may formalize this as follows.

8This model for the basic behavior of a client has appeared previously in
the literature (e.g. [5], [6]).

Let ∆({0, 1}n × {−1, 1}) be the convex polytope of all
distributions over {0, 1}n × {−1, 1}.

Definition III.2. Pn is a property of distributions, where Pn ⊆
∆({0, 1}n × {−1, 1}).

We then define a benign client as one which samples its queries
in an independently and identically distributed fashion from
some distribution satisfying the property:

Definition III.3. Fix any ML model f . We say that a client
C = (C,L) is Pn-benign if the distribution C is an m-wise
direct product of samples drawn i.i.d. from a distribution D
such that D ∈ Pn.

The i.i.d. restriction on the benign client may be considered
harsh, but is rooted in the reality that often a real-world benign
client requires labels from some “natural” set of examples. For
instance, for an image recognition model, the benign client
may simply forward requests for labels on images appearing
in i.i.d. fashion according to some organically occurring dis-
tribution in Nature.

We will also use the terminology Pn-adverse client to
describe a client that is not Pn-benign. Note that, a Pn-
adverse client need not sample queries i.i.d. from the same
distribution; the set of m queries can be sampled using
correlated randomness.

Completeness. Towards obtaining a theory of provable se-
curity against model extraction, a good OMED should satisfy,
informally: for any benign client, the defense mechanism does
not reject and allows the client to continue to interact with the
model, with high probability.

A completeness requirement on a MED can be interpreted as
formalizing the usefulness of the defense. In other words, the
defense at the very least provides the opportunity for benign
clients to interact with the model.

Formally, we define completeness as follows:

Definition III.4 (MED completeness). We say that an OMED
M is δ-complete with respect to the property Pn if for any
Pn-benign client C = (C,L),

Pr
M

(x1,··· ,xm)∼C

[
M((x1, f(x1), · · · , (xm, f(xm))) = accept

]
≥ 1− δ

Provable security against benign clients: How should one
choose the benign property? The definition of completeness
implicitly assumes that, in the case that the client is classified
as benign, they are essentially free to interact with the model.
Thus, the underlying assumption is that by virtue of the client
being benign, the ML model is not considered at risk for
being extracted by the server. Therefore, the choice of the
benign property is of utmost importance. As discussed in the
introduction (see Section I-A), this leaves room for a theory of
provable security. For example, under our framework, a solid
choice for a property would be the Pn = Un (i.e., the uniform



distribution over examples). Pn = Un makes a solid choice
because many interesting classes of models are thought to be
hard to learn from uniformly random examples, even for most
models in the class (that is, in the heuristic PAC-learning case,
rather than just in the worst-case).

Using this idea, we can give a reduction from extracting the
ML model (in the average-case over the uniform distribution)
using Un-benign queries to heuristic PAC-learning with respect
to the uniform distribution. To formalize this intuition, we
prove the following lemma, which essentially says that if PAC
learning is impossible for a large fraction of the class, then,
given that the OMED accepted a client that used Un-benign
queries, most models can not be extracted (with arbitrarily
high fidelity) except with negligible probability. After giving
the lemma we will provide more color by further discussing
the reasons behind defining security this way. We will later use
the lemma to show how to obtain a formal notion of security
against model extraction by all clients, whether adverse or
benign.

We first need to establish what constitutes a successful
model extraction. Similarly to [4], we define the following
extraction experiment. Again, let Fn be a class of boolean ML
models, and let C = (C,L) be a client. Fix a loss function
LD,f : Fn → [0, 1] parameterized by an ML model f ∈ Fn,
and a distribution D over {0, 1}n.

Definition III.5 (Extraction experiment). Let ExpC,f,m,ε be
defined as the output of the following process.

1) Sample x1 · · ·xm ∼ C for C = (C,L). These ex-
amples are paired with the labels to produce the set
S = [xi, f(xi)]i∈[m].

2) Run L(S) to obtain f̂ .
3) If LC,f (f̂) < ε, output (S, extracted), else output

(S, unextracted).

Lemma III.6 (Provable security against clients behaving be-
nignly). Let M be any OMED satisfying δ-completeness for
any δ ≤ 1 − 1/poly(n), with respect to a property of
distributions Pn. Then, if a class of ML models Fn is not
efficiently (η, ε)-heuristic PAC-learnable with respect to any of
the singleton distribution classes in the set {{D} : D ∈ Pn},
then there exists F ⊆ Fn of size at least η · |Fn|, such that for
any client C = (D,L) that is Pn-benign, and for all f ∈ F ,

Pr
M

(S,τ)∼ExpC,f,m,ε

[
τ = extracted

∣∣M(S) = accept
]

≤ negl(n)

Proof. See Appendix C.

We reiterate that the preceding lemma shows that, under
an assumption that a class of ML models is hard to learn
in the heuristic sense (i.e., most of models in the class are
hard concepts) with respect to some property of example
distributions, then clients that are benign on that property
of distributions cannot extract most of the model in the
class. This provides a theoretical foundation for instantiating

the OMED paradigm, which assumes that some distributions
are indeed benign, based off of hardness of heuristic PAC-
learning assumptions. On the other hand, we remark that it
is unfortunately not realistic to require hard extraction for
all models, as many natural classes of models in the class
(even for classes that are not even known to be efficiently
PAC-learnable, e.g. decision trees), because natural classes
still contain very simple models that can be learned super
efficiently (e.g. a decision tree that always outputs the label 1).
However, the model owner can make the assumption that their
(fixed) model is inside the large set of hard-to-learn models
over the benign distributions. Indeed, it can be argued that if
the model owner is not willing to make this assumption, then
the model is not suitable for the OMED paradigm in the first
place, since complete OMEDs (with respect to benign property
Pn ̸= Ø) allow the client to obtain some random examples by
definition.

Soundness. The notion of provable security from
Lemma III.6 only deals with clients that request sets of
examples that are Pn-benign. Thus, we need to provide some
guarantees when this is not the case. To this end, we also
formalize soundness using the above extraction experiment.
Informally, given that an adverse client has attempted an
extraction, the OMED defense rejects the client, with high
probability.

Definition III.7 (MED soundness). We say that an OMED M
for Fn is δ-sound with respect to the property Pn if for any
Pn-adverse client C∗ = (C∗, L), and for any f ∈ Fn, ε > 0,
it holds that

Pr
M

(S,τ)∼ExpC∗,f,m,ε

[
M(S) = accept

∣∣ τ = extracted
]

< δ

The soundness requirement can be interpreted as formaliz-
ing the security of the defense. That is, attackers will not be
able to deceive the OMED into granting interaction with the
ML model in such a way that allows extraction.

The definition also mirrors soundness from an Interactive
Proof, where for any client that is not Pn-benign, and given
that the adversary would have extracted the model, the prob-
ability that the OMED M errs by accepting the queries is
low. In a cryptographic setting, the OMED would set δ to a
negligible function of n.

Cryptographically-Hard Model Extraction Against All
Clients. To tie it all together, we now argue how combin-
ing completeness, soundness, and hardness assumptions for
heuristic PAC-learning give a method for obtaining provable
security via OMED. We stress that this argument is meant
as a unifying abstraction to back up specific and practical
implementations of OMEDs — not as a silver bullet for
the model extraction problem. Our notion of security against
model extraction (defined below) constitutes bounding the
probability that two things are simultaneously true: (1) a client



wins the extraction game, and (2) the OMED approved the
interaction by outputting “accept.” In theory, if at least one of
these events is false, then the model will not be extracted (this
is trivial if (1) is false, and if (2) is false, then the probability of
extraction is 0 as the client never learns any labels). Thus, we
aim to bound this probability by a function that is negligible
in n (the size of the learning problem). We do so by actually
requiring something a bit stronger:

Definition III.8 (Security against Model Extraction by all
clients). We say that an OMED M for F is (η, ε)-secure
against model extraction if for sufficiently large n, there exists
F ⊆ Fn of size at least η · |Fn|, such that for any p.p.t. client
C = (C,L) and for all f ∈ F,Dn ∈ Pn,

Pr
M

(S,τ)∼ExpC,f,m,ε

[
τ = extracted

∣∣M(S) = accept
]

≤ negl(n)

The point of this is that the strength of the hardness
assumption on heuristic PAC-learning, i.e. the size of η,
therefore directly translates to a better guarantee of hardness
of extraction.

Theorem III.9 (Provable Security from Complete and
Sound OMEDs). Let M be any p.p.t. OMED satisfying δ-
completeness and γ-soundness for any δ ≤ 1−1/poly(n), γ ≤
negl(n), with respect to a property of distributions Pn. Then,
if a class of ML models Fn has no p.p.t. (η, ε)-heuristic PAC-
learning algorithm with respect to any distribution Dn ∈ Pn,
then M is (η, ε)-secure against model extraction.

Proof. By definition, any client C = (C,L) is either Pn-
benign or Pn-adverse. In the former case, Lemma III.6 (and
the assumption of the hardness of learning Fn) implies that

Pr
M

(S,τ)∼ExpC,f,m,ε

[τ = extracted | M(S) = accept]

≤ negl(n)

In the latter case, when C is Pn-adverse, we have the
guarantee from soundness of M (Definition III.7) that

Pr
M

(S,τ)∼ExpC,f,m,ε

[
M(S) = accept

∣∣ τ = extracted
]
< γ

where γ is a quantity bounded above by a negligible function
of n. This suffices to complete the proof.

IV. ATTACKS ON EFFICIENT OMEDS FROM NATURAL
COVERT LEARNING

In this section, we will consider the question:
Can we efficiently realize the provable security guar-
antees outlined in the previous section?

Towards a negative answer, we will introduce an attack on
the OMED technique for provable security, via a connection to
Covert Learning [13]. Our attack will generate a distribution
of examples which is computationally indistinguishable from

a distribution in the property that is accepted by the OMED.
In other words, the attacker operates (computationally) indis-
tinguishably from a benign client, in the eyes of the OMED.
Still, the attack classifies as adverse, and the labelled queries
allow the attacker to extract the model with high fidelity.

A. Natural Covert Learning

We will focus on a special case of Covert Learning,
which we call natural Covert Learning. As described in
Section I-C, a natural Covert Learning algorithm, essentially,
is a membership query learning algorithm that satisfies the
normal PAC-learning guarantees with respect to an example
distribution D, with the added property that distribution over
the membership queries and labels requested by the algorithms
is computationally indistinguishable from examples sampled
according to D.

More formally, let C = {Cn}n∈N be a boolean concept class,
and let D = {Dn}n∈N be a sequence of distributions where
each Dn is a distribution over {0, 1}n.

Definition IV.1 (Natural Covert Learning). We say that A is
an natural Covert Learning algorithm for C with respect to D
if for every n ∈ N, f ∈ Cn, ε, δ > 0, A satisfies the following
when given membership query access to f :

• Learning. For the random variable h = AOf (n, ε, δ) we
have

Pr
h

[
Pr

x∼Dn

[h(x) ̸= f(x)] ≤ ε
]
≥ 1− δ

• Privacy. Let the query complexity of A be m. For every
p.p.t. adversary Adv, and S ∼ EX(f,Dn,m),∣∣∣∣∣ PrAdv,S

[
Adv(S) = 1

]
− Pr

Adv,T(AOf )

[
Adv(T(AOf )) = 1

]∣∣∣∣∣
≤ negl(n)

where T(AOf ) denotes the distribution over the queries
made by A and the responses by the oracle.

We say that A is efficient if it runs in time polynomial
in n, ε−1, δ−1, and the number of queries m is bounded by
polynomial in n, ε−1, δ−1.

We note how natural Covert Learning is defined here with
respect to a sequence of example distributions, rather than
a sequence of sets of example distributions. This keeps the
definition simpler. One can consider for example natural covert
learning algorithms for C with respect to the sequence of
uniform distributions {Un}n∈N, each over {0, 1}n.

B. Natural Covert Learning Attack

In this section, our goal is to show that the existence of
a natural Covert Learning algorithm for a particular concept
class implies inadequacy of a polynomial time OMED for a
class of models equal to the concept class. More specifically,
we prove that satisfying soundness for an OMED is impossi-
ble, for any reasonable completeness parameter. This suffices



to rule out obtaining provable security against model extraction
by an OMED by instantiating Theorem III.9.

Theorem IV.2. Suppose that there exists an efficient natural
Covert Learning algorithm A (with query complexity m) for
a concept class C, with respect to the sequence of distributions
D = {Dn}n∈N. Then for a property Pn that contains
EX(f,Dn), there exists a Pn-adverse client C such that for
any n ∈ N, any poly(n)-OMED M for C that is δ-complete
with respect to Pn, and any ε, δA > 0, and f ∈ Cn,

Pr
M

(S,τ)∼ExpC,f,m,ε

[
M(S) = accept ∧ τ = extracted

]
≥ 1− δA − δ − negl(n)

where negl(n) denotes a negligible function of n and δA is
the failure probability of A.

Proof. Let DA be the distribution over the set of m ex-
amples which is queried by A. Define the adverse client
C∗ = (DA,A). Let S ∼ EX(f,Dn,m) and SA ∼ DA.

By δ-completeness of M,

Pr
M

S∼EX(f,Dn,m)

[
M(S) = accept

]
≥ 1− δ

Using the fact that by the privacy guarantee stemming from
the Covert Learning assumption, we have that for every p.p.t.
adversary Adv,∣∣∣Pr

Adv

[
Adv(S) = 1

]
− Pr

Adv

[
Adv(SA) = 1

]∣∣∣ ≤ negl(n)

SinceM, f are polynomial time computable, we thus get that

Pr
M

(SA,τ)∼ExpC∗,f,m,ε

[
M(SA) = accept

]
≥ 1− δ − negl(n)

Now, because of the learning guarantee of A, it is also true
that

Pr
M

(SA,τ)∼ExpC∗,f,m,ε

[
τ = extracted

]
≥ 1− δA

if we just set the desired accuracy parameter of A to be ε.
Above, δA is the failure probability parameter of A.

Therefore, even if M(SA) = accept and τ = extracted
are correlated events, we have that

Pr
M

(SA,τ)∼ExpC∗,f,m,ε

[
M(SA) = accept ∧ τ = extracted

]
≥ 1− (1− δA)− (1− δ − negl(n))

≥ 1− δA − (δ + negl(n))

We now obtain the generic incompleteness theorem.

Corollary IV.3. Suppose that there exists an efficient natural
Covert Learning algorithm A (with query complexity m) for a
hypothesis class C with respect to the sequence of distributions

D = {Dn}n∈N. Then if for any n ∈ N, M is a poly(n)-
OMED for Cn and is δ-complete with respect to the property
{EX(f,Dn)}, then M is not (1− 100δ/99− negl(n))-sound
with respect to Pn.

Proof. See Appendix D.

C. Concrete Attack and Incompleteness Theorem

In this section, we show that under the subexponential
hardness assumption on the standard LPN problem, there
exists an attack of the type outlined in the previous section. Let
us first formally introduce our assumption. Below, let βm(n)

µ

denote the m(n)-wise direct product distribution of Bernoulli
random variables each with mean µ ∈ [0, 1].

Definition IV.4 (Search LPN assumption). For µ ∈
(0, 0.5), n ∈ N, the (m(n), T (n))−SLPNµ,n search assump-
tion states that for every inverter I running in time T (n),

Pr
s,A,e

[I(A,As⊕ e) = s] ≤ 1

T (n)

where s
$← Zn

2 ,A $← Zm(n)×n
2 , e

$← β
m(n)
µ .

Thus, the assumption we adopt is the
(2ω(n

1
2 ), 2ω(n

1
2 ))−SLPNµ,n assumption. The following

theorem is implicit in [13]. Let DT[poly(n)] be the set of all
decision trees of size poly(n).

Theorem IV.5 (Covert Learning of decision trees from [13]).
Given query access to a function f : {0, 1}n → {−1, 1}, there
exists an algorithm A running in time poly(s, 1/ε, log(1/δ))
and making q(n) = poly(n, 1/ε, log(1/δ)) query accesses
such that, unless the (2ω(n

1
2 ), 2ω(n

1
2 ))−SLPNµ,n assumption

does not hold,
1) (Learning) A outputs h : {0, 1}n → {−1, 1} such that

Pr
x∼Un

[
h(x) ̸= f(x)

]
≤ min

g∈DT[s]
Pr

x∼{0,1}n

[
g(x) ̸= f(x)

]
+ε

with probability 1− δ.
2) (Privacy) The distribution over examples requested by
A is computationally indistinguishable, but statistically
distinguishable, from EX(f,Un, q(n)).

We may now proceed to combine Theorem IV.2 and Theo-
rem IV.5 to obtain a concrete natural Covert Learning attack on
models implemented by decision tree classifiers of polynomial
size. Let U = {Un}n∈N, and let LD,f (h) = Prx∼D[h(x) ̸=
f(x)].

Theorem IV.6. Under the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n assump-

tion, there exists, for any n ∈ N, a Un-adverse client C (for
some m = poly(n)) such that for any δ-complete OMED M
(with respect to {Un}) for DT[poly(n)], it holds that for any
f ∈ DT[poly(n)],



Pr
M

(S,τ)∼ExpC,f,m,ε

[
M(S) = accept ∧ τ = extracted

]
≥ 99

100
− δ − negl(n)

Proof. Observe that the algorithm described in Theorem IV.5
constitutes a natural Covert Learning algorithm for C with
respect to U , and loss function LD,f (h) = Prx[h(x) ̸= f(x)].
We can set the failure probability of the underlying natural
covert learning algorithm for the client to 1/100. Thus, the
statement follows directly from Theorem IV.5 and Theo-
rem IV.2.

Incompleteness Theorem. The previous theorem can be
interpreted as the existence of an attack against any OMED
for decision tree classifiers with δ-completeness with respect
to the uniform property (up to SLPN assumptions). Hence,
we get the following corollary.

Corollary IV.7. Under the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n as-

sumption, if M is a poly(n)-OMED for DT[poly(n)] and
U , then ifM is δ-complete it is not (1−100δ/99−negl(n))-
sound.

Proof. See Appendix D.

V. CONCLUSION

In this work, we have (from a theoretical perspective)
explored the problem of defending against model extraction
attacks using an observational defense. Our first contribution
is the formalization of the theory of observational defenses,
and in particular the abstraction of the methods implicitly used
by the existing literature for how to choose the right benign
client query distributions. Our main conceptual contribution
connects existing natural Covert Learning algorithms to the
Model Extraction problem to prove that, under cryptographic
assumptions, the technique for obtaining provable security via
OMEDs cannot work for some natural special cases of the
technique (monitoring for uniform and product distributions
over examples). Finally, the extension of Covert Learning to
product distributions is our main technical contribution.

We suggest the following two directions for future work.
First, it would be interesting to expand the natural Covert
Learning attacks to more distributions than just product distri-
butions. Doing so would strengthen our incompleteness results
further by generalizing the requirements of completeness of
the OMED with respect to product distributions. Second, it
would be very interesting to expand natural Covert Learning
attacks to other real world classes of ML models, such as
neural networks, as many other model extraction attacks target
neural networks. As it currently stands, our attacks only work
for ML models computable by polynomial size decision trees
or juntas. However, we observe that since the natural Covert
Learning algorithm of [13] is actually agnostic, meaning that
it finds a hypothesis (nearly) as good as the best decision

tree, then if the ML model is a neural network that can at
least be (weakly) approximated by a decision tree, then some
level of extraction would still be possible (if not with arbitrary
accuracy).
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APPENDIX A
EXTENSION TO PRODUCT DISTRIBUTIONS

In this section, we show how to extend the result of [13]
(expressed as Theorem IV.5 in this work) to “concise” product
distributions over examples, while the caveat is that learning
is with respect to the concept class of O(log n)-juntas. The
resulting algorithm is also in the realizable setting rather than
agnostic.9

More generally, we show how to construct a natural Covert
Learning algorithm for a concept class C with respect to
any ensemble of “concise” product distributions over {0, 1}n,
given any natural Covert Learning algorithm for a concept
class C′ over the uniform distribution, provided that C′ satisfies
some efficient “closure” property when composed with a
sampling machine for the product distribution. This general
reduction then implies the special case by incorporating the
algorithm of [13] that witnesses Theorem IV.5. Using this
extended natural Covert Learning algorithm, we also get a new
impossibility result on the viability of OMEDs that monitor
product distributions.

Before stating and proving the results, we introduce the
necessary tools and definitions. First, we restrict our attention
to “concise” product distributions, which are those that sample
x ∈ {0, 1}n by sampling each bit x1, · · ·xn independently
from possibly different Bernoulli random variables, each with
mean representable by a limited number of bits.

Definition A.1 (k-concise product distributions). A k-concise
product distribution µp,k,n over {0, 1}n is identified by a list
p = (p1, · · · , pn) of n k-bit strings (interpreted as integers),
where the distribution µp,k,n samples x ∈ {0, 1}n by sampling
xi to be 1 with probability pi/2

k and 0 with probability 1−

9We note that O(logn)-juntas are a concept class that is not known to
be PAC-learnable in polynomial time (not even when fixing the uniform
distribution, or any concise product distribution), so it is an appropriate setting
for our work. On the other hand, learning with respect to smoothed product
distributions [25] or multiple product distributions [26] has been considered
solved in polynomial time.

pi/2
k. We denote by µp,k = {µp,k,n}n∈N the ensemble of k-

concise product distributions.

We say that the distribution µp,k,n is concise if k is a constant.
Now, we prove the following theorem, that gives a reduction

from natural Covert Learning with respect to any ensemble of
concise product distributions to natural Covert Learning with
respect to the uniform distribution ensemble. The reduction
also assumes that the concept remains within the designated
class, even when composed with the sampling algorithm
for the product distribution. Note, each k-concise product
distribution µp,k,n can be sampled by a (multi-output) DNF
µ̄p,k,n, which takes as input kn random bits.

Definition A.2 (Closure under composition of sampling). We
say that a concept class C is closed under composition with
µp,k if for any f ∈ C, the function g : {0, 1}poly(n) → {−1, 1}
defined by g(x) = f(µ̄p,k,n(x)) remains contained in C.

Theorem A.3 (Natural Covert Learning over concise product
distributions). Let C be a concept class that is closed under
composition with any µp,k, for constant k. If there exists a
natural Covert Learning algorithm for the concept class C
with respect to the uniform distribution ensemble U , then there
exists a natural Covert Learning algorithm for C with respect
to any ensemble of concise product distribution µp,k.

The proof of this theorem can be sketched as follows.
We will use an object called a distributional inverter for
concise product distributions, which (roughly) is an algorithm
that takes as input a sample from x ∼ µp,k,n, and outputs
a uniformly random pre-image z of x, under the sampling
function µ̄p,k,n. In other words, the distributional inverter
outputs a “fake” sample of coins z used to sample the instance
x ∼ µp,k,n (hence µ̄p,k,n(z) = x). Using this object, we can
obtain a new Covert Learning algorithm by transforming the
learning problem from being over a product distribution to
being over the uniform distribution, but with a new concept
being the composition of µ̄p,k,n and the original concept. Since
the concept is assumed to be closed under composition with
µp,k,n, then this new learning problem is still handled by the
underlying Covert Learning algorithm.

The definition of a distributional inverter is given formally
below:

Definition A.4 (Distributional Inverters). A function f :
{0, 1}∗ → {0, 1}∗ is γ-distributionally invertible if there is an
efficient probabilistic algorithm I such that the distributions
⟨x, f(x)⟩ and ⟨I(f(x)), f(x)⟩ where x ∼ U are statistically
indistinguishable within γ for all but finitely many lengths n.
That is, 〈

x, f(x)
〉
≡γ

〈
I(f(x)), f(x)

〉
To prove Theorem A.3, we will use the distributional

inverter for concise product distributions of [27]:



Lemma A.5 (Distributional inverter for concise product distri-
butions, from [27]). Concise product distributions have distri-
butional inverters. Moreover, these inverters are computable
in AC0 with auxiliary random bits.

For an overview of how the inverter works, see [27]. This
distributional inverter is denoted by the name ProdInv. We
are now ready to prove Theorem A.3.

Proof of Theorem A.3. Let r be the number of bits re-
quired to sample µp,k,n with the circuit µ̄p,k,n. Let gf :
{0, 1}r → {0, 1} be the composed concept defined by gf (x) =
f(µ̄p,k,n(x)). By assumption, gf ∈ C for every f ∈ C.

Now, since we know that there is a natural Covert Learning
algorithm A for C with respect to the uniform distribution,
then we can obtain a new algorithm A′ for C with respect to
µp,k as follows.

1) Input: ε, δ, n, an oracle to f ∈ C.
2) Prepare a simulated oracle to gf by using the circuit

µ̄p,k,n to first generate “intermediate” representations
y = µ̄p,k,n(x) of a query x, and then query the oracle
to f for y.

3) Using the simulated oracle, run A (with parameters
ε/2, δ, r) to obtain a hypothesis h : {0, 1}r → {0, 1}
for gf with respect to the uniform distribution.

4) Output: h◦ProdInv, with statistical closeness parameter
γ = ε/2.

Let us prove that the above algorithm has the desired
learning and privacy guarantees, starting with learning. First,
observe that the simulated oracle from step 1 is equivalent
to a membership query oracle for gf . Thus, the hypothesis h
obtained in step 2 satisfies

Pr
z∼U

[
h(z) ̸= gf (z)

]
≤ ε/2 (1)

with probability at least 1− δ. This means that if we consider
the quantity

errh = Pr
x∼µp,k,n

[
h ◦ ProdInv(x) ̸= f(x)

]
then the distributional inversion property of ProdInv (see
Definition A.4) allows one to conclude that

errh = Pr
z∼U

[
h ◦ ProdInv(µ̄p,k,n(z)) ̸= f(µ̄p,k,n(z))

]
≡ε/2 Pr

z∼U

[
h(z) ̸= f(µ̄p,k,n(z))

]
≡ε/2 Pr

z∼U

[
h(z) ̸= gf (z)

]
By (1) this final quantity is bounded by ε/2, and therefore we
can see that

errh ≤ ε/2 + ε/2 ≤ ε

Finally, we need to prove that A′ satisfies privacy. To see
this, first consider that the distribution over queries that are
requested by A′ is determined by applying µ̄p,k,n to each
query in the set of q(n) queries sampled from the distribution
over queries DA made by A. By the privacy guarantee of A,

DA is computationally indistinguishable from EX(f,U , q(n)).
Therefore, one can conclude that DA′ is computationally
indistinguishable from EX(f, µp,k,n, q(n)). This follows from
a simple reduction, which takes into account that µp,k,n is
polynomial time samplable by computing µ̄p,k,n.

This suffices to prove the statement.

We will now use Theorem A.3 to obtain Covert Learning for
O(log n)-juntas over concise product distributions. We will use
the fact that O(log n)-juntas are a special case of polynomial
size decision trees (since they are always computable in
O(log n) depth).

Definition A.6. Let DNF[s, w] be the class of functions f :
{0, 1}n → {0, 1} that are computable by a DNF with at most
s terms of maximum width w. DNF[s] denotes the class of
functions with no limit on the maximum term width.

Definition A.7. Let Jun[r] be the class of functions f :
{0, 1}n → {0, 1} that are computable by a r-junta, which
is a function that depends on at most r out of n variables in
the input.

Theorem A.8 (Natural Covert Learning O(log n)-juntas over
concise product distributions). Given query access to a func-
tion f ∈ Jun[O(log n)], there exists an algorithm A run-
ning in time poly(n, 1/ε, log(1/δ)) and making q(n) =
poly(n, 1/ε, log(1/δ)) query accesses such that, unless the
(2ω(n

1
2 ), 2ω(n

1
2 ))−SLPNµ,n assumption does not hold, then

for any µp,k for k = O(1),
1) (Learning) A outputs h : {0, 1}n → {0, 1} such that

Pr
x∼µp,k,n

[
h(x) ̸= f(x)

]
≤ ε

with probability 1− δ.
2) (Privacy) The distribution over examples requested

by A is computationally indistinguishable from
EX(f, µp,k,n, q(n)).

In order to prove the theorem, we recall that we can use
the algorithm from Theorem IV.5 in place of the generically
assumed Covert Learning algorithm in Theorem A.3, and that
the class Jun[O(log n)] maintains the necessary closure un-
der composition condition, when considering concise product
distributions.

Proof of Theorem A.8. To apply Theorem A.3, we only need
to argue that for any f ∈ Jun[O(log n)] we have that gf ∈
Jun[O(log n)] where gf = f◦µ̄p,k,n. After that, we can invoke
Theorem A.3 to complete the proof.

To see that for any f ∈ Jun[O(log n)], gf ∈ Jun[O(log n)],
recall that each k-concise product distribution µp,k,n can be
sampled by a (multi-output) DNF µ̄p,k,n. This DNF takes as
input kn random bits, and samples all n bits x1, · · ·xn in par-
allel by taking the OR of every possible k-bit string (encoded
by a k-wise AND) larger than the binary representation pi (for
parallel execution i ∈ [n]). The resulting DNF is thus of size
poly(n) since k is a constant.



Now, if we consider f ∈ Jun[O(log n)], we can write
gf (z) = f(µ̄p,k,n(z)). Initially, this appears to be a junta on
top of a multi-output DNF. However, it can be compressed
to a DNF, which only reads O(log n) different variables
(and possibly their negations) with only a polynomial blow-
up in size — therefore proving that it is still contained in
Jun[O(log n)].

To see this, consider a DNF that computes f (canonically,
this could just be a “brute-force” DNF acts as a lookup table
for each possible O(log n)-bit string that determines the setting
of each of the relevant variables). Now, observe that every
variable in this DNF can be replaced by a k-wise AND
that encodes a string that maps to a 1 under µ̄p,k,n if the
variable is not negated, and 0 otherwise, and then repeating
for all possible choices of strings and taking the OR of all
the instances. The resulting circuit is a DNF, and the number
of terms increases by a factor of (2k)O(logn) (at most 2k

possible choices of ANDs, for each relevant variable). More
importantly, the number of relevant variables is k · O(log n)
(k relevant variables to sample the value of a single relevant
variable of f , of which there are O(log n)). Since gf is a
function of kn input bits for constant k, this proves that gf ∈
Jun[O(log n)]. In other words, the class of O(log n)-juntas is
closed under composition with concise product distributions.
This completes the proof of the statement.

Incompleteness theorem for OMED on product distributions.
The theorems obtained in this section so far can now be
applied to obtain incompleteness theorems for OMEDs that
protect ML models computable by O(log n)-juntas, where the
benign property is any concise product distribution.

Theorem A.9. Under the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n assump-

tion, ifM is a poly(n)-OMED for Jun[O(log n)] with respect
to concise product distribution µp,k, then if M is δ-complete
it is not (1− 100δ/99− negl(n))-sound.

Proof. Define the client C = (DA,A), where A is the algo-
rithm that witnesses Theorem A.8, and DA is the distribution
over q(n) queries requested by A. Fix some failure probability
for A, denoted by δA.

By the privacy guarantee of A, we have that for
any δ-complete OMED M (with respect to {µp,k,n}) for
Jun[O(log n)], it holds that for any f ∈ Jun[O(log n)],

Pr
M

(SA,τ)∼ExpC,f,q(n),ε

[
M(SA) = accept

]
≥

Pr
M

S∼EX(f,µp,k,n,q(n))

[
M(S) = accept

]
− negl ≥

1− δ − negl(n)

At the same time, the learning guarantee of A gives that

Pr
M

(S,τ)∼ExpC,f,q(n),ε

[
τ = extracted

]
≥ 1− δA

where δA is the failure probability set as a parameter of A,
and the accuracy parameter ε given to A is the same as the
subscript in Exp.

Thus, by a union bound, we can conclude that

Pr
M

(SA,τ)∼ExpC,f,q(n),ε

[
M(SA) = accept ∧ τ = extracted

]
≥ 1− δA − δ − negl(n)

Then, we can deduce that

Pr
M

(S,τ)∼ExpC,f,m,ε

[
M(S) = accept

∣∣ τ = extracted
]

≥ 1− δA − δ − negl(n)

1− δA
≥ 1− 100δ/99− negl(n)

for appropriately chosen δA = 1/100.

APPENDIX B
DEFENSE PROPOSALS AS SPECIAL CASES OF THE OMED

The pathway to provable security against model extraction
by OMED from the previous section is purposely defined
as generally as possible. However, we view it beneficial to
discuss the relation to some concrete MEDs which have been
proposed.

In this section, we will review three MEDs, [2], [5] and
[6], demonstrating that each are special cases of an OMED
(with unproved completeness and soundness guarantees). We
start each example with a direct quote from the original paper
so as to directly demonstrate the relevance to our OMED
framework.

1) Extraction Monitors: Information Gain and Feature
Space Coverage: The work of [2] proposes two different
strategies for detecting model extraction attacks. Both strate-
gies “[quantify] the extraction status of models by continually
observing the API query and response streams of users” and
provide a warning when a certain extraction status is reached.
This is indeed the paradigm outlined by the OMED.

The first proposal of [2] seeks to continuously train a “proxy
model” for each client, where the client queries are used to
train the model. The function of the proxy model is to estimate
the information/knowledge gained by a client with respect to
a validation set which is given by the server (and when this
information reaches some threshold the client is flagged). The
distribution of this validation set mimics the training set of the
underlying model. It is noted that it may require significant
computational resources to train and update the proxy model
(for every user and each incoming query), and thus [2] propose
to use a lightweight decision tree proxy model.

In the second proposal, the observational keeps a short
description of client queries, and estimates the client’s learning
rate (of the extraction attack) by analyzing the feature space
covered by these queries (as they relate to to the class
boundaries of the underlying model. It is noted that a drawback
of this proposal is that the class boundaries of certain complex



models (e.g. neural networks) are not easily found. Thus, it
is proposed that the owner of the underlying model uploads a
“surrogate” decision tree which has high fidelity with respect
to the complex model (class boundaries of decision trees are
easily interpreted by their leaf nodes).

2) PRADA: The MED known as PRADA [5] “analyzes the
distribution of consecutive API queries and raises an alarm
when this distribution deviates from benign behavior” [5].
Immediately, it is clear that the PRADA method is a candidate
for being identified as a special case of the OMED. The
defense works under the observation that queries requested
by an adversarial client are likely to have a distribution that
differs from the characteristic distribution of queries from
a benign client. In PRADA, this benign characteristic was
chosen to be the property that the distribution over hamming
distances between each query in the requested batch should be
normally distributed. This choice is backed by observational
evidence that certain popular attacks such as the attack of [28]
do not satisfy this condition. Hence, PRADA tries to satisfy
completeness and soundness with respect to the property of all
distributions that have a pairwise hamming distance normally
distributed (e.g. the uniform distribution over {0, 1}n).

3) VarDetect: The work of [6] proposes a MED called
VarDetect which is designed “to continuously observational
the distribution of queries to [the model] from each user” [6].
Specifically, VarDetect trains a Variational Autoencoder (VAE)
to map the “problem domain” (PD) dataset distribution (the
PD distribution mimics the distribution of data that was used
to train the underlying model) and the adversarial “outlier” (O)
data distribution (the distribution of attacker queries) to distinct
regions in latent space. Benign clients are assumed to query
from the PD distribution while adverse clients are assumed to
query from an O distribution. VarDetect purports to separate
these two by computing the maximum mean discrepancy
(MMD) between the latent mapping of the client’s queries
and that of the PD distribution (the MMD test flags the client
if the result is above a certain threshold).

APPENDIX C
PROOF OF LEMMA III.6

Proof. We show the contrapositive. Let E,A be the events
(over the randomness of ExpC,f,m,ε) that τ = extracted and
M(S) = accept, respectively. Thus, suppose that for some
D ∈ Pn, we have a client C = (D,L) such that for ε > 0,
and a δ-complete M,

Pr
f∼Fn

[
Pr

[
E

∣∣ A]
≥ 1

poly(n)

]
≥ 1− η

This implies that

Pr
f∼Fn

[
Pr

[
E ∧ A

]
Pr

[
A
] ≥ 1

poly(n)

]
≥ 1− η

which is equivalent to

Pr
f∼Fn

[
Pr

[
E ∧ A

]
≥ 1− δ

poly(n)

]
≥ 1− η

sinceM is δ-complete (the inner probabilities are all over the
randomness ofM, (S, τ) ∼ ExpC,f,m,ε; this is omitted due to
space constraints). We now may observe that latest equation is
the guarantee that there is an algorithm that (η, ε)-heuristically
PAC learns Fn in time poly(n) with accuracy ε and confidence
(1 − δ)/poly(n)), for some singleton distribution class {D}
(where D ∈ Pn). The learning algorithm works by sampling
a set of labelled examples T according to D, and the applying
L(T ) to obtain a hypothesis.

Then, it follows that F is (η, ε)-heuristically PAC-learnable
with respect to some singleton distribution class {D} (where
D ∈ Pn) by running the learning algorithm poly(n) times to
produce many hypotheses, testing each by random sampling,
and outputting the most accurate hypothesis. This works as
long as δ ≤ 1 − 1/poly(n). This completes the proof by
contrapostive, which only requires we show learnability with
respect to at least 1 singleton distribution class {D} for
D ∈ Pn.

APPENDIX D
PROOFS OF INCOMPLETENESS THEOREMS

Proof of Corollary IV.3. By Theorem IV.2 there exists a
{Dn}-adverse client C = (DA,A) such that for any δ-
complete OMED M (with respect to {Dn}) for Cn, it holds
that for any f ∈ Cn, ε > 0,

Pr
M,(S,τ)∼ExpC,f,m,ε

[
M(S) = accept ∧ τ = extracted

]
≥ 1− δ − δC − negl(n)

where negl(n) is a negligible function of n and δC is the
probability C fails to extract. δC = δA is derived directly
from δA, the failure probability of the natural covert learning
algorithm.

Then, we can deduce that

Pr
M,(S,τ)∼ExpC,f,m,ε

[
M(S) = accept | τ = extracted

]
≥ 1− δ − δC − negl(n)

1− δC

Thus by taking an appropriately large n, M cannot be (1 −
100δ/99−negl(n))-sound for a reasonable choice of δA, when
creating the client C = (DA,A) based on A.

Proof of Corollary IV.7. By Theorem IV.6, there exists, for
any n ∈ N, a Un-adverse client C such that for any δ-complete
OMED M (with respect to {Un}) for DT[poly(n)], it holds
that for any f ∈ DT[poly(n)],

Pr
M

(S,τ)∼ExpC,f,m,ε

[
M(S) = accept ∧ τ = extracted

]
≥ 99

100
− δ − negl(n)

Then, we can deduce that

Pr
M

(S,τ)∼ExpC,f,m,ε

[
M(S) = accept

∣∣ τ = extracted
]
=



Pr
M,SC

[
E
]

Pr
M,SC

[
ExpC,Unf,q(n),ε = extracted

]
≥

99
100 − δ − negl(n)

99
100

≥ 1− 100δ

99
− negl(n)

which completes the proof.


