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Abstract

Conformal Prediction (CP) is a distribution-free uncertainty estimation framework
that constructs prediction sets guaranteed to contain the true answer with a user-
specified probability. Intuitively, the size of the prediction set encodes a general
notion of uncertainty, with larger sets associated with higher degrees of uncertainty.
In this work, we leverage information theory to connect conformal prediction to
other notions of uncertainty. More precisely, we prove three different ways to upper
bound the intrinsic uncertainty, as described by the conditional entropy of the target
variable given the inputs, by combining CP with information theoretical inequalities.
Moreover, we demonstrate two direct and useful applications of such connection
between conformal prediction and information theory: (i) more principled and
effective conformal training objectives that generalize previous approaches and
enable end-to-end training of machine learning models from scratch, and (ii) a
natural mechanism to incorporate side information into conformal prediction. We
empirically validate both applications in centralized and federated learning settings,
showing our theoretical results translate to lower inefficiency (average prediction
set size) for popular CP methods.

1 Introduction

Machine learning (ML) models have rapidly grown in popularity and reach, having now found use
in many safety-critical domains like healthcare [1] and autonomous driving [28]. In these areas,
predictions must be accompanied by reliable measures of uncertainty to ensure safe decision-making.
However, most ML models are designed and trained to produce only point estimates, which capture
only crude notions of uncertainty with no statistical guarantees. Conformal prediction (CP) [64], in
particular its split variant (SCP) [47], has recently gained in popularity as a principled and scalable
solution to equip any, potentially black-box, model with proper uncertainty estimates in the form of
prediction sets; in loose terms, larger sets are associated with higher degrees of uncertainty.

In this work, we take a closer look at conformal prediction through the lens of information theory (IT),
establishing a connection between conformal prediction and the underlying intrinsic uncertainty of
the data-generating process, as captured by the conditional entropy H(Y |X) = −EPXY

[logPY |X ]
of the target variable Y given the inputs X . We prove conformal prediction can be used to bound
H(Y |X) from above in three different ways: one derived from the data processing inequality, which
we dub DPI bound, and two coming from a variation of Fano’s inequality [19], a model agnostic one,
which we call (simple) Fano bound, and another informed by the predictive model itself, to which
we refer as model-based Fano bound. To the best of our knowledge, these bounds represent the first
bridge connecting information theory and conformal prediction, which we hope will bring new tools
to both fields. We already present two such tools in this paper: (i) we show our upper bounds serve as
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principled training objectives to learn classifiers that are more amenable to SCP, and (ii) we advance
a systematic way to incorporate side information into the construction of prediction sets. In a number
of classification tasks, we empirically validate that both these applications of our theoretical results
lead to better predictive efficiency, i.e., narrower and, consequently, more informative prediction sets.

The rest of the paper is organized as follows. In Section 2, we first introduce the necessary background
to guide the reader through our main theoretical results. We introduce our three new upper bounds to
the intrinsic uncertainty in Section 3, and their applications to conformal training and side information
in Sections 4 and 5, respectively. Thereafter, we explore the related work in CP and IT in Section 6,
present and analyze our experimental results in Section 7, and finally conclude in Section 8.

2 Background

In this section, we present the needed background on conformal prediction and list decoding [18, 22,
68], an area of information theory that, as we show, is closely related to CP and especially useful in
deriving our main results. We start with the necessary notation. As usual, we denote random variables
in uppercase letters and their realization in lowercase, e.g., X = x. We reserve calligraphic letters,
e.g. X , for sets and use PX , QX , . . . to denote probability measures on the space X . To simplify
the notation, we use P,Q, . . . when the underlying space is clear. For example, given a probability
measure QXY , the probability of the event {(X,Y ) : Y ∈ C(X)} is denoted as Q(Y ∈ C(X)).

2.1 Conformal Prediction

Conformal prediction (CP) is a theoretically grounded framework that provides prediction sets with
finite-sample guarantees under minimal distribution-free assumptions. Concretely, given a set of n
data points (Xi, Yi) ∈ X × Y, i = 1, . . . , n drawn from some (unknown) joint distribution PXY ,
CP allows us to construct sets C(X) ∈ Y , such that for a new data point from the same distribution
(Xtest, Ytest) we have the following guarantee for a target error rate α ∈ (0, 1)

P(Ytest ∈ C(Xtest)) ≥ 1− α, (1)
where the probability is over the randomness in the sample {(Xi, Yi)}ni=1∪{(Xtest, Ytest)}. To make
this more tangible, the reader can picture C(X) as a subset of the possible labels in a classification
problem, or as a confidence interval around the point estimate of a regressor in a regression setting.

In this work, we focus on a variant called split conformal prediction (SCP) [47] that gained popularity
in the ML community, since it can leverage any pre-trained model f : X → Y in the construction
of prediction sets. In this setting, the aforesaid n data points constitute a calibration data set Dcal,
which must be disjoint from the training data set used to fit the predictive model f . This separation
between training and calibration data is what gives the name split to the method.

The first step in SCP is to define a nonconformity score function sf : X × Y → R, which is itself
a function of model f and captures the magnitude of the prediction error at a given data point;
the higher the score sf (x, y), the higher the disagreement between input x and prediction y. At
calibration time, we evaluate the score function at every (Xi, Yi) ∈ Dcal to get a collection of scores
{Si = sf (Xi, Yi)}ni=1, and at test time, we construct prediction set C(Xtest) as

C(Xtest) = {y ∈ Y : s(Xtest, y) ≤ Quantile(1− α; {Si}ni=1 ∪ {∞})}, (2)
where Quantile(1− α; {Si}ni=1) is the level 1− α quantile of the empirical distribution defined by
{Si}ni=1. The central result in conformal prediction, which we restate below for completeness, proves
that prediction sets thus constructed achieve marginal valid coverage, i.e., satisfy (1).
Theorem 2.1 ([31, 64]). If {(Xi, Yi)}ni are i.i.d. (or only exchangeable), then for a new i.i.d. draw
(Xtest, Ytest), and for any α ∈ (0, 1) and for any score function s such that {Si}ni=1 are almost
surely distinct, then C(Xtest) as defined above satisfies

1− α ≤ P(Ytest ∈ C(Xtest)) ≤ 1− αn, where αn = α− 1/n+1.

See Appendix B for the proof and a more thorough introduction to CP. It is worth noting that valid
coverage is not sufficient; the uninformative set predictor that always outputs C(Xtest) = Y trivially
satisfies (1). We would also like our prediction sets to be as narrow as possible, and that is why CP
methods are often compared in terms of their (empirical) inefficiency, i.e., the average prediction
set size 1/|Dtest|

∑
x∈Dtest

|C(x)| for some test data set Dtest. This is, in fact, not the only type of
inefficiency criterion, but we use it as our main performance metric since it is the most common [65].
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Figure 1: Graphical model of SCP. Dcal is a cali-
bration set, C(X) the prediction set, Ŷ = f(X) the
model prediction, and E the event {Y ∈ C(X)}.
Square and round nodes are, respectively, deter-
ministic and stochastic functions of their parents.

We depict the split conformal prediction proce-
dure in Figure 1, where we include two extra
variables that will be useful later in the text: the
model prediction Ŷ = f(X), and the event of
valid coverage E = {Y ∈ C(X)}, i.e., the event
of the prediction set containing the correct class.

2.2 Conformal Prediction as List Decoding

In a nutshell, we can see conformal prediction
as defining a map from an input x to a set of
candidates in the target setY . It turns out that the
conformal prediction framework is equivalent to
(variable-size) list decoding, an error-recovery
model going back to the works of Elias [18] and Wozencraft [68] in communication theory—we
review some of these results in Appendix C.2. In particular, consider the mapping from the true
label y to the input x as a noisy communication channel p(x|y). The goal of an error-correcting code
is then to decode the input x and recover the one true label y. List decoding generalizes this idea,
allowing the decoder to return a set of outcomes (a list) instead of a pointwise prediction. If the
correct solution is not part of the set output by the decoder, an error is declared. Although conformal
prediction and list decoding were developed for different purposes, namely uncertainty quantification
and error correction, it is easy to see that, if we allow for variable-size lists, the list decoding problem
for the channel p(x|y) as described above is equivalent to the conformal prediction problem.

To our knowledge, this link between conformal prediction and information theory (and list decoding
in particular) has gone unnoticed in the literature, and in this paper we leverage it in two directions.
First, we apply information-theoretic inequalities for list decoding to upper bound the conditional
entropy H(Y |X) of the data-generating process. This leads to new objectives for conformal training
(see Section 4) and new bounds on the inefficiency of a given model (see Appendices E and G.3).
Second, the information-theoretic interpretation of CP gives us an effective and theoretically grounded
way of incorporating side-information into CP to improve predictive efficiency (see Section 5).

3 Information Theory Applied to Conformal Prediction

In this section, we develop our main results, which link information theory and conformal prediction.
Concretely, we provide three novel upper bounds on the conditional entropy H(Y |X): one coming
from the data processing inequality and two derived in a similar way to Fano’s inequality. We defer
the proofs to Appendix D for the sake of conciseness, but in broad strokes, our results come from
relating the bounds on the error probability provided by these information-theoretic inequalities
(typically in the context of error-correcting codes) to the guarantees provided by CP in Theorem 2.1.

3.1 Data Processing Inequality for Conformal Prediction

We start by using the classical data processing inequality (DPI) in the context of conformal prediction.
Specifically, we focus on the DPI for f -divergences, which we discuss thoroughly in Appendix C.1.
In brief, for a convex function f with f(1) = 0, the f -divergence between two probability measures
P and Q is defined as (see [58])

Df (P ||Q) := EQ

[
f

(
dP

dQ

)]
.

In particular, with f(x) = x log x we recover the familiar notion of KL-divergence [27]. The DPI for
f -divergences states that for any two probability measures PX and QX defined on a space X , and
any map WY |X , which maps (PX , QX) to (PY , QY ), we have

Df (PX ||QX) ≥ Df (PY ||QY ) .

We can apply the DPI for f -divergence above in the context of conformal prediction by considering
the probability of the event of valid coverage {Y ∈ C(X)} under two different probability measures P
and Q. Taking P as the data-generating distribution P := PXPY |X and constructing Q := PXQY |X
for an arbitrary QY |X (e.g., a machine learning model), we get the following proposition.
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Proposition 3.1 (DPI Bound). Consider any conformal prediction method satisfying the upper and
lower bounds of Theorem 2.1 for α ∈ (0, 0.5). For any arbitrary conditional distribution QY |X , the
true conditional distribution PY |X and the input measure PX , define the following two measures
Q := PXQY |X and P := PXPY |X . Then, we have

H(Y |X) ≤ hb(α) + (1− α) logQ(Y ∈ C(X)) + αn logQ(Y /∈ C(X))− EP

[
logQY |X

]
, (3)

with αn = α−1/n+1 and hb(·) the binary entropy function hb(α) = −α log(α)−(1−α) log(1−α).

Note that the entropy term H(Y |X) is computed using the measure P . We relegate the proof to
Appendix D.1. In the bound in (3), the term Q(Y ∈ C(X)) appears inside a log, so an empirical
estimate Q̂(Y ∈ C(X)) would result in a lower bound and would be biased. We can provide an upper
confidence bound on this estimate using the empirical Bernstein inequality [41] and use that instead.
Based on the empirical Bernstein inequality, with probability 1− δ, we have

∆δ(Z, n) :=

√
2Vn(Z) log(2/δ)

n
+

7 log(2/δ)

3(n− 1)

Q(Y ∈ C(X)) ≤ Q̂(Y ∈ C(X)) + ∆δ(Z, n) := Q̃(Y ∈ C(X)),

Q(Y /∈ C(X)) ≤ Q̂(Y /∈ C(X)) + ∆δ(Z, n) := Q̃(Y /∈ C(X)),

with Vn(Z) the empirical variance of Z = (Z1, . . . , Zn), Zi = Q(yi ∈ C(xi)). Using these bounds,
we get the following inequality with probability 1− δ:

H(Y |X) ≤ hb(α) + (1−α) log Q̃(Y ∈ C(X)) + αn log Q̃(Y /∈ C(X))− EP

[
logQY |X

]
. (4)

This upper bound is one of our main results, which we dub the DPI bound. Note that for the last
expectation, we can use the empirical estimate, as it is an unbiased approximation.

3.2 Model-Based Fano’s Inequality and Variations

Next, we present an inequality which is a variation of Fano’s inequality [19], a classical result that,
among other things, is used to prove Shannon’s classical theorem on channel capacity. See Appendix
C.4 for more details. In our context, we can use Fano’s inequality to relate the conditional entropy
H(Y |X) to the probability of error, i.e., P(Y /∈ C(X)). From that insight, we obtain Proposition 3.2
by modifying the classical proof of Fano’s inequality, which can be found in [14], and applying the
conformal guarantees from Theorem 2.1 to bound the probability of error.
Proposition 3.2 (Model-Based Fano Bound). Consider any conformal prediction method satisfying
the upper and lower bounds of Theorem 2.1 for α ∈ (0, 0.5). Then, for the true distribution P , and
for any probability distribution Q, we have

H(Y |X) ≤ hb(α) + αEPY,X,Dcal|Y /∈C(X)

[
− logQY |X,C(X),Y /∈C(X)

]
+ (1− αn)EPY,X,Dcal|Y ∈C(X)

[
− logQY |X,C(X),Y ∈C(X)

]
. (5)

Note that we have one term conditioned on the event of valid coverage, {Y ∈ C(X)}, and another
conditioned on {Y /∈ C(X)}. We provide the proof in Appendix D.2. A good choice for Q is the
predictive model itself, and that is why we refer to the bound above as Model-Based (MB) Fano
bound. Another natural choice for Q is the uniform distribution, which gives us the following result.
Corollary 3.1 (Simple Fano Bound). Consider any conformal prediction method satisfying the upper
and lower bounds of Theorem 2.1 for α ∈ (0, 0.5). Then, for the true distribution P we have

H(Y |X) ≤ hb(α) + αEPY,X,Dcal|Y /∈C(X)
[log(|Y| − |C(X)|)]

+ (1− αn)EPY,X,Dcal|Y ∈C(X)
[log |C(X)|] . (6)

The proof follows directly from Proposition 3.2 by replacing Q with the uniform distribution. We
refer to the bound in (6) as (simple) Fano bound, since it is model agnostic and can be approximated
directly with only empirical estimates of the prediction set size. This last bound explicitly relates
the central notion of uncertainty in conformal prediction, the prediction set size, to an information-
theoretic concept of uncertainty in H(Y |X). This reinterpretation of conformal prediction as a
form of list decoding introduces various information-theoretic tools, potentially useful for various
applications. In Appendix E we derive some new inequalities for conformal prediction, in particular
offering new lower bounds on the inefficiency of the conformal prediction. In the next section, we
discuss how these inequalities can be used as conformal training schemes.
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4 Conformal Training

Although split conformal prediction is applicable to any pretrained ML model as a post-processing
step, the overall performance of any CP method (commonly measured by its inefficiency) is highly
dependent on the underlying model itself. Therefore, previous works have proposed to take CP into
account already during model training and directly optimize for low predictive inefficiency [8, 13, 61].
We use the term conformal training to refer to such approaches in general (see Appendix F for an
overview of the topic). In particular, we focus on ConfTr [61] since it generalizes and outperforms [8].
In ConfTr [61] each training batch B is split into calibration Bcal and test Btest halves to simulate the
SCP process (see Section 2) for each gradient update of model f and minimize the following size loss

logE[|Cf (X)|] ≈ log

(
1/|Btest|

∑
x∈Btest

|Cf (x)|

)
, (7)

where Cf (x) is constructed using the statistics of the nonconformity scores computed on Bcal. We use
the notation Cf (x) to emphasize the dependence of the prediction set on model f . Still, SCP involves
step functions and Stutz et al. [61] introduce two relaxations to recover a differentiable objective:
(i) the computation of quantiles is relaxed via differentiable sorting operators [9, 17, 50]; (ii) the
thresholding operation in the construction of prediction sets in (2) is replaced by smooth assignments
via the logistic sigmoid. The latter relaxation gives “soft” prediction sets Ĉf (x), which contain each
of the labels y ∈ Y with a certain probability. See Algorithm 1 for a depiction of conformal training.

Our upper bounds on H(Y |X), namely DPI, MB Fano and simple Fano, presented in the previous
section can be made differentiable in the same way, and thus can also serve as proper loss functions
for conformal training. The motivation for doing so is twofold. First, the conditional entropy
H(Y |X) captures the underlying uncertainty of the task, or equivalently, the uncertainty under the
true labelling distribution PY |X . Thus, by minimizing these upper bounds, we can hope to push
the model f closer to the true distribution, which is known to achieve minimal inefficiency [65].
Interestingly, the cross-entropy loss also bounds H(Y |X) from above and thus can be motivated as a
conformal training objective from the same angle. In that regard, the DPI bound from Proposition 3.1
is particularly advantageous as it is provably tighter than the cross-entropy (see Appendix D.1).

Second, we can connect the simple Fano bound from Corollary 3.1 to the size loss (7) from [61]. In
Appendix F.1, we show that via Jensen’s inequality and log(|Y |−|C(X)|) ≤ log |Y | the bound in (6)
can be further upper bounded as

λα := hb(α) + α log |Y| − (1− αn) log(1− α),

H(Y |X) ≤ λα + (1− αn) logE [|C(X)|] , (8)
Since λα and (1 − αn) are constants, they do not affect optimization, and minimizing the right
hand side in (8) is equivalent to minimizing the size loss in (7). Therefore, we ground ConfTr as
minimizing an upper bound to the true conditional entropy that is looser than the simple Fano bound
and likely also looser than the model-based Fano bound for an appropriate choice for Q.

Algorithm 1: Conformal training algorithm.
input :A batch of labeled samples B, a model f , a loss function L that can be any of our upper

bounds (4), (5) or (6) or a version of (7)—see variants (25) and (26) in Appendix F.
for each training batch B do

split B into Bcal and Btest
for each (xi, yi) ∈ Bcal do

compute score si = sf (xi, yi)

sort scores (in a differentiable manner) obtaining s(1) < s(2) < . . . < s(|Bcal|)
set q̂ = s(⌈(|Bcal|+1)(1−α)⌉) // get 1− α quantile estimate using Bcal

for each (xj , yj) ∈ Btest do
for each y ∈ Y do
Ĉf (xj , y)← σ(q̂ − sf (xj , y)) // Construct soft prediction set

// Bounds (4) and (5) also require class probabilities under Q, which in this
case are given by the model f(xj)

compute loss according to L on Btest using yj , Ĉf (xj) and if needed f(xj)
update f via gradient descent to minimize loss
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5 Side Information

With the information theoretical interpretation of conformal prediction, we can translate various intu-
itions from information theory, for example, about different types of channels or network information
theory, to conformal prediction. In this section, we consider the notion of side information.

Let X be the input covariates, Y be the target variable, Z be some side information about the task,
and let QY |X be the model which we use to perform conformal prediction. As we can relate CP with
QY |X to an upper bound on the conditional entropy H(Y |X), we would like to do the same for the
case of the conditional entropy when side information is available, i.e., H(Y |X,Z). Since we know
that the conditional entropy directly affects the expected set size, i.e., the inefficiency of CP, and given
that H(Y |X) ≥ H(Y |X,Z) we can expect that with the additional side information the inefficiency
of CP will decrease. We can take side information into account by defining conformity scores as a
function of QY |X,Z instead of QY |X . A simple way to do that would be via the Bayes rule

QY |X,Z =
QY |XQZ|X,Y∑
Y QY |XQZ|X,Y

, (9)

where QZ|X,Y is an auxiliary model that predicts the side information given the input and target
variables. Such a model could be learned separately from the main model QY |X given access to a
dataset Dside = {(xi, yi, zi)}. Therefore, we can now calibrate with CP by taking into account the
side information and then, at test time, given access to the input and side information, we can use the
appropriate probabilities QY |X,Z to construct the prediction sets. Intuitively, the prediction sets from
such a procedure should be smaller than the prediction sets obtained from using QY |X directly. It
should be noted that, in the case of side information not being available, we can marginalize QY,Z|X
over Z, which, by construction, falls back to the original model QY |X . If the availability pattern of Z
is consistent between the calibration and test sets, the conformal prediction guarantees still hold by
defining the model as

f =

{
QY |X,Z if Z is observed
QY |X otherwise.

(10)

With this addition to the split conformal prediction tool set, if new (side) information is made available
at test time, we can properly incorporate it into the CP pipeline without having to retrain the main
classifier. One needs only train an auxiliary classifier QZ|X,Y , which might be much simpler than
QY |X (in our experiments, QZ|X,Y is given by a single linear layer) and require much less data. One
notable example of side information arises naturally in the distributed setting, which we discuss next.

5.1 The Distributed Learning Setting

Consider the case where we have a dataset that is distributed among a set of m devices and want to
run conformal training to get a global model QY |X trained on all the data. Further, assume it is hard
to gather the data at a central location (e.g., due to privacy reasons), and thus we have to work with
the data staying locally on each device. An example of this would be federated learning (or FL) [42].
In this case, if Z ∈ {1, . . . ,m} identifies the device, the entropy H(Y |X) can be expressed as

H(Y |X) = H(Y |X,Z) + I(Y ;Z|X) = EPZ
[H(Y |X,Z = z)] + I(Y ;Z|X),

which decomposes into a weighted average of local entropy functions H(Y |X,Z = z). We can now
use any of our proposed bounds for each of the conditional entropies H(Y |X,Z = z) by calibrating
with CP independently on each device, ending up with

H(Y |X) ≤ EPZ
[Hub(Y |X,Z = z)] + I(Y ;Z|X),

where Hub(Y |X,Z = z) corresponds to an upper bound of the conditional entropy H(Y |X,Z = z).
Furthermore, for the mutual information term we have that

I(Y ;Z|X) = EPZ,X,Y

[
log

PZ|X,Y

PZ|X

]
≤ EPZ,X

[
− logPZ|X

]
≤ EPZ,X

[
− logQZ|X

]
where the first inequality is due to Z being discrete and having non-negative entropy and the second
is due to Gibbs inequality with QZ|X being an auxiliary model trained to predict the user id Z = z
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given input X = x. A similar upper bound has been considered before in a federated setting [36].
With this upper bound we get

H(Y |X) ≤ EPZ

[
Hub(Y |X,Z = z)− EPX|Z=z

[
logQZ=z|X

] ]
. (11)

This gives us an upper bound on the entropy of the entire population that decomposes into a sum
of local functions, one for each client, only requiring local information. Thus, we can easily carry
out conformal training for QY |X by minimizing this upper bound in the federated setting with, e.g.,
federated averaging [42]. At test time, we can take the device ID z as side information. To this end,
we can either train a model QZ|X,Y in parallel and use (9) with the global model QY |X at test time
to get QY |X,Z , or we can obtain QY |X,Z by fine-tuning the global model QY |X with local data.

6 Related Work

Conformal prediction, a powerful framework for uncertainty quantification developed by Vovk
and collaborators [60, 64], has recently witnessed a wide adoption in many fields, e.g., healthcare
[3, 38, 39, 48] and finance [6, 67]. The marriage of conformal prediction and machine learning has
been especially fruitful. Since the seminal work by Vovk et al. [64], many extensions and applications
have been proposed, covering topics such as survival analysis [10], treatment effect evaluation [32],
classification [4, 21] and regression [54] settings, risk control [5, 7], and covariate shift [62].

To our knowledge, our work represents the first attempt to bridge conformal prediction and information
theory. Among other things, this allows us to build on the conformal training ideas of Bellotti [8] and
Stutz et al. [61], deriving principled learning objectives that generalize their approaches, dispense with
some of their hyperparameters and result in more efficient prediction sets. Further, we empirically
show that our conformal training objectives provide a strong enough learning signal to train complex
architectures from scratch, with strong results on ResNet-34 and ResNet-50 [23] fitted on CIFAR10
and CIFAR100, respectively. In contrast, the previous state-of-the-art approach, ConfTr, struggles in
those settings (see experiments in Section 7) and required pretrained models for consistent results
[61]. Further, our information-theoretic interpretation of CP provides a new simple and effective
mechanism to leverage side information in split conformal prediction. We are unaware of any other
approaches to treat side information within the conformal prediction framework in the literature.

On the information theory side, the notion of f -divergence and related inequalities have appeared
in many different works. The use of f -divergence goes back to works of Ali and Silvey, Csiszár,
and Morimoto in the 60s, as in, for instance, [2, 15, 44]. A key f -divergence inequality is the data
processing inequality—see [57, 58] for an extensive survey. It provides a unified way of obtaining
many classical and new results, including Fano’s inequality [19]. The tightness of the data processing
inequalities is discussed in terms of Bregman’s divergence in [12, 34] and in terms of χ2-divergence in
[57]. List decoding, which is closely connected to CP, was introduced in the context of communication
design by Elias [18] and Wozencraft [68]. A generalization of Fano’s inequality to list decoding was
given in [16] in the context of multi-user information theory, see also the general Fano inequality for
list decoding presented in [53]. Variable-size list decoding was discussed in [57] using ideas first
introduced in [52] and [35]. A selection of relevant inequalities for list decoding can be found in [57].

7 Experiments

In this section, we empirically study two applications of our theoretical results, namely conformal
prediction with side information and conformal training with our upper bounds on the conditional
entropy as optimization objectives. We focus our experiments on classification tasks since this is the
most common setting in previous works in conformal training [8, 13, 61].

7.1 Conformal Training

We test the effectiveness of our upper bounds as objectives for conformal training in five data sets:
MNIST [29], Fashion-MNIST [69], EMNIST [11], CIFAR10 and CIFAR100 [25]. In addition to
our three upper bounds, we also evaluate the cross-entropy loss (CE, also another upper bound to
the entropy), and the two main variants proposed in [61], namely ConfTr, which minimizes (7) and
ConfTrclass that optimizes an additional classification loss term (see Appendix F). We follow a similar
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Table 1: Inefficiency results for conformal training in the centralized setting. We report the mean
prediction set size (± standard deviation) across 10 different calib./test splits for α = 0.01, showing
in bold all values within one std. of the best result. Results for THR and APS correspond to different
models trained with different hyperparameters (see Appendix G). Lower is better.

Method MNIST F-MNIST EMNIST CIFAR 10 CIFAR 100

THR APS THR APS THR APS THR APS THR APS

CE 2.29±0.18 2.50±0.08 2.39±0.13 2.41±0.17 2.06±0.11 3.40±0.18 1.69±0.11 2.34±0.22 19.70±2.05 26.02±1.31

ConfTr 6.28±0.71 2.10±0.07 1.73±0.06 1.89±0.09 1.99±0.10 2.36±0.11 9.90±0.02 9.98±0.00 32.80±2.75 40.58±1.23

ConfTrclass 2.09±0.11 2.13±0.13 5.11±0.49 1.79±0.07 2.01±0.09 2.38±0.11 2.16±0.09 2.18±0.06 66.48±3.67 32.91±1.53

Fano 2.09±0.12 2.12±0.08 1.70±0.05 1.87±0.05 2.10±0.11 2.75±0.14 2.05±0.05 2.35±0.10 40.30±1.10 33.80±0.93

MB Fano 2.24±0.12 2.49±0.19 1.80±0.08 2.25±0.14 2.01±0.11 3.67±0.13 1.66±0.09 1.89±0.06 14.61±0.84 21.68±1.44

DPI 2.24±0.17 2.64±0.07 1.73±0.07 2.08±0.06 1.98±0.09 4.07±0.23 1.64±0.07 1.97±0.08 17.55±1.33 17.41±0.62

optimization procedure and experimental setup to that of [61], but with the key differences that we
learn the classifiers from scratch in all cases (without the need of pretrained CIFAR models), and
that we use the larger “by class” split of EMNIST. For each data set, we use the default train and test
splits but transfer 10% of the training data to the test data set. We train the classifiers only on the
remaining 90% of the training data and, at test time, run SCP with 10 different calibration/test splits
by randomly splitting the enlarged test data set. See Appendix G for a complete description of the
experimental setup, with extra results and details on model architectures and hyperparameter search.

In Table 1, we report the empirical inefficiency on test data considering two SCP methods, threshold
CP with probabilities (or THR) [56] and APS [55]—see Appendix G.1.1 for results with RAPS [4].
In all cases, our upper bounds proved effective loss functions to train efficient classifiers end-to-end
and from scratch. For the simpler data sets (MNIST, Fashion-MNIST and EMNIST), all conformal
training methods achieved similar results, but both ConfTr methods proved less consistent. This is
noticeable in the oftentimes sharp difference in performance between THR and APS, since even after
fine-tuning the hyperparameters (see Appendix G) some of the models failed to converge properly.
For the remaining and more challenging data sets, both ConfTr variants lagged behind, probably
because they do not provide a strong enough signal to train ResNets from scratch (on CIFAR data
sets, Stutz et al. [61] only used ConfTr to fine tune pretrained models). A similar observation applies
to the simple Fano bound (6), where the relaxed prediction set size is the only learning signal.

In all experiments, we run conformal training with a target coverage rate of 99%, i.e., α = 0.01. It is
then important to assess whether the performance of the resulting models deteriorates at different
coverage rates, “overfitting” to the value of α used for training. In Table 2, we see how inefficiency
varies with α at test time for models trained via conformal training with α = 0.01. In particular, we
can contrast their performance against that of models trained via the CE loss, which is agnostic to
the desired coverage rate. In all cases, our model-based Fano and DPI bound performs best with the
THR and APS methods, respectively, proving conformal training is worthwhile even if the desired
coverage rate might vary at test time. Still, as noticed in [61], there is a drop in performance in
comparison to the CE loss for higher values of α at test time. This could be due to some degree of
overfitting, but it could also be attributed to the conformal prediction problem becoming easier for
lower coverage rates, thus reducing the gap between our bounds and the CE loss.

Table 2: Inefficiency results with varying α at test time. Average prediction set size on CIFAR100
for different α targets at test time, averaged across 10 random calib./test splits. All methods were
only optimized for α=0.01. The models used for THR and APS might not be the same according to
the best hyperparameters found in Table 11. Lower is better.

Method α = 0.01 α = 0.05 α = 0.1

THR APS THR APS THR APS

CE 19.70±2.05 26.02±1.31 6.11±0.34 9.19±0.34 3.02±0.10 4.52±0.12

ConfTr 32.80±2.75 40.58±1.23 12.25±0.47 21.60±0.78 7.13±0.23 14.58±0.47

ConfTrclass 66.48±3.67 32.91±1.53 14.18±0.60 16.80±0.60 8.90±0.40 11.29±0.42

Fano 40.30±1.10 33.80±0.93 19.43±0.80 16.17±0.49 11.46±0.58 9.72±0.25

MB Fano 14.61±0.84 21.68±1.44 5.24±0.13 9.25±0.30 2.88±0.05 5.51±0.14

DPI 17.55±1.33 17.41±0.62 6.26±0.20 6.98±0.32 3.33±0.11 4.08±0.14
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7.2 Side Information

As a first experiment, we consider datasets for which a natural grouping of the labels exists and
use the group assignment as side information Z. In CIFAR100, there is a disjoint partition of the
100 classes into 20 superclasses, so we define z as the superclass to which example (x, y) belongs.
In EMNIST, z indicates whether the example is a digit, uppercase or lowercase letter. We train an
auxiliary model RZ|X,Y and, at test time, assume access to side information z to recompute class
probabilities QY |X,Z=z from the original classifier QY |X as in equation (9).

We report results for two different scenarios in Table 3. The first is the standard SCP setting, where
we assess the inefficiency of THR and APS methods, with side information Z observed for 10, 30 and
100% of the instances. We redefine the classifier f as in (10) to account for when Z is missing, but
otherwise, the SCP process remains unchanged. The second scenario is Mondrian or group-balanced
CP [64], where one splits Dcal into groups and runs CP for each of them individually. In this setting,
we group the calibration data points according to Z and base the score function on QY |X,Z . In all
cases, taking the side information into account reduced the inefficiency considerably.

Table 3: Inefficiency results with side information. We report the mean prediction set size (± std.)
across 10 different calib./test splits for α = 0.01. The side information is the superclass assignment
for CIFAR100 and whether the class is a digit / uppercase letter / lowercase letter for EMNIST.

Method CIFAR 100 EMNIST

THR APS Acc.(%) THR APS Acc.(%)

CP 19.70±2.05 26.02±1.31 72.22 2.06±0.11 3.37±0.15 85.74
CP w/ 10% SI 18.13±2.63 23.59±2.08 72.84 1.91±0.07 2.18±0.09 86.93
CP w/ 30% SI 15.74±1.11 21.63±1.45 74.83 1.69±0.05 1.88±0.07 89.43
CP w/ 100% SI 10.28±0.86 15.65±1.17 78.72 1.06±0.02 1.07±0.02 97.65

Group CP 17.59±1.89 21.92±1.80 72.22 2.32±0.14 2.68±0.11 85.74
Group CP w/ 100% SI 9.07±0.60 13.16±0.68 78.72 1.14±0.03 1.16±0.04 97.65

7.3 Federated Learning (FL)

A practically relevant application of side information arises in FL, where we can take the device
ID as side information Z. In the federated setting, we train two extra heads on top of the main
classifier, one computing QZ|X so that we can optimize the proper upper bound in (11), and another
computing QZ|X,Y (while detaching gradients to the main classifier so as to not affect the upper
bound optimization) that we use to integrate side information into CP using (9). Besides being a
practically relevant application of side information to CP, FL also serves as a more challenging test
bed for our conformal training methods, which has not been explored in previous work. We ran
federated averaging [42] with CE, ConfTr, ConfTrclass, and our upper bounds as local loss functions.
In this setting, we consider CIFAR10, CIFAR100, and EMNIST with 100, 500, and 1K devices, resp.
We assign data points to devices imposing a distribution-based label imbalance [33], i.e., we sample
a marginal label distribution for each device from a Dirichlet distribution Dir(1.0). See Appendix G
for results with Dir(0.5) and Dir(0.1). As hyperparameter search in FL is notably challenging and
costly [66], we keep the same hyperparameters found for the centralized case in Section 7.1.

After convergence, we ran SCP with the final global model assuming calibration and test data sets
at the server, or equivalently that the clients share their scores with the server. This reflects the best
inefficiency results we can hope for with the global model, as in practice we might need to resort to
privacy-preserving methods that are likely to hurt performance. See Appendix G for a discussion
and extra results on other possible settings. We report inefficiency results for the global model with
THR in Table 4 (see Table 5 in the appendix for APS results), where we observe similar trends to the
centralized experiments in Table 1. ConfTr methods still perform well on EMNIST but struggle on
CIFAR data (with the notable exception on CIFAR100, where ConfTr excelled) while our methods
delivered consistent results across all data sets. This probably reflects the sensitivity of both ConfTr
objectives to hyperparameters, which makes them hard to use in practice, especially in FL where
hyperparameter optimization is difficult. Conversely, our bounds seem more robust to such variations,
as the hyperparameters found in the centralized setting seem to translate well to the federated case.
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Table 4: Inefficiency results for conformal training in the federated setting with THR. We report
the mean prediction set size (± standard deviation) of the global federated model across 10 different
calib./test splits for α = 0.01 and using THR. We use +SI to indicate the inclusion of side information.
We show in bold all values within one standard deviation of the best result. Lower is better.

Method EMNIST CIFAR 10 CIFAR 100

THR THR+SI THR THR+SI THR THR+SI

CE 2.91±0.02 2.46±0.02 2.73±0.04 2.30±0.06 55.41±1.09 52.31±1.03

ConfTr 4.60±0.05 3.30±0.02 10.00±0.00 10.00±0.00 45.60±1.30 41.18±1.16

ConfTrclass 2.88±0.02 1.98±0.02 3.53±0.09 3.39±0.08 58.53±1.40 56.03±1.29

Fano 2.63±0.02 2.37±0.02 2.39±0.07 2.07±0.07 47.91±1.20 41.19±1.02

MB Fano 2.84±0.04 2.25±0.03 2.52±0.08 2.04±0.07 52.94±1.40 46.97±1.30

DPI 2.60±0.02 2.23±0.01 2.76±0.07 2.28±0.03 52.36±0.95 48.64±0.70

Table 5: Inefficiency results for conformal training in the federated setting with APS. We report
the mean prediction set size (± standard deviation) of the global federated model across 10 different
calib./test splits for α = 0.01 and using APS. We use +SI to indicate the inclusion of side information.
We show in bold all values within one standard deviation of the best result. Lower is better.

Method EMNIST CIFAR 10 CIFAR 100

APS APS+SI APS APS+SI APS APS+SI

CE 3.69±0.03 3.14±0.04 2.83±0.07 2.43±0.06 64.73±0.34 62.67±3.68

ConfTr 6.14±0.04 5.25±0.04 10.00±0.00 10.00±0.00 55.18±2.10 47.58±1.48

ConfTrclass 2.65±0.02 2.42±0.02 10.00±0.00 10.00±0.00 99.92±0.02 99.91±0.01

Fano 3.12±0.04 2.72±0.03 2.73±0.07 2.39±0.06 46.95±0.67 42.75±0.91

MB Fano 4.75±0.03 2.43±0.01 2.79±0.13 2.33±0.05 50.72±1.77 45.72±1.38

DPI 2.98±0.03 2.58±0.02 2.68±0.15 2.22±0.09 51.29±1.07 47.18±1.27

One marked difference between Tables 1 and 4 is that the simple Fano bound (6), which lagged behind
the DPI bound and its model-based counterpart in the centralized setting, achieved the best results
on the federated setting. We hypothesize this could be due to overfitting of the local optimization
procedures to the individual data distribution of each device, which hurts the convergence of the global
model. This effect is exacerbated on CIFAR100, where we have 500 devices, each of which with very
few data points. The simple Fano bound is less vulnerable to such overfitting since it relies on the main
classifier to a much lesser degree. Finally, in almost all cases, our bounds outperformed the CE loss,
reassuring the potential of conformal training. Moreover, the inclusion of side information reduced
inefficiency in all settings, and markedly so in a few instances. This confirms the effectiveness of our
side information approach in a complex and practically relevant scenario, like federated learning.

8 Conclusion

In this work, we established a link between notions of uncertainty coming from conformal prediction
and information theory (or more precisely variable-size list decoding). We proved that one can use
split conformal prediction methods to upper bound the conditional entropy of the target variable
given the inputs, and that these upper bounds form principled objectives for conformal training. We
empirically validated our approach to conformal training, with strong results in both centralized
and federated settings. Furthermore, the information-theoretic perspective also offers a simple yet
rigorous approach to incorporate side information into conformal prediction, which we experimentally
show leads to better predictive efficiency. To the best of our knowledge, this is the first attempt at
connecting information theory and conformal prediction. Given the limited communication between
these two research communities thus far, we expect our work to incite a fruitful exchange of not
only ideas but also theory and algorithms between these two research domains. In this paper, we
concentrated our exposition and experiments in classification tasks, but we see an extension of our
methods to the regression setting, as a particularly promising avenue for future work.
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A Broader Impact, Limitations and Other Remarks

Broader Impact. This work explores the connection between conformal prediction and information
theory, with the end goal of advancing the state of the art of uncertainty quantification in machine
learning. With that in mind, we believe its potential societal consequences are chiefly positive, since
our work might contribute to a larger adoption of uncertainty estimates, in a number of safety-critical
applications. Notwithstanding, conformal prediction, like any other uncertainty estimation method,
should be applied with care and a proper understanding of the provided guarantees so as not to create
an illusion of safety when there is none. That is why our work aims to develop new methods and
algorithms from first principles, with the hope of providing new techniques that we can study and
understand at a deeper level so as to mitigate, or at least foresee, some of their failure modes.

Limitations. Our work is not without limitations. In practice, estimating the conditional entropy
H(Y |X) is a difficult problem. That is part of the reason upper bounds might be useful, but that also
means it is hard to evaluate how tight our upper bounds are. This also limits potential applications of
our upper bounds like, for instance, estimating the expected prediction set size. Our experiments in
Appendix G.3 rely on quantization to get a reasonable lower bound on the conditional entropy, and
thus lower bound the expected prediction set size. Finally, in terms of our experimental results, we
unfortunately have not been able to single out which of our new upper bounds performs best. The
general trend we observe is that the DPI and model-based Fano bounds perform better on complex
classification tasks, while simple Fano seems to excel in relatively simple tasks or where there is a
high risk of overfitting, like in the federated setting.

Regression Setting. In this paper, we focus our experiments on the classification setting, similarly
to previous works on conformal training [8, 13, 61]. However, in principle, our bounds pose no
assumptions on the underlying prediction problem and we see the application of our results to the
regression setting as a promising avenue for future work. In practice, only the simple Fano bound in
(6) would not be directly applicable to the regression setting, but that is mainly because it assumes a
uniform distribution over the output space and we get the, potentially infinite, |Y| term. The other
two bounds we propose, DPI in (4) and model-based Fano in (5), do not include the |Y| and |C(X)|
terms and can be applied to regression problems as is.

Computational Cost. The computational cost of using our bounds for conformal training is the
same as that of previously proposed conformal training [61]. In comparison to regular training, i.e.
minimizing the cross-entropy loss, the additional cost is given by the (differentiable) sorting operation
of the scores, which in our case was performed with diffsort [50] with bitonic networks, which has
complexity O(b2 log b2) for b the batch size. Since the batch size is typically small, the additional
computation cost is only marginal in practice.

B Background on Conformal Prediction

In this section, we outline a brief introduction to conformal prediction, providing the reader with the
necessary background to follow our main results. Readers already familiar with conformal prediction
can safely skip this section. We start by reviewing the definitions of quantiles and exchangeability,
which are central to the main results in conformal prediction.

B.1 Exchangeability, Ranks and Quantiles

The main assumption in conformal prediction is that the data points used for calibration and testing
are exchangeable. Next, we define the concept of exchangeability and discuss how it leads to the
main results in conformal prediction via properties of ranks of exchangeable random variables. Our
exposition is markedly brief, and we refer the reader to [26] for a more thorough discussion on
exchangeability and its importance in conformal prediction.

Formally, the concept of exchangeability can be defined as follows.

Definition B.1 (Exchangeable Random Variables). Random variables X1, . . . , Xn are said to be
exchangeable if for any permutation π : {1, . . . , n} → {1, . . . , n}, the sequences (X1, . . . , Xn) and
(Xπ(1), . . . , Xπ(n)) have the same joint probability distribution.
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Note that exchangeability is a weaker assumption than the i.i.d. (independent and identically dis-
tributed) assumption commonly relied upon in machine learning. More precisely, exchangeable
random variables must be identically distributed but not necessarily independent [26]. Naturally,
i.i.d. random variables are also exchangeable.

One relevant consequence of exchangeability that is central to conformal prediction is that the ranks
of exchangeable random variables are uniformly distributed. We define ranks and this property more
formally in Definition B.2 and Lemma B.4, respectively.
Definition B.2 (Rank). For a set of n elements X = {x1, . . . , xn}, the rank of any one element xi in
X is defined as

rank(xi;X ) = |{j ∈ {1, . . . , n} : xj + ξUj ≤ xi + ξUi}|,
for ξ ≥ 0 and U = {U1, . . . , Un} a set of i.i.d. random variables uniformly distributed in [−1,−1].
Remark B.3. The addition of i.i.d. uniform noise serves as a tie-breaking mechanism. Since
{U1, . . . , Un} are almost surely distinct, {xi + ξUi}ni=1 are also distinct with probability one. This
is necessary to render the rank independent of the distribution of Xi, which is key to ensure the
distribution-free quality of conformal prediction.
Lemma B.4. If (X1, . . . , Xn) are exchangeable random variables, then

(rank(Xi; {X1, . . . , Xn}))ni=1 ∼ Unif ({π : {1, . . . , n} → {1, . . . , n}}) .

In words, Lemma B.4 tell us that the ranking of exchangeable random variables is uniformly
distributed among all possible permutations π : {1, . . . , n} → {1, . . . , n}. That means the probability
of observing any one ranking is equal to 1/n! and, importantly, independent of the distribution of X .
The corollary below follows directly from Lemma B.4.
Corollary B.1. If (X1, . . . , Xn) are exchangeable random variables, then

P (rank(Xi; {X1, . . . , Xn}) ≤ t) =
⌊t⌋
n

,

for t ∈ [0, n] and ⌊t⌋ the smallest integer smaller or equal to t. Moreover, we can define a valid
p-value as P := rank(Xi; {X1, . . . , Xn})/n since

P (P ≤ α) ≤ α for all α ∈ [0, 1].

Proof.

P(rank(Xi; {X1, . . . , Xn}) ≤ t) = P(rank(Xi; {X1, . . . , Xn}) ≤ ⌊t⌋)

=

⌊t⌋∑
i=1

P(rank(Xi; {X1, . . . , Xn}) = i)

=

⌊t⌋∑
i=1

(n− 1)!

n!
=
⌊t⌋
n

,

where the first equality follows because rank(.) returns an integer, and the third equality follows di-
rectly from Lemma B.4: each permutation of (rank(Xi; {X1, . . . , Xn}))ni=1 has the same probability
1/n!, and there are (n− 1)! configurations where rank(Xi; {X1, . . . , Xn}) = i since Xi is fixed at
rank i, and we can permute the other (n− 1) variables.

As we shall see, Corollary B.1 is central to the main result in conformal prediction, but before proving
that result, we should first define the concept of quantiles.
Definition B.5 (Quantile). For Z a random variable with probability distribution F , the level β
quantile of distribution F is defined as

Quantile(β;F ) = inf{z : P{Z ≤ z} ≥ β}.
Similarly, for a sample {zi}ni=1 and δzi a point mass concentrated at zi, the quantile of the empirical
distribution is given by

Quantile
(
β; {zi}i∈[n]

)
= Quantile

(
β;

1

n

n∑
i=1

δzi

)
.
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B.2 Conformal Prediction

Armed with the definitions of quantiles and exchangeability, we are prepared to study conformal
prediction, a distribution-free uncertainty quantification framework with the following goal: given
a set of data points {(Xi, Yi)}ni=1 sampled from some distribution P on X × Y , to construct a set
predictor C : X → 2Y such that for a new data point (Xtest, Ytest) and target error rate α ∈ (0, 1),
we have the guarantee

P(Ytest ∈ C(Xtest)) ≥ 1− α,

where the probability is over the randomness of {(Xi, Yi)}ni=1 ∪ {(Xtest, Ytest)}. Since the prob-
ability is taken over both Xtest and Ytest, this means that on average across all possible values in
X , the correct label Ytest is included in the constructed set C(Xtest) with probability at least 1− α.
This property is known as marginal coverage. This is in contrast to the stronger conditional coverage,
which requires

P(Ytest ∈ C(Xtest)|Xtest) ≥ 1− α.

That is, the guarantee holds for each Xtest individually, with Xtest fixed and the probability taken
over the randomness of Ytest only. However, distribution-free conditional coverage is known to admit
no non-trivial solution (i.e., besides C(Xtest) = Y) [30, 63]. Therefore, in this paper, whenever we
refer to the lower and upper bounds provided by conformal prediction, we mean those provided by
Theorem 2.1, which guarantees only marginal coverage.

There are different ways to achieve marginal coverage, but for simplicity we will focus on split
conformal prediction or SCP [47], since it is easier to grasp than other variants of conformal prediction
and is also the main object of study in this paper. We start by assuming a calibration dataset Dcal

which consists of n i.i.d. samples (Xi, Yi) drawn from an unknown distribution over X ×Y . We also
assume access to a model f : X → Ŷ , where the output space Ŷ can be different from Y . Prediction
sets satisfying the guarantee above can be constructed via the following three steps.

1. Define a non-conformity score function s : X × Y → R, which assigns high scores to
unusual pairs (x, y). The score function is typically a function of the model f itself.

2. Compute Si = s(Xi, Yi) for all (Xi, Yi) ∈ Dcal and compute Quantile(1− α; {Si}ni=1 ∪
{∞}), the empirical 1− α quantile of the scores in Dcal.

3. Construct prediction sets C(Xtest) =
{
y : s(Xtest, y) ≤ Quantile(1−α; {Si}ni=1∪{∞})

}
Theorem 2.1. (same result as in the main text (Lei et al. [31], Vovk et al. [64])
Let {(Xi, Yi)}ni be i.i.d. (or only exchangeable) random variables, and {Si}ni=1 be the corresponding
set of scores Si = s(Xi, Yi) given to each pair (Xi, Yi) by some score function s : X × Y → R.
Then for a new i.i.d. draw (Xtest, Ytest) and any target error rate α ∈ (0, 1), the prediction set
constructed as

C(Xtest) =
{
y : s(Xtest, y) ≤ Quantile(1− α; {Si}ni=1 ∪ {∞})

}
satisfies the marginal coverage property

P(Ytest ∈ C(Xtest)) ≥ 1− α,

Moreover, if {Si}ni=1 are almost surely distinct, this probability is upper bounded by 1− α+ 1/n+1.

Proof. For simplicity, we assume that the set of scores {Si}ni=1 are distinct (or have been made
distinct by a suitable random tie-breaking rule). Denote Stest = s(Xtest, Ytest) and observe that
since s(·) is applied element-wise to each pair (Xi, Yi) it preserves exchangeability, and thus random
variables {Si}ni=1 ∪ {Stest} are also exchangeable. Next, we show that the following events are all
equivalent

Ytest ∈ C(Xtest)
(i)⇐⇒ Stest ≤ Quantile(1− α; {Si}ni=1 ∪ {∞})
(ii)⇐⇒ Stest ≤ Quantile(1− α; {Si}ni=1 ∪ {Stest})
(iii)⇐⇒ rank(Stest; {Si}ni=1 ∪ {Stest}) ≤ ⌈(n+ 1)(1− α)⌉.

(i) follows from the construction of the prediction set itself C(Xtest) itself.

17



(ii) can be easily verified as follows. If Stest ≤ Quantile(1− α; {Si}ni=1 ∪ {∞}), then shifting
all values Si ≥ Stest to arbitrary values larger than Stest will not change the validity of the
inequality, since the 1− α quantile remains unchanged. In particular, the inequality holds
when replacing {Stest} with {∞} and vice-versa.

(iii) follows from the fact that if Stest ≤ Quantile(1 − α; {Si}ni=1 ∪ {Stest}), then Stest is
among the ⌈(n+ 1)(1− α)⌉ smallest values of the set {Si}ni=1 ∪ {Stest}.

Finally, this is where the crucial exchangeability assumption comes into play, allowing us to apply
Corollary B.1 to get

P(Ytest ∈ C(Xtest)) = P(rank(Stest; {Si}ni=1 ∪ Stest) ≤ ⌈(n+ 1)(1− α)⌉) = ⌈(n+ 1)(1− α)⌉
n+ 1

From there, it is easy to verify that the right hand side is at least 1−α and at most 1−α+ 1/n+1.

C Background on List Decoding and Basic Information Theoretic Results

In this section, we enunciate some classical results from information theory that are instrumental
in deriving our main theoretical results, as we show in the detailed proofs in Appendix D. We also
provide a brief introduction to list decoding and demonstrate conformal prediction can be framed as a
list decoding problem.

C.1 Data processing inequalities for f-divergence

We start by presenting the data processing inequality (DPI) for f -divergence, which we define below.

Definition C.1 (f -Divergence). Consider two probability measures P and Q and assume that
the measure P is absolutely continuous with respect to Q, i.e., P ≪ Q. For a convex function
f : (0,∞)→ R with f(1) = 0, the f -divergence is defined as:

Df (P ||Q) := EQ

[
f

(
dP

dQ

)]
,

where dP
dQ is a Radon-Nikodym derivative. In particular, using f(x) = x log x we recover the familiar

notion of KL-divergence

DKL(P ||Q) := EP

[
log

(
dP

dQ

)]
.

We can similarly define conditional f -divergence.

Definition C.2 (Conditional f -Divergence). Consider two probability measures P and Q such that
P := PXPY |X and Q := PXQY |X and that the measure P is absolutely continuous with respect to
Q. For a convex function f : (0,∞)→ R with f(1) = 0, the conditional f -divergence is defined as:

Df (PY |X ||QY |X |PX) := EPX

[
Df (PY |X=x||QY |X=x)

]
.

Theorem C.3 is the classical data processing inequality (DPI), which we restate below for the sake of
completeness. The classical versions of DPI, stated in terms of mutual information, can be found in
classical information theoretic text books like [14], while the generalization of DPI to f -divergences
can be found in other works with a comprehensive survey in [51, 58].

Theorem C.3 (Data Processing Inequality for f -divergence). Consider a conditional distribution
WY |X . Suppose that PY and QY are two distributions obtained by marginalization of PXWY |X and
QXWY |X over X . For any f -divergence, we have

Df (PX ||QX) ≥ Df (PY ||QY ).

The proof can be found in standard textbooks in information theory see, for example, Chapter 7,
Section 7.2 in [51] for a derivation of the DPI enunciated in the same form as above. Next, we
consider the application of the DPI to conformal prediction.
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Theorem C.4 (Data Processing Inequality for Conformal Prediction). For any set function C : X →
2Y , any f -divergence, and all distribution pairs P,Q on (X,Y ), we have:

Df (P ||Q) ≥ df (P (Y ∈ C(x))||Q(Y ∈ C(x))) ,

where df (p||q) is the binary f -divergence, namely df (p||q) = qf(p/q) + (1− q)f(1− p/1− q).

Proof. Consider the random variable E = 1(Y ∈ C(x)) denoting the event of valid coverage, and the
conditional distribution PE|X,Y = EDcal

[1(Y ∈ C(x))|X,Y ]. Note that PE|X,Y maps distributions
PX,Y and QX,Y to PE and QE , resp. From here, the result follows directly from Theorem C.3.

The construction in Theorem C.4 can be further improved as follows.
Theorem C.5 (Conditional Data Processing Inequality for Conformal Prediction). For any set
function C : X → 2Y , any f -divergence, and all conditional distribution pairs PY |X , QY |X , and
PX , we have:

EPX
Df (PY |X=x||QY |X=x) ≥ EPX

df
(
PY |X(Y ∈ C(x)|X = x)||QY |X(Y ∈ C(x)|X = x)

)
,

where df (p||q) is the binary f -divergence, namely df (p||q) = qf(p/q) + (1− q)f(1− p/1− q).

Proof. Consider the conditional distribution PE|X=x,Y = EDcal
[1(Y ∈ C(x))|X = x, Y ]. We have

that

Df (PY |X=x||QY |X=x) = Df (PY |X=xPE|X=x,Y ||QY |X=xPE|X=x,Y )

= Df (PY,E|X=x||QY,E|X=x)

and from the monotonicity property of f-divergences [51] we have that

Df (PY |X=x||QY |X=x) = Df (PY,E|X=x||QY,E|X=x)

≥ Df (PE|X=x||QE|X=x)

= df (PY |X(Y ∈ C(x)|X = x)||QY |X(Y ∈ C(x)|X = x)).

By taking the expectation with respect to PX , we conclude the proof.

C.2 List Decoding

List decoding [18, 68] is a notion coming from coding theory, a large branch of engineering and
mathematics that arises from the application of information theory to the design of reliable com-
munication systems and robust information processing and storage. In particular, we are interested
in channel coding, a field concentrated on the design of so-called error-correcting codes to enable
reliable communication over inaccurate or noisy communication channels.

The general setup studied in channel coding, including list decoding, can be summarized as follows.
A message y ∈ Y is encoded and transmitted over a noisy channel, and a message x ∈ X is
received. The noisy channel is governed by probability density p(x|y) that describes the probability
of observing output x ∈ X given input y ∈ Y . The receiver attempts to decode x, that is, to guess the
originally transmitted message y from the received one, x. At this point, parallels to machine learning
should already have become clear. If the receiver provides a single guess of the transmitted message
y, we are in a unique-decoding scenario, which is akin to a point prediction in machine learning.
Conversely, if the receiver is allowed to guess a set (or a list in the list decoding formalism) of the
most likely messages, we have list decoding, which closely resembles conformal prediction. Note
that in many settings, a list decoding algorithm is constrained to output a list of fixed size. While
simple conformal prediction methods for regression settings show the same limitation, the parallel
between the two domains is more pertinent when we consider variable-size list decoding [57].

More formally, a list-decoding algorithm can be defined by a set predictor L : X → 2Y , with
maximum output set size |L(X)| ≤ M. Naturally, the goal is to design the function L so as to
maximize the probability of Y ∈ L(X). Similarly, for a given input-label pair (X,Y ) the goal of
conformal prediction is to provide a set that contains Y with a certain pre-determined probability.
It is this connection that motivates our bounds on the conditional entropy H(Y |X). However, the
nonconformity score in conformal prediction is typically a function of the output of a given model
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f : X → Y . For instance, Ŷ = f(X) could be the logits output by the model, i.e., a vector with the
dimension equal to number of classes. If we consider Ŷ the noisy observation of the ground-truth Y ,
then the problem of determining a set containing Y is again the list decoding problem. Therefore, we
can also consider the communication channel p(ŷ|y;x) directly, which justifies applying the same
upper bounds to H(Y |Ŷ ). Note that in this last case, the input data X can also be taken as side
information, although it is rarely used directly in building the conformal prediction set.

This reinterpretation of conformal prediction as list decoding allows us to apply some of the standard
results from the list decoding literature to conformal prediction, as we show in the next section.

C.3 List decoding: Information Theoretic Inequalities

Fano’s inequality for variable size list decoding. The following generalization of Fano’s inequality
is given in [[53], Appendix 3.E].

Theorem C.6. Consider a scenario where a decoder upon observing Ŷ provides a nonempty list
L(Ŷ ) that contains another random variable Y ∈ Y with |Y| = M . Define Pe := P(Y /∈ L(Ŷ )).
We have:

H(Y |Ŷ ) ≤ hb(Pe) + Pe log(M) + E(log |L(Ŷ )|).

Optimal list decoding and conformal prediction. It can be shown that the optimal list decoder
consists of selecting L(ŷ) elements of Y with highest conditional probability p(y|ŷ). That is, consider
the sorted posteriors under the true distribution p(y1|ŷ) ≥ p(y2|ŷ) ≥ · · · ≥ p(yM |ŷ) and choose the
first {y1, . . . , y|L|} for some list size |L|. However, this rule is for fixed-size list decoding and does
not determine how to select the coverage set size to guarantee a given coverage. We can modify this
rule to obtain a variable-size list decoding with the required coverage. Assuming again the sorted
posteriors p(y1|ŷ) ≥ p(y2|ŷ) ≥ · · · ≥ p(yM |ŷ), we can select the set as follows:

L(ŷ) = {y1, . . . , yℓy} where ℓy := inf

{
j :

j∑
i=1

p(yi|ŷ) ≥ 1− α

}
.

It is easy to see that the above set is the smallest set given each y and the confidence level 1− α (see,
for example, [43]). The same result holds in conformal prediction [55, 65].

C.4 Fano and Data Processing Inequalities for Conformal Prediction

First, from Fano’s inequality for list decoding, Theorem C.6, we get the next result “out-of-the-box”.

Proposition C.7. Suppose that |Y| = M . Any conformal prediction method with the prediction set
C(x) and confidence level 1− α, α ∈ (0, 0.5), satisfies the following inequality:

H(Y |X) ≤ hb(α) + α log(M) + E([log |C(x)|]+),

where hb(·) is the binary entropy function, [x]+ := max{x, 0} and H(Y |X) is computed using
the true distribution PXY . When the conformal prediction is merely based on the model output
Ŷ = f(X), the inequality can be modified to:

H(Y |Ŷ ) ≤ hb(α) + α log(M) + E([log |C(x)|]+).

The proposition follows easily from Theorem C.6 by using the condition P(Y ∈ C(x)) ≥ 1 − α.
Note that in Theorem C.6, we assume non-empty lists, whereas in Proposition C.7 we allow empty
prediction sets but apply the maximum operator [x]+ := max{x, 0}. This is justified because the last
term of Fano’s inequality relates to the probability of correct assignments Y ∈ C(X), which never
happens for empty sets. See Proposition E.1 for the proof, where the same result appears.

The bounds that we present in the main paper, model-based and simple Fano bounds, are actually
derived through a slightly different root by leveraging the lower and upper bounds in the finite-sample
guarantee of conformal prediction (Theorem 2.1). We derive these other two bounds in Appendix D.2.
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C.5 Related Work on Information Theoretic Inequalities

The use of f -divergences goes back to works of Ali and Silvey, Csiszár, and Morimoto in the 60s—see
for instance [2, 15, 44]. A key f -divergence inequality is the data processing inequality, which was
used in information theory to establish various upper bounds on the achievability of coding schemes
for different tasks—see [57, 58] for an extensive survey. Moreover, the data processing inequality for
f -divergences provides a unified way of obtaining many classical and new results, for example Fano’s
inequality [19]. The tightness of data processing inequalities is discussed in terms of Bregman’s
divergence in [12, 34] and in terms of χ2-divergence in [57].

When it comes to list decoding, there are a number of relevant inequalities in the literature. List
decoding was introduced in the context of communication design by Elias [18] and Wozencraft [68].
See also [22] for a more recent overview of list decoding. For fixed list size, the information theoretic
bounds on list decoding were obtained in [20] using error exponent analysis. A generalization of
Fano’s inequality to list decoding was given in [16] in the context of multi-user information theory,
see also the general Fano inequality for list decoding presented in [53]. For fixed list size, stronger
inequalities, some based on Arimoto-Rényi conditional entropy, were presented in [59]. Variable
size list decoding was discussed in [57] using the notion of Eγ resolvability first introduced in [52]
related to the dependence testing bound. It was used again in the context of channel resolvability in
[35], where some relevant inequalities have been obtained and discussed. A selection of the most
relevant inequalities for list decoding can be found in [57].

D Proofs of Main Theoretical Results

In this section, we provide the proofs of our main results, namely the DPI bound in Proposition 3.1,
the model-based Fano bound in Proposition 3.2, and the simple Fano bound in Corollary 3.1. For
notational convenience, we use the shorthand αn = α− 1/n+1 in most of the steps of the derivations.

D.1 DPI Bound

We start with the DPI bound which we restate and proof below using the data processing inequalities
discussed in Appendix C. Note that, when clear from the context, we remove explicit dependence on
the calibration set Dcal from the derivations. It is implicitly assumed that the probability of the event
Y ∈ C(x) is computed by marginalizing over Dcal.
Proposition 3.1. Consider any conformal prediction method with the prediction set C(x) with the
following finite sample guarantee:

1− α ≤ P(Y ∈ C(x)) ≤ 1− α+
1

n+ 1

for any α ∈ (0, 0.5). For any arbitrary conditional distribution QY |X , the true conditional distri-
bution PY |X and the input measure PX , define the following two measures Q := PXQY |X and
P := PXPY |X . We have for any α ∈ (0, 0.5)

H(Y |X) ≤ hb(α) +

(
1− α+

1

n+ 1

)
logQ(Y ∈ C(x))

+ α logQ(Y /∈ C(x))− EPXY

[
logQY |X

]
.

Proof. Consider an arbitrary distribution QY |X . Then we can use PXY , and PX ×QY |X in the data
processing inequality for KL-divergence (Theorem C.4) to get:

DKL(PXPY |X ||PXQY |X) ≥ dKL(P (Y ∈ C(x))||Q(Y ∈ C(x))) (12)

Now note that we can decompose DKL(PXPY |X ||PXQY |X) in terms of the conditional entropy
H(Y |X) and the cross-entropy −EPXY

[logQY |X ] :

DKL(PXPY |X ||PXQY |X) = EPXY

[
log

PXPY |X

PXQY |X

]
= EPXY

[
log

PY |X

QY |X

]
= EPXY

[logPY |X ]− EPXY
[logQY |X ]

= −H(Y |X)− EPXY
[logQY |X ].
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With the decomposition above, we can rearrange the terms in (12) to get the following upper bound
on H(Y |X)

−H(Y |X)− EPXY

[
logQY |X

]
≥ dKL(P (Y ∈ C(x))||Q(Y ∈ C(x)))

H(Y |X) ≤ −dKL(P (Y ∈ C(x))||Q(Y ∈ C(x)))− EPXY

[
logQY |X

]
. (13)

We can then apply the upper and lower bounds from conformal prediction, i.e. P (Y ∈ C(x)) ≥ 1−α
and P (Y /∈ C(x)) ≥ αn, to upper bound dKL(P (Y ∈ C(x))||Q(Y ∈ C(x))) as follows.

− dKL(P (Y ∈ C(x))||Q(Y ∈ C(x))) =
hb (P (Y ∈ C(x))) + P (Y ∈ C(x)) logQ(Y ∈ C(x)) + P (Y /∈ C(x)) logQ(Y /∈ C(x))

≤ hb (α) + (1− α) logQ(Y ∈ C(x)) + αn logQ(Y /∈ C(x)),

where hb(·) is the binary entropy function, that is, hb(α) = −α log(α)− (1− α) log(1− α). The
equality in the second line follows from the definition of the binary KL divergence, and we get
the inequality simply by upper bounding each of the terms individually. In particular, note that
logQ(Y ∈ C(x)) and logQ(Y /∈ C(x)) are both negative, and hb(·) is decreasing in [0.5, 1.0] and
symmetric about 0.5, such that for typical values of α < 0.5

P (Y ∈ C(X)) ≥ 1− α =⇒ hb (P (Y ∈ C(x))) ≤ hb(1− α) = hb(α). (14)

Finally, we can replace the upper bound above into (13) to conclude the proof.

H(Y |X) ≤ hb(αn) + (1− α) logQ(Y ∈ C(x)) + αn logQ(Y /∈ C(x))− EPXY

[
logQY |X

]
.

Remark D.1. The DPI bound always provides a tighter upper bound on the conditional entropy
H(Y |X) than the cross-entropy, which is easily verified in (13) since the KL term is always non-
negative. This serves as an important motivation to optimize the DPI bound instead of the cross-
entropy in conformal training.
Remark D.2. The derivation of the DPI bound places no assumptions on the conditional distribution
QY |X . However, in practice, the underlying model f often already provides such a distribution, and
since it is typically trained to approximate PY |X well, it makes sense to take QY |X as the distribution
defined by the model itself. That is how we evaluate the DPI in all of our experiments. Finally, we
can again use H(Y |Ŷ ) instead of H(Y |X) if the conformal method uses merely Ŷ .
Remark D.3. Typically, we have α ∈ (0.0, 0.5), and we use this fact in the proof to bound the binary
entropy hb (P (Y ∈ C(x))) . The same could have been done for α ∈ (0.5, 1.0), but since 1−α lands
in the increasing part of the binary entropy function between 0 and 0.5, we have to resort to the lower
bound from conformal prediction to get

P (Y ∈ C(X)) ≤ 1− αn =⇒ hb (P (Y ∈ C(x))) ≤ hb(1− αn) = hb(αn).

Remark D.4. One of the appeals of the DPI bound is that the terms can be computed in a data-driven
way using samples. While the cross-entropy can be estimated in an unbiased way with samples from
the true distribution PXY , we must be careful when estimating Q(Y ∈ C(x)). The main challenge is
that Q(Y ∈ C(x)) appears inside a log, and thus an empirical estimate Q̂(Y ∈ C(x)) would yield a
lower bound of the negative KL divergence and would be biased. We can get an upper confidence
bound on this estimate via the empirical Bernstein inequality [41], which we restate below.

Theorem D.5 (Empirical Bernstein Inequality [41]). Let Z,Z1, . . . , Zn be i.i.d. random variables
with values in [0, 1] and let δ > 0. Then with probability at least 1 − δ in the i.i.d. vector
Z = (Z1, . . . , Zn) we have that

E[Z]− 1

n

n∑
i=1

Zi ≤
√

2Vn(Z) log(2/δ)

n
+

7 log(2/δ)

3(n− 1)
,

where Vn(Z) is the empirical variance over the (Z1, . . . , Zn) samples.
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By using this bound, we have with probability 1− δ:

Q(Y ∈ C(x)) ≤ Q̂(Y ∈ C(x)) +
√

2Vn(Z) log(2/δ)

n
+

7 log(2/δ)

3(n− 1)
:= Q̃(Y ∈ C(x)),

Q(Y /∈ C(x)) ≤ Q̂(Y /∈ C(x)) +
√

2Vn(Z) log(2/δ)

n
+

7 log(2/δ)

3(n− 1)
:= Q̃(Y /∈ C(x)),

where Zi = Q(yi ∈ C(xi)) for xi sampled from PX and a prediction set C(xi) obtained with a
calibration dataset sampled from PDcal

. This yields the following inequality with probability 1− δ:

H(Y |X) ≤ hb(α) + (1− α) log Q̃(Y ∈ C(x)) + αn log Q̃(Y /∈ C(x))− EPXY

[
logQY |X

]
.

We can use this inequality to evaluate the bounds.

D.2 Model-Based Fano Bound

In this section, prove the model-based Fano bound, which we restate in Proposition 3.2 below.
Proposition 3.2. Consider any conformal prediction method with the prediction set C(x), and any
distribution Q, with the following finite sample guarantee:

1− α ≤ P(Y ∈ C(x)) ≤ 1− α+
1

n+ 1
,

for α ∈ (0, 0.5). Then, for the true distribution P , and for any probability distribution Q, we have

H(Y |X) ≤ hb(α) + αEPY,X,Dcal|Y /∈C(X)

[
− logQY |X,C(x),Y /∈C(X)

]
+

(
1− α+

1

n+ 1

)
EPY,X,Dcal|Y ∈C(X)

[
− logQY |X,C(x),Y ∈C(X)

]
.

Proof. For notational convenience, define E = 1(Y ∈ C(x)), which by our assumption on the
conformal prediction method means that 1− α ≤ P(E = 1) ≤ 1− αn. The starting point is similar
to the well-known proof of Fano’s inequality:

H(E, Y |X,Dcal) = H(Y |X,Dcal) +H(E|Y,X,Dcal) = H(Y |X,Dcal),

where the last step follows because knowing X,Y and Dcal, we know if Y ∈ C(x), and therefore
H(E|Y,X,Dcal) = 0. Furthermore, given the structure of the graphical model of the conformal
prediction process (c.f. Figure 1), we have that H(Y |X) = H(Y |X,Dcal), We now find an upper
bound on H(E, Y |X,Dcal):

H(E, Y |X,Dcal) = H(E|X,Dcal) +H(Y |X,E,Dcal)

= H(E|X,Dcal) + P (E = 0)H(Y |X,E = 0,Dcal) + P (E = 1)H(Y |X,E = 1,Dcal)

≤ H(E) + P (E = 0)H(Y |X,E = 0,Dcal) + P (E = 1)H(Y |X,E = 1,Dcal)

≤ hb(α) + P (E = 0)H(Y |X,E = 0,Dcal) + P (E = 1)H(Y |X,E = 1,Dcal), (15)

where the first inequality follows from the fact that H(E|X,Dcal) ≤ H(E), and the last one comes
from the same argument for a < 0.5 in (14). We can continue as follows

H(Y |X) ≤ hb(α) + P (E = 0)H(Y |X,E = 0,Dcal) + P (E = 1)H(Y |X,E = 1,Dcal)

= hb(α) + P (E = 0)EPY,X,Dcal|E=0

[
− logPY |X,Dcal,E=0

]
+ P (E = 1)EPY,X,Dcal|E=1

[
− logPY |X,Dcal,E=1

]
= hb(α) + P (E = 0)EPY,X,Dcal|E=0

[
− logQY |X,C(x),E=0

]
− E[DKL(PY |X,Dcal,E=0||QY |X,C(x),E=0)]

+ P (E = 1)EPY,X,Dcal|E=1

[
− logQY |X,C(x),E=1

]
− E[DKL(PY |X,Dcal,E=1||QY |X,C(x),E=1)]

≤ hb(α) + P (E = 0)EPY,X,Dcal|E=0

[
− logQY |X,C(x),E=0

]
+ P (E = 1)EPY,X,Dcal|E=1

[
− logQY |X,C(x),E=1

]
(16)
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The first equality comes from the definition of the conditional entropy, whereas in the second equality
we replace the true distribution PY |X with an arbitrary conditional distribution QY |X plus the KL
divergence between the two distributions. The last inequality then follows simply from the fact
that the KL divergence is non-negative. Finally, we can leverage the finite-sample guarantees from
conformal prediction, namely P (E = 0) ≤ α and P (E = 1) ≤ 1− αn, to upper bound each term,
which yields the proof.

H(Y |X) ≤ hb(α) + P (E = 0)EPY,X,Dcal|E=0

[
− logQY |X,C(x),E=0

]
+ P (E = 1)EPY,X,Dcal|E=1

[
− logQY |X,C(x),E=1

]
≤ hb(α) + αEPY,X,Dcal|E=0

[
− logQY |X,C(x),E=0

]
+ (1− αn)EPY,X,Dcal|E=1

[
− logQY |X,C(x),E=1

]
(17)

Remark D.6. When the conformal prediction is merely based on the model output Ŷ = f(X), the
model-based Fano bound can be modified to

H(Y |Ŷ ) ≤ hb(α) + αEPY,X,Dcal|Y /∈C(X)

[
− logQY |X,C(x),Y /∈C(X)

]
+

(
1− α+

1

n+ 1

)
EPY,X,Dcal|Y ∈C(X)

[
− logQY |X,C(x),Y ∈C(X)

]
.

D.3 Simple Fano

In the derivation of the model-based Fano bound above, we placed no assumptions on the distribution
QY |X . One simple choice that we consider in this section is the uniform distribution QY |X = 1/|Y|,
akin to the classical Fano’s inequality [19] and the list decoding result in Proposition C.7.

Corollary 3.1. Consider any conformal prediction method with the prediction set C(x), and any
distribution Q, with the following finite sample guarantee:

1− α ≤ P(Y ∈ C(x)) ≤ 1− α+
1

n+ 1
.

For α ∈ (0, 0.5) we have the following inequality:

H(Y |X) ≤ hb(α) + αEPY,X,Dcal|Y /∈C(X)
[log(|Y| − |C(X)|)]

+ (1− αn)EPY,X,Dcal|Y ∈C(X)
[log |C(X)|] .

Proof. Note that if we make an error (E = 0) the correct class will not be inside C(X) and since
QY |X is uniform the probability will be spread equally among the remaining |Y|− |C(X)| labels, and
we have QY |X,C(x),E=0 = 1

|Y|−|C(X)| . Through the same logic, we get that QY |X,C(x),E=1 = 1
|C(X)| ,

and plugging both into (17) we get the simple Fano bound

Remark D.7. Once again, when the conformal prediction prediction is merely based on the model
output Ŷ = f(X), the inequality can be modified to

H(Y |Ŷ ) ≤ hb(α) + αEPY,X,Dcal|Y /∈C(X)
[log(|Y| − |C(X)|)]

+ (1− αn)EPY,X,Dcal|Y ∈C(X)
[log |C(X)|] .

E Further Theoretical Results and Proofs on the Prediction Set Size

E.1 Fano’s inequality for maximal prediction set size

If we leverage the upper bound on the prediction set size, we can find a lower bound on the maximum
coverage set size.
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Proposition E.1. Suppose that |Y| = M . Consider any conformal prediction method that constructs
the prediction set C(X) with the following finite-sample guarantee:

1− α ≤ P(Y ∈ C(X)) ≤ 1− α+
1

n+ 1

for α ∈ (0, 0.5). Then, we have the following inequality:

H(Y |X) ≤ hb (α) + α logM + (1− α+
1

n+ 1
) sup
Dcal

sup
x∈supp(PX)

log |C(x)|.

We can similarly replace H(Y |X) with H(Y |Ŷ ).

Proof. We use the conditional data processing inequality with f(x) = x log x, P = PDcalXY , and
Q = PDcalX × UM where UM is the uniform distribution over Y . We fix the input to X = x, and
the calibration set Dcal. The conditional f -divergence, conditioned on Dcal and X , is given by:

Df (QY |X=x,Dcal
||PY |X=x,Dcal

) = DKL(PY |DcalX=x||UM )

= logM −H(Y |X = x),

where the last step follows from the independence of the calibration set Dcal and (X,Y ). This means
that

EDcal,XDf (PY |X=x,Dcal
||QY |X=x,Dcal

) = logM −H(Y |X). (18)

On the other hand, we have

df (Q(Y ∈ C(x)|Dcal, X = x)||P (Y ∈ C(x)|Dcal, X = x))

= dKL (P (Y ∈ C(x)|Dcal, X = x)||Q(Y ∈ C(x)|Dcal, X = x))

= −hb (P (Y ∈ C(x)|Dcal, X = x))− P (Y ∈ C(x)|Dcal, X = x) log
|C(x)|
M

− P (Y /∈ C(x)|Dcal, X = x) log
M − |C(x)|

M
. (19)

Now, we can plug both (18) and (19) into the data processing inequality of Theorem C.5. Rearranging
the terms and getting the expectation from both sides w.r.t. Dcal and X would yield:

H(Y |X) ≤ E[hb (P (Y ∈ C(x)|Dcal, X))]

+ E[P (Y /∈ C(x)|Dcal, X) log(M − |C(x)|)] + E[P (Y ∈ C(x)|Dcal, X) log |C(x)|]
− E[P (Y /∈ C(x)|Dcal, X) logM ]− E[P (Y ∈ C(x)|Dcal, X) logM ] + logM

≤ hb (P (Y ∈ C(x))) + P (Y /∈ C(x)) logM + E[P (Y ∈ C(x)|Dcal, X) log |C(x)|]
≤ hb (α) + α logM + E[P (Y ∈ C(x)|Dcal, X) log |C(x)|].

Note that the logM terms in the third line cancel each other out, and that the second inequality
comes from resolving the expectations and log(M − |C(X)|) ≤ logM. Further, in the last inequality,
we used the concavity of binary entropy as in (14). Finally, using respectively the inequalities
P (Y ∈ C(x)|Dcal, X) ≤ 1 and log |C(x)| ≤ supDcal

supx∈X log |C(x)|, we get two inequalities:

H(Y |X) ≤ hb (α) + α logM + E
(
[log |C(x)|]+

)
H(Y |X) ≤ hb (α) + α logM + (1− α+

1

n+ 1
) sup
Dcal

sup
x∈supp(PX)

log |C(x)|.

The first one is the Fano’s inequality for list decoding from Proposition C.7 while the second one
yields the theorem. Note that if C(x) is an empty set, the probability P (Y ∈ C(x)|Dcal, X) is
zero, and the term P (Y ∈ C(x)|Dcal, X) log |C(x)| disappears. Therefore, if we use the inequality
P (Y ∈ C(x)| supDcal

, X) ≤ 1, we need to introduce the term [log |C(x)|]+ to keep the expectation
well defined.
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E.2 Fano’s inequality for lower bound on prediction set size

In a similar manner, we can also obtain lower bounds for the set size. More specifically, we have that

QY |X,C(x),E=1 =
q(y|x)I[y ∈ C(x)]∑

y∈C(x) q(y|x)
=

1

|C(x)|Eu(yC(x))[q(y|x)]
q(y|x)I[y ∈ C(x)]

:=
1

|C(x)|Eu(yC(x))[q(y|x)]
Q̂1

Y |X (20)

QY |X,C(x),E=0 =
q(y|x)I[y /∈ C(x)]∑

y/∈C(x) q(y|x)
=

1

(M − |C(x)|)Eu(y ¯C(x))
[q(y|x)]

q(y|x)I[y /∈ C(x)]

:=
1

(M − |C(x)|)Eu(y ¯C(x))
[q(y|x)]

Q̂0
Y |X (21)

where u(yC(x)) and u(y ¯C(x)) denote uniform distributions over the labels in the confidence set. By
considering the standard conformal prediction bounds on the error probabilities, we have that

H(Y |X) ≤ hb(α) + αEPY,X,Dcal|E=0

[
− log Q̂0

Y |X + log(M − C(x)) + logEu(y ¯C(x))
[q(y|x)]

]
+

(
1− α+

1

n+ 1

)
EPY,X,Dcal|E=1

[
− log Q̂1

Y |X + log |C(x)|+ logEu(yC(x))[q(y|x)]
]

≤ hb(α) + α logM + αEPY,X,Dcal|E=0

[
− log Q̂0

Y |X + logEu(y ¯C(x))
[q(y|x)]

]
+

(
1− α+

1

n+ 1

)
EPY,X,Dcal|E=1

[
− log Q̂1

Y |X + log |C(x)|+ logEu(yC(x))[q(y|x)]
]

which leads to

EE=1[log |C(x)|] ≥

H(Y |X)− hb(α)− α logM − αEPY,X,Dcal|E=0

[
− log Q̂0

Y |X + logEu(y ¯C(x))
[q(y|x)]

]
1− α+ 1

n+1

− EPY,X,Dcal|E=1

[
− log Q̂1

Y |X + logEu(yC(x))[q(y|x)]
]
.

Note that when E = 1, we know that Y ∈ C(x), and therefore |C(x)| > 0 and [log |C(x)|]+ =
log |C(x)|. Using this, we can find an upper bound on EE=1(log(|C(x)|)) as follows:

EE=1(log(|C(x)|)) = EE=1([log(|C(x)|)]+)

=

(
E([log |C(x)|]+)

P (E = 1)
− P (E = 0)

P (E = 1)
EE=0([log |C(x)|]+)

)
≤
(
E([log |C(x)|]+)

P (E = 1)

)
≤
(
E([log |C(x)|]+)

1− α

)
.

This leads to:

E([log |C(x)|]+) ≥

(1− α)
H(Y |X)− hb(α)− α logM − αEPY,X,Dcal|E=0

[
− log Q̂0

Y |X + logEu(y ¯C(x))
[q(y|x)]

]
1− α+ 1

n+1

− (1− α)EPY,X,Dcal|E=1

[
− log Q̂1

Y |X + logEu(yC(x))[q(y|x)]
]

All the above terms can be approximated from samples. We summarize this in the following
proposition.
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Proposition E.2. For any conformal prediction scheme with the coverage guarantee of 1− α, and
any distribution q(·), we have:

E([log |C(x)|]+) ≥

(1− α)
H(Y |X)− hb(a)− a logM − αEPY,X,Dcal|E=0

[
− log Q̂0

Y |X + logEu(y ¯C(x))
[q(y|x)]

]
1− α+ 1

n+1

− (1− α)EPY,X,Dcal|E=1

[
− log Q̂1

Y |X + logEu(yC(x))[q(y|x)]
]

(22)

where Q̂0
Y |X = q(y|x)I[y /∈ C(x)] and Q̂1

Y |X = q(y|x)I[y ∈ C(x)]. When the conformal prediction

is merely based on the model output Ŷ = f(X), the inequality can be modified to

E([log |C(x)|]+) ≥

(1− α)
H(Y |Ŷ )− hb(a)− a logM − αEPY,X,Dcal|E=0

[
− log Q̂0

Y |X + logEu(y ¯C(x))
[q(y|x)]

]
1− α+ 1

n+1

− (1− α)EPY,X,Dcal|E=1

[
− log Q̂1

Y |X + logEu(yC(x))[q(y|x)]
]

(23)

Remark E.3. If we use the uniform distribution in the above bound, we get a bound similar to what is
obtained from Fano’s inequality given in Proposition C.7, but with an additional factor of 1−α

1−α+ 1
n+1

.
Since the factor is smaller than one, the current bound with the choice of uniform distribution is
looser than Fano’s bound, although the gap vanishes for large n.
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F Conformal Training

Split conformal prediction (SCP) [47] has quickly become a popular framework for uncertainty
quantification, largely thanks to its computational efficiency. One only needs access to a separate
calibration data set to derive prediction sets with valid marginal coverage from any pretrained
model. Given that training new machine learning models is becoming ever more time-consuming
and expensive with new, larger architectures, this ability to apply conformal prediction to existing
models is invaluable in a number of applications. Yet, it is reasonable to expect that the performance
of the final set predictor could be improved if the conformal prediction process were to be accounted
for during training of the model as well, steering the model towards better predictive efficiency, as it
were. That is the motivation behind the line of work that we broadly refer to as conformal training
[8, 13, 61]. In a nutshell, conformal training introduces a differentiable, and hence approximate,
conformal prediction step during training so that one can directly optimize for desired properties
of the set predictor, most notably its predictive efficiency. In what follows we give an overview of
conformal training, focusing on classification tasks.

The idea of conformal training has been proposed concomitantly in [8, 13]. Here we follow the
approach in [8], where the key idea is to relax the prediction set defined by the model f and define
“soft” prediction sets Ĉf (x), which contain each of the labels y ∈ Y with a certain probability. That
is, if Cf (x, y) ∈ {0, 1} is the hard assignment of label y to C(x), a corresponding soft version of this
assignment can be defined as

Ĉf (x, y) := σ

(
q̂ − sf (x, y)

T

)
(24)

where sf (x, y) is the non-conformity score function defined by model f evaluated at (x, y), q̂ is a
thresholding value, σ is the logistic sigmoid function, and T is a temperature parameter controlling
the smoothness of the soft assignment. Then we can define Ĉf (x) as the vector collection of all the
soft assignments Ĉf (x, y) for all labels y ∈ Y . Similarly the size of Ĉf (x) can be naturally defined as

|Ĉf (x)| :=
∑
y∈Y
Ĉf (x, y).

Bellotti [8] then proposes the following loss functions which are computed for each training batch B

Lsize(f) =
1

|B|
∑
x∈B

g
(
|Ĉf (x))|

)
Lcoverage(f) =

 1

|B|
∑

(x,y)∈B

Ĉf (x, y)

− (1− α)

2

,

where α is the desired coverage rate and g is a user-defined function of the prediction set size, e.g.
the log function. Intuitively, Lsize encourages small (efficient) prediction sets, whereas Lcoverage

penalizes deviations from the target coverage of 1 − α. Naturally, there is a trade-off between
these two objectives, inefficiency and coverage, so both loss terms are optimized together with a
hyperparameter λ governing the influence of each term:

L(f) = Lsize(f) + λLcoverage(f). (25)

Importantly, Bellotti [8] argues the choice of the threshold q̂ in (24) is immaterial since the model can
learn to shift its outputs (in logit space) accordingly to match the constraints in Lcoverage(f). We can
then directly optimize (25) via stochastic gradient descent methods during training since it is fully
differentiable with respect to the model parameters.

Stutz et al. [61] build on the work of Bellotti [8] by noticing that the calibration step is an important
component in conformal prediction that should also be accounted for during training. To that end,
they propose to split each training batch B in two: the Bcal half used for calibration, and the Btest
used for testing. Now, instead of using an arbitrary threshold q̂, we compute it using the quantile of
Bcal, or concretely

q̂ = Quantile(1− α; {sf (x, y) : (x, y) ∈ Bcal})
With this modification, we no longer need to enforce valid coverage via Lcoverage(f) and can
optimize for low inefficiency directly by minimizing Lsize(f) on Btest. In that case, however, we
only get a learning signal from Btest, since the quantile operation applied to Bcal is non-differentiable.
Stutz et al. [61] bypass that limitation via differentiable sorting operators [9, 17, 50], in particular via
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a version of differentiable sorting networks. In our experiments, we considered both fast sort [9] and
the monotonic differentiable sorting networks of [50] but finally chose the latter since they proved
more stable and provided richer gradient signals.

This version of their approach, which we refer to as ConfTr, only optimizes the size loss, but Stutz
et al. [61] also proposed another variant which includes a classification loss term as follows

Lclass(f) =
1

|B|
∑

(x,y)∈B

∑
ŷ∈Y

Ly,ŷ

[(
1− Ĉf (x, y)

)
δ[ŷ = y] + Ĉf (x, y)δ[ŷ ̸= y]

]
, (26)

where δ is the indicator function, and L is a user-defined square matrix of size |Y|2 with Ly,ŷ

capturing some similarity notion between y and ŷ. In our experiments, as well as most experiments
in the original paper [61], no prior information about the classification problem is assumed, in which
case L is taken to be the identity matrix of size |Y|. Therefore, we have two variants of conformal
training as proposed in [61]: ConfTr that optimizes only Lsize, and ConfTrclass that jointly optimizes
Lsize and Lclass, both of which are included in our experiments.

Our own approach to conformal training follows the same recipe from [61], i.e., we also simulate a
split conformal prediction step during training by splitting each training batch into two and using
differentiable sorting operators (see Algorithm 1). The key difference is in how we define the training
objectives, which we derive from first principles and standard information theory inequalities. Not
only do our upper bounds, DPI (4), MB Fano (5) and Fano (6), outperform the ConfTr objectives in
many cases, but they also do away with a few hyperparameters. Namely, the function g in Lsize, and
hyperparameters controlling the relative importance of Lsize and Lclass.

F.1 Deriving Conformal Training from Fano’s bound

Through Proposition 3.2, we can connect Fano’s bound for list decoding to the size loss from [61],
proposed for conformal training. Assuming a uniform distribution for Q we can show that

H(Y |X) ≤ hb(α) + αEE=0 [log(|Y | − |C(x)|)] + (1− αn)EE=1 [log |C(x)|]
≤ hb(α) + α log |Y |+ (1− αn)EE=1 [log |C(x)|]
≤ hb(α) + α log |Y |+ (1− αn) logEE=1 [|C(x)|]
≤ hb(α) + α log |Y | − (1− αn) log(1− α) + (1− αn) logE [|C(x)|] .

Note that in the first line we have the simple Fano bound, whereas in the last one we have the
ConfTr objective, namely logE [|C(x)|], multiplied by 1− αn plus a constant that depends only on
α. Therefore, we ground ConfTr as minimizing a looser upper bound to the true conditional entropy
of the data than the simple Fano bound we provide in Corollary 3.1. Moreover, the simple Fano
bound can be further improved with an appropriate choice of Q, for instance as given by the model f ,
in the model-based Fano bound of Proposition 3.2.
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G Experiments

In this section, we present further experimental results for conformal training in the centralized and
federated setting. We start by defining the splits and architectures used for each data set, which are
listed in Table 6. In most aspects, we follow the experimental design of [61]. All experiments were
conducted on commercially available NVIDIA GPUs using our own implementation in Python 3 and
Pytorch [49], which can be found at github.com/Qualcomm-AI-research/info_cp. All data
sets were retrieved directly from torchvision [40].

Table 6: Experimental settings for each data set, with |Dtrain|, |Dcal| and |Dtest| the sizes of train,
calibration and test splits, respectively.

Data set |Dtrain| |Dcal| |Dtest| Epochs Architecture

MNIST [29] 55K 5K 10K 50 1-layer MLP
Fashion-MNIST [69] 55K 5K 10K 150 2-layer MLP

EMNIST [11] 628K 70K 116K 75 2-layer MLP
CIFAR10 [25] 45K 5K 10K 150 ResNet-34

CIFAR100 [25] 45K 5K 10K 150 ResNet-50

Regarding the architectures, we also closely follow the experimental setup in [61]. For MNIST we
have a simple linear model, whereas for Fashion-MNIST and EMNIST we use 2-layer MLPs with
64 and 128 hidden units for first and second layers, respectively. For the CIFAR data sets, we use
the default ResNet implementations from torchvision [40], but changing the first convolution to have
a kernel size of 3 and unitary stride and padding. We use Pytorch’s default weight initialization
strategy for all architectures. For all datasets, we use a regular SGD optimizer with momentum 0.9
and Nesterov gradients, accompanied by a step scheduler multiplying the initial learning rate by 0.1
after 2/5, 3/5 and 4/5 of the total number of epochs. We only use data augmentations on the CIFAR
datasets, and differently from [61], we only apply random flipping and cropping for both CIFAR10
and CIFAR100.

G.1 Centralized Setting

We followed the experimental procedure of [61], and for each dataset and each method, we ran a grid
search over the following hyperparameters using ray tune [45]:

• Batch size with possible values in {100, 500, 1000}.
• Learning rate with possible values in {0.05, 0.01, 0.005}.
• Temperature used in relaxing the construction of prediction sets at training time. We

considered temperature values in {0.01, 0.1, 0.5, 1.0}.
• Steepness of the differentiable sorting algorithm (monotonic sorting networks with Cauchy

distribution [50]), which regulates the smoothness of the sorting operator; the higher the
steepness value, the closer the differentiable sorting operator is to standard sorting. We
considered steepness values in {1, 10, 100}.

In Tables 7, 8, 9, 10 and 11, we report the best hyperparameters found for each dataset and method
as well as the average prediction set size for threshold CP [56] computed in the probability domain
(THR) and APS [55], as well as the test accuracy. Importantly, similarly to [61], in all cases we
only train the models to optimize threshold CP with log-probabilities. We confirm the observation in
[61] that other methods, and notably APS, are unstable during training, probably because it forces
us to operate in the probability domain, as opposed to the more optimization-friendly logits or log-
probabilities. Nevertheless, we still select hyperparameters according to the best performance with
respect to each CP method, and that is why we have different optimal hyperparameters for THR and
APS for each data set and each conformal training objective. We note ConfTr and ConfTrclass require
extra hyperparameters like the target size and weights attributed to each loss term (see Appendix F).
For those hyperparameters, we use the best values for each data set as reported in [61].

As described in the main paper, we use the default train and test splits of each data set but transfer
10% of the training data to the test data set. We train the classifiers only on the remaining 90% of the
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training data and, at test time, run SCP with 10 different calibration/test splits by randomly splitting
the enlarged test data set. All results reported in the paper are given by the average (± one standard
deviation) computed across these 10 random splits. Crucially, to avoid overfitting to the test data, the
grid search was done solely on the 90% of the training data not used for testing.

Table 7: Hyperparameter Search for MNIST.

Bound Optimized for batch size lr temperature steepness THR APS Test Acc.

CE THR 100 0.01 - - 2.29±0.18 2.50±0.08 0.93
APS 500 0.05 - - 2.28±0.19 2.50±0.08 0.93

ConfTr THR 500 0.05 0.1 100 6.28±0.71 9.81±0.06 0.90
APS 500 0.01 1.0 100 2.08±0.10 2.10±0.07 0.90

ConfTr-class THR 500 0.005 1.0 10 2.09±0.11 2.15±0.12 0.91
APS 500 0.01 0.1 100 2.12±0.11 2.13±0.13 0.90

Fano THR 100 0.005 0.1 100 2.09±0.12 2.12±0.09 0.91
APS 100 0.01 0.5 100 2.11±0.08 2.12±0.08 0.91

MB Fano THR 1000 0.005 0.1 100 2.24±0.12 2.96±0.11 0.91
APS 100 0.005 0.1 10 2.43±0.22 2.49±0.19 0.92

DPI THR 1000 0.005 0.01 100 2.24±0.17 2.87±0.12 0.92
APS 500 0.05 0.1 100 2.29±0.17 2.64±0.07 0.92

Table 8: Hyperparameter Search for Fashion-MNIST.

Bound Optimized for batch size lr temperature steepness THR APS Test Acc.

CE THR 1000 0.005 - - 2.39±0.13 2.74±0.20 0.87
APS 100 0.05 - - 2.18±0.17 2.41±0.17 0.89

ConfTr THR 100 0.01 1.0 1.0 1.73±0.06 1.89±0.09 0.89
APS 100 0.01 1.0 1.0 1.73±0.06 1.89±0.09 0.89

ConfTr-class THR 100 0.01 1.0 10.0 5.11±0.49 8.28±3.17 0.88
APS 500 0.005 1.0 100.0 1.79±0.06 1.79±0.07 0.88

Fano THR 100 0.05 0.5 100.0 1.70±0.05 2.06±0.08 0.88
APS 100 0.01 1.0 100.0 1.76±0.04 1.87±0.05 0.87

MB Fano THR 100 0.05 0.5 10.0 1.80±0.08 2.71±0.14 0.89
APS 100 0.05 1.0 100.0 1.84±0.10 2.25±0.14 0.89

DPI THR 100 0.05 0.01 10.0 1.73±0.07 2.12±0.08 0.89
APS 100 0.05 0.01 100.0 1.75±0.05 2.08±0.06 0.89

Table 9: Hyperparameter Search for EMNIST.

Bound Optimized for batch size lr temperature steepness THR APS Test Acc.

CE THR 100 0.01 - - 2.06±0.11 3.37±0.15 0.86
APS 100 0.005 - - 2.06±0.10 3.40±0.18 0.86

ConfTr THR 100 0.01 0.1 100 1.99±0.10 4.94±0.26 0.85
APS 100 0.005 1.0 100 1.99±0.08 2.36±0.11 0.83

ConfTr-class THR 100 0.005 0.1 100 2.01±0.09 5.07±0.24 0.85
APS 100 0.05 1.0 100 1.99±0.10 2.38±0.11 0.84

Fano THR 100 0.01 0.1 100 2.10±0.11 8.27±0.53 0.84
APS 100 0.01 1.0 100 2.05±0.11 2.75±0.14 0.82

MB Fano THR 100 0.01 1.0 100 2.01±0.11 5.21±0.26 0.86
APS 100 0.01 0.1 1 2.94±0.17 3.67±0.13 0.86

DPI THR 100 0.05 0.5 100 1.98±0.09 3.86±0.20 0.86
APS 100 0.05 0.1 100 2.04±0.12 4.07±0.23 0.86
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Table 10: Hyperparameter Search for CIFAR10.

Bound Optimized for batch size lr temperature steepness THR APS Test Acc.

CE THR 100 0.05 - - 1.69±0.11 2.12±0.21 0.93
APS 100 0.05 - - 1.74±0.07 2.34±0.22 0.93

ConfTr THR 100 0.05 0.5 10 9.90±0.02 10.00±0.00 0.10
APS 1000 0.005 0.1 1 9.90±0.01 9.98±0.00 0.10

ConfTr-class THR 100 0.01 0.5 10 2.16±0.09 2.19±0.10 0.86
APS 100 0.01 0.5 10 2.13±0.08 2.18±0.06 0.86

Fano THR 100 0.01 1.0 1 2.05±0.05 2.34±0.09 0.89
APS 100 0.01 1.0 1 2.06±0.10 2.35±0.10 0.89

MB Fano THR 100 0.05 0.5 100 1.66±0.09 2.40±0.08 0.92
APS 100 0.01 1.0 10 1.69±0.09 1.89±0.06 0.91

DPI THR 100 0.05 0.01 100 1.64±0.07 1.88±0.05 0.92
APS 100 0.005 0.01 10 1.79±0.12 1.97±0.08 0.91

Table 11: Hyperparameter Search for CIFAR100.

Bound Optimized for batch size lr temperature steepness THR APS Test Acc.

CE THR 100 0.05 - - 19.70±2.05 26.02±1.31 0.72
APS 100 0.05 - - 19.70±2.05 26.02±1.31 0.72

ConfTr THR 100 0.005 1.0 1 32.80±2.75 34.09±2.54 0.52
APS 100 0.01 0.5 1 30.04±1.36 40.58±1.23 0.53

ConfTr-class THR 100 0.01 1.0 1 66.48±3.67 54.30±17.12 0.43
APS 100 0.01 1 10 33.32±1.89 32.91±1.53 0.37

Fano THR 100 0.05 0.5 1 40.30±1.10 48.21±1.26 0.42
APS 500 0.05 1 1 30.43±1.61 33.80±0.93 0.57

MB Fano THR 100 0.05 0.5 100 14.61±0.84 21.69±0.71 0.70
APS 100 0.05 1 10 16.36±0.93 21.68±1.44 0.68

DPI THR 100 0.05 1.0 1 17.55±1.33 20.13±0.78 0.69
APS 100 0.05 1 10 14.90±0.80 17.41±0.62 0.70

G.1.1 Results with Regularized Adaptive Prediction Sets (RAPS)

We report additional results with a conformal method known as RAPS (regularized adaptive prediction
sets) [4]. In a nutshell, RAPS works exactly like APS but adds a penalization term λreg to the score of
each label that would make the prediction set larger than kreg. In Table 12, we have results with RAPS
hyperparameters set as kreg=1 and λreg=0.01, where we can see a pattern of performance across
conformal training objectives that is similar to what we previously observed for THR and APS. As
expected, the regularization introduced by RAPS results in prediction sets that are smaller than those
obtained via APS in almost all cases. Again, similarly to [61], in all of our experiments we perform
conformal training by thresholding on log-probabilities, which we observed to work best. The results
we report for thresholding on probabilities (THR), APS and now RAPS show that this translates well
to other score functions as well. Nonetheless, the improvement we get via RAPS still does not offset
the gains from conformal training. In most cases, RAPS applied to a model trained via CE produces
less efficient prediction sets than APS applied to a model trained to optimize one of our bounds.

We also study the impact of the two hyperparameter in RAPS, namely λreg and kreg in the inefficiency
of each of the conformal training methods. We concentrate our analysis on CIFAR100 and report
results with varying kreg in Table 13 and varying λreg in Table 14. Interestingly, RAPS was much
more sensitive to variations in kreg than in λreg. Still, we observe models trained via our model-based
Fano and DPI bounds produce more efficient prediction sets than the baselines in all cases.

G.2 Federated Setting

In the federated setting, we run conformal training exactly in the same fashion, but including the
additional QZ|X term in (11) to get the proper distributed bound that can be optimized locally and
independently in each device. We optimize the conformal training objective with SGD for one
epoch in each device, and then communicate the resulting “personalized” model to the server, which
aggregates the model parameters of each device via federated averaging [42]. After aggregation, the
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Table 12: Inefficiency restuls with RAPS. Average prediction set size with both APS and RAPS
(kreg = 1 and λreg = 0.01) methods for each conformal training objective and data set for a target
α = 0.01. We report mean and standard deviation across 10 different calib./test splits and show in
bold all values within one standard deviation of the best result. Both APS and RAPS results were
computed with the same classifier. Lower is better.

Method MNIST F-MNIST EMNIST CIFAR 10 CIFAR 100

APS RAPS APS RAPS APS RAPS APS RAPS APS RAPS

CE 2.50±0.08 2.35±0.16 2.41±0.17 2.40±0.17 3.40±0.18 3.07±0.16 2.34±0.22 2.31±0.22 26.02±1.31 26.02±1.31

ConfTr 2.10±0.07 2.10±0.07 1.89±0.09 1.84±0.09 2.36±0.11 2.19±0.06 9.99±0.00 9.99±0.00 40.59±1.23 39.87±1.02

ConfTrclass 2.13±0.13 2.13±0.13 1.79±0.09 1.79±0.09 2.38±0.11 2.21±0.07 2.18±0.06 2.18±0.06 32.91±1.53 32.94±1.54

Fano 2.12±0.08 2.12±0.08 1.87±0.05 1.80±0.04 2.75±0.14 2.50±0.07 2.35±0.10 2.20±0.04 33.80±0.93 33.75±1.02

MB Fano 2.49±0.19 2.48±0.19 2.25±0.14 2.07±0.11 3.67±0.13 3.67±0.13 1.89±0.06 1.78±0.07 21.68±1.44 20.97±1.30

DPI 2.64±0.07 2.44±0.12 2.08±0.06 1.95±0.05 4.07±0.23 3.74±0.17 1.97±0.08 1.87±0.11 17.41±0.62 17.25±0.58

Table 13: Inefficiency results for RAPS with varying kreg. Average prediction set size for λreg =
0.01 and varying kreg on CIFAR100 for a target α = 0.01. We report mean and standard deviation
across 10 different calib./test splits and show in bold all values within one standard deviation of the
best result. Both APS and RAPS results were computed with the same classifier. Lower is better.

Method kreg = 0 (APS) kreg = 1 kreg = 3 kreg = 5 kreg = 10 kreg = 15

CE 26.02±1.31 26.02±1.31 22.43±1.88 20.43±1.70 18.95±1.18 20.63±0.89

ConfTr 40.59±1.23 39.87±1.02 38.73±0.84 38.31±0.70 38.06±0.48 38.06±0.59

ConfTrclass 32.91±1.53 32.94±1.54 32.94±1.53 32.95±1.53 33.16±1.47 33.74±1.39

Fano 33.80±0.93 33.75±1.02 32.83±1.60 31.71±1.55 30.82±1.72 30.31±1.71

MB Fano 21.68±1.44 20.97±1.30 19.32±1.40 19.04±1.36 17.35±0.86 17.68±0.94

DPI 17.41±0.62 17.25±0.58 17.02±0.75 16.40±0.93 17.68±0.82 19.49±2.08

Table 14: Inefficiency results for RAPS with varying λreg. Average prediction set size for kreg = 1
and varying λreg on CIFAR100 for a target α = 0.01. We report mean and standard deviation across
10 different calib./test splits and show in bold all values within one standard deviation of the best
result. Both APS and RAPS results were computed with the same classifier. Lower is better.

Method λreg = 0 (APS) λreg = 0.01 λreg = 0.03 λreg = 0.1 λreg = 0.3 λreg = 1.0

CE 26.02±1.31 26.02±1.31 26.02±1.31 26.02±1.31 26.02±1.31 26.02±1.31

ConfTr 40.59±1.23 39.87±1.02 39.17±1.05 39.09±1.12 39.09±1.12 39.09±1.12

ConfTrclass 32.91±1.53 32.94±1.54 32.94±1.54 32.93±1.53 32.94±1.53 32.94±1.55

Fano 33.80±0.93 33.75±1.02 33.75±1.02 33.75±1.02 33.75±1.02 33.75±1.02

MB Fano 21.68±1.44 20.97±1.30 20.96±1.29 20.96±1.29 20.96±1.29 20.96±1.29

DPI 17.41±0.62 17.25±0.58 17.25±0.58 17.25±0.58 17.25±0.58 17.25±0.58

global model thus computed is communicated to the client and the process restarts. We do 5K such
communication rounds for EMNIST, and 10K for CIFAR10 and CIFAR100. As described in the
main text, we divide the data among 100, 500, and 1K clients for CIFAR10, CIFAR100 and EMNIST,
respectively. We assign data points to devices imposing a distribution-based label imbalance [33],
where we sample a marginal label distribution for each device from a Dirichlet distribution. We
use Dir(1.0) for all experiments, but also study the effect of Dir(0.5) and Dir(0.1) on CIFAR10,
as shown in Tables 15 and 16. The remainder of the experimental setup is similar to that used
for the centralized setting, with the same architectures, data augmentation strategies, and optimal
hyperparameters reported in Tables 7, 8, 9, 10. In Tables 15 and 16, as well as 17 and 18, we report
inefficiency results for two different settings, global (GLO) and personalized (PER).

GLO We run SCP with the final global model assuming calibration and test data sets at the server,
or equivalently that the clients share their scores with the server. This reflects the best inefficiency
results we can hope for with the global model, as in practice we might need to resort to privacy-
preserving methods that are likely to hurt performance. Notably, we considered the quantile of
quantiles approach of Humbert et al. [24] as well as the simpler alternative proposed in [37], but in
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both cases we got varying degrees of coverage due to the data heterogeneity among devices introduced
in the distribution-based label imbalance setup. Addressing these shortcomings is a promising avenue
for future research for conformal prediction in the federated setting.

PER After learning the global model, we fine-tune it on the local training data of each device to
obtain a personalized model. We then run SCP individually for each device with local calibration and
test data sets and report the average prediction sets across all clients. Importantly, since each client
has access to only a small number of data points, we do not always achieve valid coverage in the
personalized setting. More precisely, all personalized models on CIFAR10 and EMNIST achieved
marginal coverage of around 97%, while for CIFAR100 that value dropped to 90%. Nonetheless, all
methods get similar coverages so the results remain comparable. Interestingly, even with personalized
models, which implicitly already estimate QY |X,Z , updating the personalized model as in (9) with
the global head QZ|X,Y , still results in non-negligible improvements in performance, as shown in
Tables 15 and 16, as well as 17 and 18.

Table 15: Inefficiency results for different degrees of data heterogeneity in FL with THR. Average
prediction set size with THR for CIFAR10 with different levels of data heterogeneity among clients
for both global (GLO) and personalized (PER) models in the federated setting for a target α = 0.01.
We use +SI to indicate the inclusion of side information. Lower is better.

Method Dirichlet(1.0) Dirichlet(0.5) Dirichlet(0.1)

GLO GLO+SI PER PER+SI GLO GLO+SI PER PER+SI GLO GLO+SI PER PER+SI

CE 2.73±0.04 2.30±0.06 2.07±0.51 1.82±0.39 2.81±0.11 2.41±0.08 2.03±0.49 1.79±0.38 2.73±0.13 2.32±0.06 2.05±0.52 1.82±0.38

ConfTr 10.00±0.00 10.00±0.00 9.84±0.05 9.84±0.05 10.00±0.00 10.00±0.00 9.84±0.05 9.84±0.05 10.00±0.00 10.00±0.00 9.87±0.06 9.87±0.06

ConfTrclass 3.53±0.09 3.39±0.08 2.86±0.38 2.79±0.35 3.54±0.06 3.38±0.07 2.91±0.40 2.84±0.37 3.53±0.05 3.39±0.05 2.84±0.41 2.78±0.38

Fano 2.39±0.07 2.07±0.07 1.84±0.37 1.63±0.30 2.47±0.08 2.10±0.06 1.94±0.43 1.71±0.35 2.46±0.08 2.11±0.06 1.91±0.41 1.68±0.33

MB Fano 2.52±0.08 2.04±0.07 1.56±0.29 1.40±0.22 2.66±0.12 2.09±0.06 1.57±0.31 1.40±0.23 2.55±0.11 2.06±0.10 1.98±0.45 1.64±0.32

DPI 2.76±0.07 2.28±0.03 1.64±0.36 1.49±0.28 2.50±0.07 2.11±0.49 1.91±0.42 1.64±0.31 2.51±0.07 2.07±0.05 2.04±0.41 1.70±0.30

Table 16: Inefficiency results for different degrees of data heterogeneity in FL with APS. Average
prediction set size with APS for CIFAR10 with different levels of data heterogeneity among clients
for both global (GLO) and personalized (PER) models in the federated setting for a target α = 0.01.
We use +SI to indicate the inclusion of side information. Lower is better.

Method Dirichlet(1.0) Dirichlet(0.5) Dirichlet(0.1)

GLO GLO+SI PER PER+SI GLO GLO+SI PER PER+SI GLO GLO+SI PER PER+SI

CE 2.83±0.07 2.43±0.06 2.22±0.06 1.94±0.41 2.70±0.79 2.33±0.42 2.13±0.47 1.87±0.36 2.81±0.14 2.37±0.08 2.15±0.05 1.89±0.39

ConfTr 10.00±0.00 10.00±0.00 9.87±0.14 9.87±0.14 10.00±0.00 10.00±0.00 9.88±0.09 9.88±0.09 10.00±0.00 10.00±0.00 9.87±0.14 9.87±0.14

ConfTrclass 10.00±0.00 10.00±0.00 9.92±0.03 9.92±0.03 10.00±0.00 10.00±0.00 9.94±0.07 9.95±0.05 10.00±0.00 10.00±0.00 9.92±0.03 9.92±0.03

Fano 2.73±0.07 2.39±0.06 2.17±0.45 1.94±0.36 2.61±0.07 2.30±0.05 2.15±0.04 1.92±0.34 2.67±0.08 2.35±0.07 2.13±0.42 1.92±0.34

MB Fano 2.79±0.13 2.33±0.05 2.28±0.48 1.97±0.35 2.71±0.09 2.31±0.07 2.27±0.48 1.96±0.35 2.87±0.12 2.40±0.06 2.32±0.51 1.99±0.39

DPI 2.68±0.15 2.22±0.09 2.11±0.51 1.84±0.36 2.54±0.10 2.18±0.04 2.10±0.45 1.84±0.33 2.65±0.10 2.25±0.08 2.13±0.44 1.89±0.34

Table 17: Inefficiency results for global (GLO) and personalized (PER) models with THR.
Average prediction set size with THR for federated conformal training with a target α = 0.01. We
use +SI to indicate the inclusion of side information. We show in bold all values within one standard
deviation of the best result. Lower is better.

Method EMNIST CIFAR 10 CIFAR 100

GLO GLO+SI PER PER+SI GLO GLO+SI PER PER+SI GLO GLO+SI PER PER+SI

CE 2.91±0.02 2.46±0.02 2.46±0.65 2.08±0.51 2.73±0.04 2.30±0.06 2.07±0.51 1.82±0.39 55.41±1.09 52.31±1.03 20.84±8.02 18.85±7.53

ConfTr 4.60±0.05 3.30±0.02 3.95±1.05 3.05±0.78 10.00±0.00 10.00±0.00 9.84±0.05 9.84±0.05 45.60±1.30 41.18±1.16 16.23±6.27 14.01±5.66

ConfTrclass 2.88±0.02 1.98±0.02 1.69±0.31 1.55±0.24 3.53±0.09 3.39±0.08 2.86±0.38 2.79±0.35 58.53±1.40 56.03±1.29 25.22±7.40 23.87±7.02

Fano 2.63±0.02 2.37±0.02 2.14±0.46 1.98±0.40 2.39±0.07 2.07±0.07 1.84±0.37 1.63±0.30 47.91±1.20 41.19±1.02 18.42±6.95 14.55±5.83

MB Fano 2.84±0.04 2.25±0.03 2.47±0.64 1.96±0.45 2.52±0.08 2.04±0.07 1.56±0.29 1.40±0.22 52.94±1.40 46.97±1.30 20.36±7.77 16.41±6.79

DPI 2.60±0.02 2.23±0.01 2.31±0.58 1.97±0.46 2.76±0.07 2.28±0.03 1.64±0.36 1.49±0.28 52.36±0.95 48.64±0.70 20.13±7.84 17.73±7.23
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Table 18: Inefficiency results for global (GLO) and personalized (PER) models with APS.
Average prediction set size with APS for federated conformal training with a target α = 0.01. We
use +SI to indicate the inclusion of side information. We show in bold all values within one standard
deviation of the best result. Lower is better.

Method EMNIST CIFAR 10 CIFAR 100

GLO GLO+SI PER PER+SI GLO GLO+SI PER PER+SI GLO GLO+SI PER PER+SI

CE 3.69±0.03 3.14±0.04 1.42±0.25 1.40±0.24 2.83±0.07 2.43±0.06 2.22±0.56 1.94±0.41 64.73±0.34 62.67±3.68 22.39±8.86 20.22±8.15

ConfTr 6.14±0.04 5.25±0.04 4.79±1.23 3.06±0.63 10.00±0.00 10.00±0.00 9.87±0.14 9.87±0.14 55.18±2.10 47.58±1.48 23.43±8.20 19.12±7.14

ConfTrclass 2.65±0.02 2.42±0.02 3.03±1.57 1.51±0.31 10.00±0.00 10.00±0.00 9.92±0.03 9.92±0.03 99.92±0.02 99.91±0.01 99.97±0.22 99.68±0.24

Fano 3.12±0.04 2.72±0.03 1.17±0.10 1.15±0.01 2.73±0.07 2.39±0.06 2.17±0.45 1.94±0.36 46.95±0.67 42.75±0.91 19.19±7.24 16.9±6.67

MB Fano 4.75±0.03 2.43±0.01 2.04±0.51 2.31±0.42 2.79±0.13 2.33±0.05 2.28±0.48 1.97±0.35 50.72±1.77 45.72±1.38 21.12±7.49 18.12±6.84

DPI 2.98±0.03 2.58±0.02 2.73±0.65 1.29±0.16 2.68±0.15 2.22±0.09 2.11±0.51 1.84±0.36 51.29±1.07 47.18±1.27 20.76±7.51 18.15±6.82

G.3 Evaluating the lower bounds on the set size

In this section, we evaluate our two lower bounds on the expected [log |C(X)|]+. The first one
can be obtained by rearranging the simple Fano bound (c.f. Proposition C.7) whereas the second
one can be obtained from the model-based Fano entropy upper bounds (c.f. Theorem E.2). The
main challenge in evaluating these bounds is in that we require the ground truth entropy H(Y |X)

or H(Y |Ŷ ) which in general are not available. To proceed, we adopt the versions of the bounds
that depend on H(Y |Ŷ ). When Ŷ is discrete, we can get a tractable lower bound to H(Y |Ŷ ) via a
maximum likelihood estimate of the entropy [46]. More specifically, we have that

H(Y |Ŷ ) = H(Y, Ŷ )−H(Ŷ ) ≥ HMLE(Y, Ŷ )− log |Ŷ|,

where |Ŷ| is the cardinality of Ŷ .

(a) CIFAR 10 (b) CIFAR 100

Figure 2: Expected [log |C(X)|]+ as a function of α.

Based on this, we evaluate our set size bounds on ResNet models trained with CE on CIFAR 10 and
CIFAR 100. As the logits Ŷ used for CP are not discrete, we perform K-means clustering on them
and construct a vector quantized Ŷvq by assigning to each logit vector its closest cluster centroid. We
then use Ŷvq to perform CP with thresholding and also use Ŷvq to obtain a lower bound on H(Y |Ŷvq)

via a maximum likelihood estimate for H(Y, Ŷvq). For this maximum likelihood estimate we also
perform the Miller-Madow bias correction [46].

For CIFAR 10 we cluster the logits into 32 clusters whereas for CIFAR 100 we use 256 clusters. The
centroids are learned on a calibration set of 5k logits. For the model-based Fano bound, as it needs to
compute terms that depend on the model probabilities and on whether the label was correctly covered
by CP or not, we further split the calibration set into two equal-sized chunks; the first is used to find
the quantile for thresholding and the second one is used to evaluate the terms of the bound. The
obtained lower bounds on [log |C(X)|]+ for various α’s can be seen at Figure 2. We also include an
“empirical estimate” which is obtained by computing the quantile with the quantized calibration logits
and then measuring the average [log |C(X)|]+ on the test set via thresholding on the quantized test
logits. We see that model-based Fano provides relatively tight estimates for small values of alpha.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All of our claims are supported by our experimental results, and we provide
detailed proofs for all theoretical results in the supplemental material.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We comment on the limitations of our work in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We include detailed proofs for all theoretical results, clearly stating the
assumptions (mainly exchangeable data and a valid conformal prediction method). We
also provide the necessary background on information theory and conformal prediction in
Appendix B to help the reader to follow our derivations.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We did our best to provide as many experimental details as possible, which
can be found in the main text as well as in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code will be hosted at github.com/Qualcomm-AI-research/
info_cp.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give a detailed description of all of our experiments in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report one standard deviation confidence intervals, computed across 10
random calibration/test splits, for all of our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our experiments are not particularly demanding in the terms of compute and
can be reproduced on any modern hardware. We do state in Appendix G that we ran our
experiments in commercially available NVIDIA GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work is in accordance with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have a discussion about the broader impact of our work in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the appropriate references for each dataset and, when a license
is available, we added that information to the citation. We also made it clear that we
downloaded all datasets through the torchvision [40] python package.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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