
Published as a conference paper at ICLR 2022

EQUIVARIANT CONTRASTIVE LEARNING

Rumen Dangovski
MIT EECS
rumenrd@mit.edu

Li Jing
Facebook AI Research
ljng@fb.com

Charlotte Loh
MIT EECS
cloh@mit.edu

Seungwook Han
MIT-IBM Watson AI Lab
sh3264@columbia.edu

Akash Srivastava
MIT-IBM Watson AI Lab
akashsri@mit.edu

Brian Cheung
MIT CSAIL & BCS
cheungb@mit.edu

Pulkit Agrawal
MIT CSAIL
pulkitag@mit.edu

Marin Soljačić
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ABSTRACT

In state-of-the-art self-supervised learning (SSL) pre-training produces semanti-
cally good representations by encouraging them to be invariant under meaningful
transformations prescribed from human knowledge. In fact, the property of in-
variance is a trivial instance of a broader class called equivariance, which can
be intuitively understood as the property that representations transform accord-
ing to the way the inputs transform. Here, we show that rather than using only
invariance, pre-training that encourages non-trivial equivariance to some transfor-
mations, while maintaining invariance to other transformations, can be used to
improve the semantic quality of representations. Specifically, we extend popu-
lar SSL methods to a more general framework which we name Equivariant Self-
Supervised Learning (E-SSL). In E-SSL, a simple additional pre-training objec-
tive encourages equivariance by predicting the transformations applied to the in-
put. We demonstrate E-SSL’s effectiveness empirically on several popular com-
puter vision benchmarks, e.g. improving SimCLR to 72.5% linear probe accuracy
on ImageNet. Furthermore, we demonstrate usefulness of E-SSL for applications
beyond computer vision; in particular, we show its utility on regression problems
in photonics science. Our code, datasets and pre-trained models are available at
https://github.com/rdangovs/essl to aid further research in E-SSL.

1 INTRODUCTION

Human knowledge about what makes a good representation and the abundance of unlabeled data
has enabled the learning of useful representations via self-supervised learning (SSL) pretext tasks.
State-of-the-art SSL methods encourage the representations not to contain information about the
way the inputs are transformed, i.e. to be invariant to a set of manually chosen transformations.
One such method is contrastive learning, which sets up a binary classification problem to learn
invariant features. Given a set of data points (say images), different transformations of the same
data point constitute positive examples, whereas transformations of other data points constitute the
negatives (He et al., 2020; Chen et al., 2020). Beyond contrastive learning, many SSL methods also
rely on learning representations by encouraging invariance (Grill et al., 2020; Chen & He, 2021;
Caron et al., 2021; Zbontar et al., 2021). Here, we refer to such methods as Invariant-SSL (I-SSL).

The natural question in I-SSL is to what transformations should the representations be insensi-
tive (Chen et al., 2020; Tian et al., 2020; Xiao et al., 2020). Chen et al. (2020) highlighted the
importance of transformations and empirically evaluated which transformations are useful for con-
trastive learning (e.g., see Figure 5 in their paper). Some transformations, such as four-fold rotations,
despite preserving semantic information, were shown to be harmful for contrastive learning. This
does not mean that four-fold rotations are not useful for I-SSL at all. In fact, predicting four-fold
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rotations is a good proxy task for evaluating the representations produced with contrastive learn-
ing (Reed et al., 2021). Furthermore, instead of being insensitive to rotations (invariance), training
a neural network to predict them, i.e. to be sensitive to four-fold rotations, results in good image
representations (Gidaris et al., 2018; 2019). These results indicate that the choice of making fea-
tures sensitive or insensitive to a particular group of transformations can have a substantial effect on
the performance of downstream tasks. However, the prior work in SSL has exclusively focused on
being either entirely insensitive (Grill et al., 2020; Chen & He, 2021; Caron et al., 2021; Zbontar
et al., 2021) or sensitive (Agrawal et al., 2015; Doersch et al., 2015; Zhang et al., 2016; Noroozi &
Favaro, 2016; Gidaris et al., 2018) to a set of transformations. In particular, the I-SSL literature has
proposed to simply remove transformations that hurt performance when applied as invariance.

To understand how sensitivity/ insensitivity to a particular transformation affects the resulting fea-
tures, we ran a series of experiments summarized in Figure 1. We trained and tested a simple I-SSL
baseline, SimCLR (Chen et al., 2020), on CIFAR-10 using only the random resized cropping trans-
formation (solid yellow line). The test accuracy is calculated as the retrieval accuracy of a k-nearest
neighbors (kNN) classifier with a memory bank consisting of the representations on the training set
obtained after pre-training for 800 epochs. Next, in addition to being invariant to resized cropping,
we additionally encouraged the model to be either sensitive (shown in pink) or insensitive (shown
in blue) to a second transformation. We encourage insensitivity by adding the transformation to the
SimCLR data augmentation, and sensitivity by predicting it (see Section 4). We varied the choice
of this second transformation. We found that for some transformations, such as horizontal flips and
grayscale, insenstivity results in better features, but is detrimental for transformations, such as four-
fold rotations, vertical flips, 2x2 jigsaws (4! = 24 classes), four-fold Gaussian blurs (4 levels of
blurring) and color inversions. When we encourage sensitivity to these transformations, the trend
is reversed. In summary, we observe that if invariance to a particular transformation hurts feature
learning, then imposing sensitivity to the same transformation may improve performance. This leads
us to conjecture that instead of choosing the features to be only invariant or only sensitive as done
in prior work, it may be possible to learn better features by imposing invariance to certain transfor-
mations (e.g., cropping) and sensitivity to other transformations (e.g., four-fold transformations).

The concepts of sensitivity and insensitivity are both captured by the mathematical idea of equiv-
ariance (Agrawal et al., 2015; Jayaraman & Grauman, 2015; Cohen & Welling, 2016). Let G be a
group of transformations. For any g ∈ G let Tg(x) denote the function with which g transforms an
input image x. For instance, if G is the group of four-fold rotations then Tg(x) rotates the image
x by a multiple of π/2. Let f be the encoder network that computes feature representation, f(x).
I-SSL encourages the property of “invariance to G,” which states f(Tg(x)) = f(x), i.e. the output
representation, f(x), does not vary with Tg . Equivariance, a generalization of invariance, is defined
as, ∀x : f(Tg(x)) = T ′g(f(x)), where T ′g is a fixed transformation (i.e., without any parameters).
Intuitively, equivariance encourages the feature representation to change in a well defined manner to
the transformation applied to the input. Thus, invariance is a trivial instance of equivariance, where
T ′g is the identity function, i.e. T ′g(f(x)) = f(x).While there are many possible choices for T ′g (Co-
hen & Welling, 2016; Bronstein et al., 2021), I-SSL uses only the trivial choice that encourages f
to be insensitive to G. In contrast, if T ′g is not the identity, then f will be sensitive to G and we say
that the “equivariance to G” will be non-trivial.

Therefore, in order to encourage potentially more useful equivariance properties, we generalize SSL
to an Equivariant Self-Supervised Learning (E-SSL) framework. In our experiments on standard
computer vision data, such as the small-scale CIFAR-10 (Torralba et al., 2008; Krizhevsky, 2009)
and the large-scale ImageNet (Deng et al., 2009), we show that extending I-SSL to E-SSL by also
predicting four-fold rotations improves the semantic quality of the representations. We show that this
approach works for other transformations too, such as vertical flips, 2x2 jigsaws, four-fold Gaussian
blurs and color inversions, but focus on four-fold rotations as the most promising improvement we
obtain with initial E-SSL experiments in Figure 1.

We also note that the applications of E-SSL in this paper are task specific, meaning that the represen-
tations from E-SSL may work best for a particular downstream task that benefits from equivariance
dictated by the available data. E-SSL can be further extended to applications in science; in particular,
we focus on predictive tasks using (unlabelled and labelled) data collected via experiments or simu-
lations. The downstream tasks in prediction problems in science are often fixed and can be aided by
incorporating scientific insights. Here, we also explore the generality of E-SSL beyond computer vi-
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Figure 1: SSL representations should be encouraged to be either insensitive or sensitive to transfor-
mations. The baseline is SimCLR with random resized cropping only. Each transformation on the
horizontal axis is combined with random resized cropping. The dataset is CIFAR-10 and the kNN
accuracy is on the test set. More experimental details can be found in Section 4.

sion, on a different application: regression problems in photonics science and demonstrate examples
where E-SSL is effective over I-SSL.

Our contributions can be summarized as follows:

• We introduce E-SSL, a generalization of popular SSL methods that highlights the comple-
mentary nature of invariance and equivariance. To our knowledge, we are the first to create
a method that benefits from such complementarity.

• We improve state-of-the-art SSL methods on CIFAR-10 and ImageNet by encouraging
equivariance to four-fold rotations. We also show that E-SSL is more general and works
for many other transformations, previously unexplored in related works.

• We demonstrate the usefulness of E-SSL beyond computer vision with experiments on
regression problems in photonics science. We also show that our method works both for
finite and infinite groups.

The rest of the paper is organized as follows. In Section 2 we elaborate on related work. In Section 3
we introduce our experimental method for E-SSL. In Section 4 we present our main experiments in
computer vision. In Section 5 provide a discussion around our work that extends our study beond
computer vision. Beginning from Appendix A, we provide more details behind our findings and
discuss several potential avenues of future work.

2 RELATED WORK

To encourage non-trivial equivariance, we observe that a simple task that predicts the synthetic
transformation applied to the input, works well and improves I-SSL already; some prediction tasks
create representations that can be transferred to other tasks of interest, such as classification, object
detection and segmentation. While prediction tasks alone have been realized successfully before in
SSL (Agrawal et al., 2015; Doersch et al., 2015; Zhang et al., 2016; Misra et al., 2016; Noroozi
& Favaro, 2016; Zamir et al., 2016; Lee et al., 2017; Mundhenk et al., 2018; Gidaris et al., 2018;
Zhang et al., 2019; Zhang, 2020), to our knowledge we are the first to combine simple predictive
objectives of synthetic transformations with I-SSL, and successfully improve the semantic quality
of representations. We found that the notion of equivariance captures the generality of our method.

To improve representations with pretext tasks, Gidaris et al. (2018) use four-fold rotations predic-
tion as a pretext task for learning useful visual representations via a new model named RotNet. Feng
et al. (2019) learn decoupled representations: one part trained with four-fold rotations prediction and
another with non-parametric instance discrimination (Wu et al., 2018) and invariance to four-fold ro-
tations. Yamaguchi et al. (2021) use a joint training objective between four-fold rotations prediction
and image enhancement prediction. Xiao et al. (2020) propose to learn representations as follows:
for each atomic augmentation from the contrastive learning’s augmentation policy, they leave it out
and project to a new space on which I-SSL encourages invariance to all augmentations, but the left-
out one. The resulting representation could either be a concatenation of all projected left-out views’
representations, or the representation in the shared space, before the individual projections. Our
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Figure 2: E-SSL framework. Left: framework. Right: methods. Egomotion, Context, Colorization
and Jigsaw use other transformations than rotations, but their patterns looks like that of RotNet’s.
Likewise, for E-SSL can use transformations different from rotation.

method differs from the above contributions in that E-SSL is the only hybrid framework that en-
courages both insensitive representations for some transformations and sensitive representations for
others and does not require representations to be sensitive and insensitive to a particular transforma-
tion at the same time. Thus, what distinguishes our work is the complementary nature of invariance
and equivariance for multiple transformations, including finite and infinite groups.

To obtain performance gains from transformations, Tian et al. (2020) study which transformations
are the best for contrastive learning through the lens of mutual information. Reed et al. (2021)
use four-fold rotations prediction as an evaluation measure to tune optimal augmentations for con-
trastive learning. Wang & Qi (2021) use strong augmentations to improve contrastive learning by
matching the distributions of strongly and weakly augmented views’ representation similarities to
a memory bank. Wang et al. (2021) provide an effective way to bridge transformation-insensitive
and transformation-sensitive approaches in self-superived learning methods via residual relaxation.
A growing body of work encourages invariance to domain agnostic transformations (Tamkin et al.,
2021; Lee et al., 2021; Verma et al., 2021) or strengthens invariance with regularization (Foster et al.,
2021). Our framework is different from the above works, because we work with transformations that
encourage equivariance beyond invariance.

To understand and improve equivariant properties of neural networks, Lenc & Vedaldi (2015) study
emerging equivariant properties of neural networks and (Cohen & Welling, 2016; Bronstein et al.,
2021) construct equivariant neural networks. In contrast, our work does not enforce strict equiv-
ariance, but only encourages equivariant properties for the encoder network through the choice of
the loss function. While strict equivariance is concerned with groups, some of the transformations,
such as random resized cropping and Gaussian blurs, may not even be groups, but they could still be
analyzed in the E-SSL framework. Thus, ours is a flexible framework, which allows us to consider
a variety of transformations and how the encoder might exhibit equivariant properties to them.

3 METHOD

Our method is designed to test our primary conjecture that a hybrid approach of sensitive and in-
sensitive representations learns better features. Surprisingly, this hybrid approach is not yet present
in SSL, as Figure 2 illustrates. In this figure, we can view transformations in SSL as “levers.” Each
downstream task has an optimal configuration of the levers, which should be tuned in the SSL objec-
tive: left for insensitive and right for sensitive representations. E.g., make representations insensitive
to horizontal flips and grayscale and sensitive to four-fold rotations, vertical flips, 2x2 jigsaws, Gaus-
sian blurs or color inversions. Formally, insensitive and sensitive features correspond to trivial and
regular group representations, respectively. Here, we present an effective method to achieve this
control.

Let f(·;θf ) with trainable parameters θf be a backbone encoder. Analogously, let p1(·;θp1
) be

a projector network for the I-SSL loss. There might be an extra prediction head and parameters,
depending on the objective, which we omit for simiplicity. Let p2(·;θp2

) be the predictor network
for encouraging sensitivity, which we will call “predictor for equivariance.” We share the backbone
encoder f jointly for I-SSL and the objective of predicting the transformations from the backbone
representations. Let `I-SSL be the I-SSL loss and `E-SSL be the added E-SSL loss that encourages
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Figure 3: Sketch of E-SSL with four-fold rotations prediction, resulting in a backbone that is sensi-
tive to rotations and insensitive to flips and blurring. ImageNet example n01534433:169.

sensitivity to a particular transformation. Let the parameter λ be the strength of the E-SSL loss. The
optimization objective for an image x with views {x′} in the batch is given as follows

argmin
θf ,θp1 ,θp2

`SSL(p1(f({x′};θf );θp1
)) + λEg∈G [PredictionLoss(g, p2(f(Tg(x

′);θf );θp2
)] (1)

where `E-SSL (the expectation in the second summand) can take either one or all of the views,
but we take only one for simplicity. The goal of `E-SSL is to predict g from the representation
p2(f(Tg(x

′);θf );θp2
), which encourages equivariance to the group of transformations G. The

PredictionLoss could be either a cross entropy loss for finite groups or L1/ MSE loss for infinite
groups. In practice we replace the expectation with an unbiased estimate. Most of our experiments
in this paper focus on finite groups, but we show one example for an infinite group in Appendix F.

E-SSL can be constructed for any semantically meaningful transformation (see for example, Fig-
ure 1). From Figure 1 we choose four-fold rotations as the most promising transformation and we
fix it for the upcoming section. As a minor motivation, we also present empirical results about
the similarities between four-fold rotations prediction and I-SSL in Appendix C. In particular, both
tasks benefit from the same data augmentation. Figure 3 sketches how our construction works for
predicting four-fold rotations. In particular, we sample each of the 4 possible rotations uniformly
and use the cross entropy loss for the PredictionLoss in Equation 1.

What transformations could work for E-SSL? A common property of the successful transfor-
mations we have studied up to this point is that they form groups in the mathematical sense, i.e.
(i) each transformation is invertible, (ii) composition of two transformations is part of the set of
transformations and (iii) compositions are associative.

In this paper, we encourage equivariance to a group of transformation by predicting them. This
does not guarantee that the encoder we learn will be strictly equivariant to the group. In practice we
observe that invariance and equivariance is well encouraged by the training objectives we use (see
Appendix D.3 for detailed analysis). In fact, even strict equivariance is possible, i.e. there exists
an encoder that is non-trivially equivariant, under a reasonable assumption which is formulated as
follows. Let X be the set of all images. Let G be a group whose elements g ∈ G transform X
via the function Tg : X → X . Let X ′ = {Tg(x) | g ∈ G,x ∈ X} be the set of all transformed
images. Let f(·;θ) : X ′ → S be an encoder network that we learn with parameters θ. We write
f(·) ≡ f(·;θ) for simplicity. Finally, let S = {f(x′) | x′ ∈ X} be the set of all representations of
the images in X ′. The following is our statement.
Proposition 1 (Non-trivial Equivariance). Given Tg : X ′ → X ′ for the group G, there exists an
encoder f : X ′ → S that is non-trivially equivariant to the group G under the assumption that if
f(Tg(x)) = f(Tg′(x′)) then g = g′ and x = x′ for all g, g′ ∈ G and x,x′ ∈ X.
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We defer the proof to Appendix B. The significance of this proof is that it explicitly constructs a non-
trivially equivariant encoder network for groups G if the assumption is satisfied. The intuition of the
assumption is that if the representations of two transformed inputs are the same, the inputs should
coincide, and likewise the transformations. More formally, this assumption reflects the condition
when the dataset contains only one element of each group orbit. We speculate that satisfying this
assumption is reasonable for the datasets in this work, since we observe a natural setting of the data,
e.g. horizontal mirror symmetry in Gpm, and we consider transformations that disturb this natural
setting. In Appendix G we also show that E-SSL is crucial for the Flowers-102 dataset for which
this assumption might be less clear. In Appendix H we also present a natural modification of E-SSL
for scenarios, where that assumption is violated.

Could other transformations still help? To motivate our work, in Figure 1 we observed additional
transformations that could be useful, such as vertical flips, 2x2 jigsaws, four-fold Gaussian blurs and
color inversions. All of these transformations are groups, except for four-fold Gaussian blurs. Each
element of Gaussian blurs is invertible (de-blurring), but the inverse is not a transformation in the
set. Interestingly, we observe that four-fold Gaussian blurs still improve the baseline, which means
the success of E-SSL may not be limited to groups.

We might also consider combining the prediction of multiple transformations to encourage sensi-
tivity to all of them. However, the gains we saw in Figure 1 may not add up when we combine
transformations, because they may not be independent. The gains may also depend on the trans-
formations that we choose for I-SSL. While we see combinations of transformations as promising
future work, we focus on a single transformation to make a clear presentation of E-SSL.

4 EXPERIMENTS

4.1 SETUPS

CIFAR-10 setup. We use the CIFAR-10 experimental setup from (Chen & He, 2021). We con-
sider two simple I-SSL methods: SimCLR (with InfoNCE loss (Oord et al., 2018) and temperature
0.5) and SimSiam (Chen & He, 2021). We were able to obtain baseline results close to those in (Chen
& He, 2021). The predictor for equivariance takes a smaller crop with size 16x16. We report perfor-
mance on the standard linear probe. We tune λ to 0.4 both for SimCLR and SimSiam (full tuning in
Table 6 in Appendix D). Remaining experimental details can be found in Appendix D.

ImageNet setup. We use the original augmentation setting for each method. The predictor for
equivariance takes a smaller crop with size 96x96. We use a ResNet-50 (He et al., 2016) backbone
for each method. In terms of optimizer and batch size settings, we follow the standard training recipe
for each method. For our SimCLR experiments we use a slightly more optimal implementation
that uses BYOL’s augmentations (i.e. it includes solarization), initializes the ResNet with zero
BatchNorm weights and uses the InfoNCE loss with temperature 0.2.

Photonic-crystals setup. Photonic crystals (PhC) are periodically-structured materials engineered
for wide ranging applications by manipulating light waves (Yablonovitch, 1987; Joannopoulos et al.,
2008). The density-of-states (DOS) is often used as a design metric to engineer the desired properties
of these crystals and thus here, we consider the regression task of predicting the DOS of PhCs.
Examples of this dataset are depicted in Section 5 and further details can be found in Appendix F.
The use of symmetry or invariance knowledge is common in scientific problems; here, the DOS
labels are invariant to several physical transformations of the unit cell, namely, rolling translations
(due to its periodicity), operations arising from the symmetry group (C4v) of the square lattice,
i.e. rotations and mirror flips, and refractive scaling. We construct an encoder network comprising
of simple convolutional and fully-connected layers (see Appendix F) and create various synthetic
datasets to investigate encouragement of equivariance. After SSL/ E-SSL, we fine-tune the network
with L1 loss; for better interpretability of prediction accuracies, we use a relative error metric (Liu
et al., 2018; Loh et al., 2021) for evaluation, given by `DOS = (

∑
ω

∣∣DOSpred−DOS
∣∣)/(∑ω DOS),

reported in (%). We defer the results to Section 5, because of the novelty of the experimental setup.

The predictor p2 for E-SSL. The predictor is a 2 layer MLP for CIFAR-10 and Photonic-crystals,
and a 3 layer MLP for ImageNet, followed by a linear head that produces the logits for the an n-way
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Algorithm 1 PyTorch-style pseudocode for E-SSL, predicting four-fold rotations.

# f: backbone encoder network
# p1: projector network for I-SSL
# p2: predictor network for E-SSL
# ssl_loss: loss function for I-SSL
# lambda: weight of the E-SSL

for x in loader:
# large views for SSL and small view for EE
V_large = augment(x, small_crop=False) # list of views
v_small = augment(x, small_crop=True) # change: crop with size=96 and scale=(0.05, 0.14)

# loss
loss_invariance = ssl_loss(p1(f(V_large))
labels = [0] * N + [1] * N + [2] * N + [3] * N # 4Nx1
v_cat = cat([v_small] * 4, dim=0) # 4Nx3x96x96
v_equivariance = rot90(v_cat, labels) # constructing the rotated views

logits = p2(f(v_equivariance)) # 4Nx4
loss_equivariance = CrossEntropyLoss(logits, labels) # rotation prediction
loss = loss_invariance + lambda * loss_equivariance

# optimization step
loss.backward()
optimizer.step()

Table 1: Linear probe accuracy (%) on CIFAR-10. Models are pre-trained for 800 epochs. Baseline
results are from Appendix D in (Chen & He, 2021). Standard deviations are from 5 different random
initializations for the linear head. Deviations are small because the linear probe is robust to the seed.

Method SimCLR SimSiam
(Chen et al., 2020) (Chen & He, 2021)

Baseline (Chen & He, 2021) 91.1 91.8
Baseline (our reproduction) 92.0± 0.0 91.6± 0.0

E-SSL (ours) 94.1± 0.0 94.2± 0.1

Ablating E-SSL

Single random rotation 93.4± 0.0 (↓ 0.7) 92.6± 0.0 (↓ 1.6)
Linear predictor for equivariance 93.3± 0.0 (↓ 0.8) 93.4± 0.0 (↓ 0.8)
No SSL augmentation in equivariance views 92.7± 0.1 (↓ 1.4) 92.0± 0.1 (↓ 2.2)

Alternatives to E-SSL

Disentangled representations 91.3± 0.0 (↓ 2.7) 91.1± 0.0 (↓ 3.1)
Insensitive instead of sensitive 86.3± 0.1 (↓ 7.8) 86.1± 0.1 (↓ 8.1)

classification (for example four-fold rotations is 4-way classification), or a single node for the con-
tinuous group experiment. The predictor’s hidden dimension is shared across all layers and it equals
2048 for CIFAR-10 and ImageNet and 512 for PhC. After each linear layer, there is a Layer Nor-
malization (Ba et al., 2016) followed by ReLU. We experimented with Batch Normalization (Ioffe
& Szegedy, 2015) (with trainable affine parameters) instead of Layer Normalization, but did not
observe any significant changes. For some experiments, we discovered that removing the last ReLU
from the MLP improves the results slightly. In particular, for SimSiam on CIFAR-10 and for all
models on ImageNet we omit the last ReLU.

Finally, Algorithm 1 presents pseudocode for E-SSL with four-fold rotations on ImageNet. In our
implementation, we use smaller resolution for the rotated images, so that we can fit all views on the
same batch and have minimal overhead for pre-training (additional details in Table 9 in Appendix E).

4.2 MAIN RESULTS

CIFAR-10 results. To highlight the benefits of our method, Table 1 demonstrates the improvement
we obtain by using E-SSL on top of SimCLR and SimSiam and then shows different ablations and
alternative methods. We label the E-SSL extensions as E-SimCLR and E-SimSiam respectively. We
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Figure 4: Reducing the labels for training and the data augmentation for pre-training on CIFAR-10.
Error bars for 5 different training data splits.

Table 2: Linear probe accuracy (%) on ImageNet. Each model is pre-trained for 100 epochs. Base-
line results are from Table B.1 in (Chen et al., 2020) from Table 4 in (Chen & He, 2021). Numbers
marked with * use a less optimal setting than our reproduction for SimCLR (see ImageNet setup).

Method SimCLR SimSiam Barlow Twins
(Chen et al., 2020) (Chen & He, 2021) (Zbontar et al., 2021)

Baseline (Chen et al., 2020) 64.7* - -
Baseline (Chen & He, 2021) 66.5* 68.1 -
Baseline (our reproduction) 67.3 68.1 66.9
E-SSL (ours) 68.3 68.6 68.2

observe that we can increase a tuned baseline accuracy by about 2− 3%. When ablating E-SSL, we
see that each component of E-SSL is important. Most useful is the SSL augmentation applied on
top of the rotated views. We also study alternatives to E-SSL. With “Disentangled representations”
we investigate whether a “middle ground” is optimal for E-SSL: half of the representation to be
insensitive to a transformation and the other half to be sensitive to the same transformation. This
results in degradation of performance, which reflects our hypothesis that the representations should
be either insensitive or sensitive. We conducted this experiment by using four-fold rotations in I-
SSL for half of the representation and E-SSL for the other half. Finally, making the representations
“Insensitive instead of sensitive” to four-fold-rotations hurts the performance significantly, as it is
also observed in Figure 1, and in (Chen et al., 2020; Xiao et al., 2020).

Figure 4 reveals that E-SSL is more robust to removing transformations for I-SSL or reducing the
labels for training. For example, E-SimCLR and E-SimSiam with only random resized cropping
obtain 83.5% and 84.6% accuracies. Encouraging sensitivity to one transformation, namely four-
fold-rotations, can reduce the need for selecting many transformations for I-SSL and with only 1%
of the training data, E-SimCLR and E-SimSiam achieve 90.0± 1.0% and 88.6± 1.0% respectively.

Table 3: Linear probe accuracy (%) on ImageNet
with longer pre-training. “BT” is short for “Bar-
low Twins.”

Method pre-training epochs

100 200 300

SimCLR (repro) 67.3 69.7 70.6
E-SimCLR (ours) 68.3 70.5 71.5
BT (repro) 66.9 70.0 71.1
E-BT (ours) 68.2 71.0 71.9

ImageNet results. Table 2 demonstrates our
main results on the linear probe on ImageNet
after pre-training with various state-of-the-art
I-SSL methods and their E-SSL versions. By
only sweeping λ and slightly reducing the
original learning rate for SimSiam we obtain
consistent 1%/ 0.5%/ 1.3% improvements for
SimCLR/ SimSiam/ Barlow Twins respectively.
Additionally, in Table 3 we observe consis-
tent benefits of using E-SSL with longer pre-
training. Finally, after 800 epochs of pre-
training E-SimCLR achieves 72.5%, which is
0.6% better than SimCLR’s 71.9% baseline.
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Figure 5: PhC datasets with transformations for sensitivity. The regression task is to predict the
DOS labels (an example of a label in R400 is shown on the right) from 2D square periodic unit cells
(examples of the inputs in R32×32 are shown on the left). We consider two types of input unit cells;
at the top is the Blob dataset where the feature variation is always centered; at the bottom is the
Group pm (Gpm) dataset where inputs have a horizontal mirror symmetry.

Table 4: Fine-tuning the backbone on PhC datasets using 3000/ 2000 labelled train/ test samples.
Relative error (%) is `DOS = (

∑
ω

∣∣DOSpred − DOS
∣∣)/(∑ω DOS). Lower is better. SimCLR for

Blob includes C4v (rotations and flips); SimCLR for Gpm includes rolling translations and mirrors.
E-SimCLR encourages the features to be sensitive to the selected transformation explained in the
text (four-fold translations for Blob and four-fold rotations for Gpm). “+ Transform” means adding
this transformation to SimCLR. Error bars are for 3 different training data splits.

PhC Dataset Supervised SimCLR SimCLR + Transform E-SimCLR (ours)

Blob 1.068 ± 0.015 0.987± 0.005 0.999± 0.005 0.974± 0.009

Gpm 3.212± 0.041 3.122± 0.002 3.139± 0.005 3.091± 0.006

5 DISCUSSION

To show that other domains benefit from E-SSL in a qualitatively similar way to the applications
in the previous section, here we introduce two datasets in photonics science. Figure 5 depicts the
datasets, i.e. input-label pairs consisting of 2D square periodic unit cells of PhCs and their associated
DOS. The physics of the problem dictates that the DOS is invariant to (rolling) translations, scaling
of all pixels by a fixed positive factor, and operations of the C4v symmetry group, i.e. rotations and
mirror flips. In choosing the transformations that E-SSL should encourage sensitivity to, we observe
that the transformations that have worked for CIFAR-10 and ImageNet disturb the natural setting of
the data (e.g. rotations disturb the natural upright setting of images). Thus, we encourage sensitivity
to transformations that fit this observation, and insensitivity to the rest of the transformations.

In Figure 5, the top dataset is a “Blob” dataset where the shape variation in each image is centered.
We encourage sensititivy to the group of four-fold translations, given by G = {e, h, v, hv}, where
h and v are 1/2-unit cell translations in the horizontal and vertical axis, respectively, e is the unit
element (no transformation) and hv is the composition of h and v. In the bottom dataset of Figure 5,
the PhC unit cells are generated to have a horizontal mirror symmetry, i.e. we use the 2D wallpaper
(or crystallographic plane) group pm. We encourage sensitivity to the group of four-fold rotations
(the same group we used for CIFAR-10 and ImageNet), since rotating any of the images disturbs the
(horizontal) mirror symmetry. More accurately, since only±π/2 rotations disturb the symmetry, we
separate them in two classes, {π/2, −π/2} and {0, π}, and perform binary prediction in E-SSL.

Table 4 shows the results of fine-tuning the backbone and an additional DOS-predictor head (see
Appendix F) with 3000 labelled samples for this regression task. We observe that encouraging
sensitivity to the selected transformations (via E-SimCLR) leads to the largest reduction in the error.
On the contrary, including these transformations to SimCLR (indicated by “+ Transform”) increases
the error. Furthermore, we explore scaling transformations and show that E-SSL can be generalized
to infinite groups (see Appendix F). This supports our observations about the usefulness of E-SSL
over I-SSL and demonstrates E-SSL’s generality beyond computer vision.
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A SUMMARY OF MAIN TEXT AND LAYOUT OF APPENDIX

In this paper we motivated the generalization of state-of-the-art methods in self-supervised learning
to the more general framework of equivariant self-supervised learning (E-SSL). In E-SSL rather than
using only invariance as a trivial case of equivariance, we encouraged non-trivial equivariance and
improved state-of-the-art methods on common computer vision benchmarks and regressions tasks in
photonics science. We also discussed that there are many types of equivariance we can consider for
E-SSL. We observed that most of the successful transformations for E-SSL that we explored form
groups, but forsee that potentially many more transformations could be explored.

For future work one could learn transformations that are equivariances, instead of setting them man-
ually. Thus, the concept of E-SSL could potentially be extended to natural language processing or
other science domains, whose transformations for SSL are less well-understood. To facilitate further
research in E-SSL, below we provide additional details and analysis of the experiments in the main
text. We also discuss interesting avenues for future work.

B PROOF OF PROPOSITION 1

Proof. To construct a non-trivially equivariant f , we first need to show that both X ′ and S are
G-sets, i.e. that there is a group action Tg of G on X ′, which is given by the statement of the
proposition, and another (non-trivial) group action T ′g of G on S, which we will construct. Then, we
need to show that f commutes with the group action, i.e. that f(Tg(x′)) = T ′g(f(x

′)).
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Group actions. Note that by the setup of the problem, we are already given how G acts on the
input X ′, i.e. Tg is known. For example, if G is the group of four-fold rotations, then Tg is the
rotation of the input by a multiple of π/2. We proceed to construct the non-trivial group action T ′g
of G on S.

Define the function T ′ : G × S → S as T ′(g, s) = f(Tg(Tg′(x′))), where s = f(Tg′(x′)). Note
that T ′ is well-defined, because gg′ ∈ G by the closure of the group and s is uniquely written as s =
f(Tg′(x′)). To see why s is uniquely written, it suffices to show that if f(Tg′(x′)) = f(Tg′′(x′′))
then both g′ = g′′ and x′ = x′′, which follows directly from our assumption in the statement.

Now, to prove that T ′ is a group action, it suffices to show two properties.

• Identity: T ′(e, s) = s for s = f(g′(x′)) and e is the unit element of the group. To show
that, note that by definition T ′(e, s) = f(Te(Tg′(x′))) = f(Tg′(x′)), because eg′ = g′.

• Compositionality: T ′(g, T ′(h, f(Tg′(x′)))) = T ′(gh, f(Tg′(x′))). To show this, we ex-
pand the LHS and use the definition of T ′ to obtain as follows T ′(g, T ′(h, f(Tg′(x′)))) =
T ′(g, f(Th(Tg′(x′)))) = f(Tg(Thg′(x′))) = f(Tghg′(x′)) = f(Tgh(Tg′(x′))) =
T ′(gh, f(Tg′(x′))), because the group operation is associative.

Hence, T ′ is a group action, and thus S is a G-set, and we can write T ′(g, ·) ≡ T ′g(·).

Commuting with the group action. To see this property, note that T ′g′(f(x′)) =

T ′g′(f(Tg(x))) = f(Tg′(Tg(x))) = f(Tg′(x′)) as desired. Note that T ′g is non-trivial.

Therefore, we can conclude that f , which satisfies the constructed group action T ′g , is not-trivially
equivariant to the group G.

C ROTATION PREDICTION AND I-SSL BENEFIT FROM SIMILAR DATA
AUGMENTATION.

Recently, rotation prediction with a linear head from the frozen backbone representations proved to
be useful for validating the augmentation policies of contrastive learning (Reed et al., 2021). This
shows that the two tasks of classification of ground truth classes and synthetic rotation classes from
frozen backbone representations benefit from similar augmentation policies. We took this experi-
ment a step further, and performed rotation prediction with the augmentation policies, typically used
in contrastive learning.

The result is in Table 5. Interestingly, RotNet benefits from augmentations, typically used in con-
trastive learning, and the RotNet training shares the same sweet spot (Tian et al., 2020) as kNN
classification. There are several takeaways from this experiment: (i) we can find good augmenta-
tions for contrastive learning by doing RotNet alone, i.e. without doing any contrastive learning; (ii)
RotNet benefits from augmentations needed in contrastive learning; (iii) we may be able to combine
four-fold rotations prediction and contrastive learning.

D CIFAR-10 EXPERIMENTS

D.1 EXPERIMENTAL SETUP

Our experiments use the following architectural choices: ResNet-18 backbone (the CIFAR-10 ver-
sion has kernel size 3, stride 1, padding 1 and there is no max pooling afterwards); 512 batch size
(only our baseline SimSiam model uses batch size 1024); 0.03 base learning rate for the baseline
SimCLR and SimSiam and 0.06 base learning rate for E-SimCLR and E-SimSiam; 800 pre-training
epochs; standard cosine decayed learning rate; 10 epochs for the linear warmup; two layer projector
with hidden dimension 2048 and output dimension 2048; for SimSiam a two layer (bottleneck) pre-
dictor with hidden dimension 512 whose learning rate is not decayed; the last batch normalization
for the projector does not have learnable affine parameters; 0.0005 weight decay value; SGD with
momentum 0.9 optimizer. The augmentation is Random Resized Cropping with scale (0.2, 1.0),
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Table 5: RotNet’s augmentation sweet spot. kNN and Rotation Prediction have the same sweep spot
(Level 4) which gives best accuracy in both columns. RotNet is trained on CIFAR-10 for 100 epochs
with the same optimization setup as in our I-SSL experiments. Accuracies are on the test split. (↓ ·)
marks the deviation from the sweet spot. Every new level adds a new augmentation to the previous
level incrementally.

Level Added Augmentation Supervised kNN Acc. (%) Rotation Prediction Acc. (%)

0 none 44.8 (↓ 19.8) 90.2 (↓ 4.8)
1 random resized cropping 59.2 (↓ 5.4) 93.7 (↓ 1.3)
2 horizontal flips w.p. 0.5 59.4 (↓ 5.2) 94.5 (↓ 0.5)
3 color jitter w.p. 0.8 64.3 (↓ 0.3) 94.9 (↓ 0.1)
4 grayscale w.p. 0.2 64.6 95.0
5 Gaussian blur w.p. 0.2 64.1 (↓ 0.5) 94.5 (↓ 0.5)
6 random rotation (±π/6) 59.4 (↓ 5.2) 93.1 (↓ 1.9)
7 vertical flip w.p. 0.5 51.9 (↓ 12.7) 90.6 (↓ 4.4)

aspect ratio (3/4, 4/3) and size 32x32, Random horizontal Flips with probability 0.5, Color Jittering
(0.4, 0.4, 0.4, 0.1) with probability 0.8 and Grayscale with probability 0.2. Some of our evaluations
use a kNN-classifer with 200 neighbors, cosine similarity and Gaussian kernel with temperature 0.1.
This evaluation correlates well with the standard linear probe, but it is more efficient to calculate.
We report the kNN accuracy in % at the end of the 800 epochs of training. For our main results, we
report a linear probe accuracy from training a linear classifier for 100 epochs on top of the frozen
representations with SGD with momentum 0.9 and cosine decay of the learning rate, batch size
256 and initial laerning rate of 30. For linear probe experiments we try 5 different initalizations of
the linear head and report mean and standard deviations. The deviations are negligible because the
linear probe is robust to the random seed. All parameters are reported in a Pytorch-like style.

For Figure 1 we use resolution of 32x32 for the transformations studied. The 4 levels of the Gaussian
blur are for kernel sizes 0, 5, 9 and 15 in the default Gaussian blur torchvision implementation. The
prediction of the transformations follows the experimental setup in Section 3. When we apply the
transformations in I-SSL, we add them in the beginning of the augmentation policy with probability
1. The same setup is used for “Disentangled representations” and “Insensitive instead of sensitive”
in Table 1.

D.2 ADDITIONAL EXPERIMENTS

Explored hyperparameters. Both for SimCLR and SimSiam we ran a grid search over the fol-
lowing hyperparameters: base learning rate: {0.01, 0.03, 0.06}, batch size: {512, 1024}, λ (for
E-SSL): {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, predictor’s MLP depth: {2, 3, 4}, predictor’s normalization:
{None, BatchNorm, LayerNorm}, nonlinearity at the last MLP layer of the predictor: {True, False}.

Tuning λ. Table 6 shows tuning of the CIFAR-10 results. We observe noticeable improvements
over the SSL baselines by using E-SSL instead.

Table 6: Tuning the λ parameter for CIFAR-10.

Method Baseline E-SSL

0.0 0.2 0.4 0.6 0.8 1.0

SimCLR 92.0± 0.0 93.6± 0.0 94.1± 0.0 94.0± 0.0 94.1± 0.0 93.5± 0.0

SimSiam 91.1± 0.0 94.1± 0.0 94.2± 0.1 93.7± 0.0 93.8± 0.0 93.3± 0.0

Sensitivity to transformations for I-SSL. Table 7 demonstrates that E-SSL can produce good
representation with as few SSL transformations for I-SSL as possible. We observe that E-SSL is
less sensitive than SSL to the choice of data augmentation.
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Table 7: Comparing the augmentation sensitivity for CIFAR-10. Levels: 0 is no transformations; 1
adds random resized cropping; 2 adds horizontal flips; 3 adds color jitter; 4 adds grayscale.

Method Augmentation Level

0 1 2 3 4

SimCLR 28.0± 0.1 76.0± 0.1 77.0± 0.0 87.4± 0.0 92.0± 0.0

E-SimCLR 69.5± 0.0 83.5± 0.0 84.6± 0.1 91.6± 0.0 94.1± 0.0

SimSiam 17.6± 0.1 71.5± 0.0 72.2± 0.0 88.1± 0.0 91.1± 0.0

E-SimSiam 67.5± 0.1 84.6± 0.0 85.7± 0.1 92.9± 0.0 94.2± 0.1

The importance of complete invariance or sensitivity. Table 8 studies whether a middle ground
for the representations exist, i.e. whether it is possible to have part of the representation invariant
and the other part sensitive to the transformation. If we apply the E-SSL loss only to half of the rep-
resentation, then there is a very small drop in the performance. Furthermore, we observe that having
a disjoint mix between insensitivity and sensitivity in the representation is noticeably harmful.

Table 8: Studying the effect of disjoint representations on CIFAR-10. Split Representation means
that we encourage similarity only on one half of the backbone representation. Disentangled Repre-
sentation means that one half of the representation is trained to be insensitive to four-fold rotations
and the other half is sensitive four-fold rotations. Linear probe accuracy (%) after 800 epochs.

Method Baseline Split Representation Disentangled Representation

E-SimCLR 94.1± 0.0 94.1± 0.0 (↓ 0.0) 91.3± 0.0 (↓ 2.7)
E-SimSiam 94.2± 0.1 93.8± 0.0 (↓ 0.4) 91.1± 0.0 (↓ 3.1)

Fully connected backbone. We perform a simple experiment with a fully connected backbone,
instead of a ResNet-18. The hidden dimensions of the backbone are listed in order as {3×32×32,
2048, 2048, 512} with Batch Normalization and ReLUs in between. The rest of the experimental
setup is exactly the same. On the linear probe (%), we obtain 70.5±0.0 for SimCLR and 73.8±0.1
for E-SimCLR, and 70.9±0.0 for SimSiam and 73.5±0.1 for E-SimSiam, highlighting noticeable
gains from using E-SSL.

CIFAR-100 experiments. We test our CIFAR-10 experimental setup directly on CIFAR-100. On
the linear probe (%), we obtain 65.8±0.0 for SimCLR and 69.5±0.1 for E-SimCLR, and 65.8±0.1
for SimSiam and 69.3±0.1 for E-SimSiam, highlighting sizable gains from using E-SSL.

Large crop study. We study whether using a large crop with a single rotation on CIFAR-10 can
be just as good as a small crop. We obtain 93.9±0.0 on the linear probe using E-SimCLR, which is
only 0.2 absolute points below our best result of 94.1±0.0 using four small crops.

D.3 NORM-DIFFERENCES ANALYSIS

In Figure 6 we present analysis that shows our training objectives encourage invariance and equiv-
ariance to transformations. We take our best performing E-SimCLR and E-SimSiam methods on
CIFAR-10. During training we keep track of two measures that can capture how invariant/ equivari-
ant the backbone representations are.

The “invariance measure” computes the negative cosine similarity between two views of the back-
bone representations. The lower this measure is, the higher the similarity between the two views,
and thus the more invariant the backbone representations are to the transformations in I-SSL. We ob-
serve that during training high similarity between the two views is maintained (roughly between 0.8
and 0.9), which indicates that invariance is encouraged in the backbone representations, as desired.

Likewise, the “equivariance measure” computes the average cosine similarity of the backbone rep-
resenations, between all six pairs of the four rotated views. The lower this measure is, the lower
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the similarity between the four views, and thus the more non-trivially equivariant the backbone rep-
resentations are to the transformations for equivariance. We observe that the measure decays to
about 0.3 during training, which indicates that the backbone representations are encouraged to be
equivariant to four-fold rotations, as desired.
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Figure 6: Demonstration of the evolution of the invariance (top) and equivariance (bottom) measures
during training. Left is E-SimCLR and right is E-SimSiam.

E IMAGENET EXPERIMENTS

We had limited computational resources, so we kept the learning rates the same as in the original
methods. Only for SimSiam we found that choosing a smaller learning rate 0.08 leads to better
results for E-SimSiam. We only swept the λ parameter, where for SimCLR and SimSiam the sweep
was between 0 and 1 and for Barlow Twins it was between 0 and 100. The optimal λ is 0.4 for
SimCLR, 0.08 for SimSiam, 8 for Barlow Twins. We use (0.05, 0.14) scale range for 100 pre-
training epochs. For more pre-training epochs we use (0.05, 0.14) for SimCLR and (0.08, 1.0) for
Barlow Twins.

Table 9 lists the overhead from using rotation prediction in our experiments.

Table 9: Overhead in doing rotation prediction. Reported GPU hours for an experiment on 100
epochs.

SimCLR SimSiam Barlow Twins

Baseline 256 295 246
E-SSL (ours) 307 364 294

Overhead 20% 23% 19%
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F PHC EXPERIMENTS

Dataset generation. 2D Photonic crystals (PhCs) are characterized by a periodically varying per-
mitivitty ε(x, y); here, for simplicity we consider a “two-tone” permitivitty profile i.e. ε ∈ {ε1, ε2},
with εi ∈ [1, 20] discretized to a resolution of 32×32. To generate the unit cells in the “blob” dataset,
we follow the proceedure in Christensen et al. (2020). For the Gpm dataset, the unit cells are de-
fined using a level set of a 2D Fourier sum function like in Kim et al. (2021); Loh et al. (2021), with
additional constraints applied to the lattice to create the mirror symmetry adopted from the method
in Christensen et al. (2021). We then follow the procedure in Loh et al. (2021) to compute, and sub-
sequently process, the density-of-states (DOS) of each unit cell, specifically, via the MIT Photonics
Bands (MPB) software (Johnson & Joannopoulos, 2001) and the Generalized Gilat-Raubenheimer
method in an implementation from Liu et al. (2018).

Network architecture. We use an encoder network composing of simple convolutional (CNN)
and fully-connected (FC) layers for the backbone; specifically, our backbone begins with 3 CNN
layers, all with a kernel size of 7 and channel dimensions given by [64, 256, 256]. The output is
flattened and fed into 2 FC layers each with 1024 nodes (i.e. the representations have dimension
1024). We include BatchNorm (Ioffe & Szegedy, 2015), ReLU and MaxPooling for the CNNs,
and ReLU only for the first FC layer. The projector and predictor networks, p1 and p2 are 2-layer
MLPs with hidden dimension 512, with BatchNorm and ReLU between each layer except the last
and the projection dimension for p1 is 256. Additionally, since this is a regression task and the label
space is much larger than in image classification tasks, we include a dense DOS-predictor head after
the representations, which is fine-tuned with 3000 labelled samples after SSL or E-SSL. The DOS-
predictor has 4 FC layers, with number of nodes given by [1024, 1024, 512, 400]. We explore two
fine-tuning protocols of the DOS-predictor: freezing the backbone (discussed later in the Appendix)
or fine-tuning the backbone (discussed in the main text).

Hyperparameters. For SSL and E-SSL, we performed 250 pre-training epochs using the SGD
optimizer with a standard cosine decayed learning rate; the batch size was fixed to 512. The pre-
trained model was saved at various epochs {20, 50, 100, 180, 250} for further fine-tuning. Fine-
tuning was performed for 100 epochs using Adam optimizer and a fixed batch size of 64. No
transformations were applied to the input during fine-tuning for both freezing or fine-tuning the
backbone. We ran a grid search over the following hyperparameters; for pre-training, base learning
rate: {10−3, 10−4, 10−5}, λ (for E-SSL): {0.2, 1.0, 2.0, 5.0, 10.0}, and for fine-tuning: a learning
rate in {10−3, 10−4, 10−5}.

Frozen backbone experiment. In Table 10 we present our results from freezing the backbone
encoder while fine-tuning the DOS-predictor head. We observe similar trends as in Table 4 where
we allowed fine-tuning of the backbone. Relative error is reported in % and the lower the error
is, the better. SimCLR for Blob includes C4v (rotations and flips) and SimCLR for Gpm includes
rolling translations and flips. E-SimCLR encourages the features to be sensitive to the selected
transformation (four-fold translations for Blob and four-fold rotations for Gpm), which improves
the performance of SimCLR. On the contrary, adding the selected transformation to SimCLR, as
indicated by “+ Transform”, increases the error of SimCLR. Error bars are reported for 3 different
choices of training data. Supervised (frozen) refers to the impractical situation of freezing a random
backbone and fine-tuning the DOS-predictor.

Table 10: Frozen backbone experiment on PhC datasets for 3000/ 2000 labelled train/ test samples.
PhC Dataset Supervised (frozen) SimCLR SimCLR + Transform E-SimCLR (ours)

Blob 1.686± 0.014 1.237± 0.005 1.242± 0.013 1.165± 0.020

Gpm 5.450± 0.077 3.214± 0.048 3.313± 0.029 3.187± 0.000

Continuous group experiment. In all experiments shown so far, we dealt with finite groups of
transformations. To show that E-SSL generalizes beyond the finite group setting, we also explore
transformations from a continuous group. An example is the scaling transformation where every
pixel of the input unit cell is scaled by the same positive factor. More specifically, this set of positive
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scaling transformations g(s)x = sx defines a continuous group G = {g(s)|s ∈ R+} which leaves
the DOS labels invariant due to the physics of the problem and normalization applied when pre-
processing the dataset (Loh et al., 2021). In our experiment, we uniformly sample s ∈ (1, smax]
and apply the inverse with probability 0.5 (i.e. we cap the scaling factor to a maximum of smax =
{5, 10} for numerical stability during training and we apply up-scaling and down-scaling with equal
probability). To encourage equivariance to this group, we simply predict the scale factor applied to
the input using L1 loss (i.e. the final layer of the predictor p2 is a single node). In Table 11, we show
results after fine-tuning the backbone and the DOS predictor network with 3000 labelled samples.
We observe similar trends to Table 4; encouraging sensitivity to scaling produces the lowest error
and including scaling to SimCLR increases the error. To isolate the effect of scaling transformation,
the remaining physics-governed invariances excluding scaling (translations, rotations and mirrors)
are used in SimCLR and the invariance part of E-SimCLR for both datasets.

Table 11: Fine-tuning the backbone on PhC datasets using 3000/ 2000 labelled train/ test samples.
Relative error (%) is `DOS = (

∑
ω

∣∣DOSpred − DOS
∣∣)/(∑ω DOS). Lower is better. E-SimCLR

encourages the features to be sensitive to scaling. “+ Scaling” means adding scaling to SimCLR.
Error bars are for 3 different training data splits.

PhC Dataset Supervised SimCLR SimCLR + Scaling E-SimCLR (ours)

Blob (smax = 10) 1.068 ± 0.015 0.988± 0.001 1.005± 0.006 0.974± 0.000

Blob (smax = 5) 1.068 ± 0.015 0.988± 0.001 1.000± 0.014 0.987± 0.017

Gpm (smax = 10) 3.212± 0.041 3.073± 0.003 3.112±0.011 3.062± 0.005

Gpm (smax = 5) 3.212± 0.041 3.073± 0.003 3.082±0.013 3.058± 0.008

G FLOWERS-102 EXPERIMENTS

In order to study the importance of the assumption in Proposition 1 we perform an experiment with
a dataset that might not be amenable to such an assumption at first sight. We choose the Flowers-
102 dataset (Nilsback & Zisserman, 2008), because at first sight the dataset might not benefit from
four-fold rotations in E-SSL. Therefore, this dataset complements the experiments we performed for
CIFAR-10 and ImageNet.

Experimental setup. We train SimCLR and E-SimCLR. We use the same optimization hyperpa-
rameters from the experimental setup for our CIFAR-10 experiments. We downsize the images to
96x96 resolution and use the standard ResNet-18, instead of its modified version for CIFAR-10. For
the data augmentation in I-SSL, we use the same RandomResizedCropping as in CIFAR-10 (with
size 96 of the crops being the only difference), the same Color Jittering and Random horizontal flips
as in the CIFAR-10 experiment. We report the kNN accuracy in (%) on the validation set. We study
both four-fold rotations and four-fold translations as transformations for invariance/ equivariance.
Four-fold rotations are chosen following the hypothesis that most of the data points should be in-
variant to rotation. Four-fold translations are chosen, because of our observation that most of the
data points are centered, just like in the Blob PhC dataset. The λ for predicting four-fold translations
is 0.01 and for four-fold rotations is 0.5 (chosen from a grid search among {0.001, 0.01, 0.1, 0.5,
1.0, 2.0}).

Results. Following our observations in Figure 1, we observe that encouraging insensitivity to four-
fold rotations and translations, by adding the transformations to the SimCLR data augmentation,
worsens the SimCLR baseline. In contrast, using these transformations for E-SSL improves the
baselines and further shows the utility of E-SSL for real-world data. We even observe benefit from
encouraging equivariance to four-fold rotations, which is against the intuition that rotations should
be invariant. This is probably due to the fact that some images in the dataset are not truly rotationally
invariant (see examples of the data points in Figure 8).
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Figure 7: E-SimCLR gives sizable improvements for the Flowers-102 SSL pre-training. kNN accu-
racy (%) is on the validation set.

Figure 8: The Flowers-102 is not completely invariant to rotation. The top row shows data points
which are roughly invariant to four-fold translations. The bottom row shows counterexamples to
that hypothesis.

H RELATIVE ORIENTATION PREDICTION

In our experiments we demonstrate that if a shared biased between the train and test sets exists,
we should exploit it via the E-SSL training objective. However, in some scenarios, the class label
of the downstream tasks depends on the orientation (e.g., classifying road signs) and the current
E-SSL method may not be very useful, because both x and Tg(x) exist in the data. This situation
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invites a natural generalization of our method in the spirit of (Agrawal et al., 2015). If x and Tg(x)
exist in the data then we can modify E-SSL minimally to form a useful objective. In particular, we
can set the objective for p2 to predict the relative orientation between two data points, i.e. given
x, we form Tg′(x) by sampling Tg′ from G uniformly, and then predict g′ from p2(z;θp2

), where
z = [f(x), f(Tg′(x))] is the concatenation of the two representations. This modification requires
minimal change to our framework.

To test the usefulness of the modified method when x and Tg′(x) exist in the data, we artificially
modify CIFAR-10 so that any rotation of an image can appear in the dataset. We consider the
downstream task of predicting the rotation orientation of an image, which clearly depends on the
orientation of the image. Our hypothesis is that the modified E-SimCLR will be better than SimCLR,
which is what we observe in our results below. Intuitively, SimCLR is not able to capture the
orientation of the image, while the modified E-SimCLR is able to, because the latter predicts relative
orientation.

The experimental setting is as follows: we pretrain for 100 epochs. The predictor for equivariance’s
input dimension is doubled, because we concatenate two representations. We set λ to 0.4. All other
hyperparameters are the same as the rest of the CIFAR-10 experiments. The downstream task is 4-
way rotation orientation classification. Using pre-training with SimCLR on the standard CIFAR-10
dataset, we obtain baseline linear probe (%) accuracy 67.1±0.1. Using our modification of E-SSL
on the same experimental setting, we obtain 71.2±0.1. linear probe accuracy, which is a sizable gain
and points to the promise of the relative orientation prediction as future work.

The relative orientation prediction scenario is also highly relevant in other domains such as in pho-
tonic crystals. For example, we can modify the PhC setup and remove the “orientation bias” of the
datasets while predicting a different property, the band structures. Unlike the DOS, the PhC band
structures are not invariant to rotations and so we can consider the group of four-fold rotations. This
setup would fit the scenario described above since 1) both x and Tg′(x) exist in the data due to the
lack of bias and 2) the downstream task is sensitive to rotation. We will explore the above framework
on this setup in future work.
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