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Abstract

In bandit best-arm identification, an algorithm is tasked with finding the arm with
highest mean reward with a specified accuracy as fast as possible. We study multi-
fidelity best-arm identification, in which the algorithm can choose to sample an arm
at a lower fidelity (less accurate mean estimate) for a lower cost. Several methods
have been proposed for tackling this problem, but their optimality remain elusive,
notably due to loose lower bounds on the total cost needed to identify the best
arm. Our first contribution is a tight, instance-dependent lower bound on the cost
complexity. The study of the optimization problem featured in the lower bound
provides new insights to devise computationally efficient algorithms, and leads us
to propose a gradient-based approach with asymptotically optimal cost complexity.
We demonstrate the benefits of the new algorithm compared to existing methods in
experiments. Our theoretical and empirical findings also shed light on an intriguing
concept of optimal fidelity for each arm.

1 Introduction

In multi-armed bandits [20], an algorithm chooses at each step one arm among K > 1 possibilities.
It then observes a reward, sampled from a probability distribution on R corresponding to the arm.
Several goals are possible for the algorithm, and we focus on the best arm identification task (BAI)
in which we aim to identify the arm with the largest mean, using as few samples as possible. This
is a well-studied problem [6, 1, 12, 10, 8] with potential applications to, e.g. A/B/n testing [27] or
hyper-parameter optimization [11].

In some applications, like physics, parameter studies, or hyper-parameter optimization, getting a
sample from the arm distribution might be expensive since it requires evaluating or training a complex
model and is computationally demanding. However, it is often the case that cheaper, less accurate
sampling methods are available, for instance, by using a coarser model in the physics study example.
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The multi-fidelity bandit framework takes such scenarios into account. When choosing an arm, the
algorithm also chooses a fidelity, with a trade-off: a higher fidelity gives a more precise observation
but has a higher cost. We assume that the algorithm knows both the cost and the maximal bias of
the observations from each fidelity. This is also how the knowledge about the fidelity was modeled
in prior work [see, e.g., 16, 15, 25, 31]. The goal is then to find the best arm (i.e., the arm with the
highest mean at the highest fidelity) with high probability and minimal cost.

Specifically, the bandit algorithm interacts with the multi-fidelity environment and gathers information
to find which arm has the highest mean when pulled at the highest fidelity. In the fixed confidence
setting, we want to ensure that the algorithm returns a correct answer with probably at least 1− δ
for a given parameter δ ∈ (0, 1). A good algorithm should do that at a minimum cost, and thus, the
appropriate quality metric for evaluating an algorithm’s performance is the sum of costs paid until it
stops, i.e., the cost complexity. Previous work on the multi-fidelity BAI problem [25, 31] provided
lower bounds on the cost complexity as well as algorithms with cost upper bounds. Those lower and
upper bounds do not match, and the proposed methods require additional prior information [31], or
their guarantees are restricted to problems satisfying additional hypotheses [25]. We lift all those
requirements and provide an improved lower bound and an algorithm with a matching upper bound.

Contributions and organization of the paper After presenting additional related works, in Sec-
tion 2, we define fixed-confidence best arm identification in multi-fidelity bandits in more mathe-
matical detail and introduce the notations used throughout the paper. Then, Section 3 contains our
first contribution: a tight instance-dependent lower bound on the cost complexity of any algorithm
expressed with the maximum of a complex function over all possible cost allocations. We also
highlight features of that lower bound, like the existence of an optimal fidelity for each arm, which
should be chosen exclusively. In Section 4, we propose a computationally efficient procedure for
computing gradients of the function featured in the lower bound and describe a gradient-based
algorithm whose cost complexity is asymptotically matching the lower bound. Finally, in Section 5,
we present the results of numerical experiments which demonstrate the good empirical performance
of our new algorithm compared to prior work.

Additional related works The multi-fidelity setting has mostly been studied in the context of
Bayesian optimization [9, 24, 17, 26, 14, 21] and black-box function optimization with different
structural assumptions [28, 29, 7, 23]. The goal there is to find the minimum of a function by
successive queries of that function or of cheaper approximations. The metric for success in these
works is most often the simple regret, that is, the difference between the best value found and the true
minimum, although other goals were considered like the cumulative regret [16, 15]. Furthermore, we
notice that best arm identification with costs has recently been studied in [13] for BAI with only one
fidelity. The authors introduce a variant of the Track-and-Stop algorithm [8] and prove its asymptotic
optimality. However, we will not be able to adapt this study to the multi-fidelity case because, as we
shall see, it requires solving a complex optimization problem for which we have no efficient solution.
Finally, our work is related to the vast strand of BAI studies that proposes tight lower bound with
asymptotically optimal algorithms [e.g., 8, 4, 22]; nevertheless, as we discuss throughout the text,
these studies cannot be directly applied to the multi-fidelity BAI problem.

2 Background

In this section, we provide essential background and notation that is used throughout the rest of the
paper. A table that summarizes the notation is available in Appendix A.

A multi-fidelity bandit model withK arms andM fidelities is a set ofK×M probability distributions
ν = (νa,m)a∈[K],m∈[M ] where νa,m has mean of µa,m. For each arm a ∈ [K], µa,m represents
the mean value of an observation of arm a using fidelity m, and let µ = (µa,m)a∈[K],m∈[M ]. An
observation at fidelity m is assigned a (known) cost λm ≥ 0 with λ1 < λ2 < · · · < λM . The goal is
to identify the arm that has the largest mean at the highest fidelity M , a?(µ) := argmaxa∈[K] µa,M
(sometimes denoted by ? in the sequel to ease notation) with a small total sampling cost, by exploring
the arms at different fidelities and using some prior knowledge about their precision. Specifically, we
assume that there are some (known) values ξ1 > ξ2 > · · · > ξM = 0 such that, for all arm a ∈ [K],
the vector µa := (µa,m)m∈[M ] satisfies

∀m ∈ [M ], |µa,m − µa,M | ≤ ξm .
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We write µa ∈ MF to indicate that arm a satisfies these multi-fidelity constraints, with these particular
parameters ξm (although they are not shown in the notation). In this paper, we consider arms that
belong to a canonical exponential family [2]. This includes, e.g. arms that have Bernoulli distributions
or Gaussian distributions with known variances. Such models are known to be characterized by their
means and we refer to such an exponential multi-fidelity bandit model ν using the means of its arms
µ, which belongs to the setMMF := {µ ∈ ΘK×M : ∀a ∈ [K], µa ∈ MF}, where Θ ⊆ R is the
interval of possible means.

At each interaction round t = 1, 2, . . . , the agent selects an arm At and a fidelity Mt, observes a
sample Xt ∼ νAt,Mt and pays a cost λMt . Letting Ft = σ(A1,M1, X1, . . . , At,Mt, Xt) be the
sigma field generated by the observations up to time t, a fixed-confidence identification algorithm
takes as input a risk parameter δ ∈ (0, 1) and is defined by the following ingredients: (i) a sampling
rule (At,Mt)t, where (At,Mt) is Ft−1-measurable, (ii) a stopping rule τδ , which is a stopping time
w.r.t. Ft, and (iii) a decision rule âτδ ∈ [K], which is Fτδ -measurable. We want to build strategies
that ensure Pµ (âτδ 6= a?(µ)) ≤ δ for all µ ∈MMF with a unique optimal arm. Such a strategy is
called δ-correct. Among δ-correct strategies, we are looking for strategies that minimize the expected
identification cost (i.e., cost complexity) defined as

Eµ[cτδ ] :=
∑
a∈[K]

∑
m∈[M ]

λmEµ[Na,m(τδ)] =
∑
a∈[K]

∑
m∈[M ]

Eµ[Ca,m(τδ)],

where Na,m(t) denotes the number of pulls of arm a at fidelity m up to time t and Ca,m(t) =
λmNa,m(t) denotes the cost associated to these pulls. In the sequel, we will provide cost complexity
guarantees for multi-fidelity instances µ that belong to the setM∗MF of multi-fidelity instances with
a unique optimal arm, i.e., for which |a?(µ)| = 1. We remark that for M = 1 and λm = 1 we
recover the best arm identification problem in a classical bandit model, for which the cost complexity
coincides with the sample complexity, Eµ[τδ].

Additional notation Given an integer n ∈ N, we denote by ∆n the n-dimensional simplex.
Furthermore, given x, y ∈ (0, 1), we define kl(x, y) = x log(x/y) + (1 − x) log((1 − x)/(1 −
y)). Given (p, q) ∈ Θ2, we denote by d(p, q) the Kullback-Leibler (KL) divergence between the
distribution in the exponential family with mean p and that with mean q. We also write d−(x, y) =
d(x, y)1 {x ≥ y} and d+(x, y) = d(x, y)1 {x ≤ y}. Finally, we denote by v(p) the variance of the
distribution with mean p.

3 On the cost complexity of multi-fidelity best-arm identification

In this section, we discuss the statistical complexity of identifying the best-arm in MF-BAI problems.
Formal proofs of the claims of this section are presented in Appendix B.

3.1 Lower bound on the cost complexity

We present an instance-dependent lower bound on the expected cost-complexity. The lower bound
uses the solution to an optimization problem, where the functions optimized quantify the trade-off
between the information gained by pulling an arm at some fidelity and the cost of that fidelity. Since
those functions also appear in our algorithm, we will now introduce notation for them. For all
ω ∈ ∆K×M and µ ∈ ΘK×M , we define

fi,j(ω,µ) := inf
θi∈MF, θj∈MF
θj,M≥θi,M

∑
a∈{i,j}

∑
m∈[M ]

ωa,m
d(µa,m, θa,m)

λm
, (1)

F (ω,µ) := max
i∈[K]

min
j 6=i

fi,j(ω,µ) . (2)

The quantity fi,j(ω,µ) is the dissimilarity according to a KL weighted by the costs between µ and
the closest θ ∈ ΘK×M such that arms i and j satisfy the multi-fidelity constraints and θk = µk for
k /∈ {i, j}, with arm j better than arm i. If µ ∈MMF then that closest θ is also inMMF but otherwise
it might not be the case: if an arm k /∈ {i, j} is not in MF for µ, then it is equally not in MF for θ.
For µ ∈MMF the maximum in the definition of F is realized at the best arm ?, as mina6=i fi,a(ω,µ)
is zero for i 6= ?. That is, F (ω,µ) = minj 6=? f?,j(ω,µ). We define F with a maximum over i and
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not with that last expression because we want to define it for all points in ΘK×M , even the points
which are not inMMF. For those points, we could imagine different notions of best arm, for example,
arg maxk µk,M , but the right one for our algorithm is the arm for which we have the most evidence
(weighted by cost) to say that all other arms are not better. That arm is the argmax in our definition of
F . Given these definitions, we now introduce our new lower bound.
Theorem 3.1. Let δ ∈ (0, 1). For any δ-correct strategy, and any multi-fidelity bandit model
µ ∈M∗MF, it holds that:

Eµ[cτδ ] ≥ C∗(µ) log
(

1
2.4 δ

)
, (3)

where C∗(µ)−1 := supω∈∆K×M
F (ω,µ) = supω∈∆K×M

mina6=? f?,a(ω,µ) .

The quantity C∗(µ) describes the statistical complexity of an MF problem µ as the typical max-min
game that appears in lower bounds for BAI problems [see, e.g., 8, 3]. Specifically, first, the max-player
chooses a vector ω ∈ ∆K×M , and then the min-player chooses a bandit model θ ∈MMF in which
the optimal arm is different, with the goal of minimizing the function F (ω,µ). Following the methods
from previous work, the objective value for ω and θ should be

∑
a∈[K]

∑
m∈[M ] ωa,m

d(µa,m,θa,m)
λm

,
featuring a sum over all arms and fidelities. However in the definition of fi,a(ω,µ) we restrict θ to
be different from µ on only two arms. We can prove that if µ ∈MMF, this gives the same objective
value at the minimizing θ as the full sum. The difference will be important in our algorithm, which
will compute that minimizer for points µ̂ that do not belong toMMF.

A difference with standard BAI settings is that in Equation (1) eachω ∈ ∆K×M should be interpreted
as a vector of cost proportions that the max-player is investing (in expectation) in each arm-fidelity pair
to identify the optimal arm µ?,M .2 We can interpret the oracle weights ω∗ ∈ argmax∆K×M

F (ω,µ)
as the optimal cost proportions that the agent should follow in order to identify µ?,M while minimizing
the identification cost. To clarify the difference and the relationship between cost and pull proportions
we notice that, given a cost proportion ω, it is always possible to compute the pull proportions
π(ω) ∈ ∆K×M that the agent should play in order to incur the costs proportions specified by ω,
and vice versa. More specifically, these relationships are described for each arm-fidelity pair by the
following equations for every a ∈ [K] and m ∈ [M ]:

πa,m(ω) =
ωa,m
λm

1∑
i∈[K]

∑
j∈[M ]

ωi,j
λj

ωa,m(π) =
λmπa,m∑

i∈[K]

∑
j∈[M ] λjπi,j

. (4)

As a direct consequence, it is possible to rewrite C∗(µ)−1 as a function of π, the pull proportions.
Doing so reveals that the minimizer θ in f?,j does not depend on the costs: it is also the minimizer
of
∑
a∈{i,j},m∈[M ] πa,md(µa,m, θa,m). While the agent optimizes the cost proportions ω to get the

best possible information/cost ratio, the min-player minimizes only the information available to the
algorithm to tell µ and θ apart. Finally, we notice that F (ω,µ) is concave in ω3 but F (ω(π),µ) is
not concave in π. As we shall see in Section 4, this difference will play a crucial role in constructing
an asymptotically optimal algorithm.

The formulation of the lower bound as a game where one player maximizes an information/cost
ratio while the other player minimizes information makes our result close to lower bounds for regret
minimization like the one of [5], where the (unknown) gap of an arm plays the role of the cost.

Comparison to previous work The only known lower bound for the multi-fidelity BAI problem
is the one presented in [25]. That same bound was then shown in [31]. The bound from those
previous works is looser than Theorem 3.1. For example, in a two-arms bandit with a single
fidelity (denoted by M ) and Gaussian rewards with variance 1, the bound from previous work is
λM (µ1,M − µ2,M )−2 log(1/2.4δ), while our lower bound is 8λM (µ1,M − µ2,M )−2 log(1/2.4δ).
Furthermore, on particular instances with 2 arms and 2 fidelity, we can prove that our lower bound
improves by a factor λM/λ1, which can be arbitrarily large (See Appendix B.2). More generally,
the proof of the previous lower bounds exhibits a particular point in the alternative, which makes it
always looser than our bound which features an infimum over all points. Theorem 3.1 is also optimal
in the regime δ → 0 since it is matched by the algorithm we introduce in the next section.

2This claim is evident when looking at the proof of Theorem 3.1.
3This is a consequence of the fact F (ω,µ) is an infimum over linear functions of ω.
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3.2 Sparsity of the oracle weights: a tight concept of optimal fidelity

We conclude our study of the lower bound by further analyzing the optimal allocation ω∗. Unlike
in the standard best arm identification problem, we did not find an efficient algorithm to compute it,
which prevents us from using a Track-and-Stop-like approach [8]. Nevertheless, we will explain in
the next section how to efficiently compute the fi,j functions and their gradient. These computations
are crucial for our algorithm but also allow us to prove our next result about the possible sparsity of
ω∗. For each arm a ∈ [K], it is not difficult to show that there must exist some fidelity m ∈ [M ] for
which ω∗a,m > 0 (Lemma B.2). However, as the following result highlights, in most cases, only one
fidelity per arm has non-zero weight.

Theorem 3.2. Let ∆∗K×M (µ) := argmaxω∈∆K×M
F (ω,µ) and

M̃MF :=
{
µ ∈M∗MF : ∃i ∈ [K],∃m1,m2 ∈ [M ]2,∃ω∗ ∈ ∆∗K×M (µ) : ω∗i,m1

> 0, ω∗i,m2
> 0
}
.

The set M̃MF is a subset of RK×M whose Lebesgue measure is zero.

Theorem 3.2 implies that in almost all multi-fidelity bandits, for any ω∗ ∈ ∆∗K×M (µ) and each
arm a ∈ [K], there exists a single fidelity m∗a ∈ [M ] for which ω∗a,m∗a > 0 holds. However, we
note that this result does not offer an easy way to compute these optimal arm-dependent fidelities.4
Nevertheless, as we shall see in the next section, our algorithm does not actually require identifying
these optimal fidelity levels to enjoy optimality guarantees.

Finally, we remark that existing MF-BAI works [25, 31] already proposed notions of optimal, arm-
dependent fidelity that the agent should employ to identify the optimal arm ?. Nevertheless, as we
verify in Appendix B.5, these concepts do not comply with the concept of optimal fidelity that arises
from the tight lower bound of Theorem 3.1. In other words, there exist bandit models µ in which
following these alternative concepts of optimal fidelity leads to sub-optimal performance.

4 The multi-fidelity sub-gradient ascent algorithm

We present our solution for solving MF-BAI problems, an algorithm called Multi-Fidelity Sub-
Gradient Ascent (MF-GRAD). Its pseudocode can be found in Algorithm 1. All proofs for this
section are presented in Appendix C.

A reader familiar with the literature on BAI algorithms inspired from lower bounds like Theorem 3.1
may have the natural idea of simply using the Track-and-Stop algorithm [8] or the related game-based
algorithm of [4]. Those algorithms can’t be directly applied here, first because of the costs: we
want to bound the cost complexity, not the stopping time, and adapting those methods to costs is
not trivial. Furthermore, Track-and-Stop (even in the cost-aware variant of [13]) would require the
computation of the optimal cost proportions at µ̂(t), which is a max-min problem for which we don’t
have an efficient algorithm. Our solution is inspired by the gradient ascent algorithm of [22], which
requires computing gradients of F (hence only a minimization problem and not a max-min). The
same innovations required to extend this method to the multi-fidelity case could likely allow us to
adapt the algorithm of [4], or the exploration part of the regret-minimizing algorithm of [5].

Let us introduce some auxiliary notation. Let ω ∈ ∆K×M be the uniform vector
(

1
KM , . . . , 1

KM

)
.

For all t ∈ N, we define Clipt(x) =
(
min{xa,m, G

√
t}
)
a∈[K],m∈[M ]

for an arbitrary constantG > 0.

We also define αt = 1√
t

and γt = 1
4
√
t
. Finally, for all t ∈ N, we denote by C(t) ∈ RKM the vector

whose (a,m)-th dimension is given by Ca,m(t). We now present Algorithm 1.

Sampling rule After a first initialization phase in which the algorithm pulls each arm at each fidelity
once (Line 1), the agent starts its sub-gradient ascent routine. More specifically at each iteration
t ∈ N, the agent first computes the vector ω̃(t+ 1) using the Exponential Weights algorithm on the
sequence of gain functions {gs}ts=1 := {Clips

((∑
a,m λmπ̃a,m(s)

)
∇F (ω̃(s), µ̂(s))

)
}ts=1, where

π̃(t) := π(ω̃(t)) represents the pull-proportions induced by ω̃(t) and ∇F (ω̃(s), µ̂(s)) denotes a
sub-gradient of F (ω,µ) w.r.t ω (Line 3). Neglecting for a moment the clipping function and the term

4We provide insights on cases in which it is possible to compute the optimal fidelity in Appendix B.4.
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Algorithm 1 Multi-Fidelity Sub-Gradient Ascent

1: Initialization. Pull each arm at each fidelity once, and set ω̃(t) = ω̄ for all t ∈ {1, . . . ,KM}
2: Sampling Rule for t ≥ KM
3: Sub-gradient Ascent

ω̃(t+ 1) ∈ argmax
ω∈∆K×M

αt+1

t∑
s=KM

ω ·Clips

((∑
a,m

λmπ̃a,m(s)

)
∇F (ω̃(s), µ̂(s))

)
− kl(ω,ω)

4: From Costs to Pulls

π̃a,m(t+ 1) =
ω̃a,m(t+ 1)

λm

1∑
i∈[K]

∑
j∈[M ]

ω̃i,j(t+1)
λj

∀a ∈ [K],m ∈ [M ]

5: Forced Exploration π′(t+ 1) = (1− γt)π̃(t+ 1) + γtω

6: Cumulative Tracking (At+1,Mt+1) ∈ argmax(a,m)∈[K]×[M ]

∑t
s=1 π

′
a,m(s)−Na,m(t)

7: Stopping Rule τδ = inf
{
t ≥ KM : maxi∈[K] minj 6=i fi,j(C(t), µ̂(t)) ≥ βt,δ

}
8: Decision Rule âτδ ∈ argmaxi∈[K] minj 6=i fi,j(C(t), µ̂(t))

c̃(s) :=
(∑

a,m λmπ̃a,m(s)
)

(these terms are present mainly for technical reasons), this step can be
interpreted, from an intuitive perspective, as finding a sequence of weights {ω̃(t)}t that minimizes
the regret on the sequence of empirical losses F (ω∗, µ̂(s))− F (ω̃(s), µ̂(s)). 5 At this point, once
ω̃(t+ 1) is computed, Algorithm 1 will convert these cost proportions into pull proportions while
adding some forced exploration (Line 4-5), and then, it applies a standard cumulative tracking
procedure [8] in the pull-proportion space so to ensure that Na,m(t) ≈

∑t
s=1 π

′
a,m(s) (Line 6).

Stopping and decision rule Finally, the algorithm applies a generalized likelihood ratio (GLR) test
to decide when to stop (Line 7). For i, j ∈ [K], fi,j(C(t), µ̂(t)) can be interpreted a GLR statistics
for comparing two classes: ΘKM versus {θ | θi ∈ MF, θj ∈ MF, θj,M ≥ θi,M}. If that GLR is
large enough (if it exceeds a threshold βt,δ), we can reject the hypothesis that µ belongs to the second
class. If there is an arm i for which we can reject the alternative class for all j 6= i, we have rejected
all θ ∈MMF where i is not the best arm and we can safely stop and return the answer âτδ = i. Since
each fi,j is expressed as a sum of only two arms and M fidelities, it is possible to show that choosing
βt,δ ≈ log(K/δ) + 2M log (log(t) + 1) (see its exact expression in (31)) guarantees the correctness
of the test, namely that Pµ(âτδ 6= ?) ≤ δ holds (Proposition C.13).

4.1 Theoretical guarantees

At this point, we are ready to state the main theoretical result on the performance of our algorithm.
Theorem 4.1. For any multi-fidelity bandit model µ ∈MMF, Algorithm 1 using the threshold βt,δ
given in (31) is δ-correct and satisfies

lim sup
δ→0

Eµ[cτδ ]

log(1/δ)
≤ C∗(µ). (5)

As we can see from Theorem 4.1, Algorithm 1 is asymptotically optimal, meaning that it matches the
lower bound we presented in Theorem 3.1 for the asymptotic regime of δ → 0.

Comparison with existing MF-BAI algorithms We conclude this section by comparing our
results with the literature [25, 31]. First, [25] and [31] rely on additional assumptions that play a
crucial role both for the algorithm design and the resulting theoretical guarantees. In [25], the authors
enforce an additional and intricate structural assumption on the relationships between λ’s and ξ’s
(see Assumption 1 in [25]). In [31], instead, the authors assume additional knowledge expressed as

5Whenever µ̂(s) is sufficiently close to µ, this implicitly generates a sequence of weights that provide values
of F (·,µ) "close" to the one of the oracle weights ω∗.
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an upper bound on µ?,M and a lower bound on argmaxi 6=? µi,M . For both works, whenever these
assumptions are not satisfied (i.e., λ’s and ξ’s do not respect Assumption 1 in [25], and the knowledge
on µ?,M , argmaxi6=? µi,M is imprecise/not available), the theoretical guarantees offered by existing
algorithms are arbitrarily sub-optimal. On the other hand, our algorithm requires no additional
assumptions and is the only one that matches exactly the cost complexity lower bound. Indeed,
neither the cost upper bound of [25] nor the one of [31] matches the lower bound of Theorem 3.1,
even when their additional hypotheses are satisfied.

4.2 Computing the gradient of F (ω, µ)

Algorithm 1 requires computing a sub-gradient of F (ω,µ). Notably, we remark that this is needed
for a generic µ ∈ ΘKM , as µ̂(t) might violate the fidelity constraints due to inaccurate estimations
or degenerate cases in which the multi-fidelity constraints are attained with equality. In this section,
we provide an efficient algorithm for the computation of the sub-gradient that arises from a more
in-depth study of the function F (ω,µ). To this end, we begin by presenting some intermediate
characterization of the functions fi,j(ω,µ) that define F (ω,µ).

Lemma 4.2. Consider µ ∈ ΘKM and ω ∈ ∆K×M . Define for k ∈ [K],

ψ∗k := argmin
ψ∈R

M∑
m=1

ωk,m
d−(µk,m, ψ + ξm) + d+(µk,m, ψ − ξm)

λm

Then, the following holds:

fi,j(ω,µ) =
∑

k∈{i,j}

M∑
m=1

ωk,m
d−(µk,m, ψ

∗
k + ξm) + d+(µk,m, ψ

∗
k − ξm)

λm
if ψ∗j > ψ∗i (6)

fi,j(ω,µ) = inf
η∈R

∑
k∈{i,j}

M∑
m=1

ωk,m
d−(µk,m, η + ξm) + d+(µk,m, η − ξm)

λm
otherwise. (7)

We further introduce η∗i,j as the minimizer in the expression in (7) 6. When µ ∈MMF, we can show
that ψ∗k = µk,M for all k and due to the multi-fidelity constraints the expression in (6) is always equal
to zero. Hence in both cases fi,j(ω,µ) is equal to the expression in (7), which can be rewritten

fi,j(ω,µ) = 1 (µi,M ≥ µj,m)
∑

k∈{i,j}

M∑
m=1

ωk,m
d−(µk,m, η

∗
i,j + ξm) + d+(µk,m, η

∗
i,j − ξm)

λm
.

This quantity can be interpreted as the transportation cost for making µj,M larger than µi,M . When
µi /∈ MF or µj /∈ MF, if ψ∗j > ψ∗i , fi,j(ω,µ) is equal to the expression (6) that can be interpreted
as a transportation cost with an alternative in which i and j satisfy the multi-fidelity constraints.

Using this preliminary result, we provide a precise expression for the sub-gradient of F (ω,µ).
Theorem 4.3. Considerµ ∈ ΘKM andω ∈ ∆K×M such that F (ω,µ) > 0 holds. Let (i, a) ∈ [K]2

be a pair of arms that attains the max-min value in Equation (2). Then a sub-gradient∇F (ω,µ) of
F (ω,µ) w.r.t. to ω is given by one of the two following expressions: for j ∈ {a, i} and m ∈ [M ] ,

∇F (ω,µ)j,m =
d+(µj,m, η

∗
i,a − ξm) + d−(µj,m, η

∗
i,a + ξm)

λm
if ψ∗i ≥ ψ∗a , (8)

∇F (ω,µ)j,m =
d+(µj,m, ψ

∗
j − ξm) + d−(µj,m, ψ

∗
j + ξm)

λm
otherwise. (9)

That sub-gradient∇F (ω,µ) is 0 in all the remaining KM − 2M dimensions.

Theorem 4.3 shows how to compute a sub-gradient of F (ω,µ) under the mild assumption that
F (ω,µ) > 0.7 More specifically, it is sufficient to consider the pair (i, a) that attains the max-min

6To ease the notation, we omit (most of the time) the dependence of ψ∗
k and η∗i,j in ω and µ.

7As we discuss in Remark C.8, F (ω̃(t), µ̂(t)) = 0 is a rare condition, and, whenever it happens, it is
possible to alter Algorithm 1 slightly without affecting its theoretical guarantees.
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value in Equation (2), and then test whether ψ∗i ≥ ψ∗a holds to choose which expression to use among
Equations (8) and (9). An interesting interpretation of the sub-gradient expression is that, whenever
ψ∗i ≥ ψ∗a, the sub-gradient is pointing toward the direction of the space that aims at increasing the
information to discriminate the eventual optimality of arm a against i. On the other hand, whenever
ψ∗a > ψ∗i holds, the sub-gradient points towards the direction of minimizing errors in the multi-fidelity
constraints for arm i and arm a (if any).

Computing the sub-gradient efficiently To conclude, we notice that to compute a sub-gradient, it
is required to compute ψ∗k for all arm k and η∗i,j for all pairs of arms such that ψ∗i ≥ ψ∗j . Using their
definitions, this will require solving O(K2) one-dimensional optimization problems of functions that
involve O(M) variables, which leads to a computational complexity which is roughly O(K2Mn),
where n is the number of iterations of the convex solver. In the following, we show that it is possible
to exploit the structure of the fi,j’s to obtain an algorithm whose total complexity is O(K2M2) and
that does not suffer from any approximation error due to the optimization procedure. Specifically,
we now present a result that shows how to compute η∗i,j . A similar result holds also for ψ∗k and is
deferred to Appendix C.

Lemma 4.4. Consider µ ∈ ΘKM and ω ∈ ∆K×M such that fi,j(ω,µ) > 0 . Suppose that
ψ∗i, ≥ ψ∗j holds. Then, there exists a unique minimizer η∗i,j(ω) of Equation (7) which is the unique
solution of the following equation of η:

η =

∑
a∈{i,j}

∑
m
ωa,m
λm

(
ka,m(η)

µa,m+ξm
v(η−ξm) + ka,m(η)

µa,m−ξm
v(η+ξm)

)
∑
a∈{i,j}

∑
m
ωa,m
λm

(
ka,m(η) 1

v(η−ξm) + ka,m(η) 1
v(η+ξm)

) , (10)

where ka,m(x) = 1{x ≥ µa,m + ξm} and ka,m(x) = 1{x ≤ µi,m − ξm}.

From Lemma 4.4, to compute η∗i,j it is sufficient to find the unique solution to the fixed point equation
given in (10). To do this efficiently, we observe that the right hand side of Equation (10) depends
on η only for the presence of the indicator functions ka,m(η) and ka,m(η), which can only take a
finite number of values. Hence, it is sufficient to evaluate the right-hand side at an arbitrary point
within a given interval where the values of the indicator functions do not change. If the resulting
value is within the considered interval, then this value is our fixed point. Since there are at most
O(M) candidate fixed points, this procedure takes at most O(M2) steps.

Computational complexity remark It follows that the per-iteration computational complexity of
Algorithm 1 is O

(
K2M2

)
. The computationally efficient technique explained above indeed applies

not only to the sampling rule but also to the stopping and the decision rules.8

5 Numerical experiments

We conclude this work by presenting numerical simulations whose goal is to show the empirical
benefits of our approach. We compare MF-GRAD against IISE [25], and the gradient approach of
[22] that simply does BAI using samples collected at fidelity M . We will refer to this additional
baseline as GRAD. In the following, we avoided the comparison with the multi-fidelity algorithms in
[31] as we ran into issues when doing experiments. We elaborate more on this point in Appendix D.6,
where we provide numerical evidence of the fact those algorithms might fail at stopping, together
with an argument that shows a mistake in the proofs of [31].

Given this setup, first, we test all methods on a 4× 5 multi-fidelity bandit with Gaussian arms that
have been randomly generated, using a risk parameter δ = 0.01. Due to space constraints and for the
sake of exposition, we refer the reader to Appendix D.1 for the value of µ, ξ’s and λ’s and details on
the stopping rules calibration. We report the empirical distribution of the resulting cost complexities
in Figure 1. As one can verify, MF-GRAD obtains the most competitive performance. Experiments
on additional 4× 5 bandits that are reported in Appendix D.3 provide a similar conclusion.

Furthermore, to illustrate the sub-optimality of IISE and GRAD from an intuitive perspective, we
test our algorithm on a simple 5× 2 instance that allows to easily understand why existing methods
underperform MF-GRAD. Specifically, we consider µi = [0.4, 0.5] for all i ∈ [4], µ5 = [0.5, 0.6],

8Given the definition of fi,j , it is sufficient to replace ωi,m/λm in Equation (10) with Na,m(t).
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Figure 1: Empirical cost complexity for 1000 runs
times with δ = 0.01 on the 4× 5 multi-fidelity bandit.

Figure 2: Empirical cost complexity for 1000 runs
times with δ = 0.01 on the 5× 2 multi-fidelity bandit.

Figure 3: Empirical cost proportions of MF-GRAD for 100000 iterations on the 5× 2 bandit model. Results
are average over 100 runs and shaded area report 95% confidence intervals. Empirical cost proportions of a
certain arm are plotted with the same color. Cost proportions at fidelity 1 and 2 are visualized with a circle and a
squared respectively.

λ = [0.5, 5], ξ = [0.1, 0] and we report the cost complexity of the three algorithms in Figure 2.
In this case, we can prove that the optimal fidelity is sparse on fidelity m = 1 for i ∈ [4], and on
fidelity m = 2 for arm 5. Furthermore, thanks to the symmetry of the problem, it is possible to
show that ω∗i = [0.09621, 0] for all i ∈ [4], and ω∗5 = [0, 0.61516] (see Appendix D.1). As one can
see, IISE obtains the worst performance in this domain. The reason is that the concept of optimal
fidelity on which IISE relies is sub-optimal (i.e., according to the design principle of IISE, the optimal
fidelity is m = 2 for all arms), and the algorithm, in practice, will discard sub-optimal arms using
samples that have been collected only at fidelity m = 2. Nevertheless, this will only happen after
a first period in which IISE tries to exploit (unsuccessfully) data at fidelity m = 1. GRAD, on the
other hand, obtains sub-optimal performances since although most of the budget should be spent on
fidelity 2 (as ω∗5,2 = 0.61516), it never pulls the cheapest (and optimal) fidelity for arms i ∈ [4].
Finally, MF-GRAD, on the other hand, obtains the most competitive performance since, as learning
progresses, its empirical cost proportions eventually approach the one prescribed by ω∗. To verify this
behavior, we removed the stopping rule from MF-GRAD, and let the algorithm run for 105 iterations.
In Figure 3, we report the entire evolution of the cost proportions during learning. As one can
appreciate, at the end of this process, the empirical cost proportions of MF-GRAD are approaching
the one described by ω∗. 9. Finally, we also refer the reader to Appendix D for additional results
(e.g., additional domains, smaller regimes of δ) and further insights.

9Furthermore, at the end of this period, we measured the distance between ω∗ and the empirical cost
proportions ω(105); it holds that ||ω∗ − ω(105)||2 ≈ 0.031± 0.0006. The error has been estimated with 100
independent runs, and 0.0006 reports the 95% confidence intervals.
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6 Conclusions

For fixed-confidence best arm identification in multi-fidelity bandits, we presented a lower bound on
the cost complexity and an algorithm with a matching upper bound in the regime of high confidence.
The algorithm uses features of the lower bound optimization problem in order to compute its updates
efficiently. Unlike prior work, it does not require any assumption or prior knowledge on the bandit
instance. Our work also confirmed the existence in most cases of an “optimal fidelity” to explore
each arm in the asymptotic regime, and revealed that the intuitive such notions proposed in prior
work were inaccurate. Yet, our algorithm does not need to identify these optimal fidelities in order to
be asymptotically optimal.

This raises the following question: could the performance of the algorithm be enhanced by exploiting
the sparsity pattern? We conjecture that estimating the optimal fidelities accurately may actually be
harder than identifying the best arm. However, leveraging some sufficient conditions for w∗a,m = 0
(such as the ones given in Proposition B.6) to eliminate some fidelities and reduce the support of the
forced exploration component of the algorithm seems a promising idea. A limitation of our current
analysis is that it only provides asymptotic guarantees in the high confidence regime, although our
experiments reveal good performance for moderate values of δ. In future work, we will seek a better
understanding of the moderate confidence regime [30]. To this end, we may leverage some proof
techniques from other works using online optimization that obtain finite-time bounds [4, 5]. On the
lower bound side, while C∗(µ) essentially scales with K due to the sparsity pattern, an interesting
open question is whether there is a worse case O(KM) scaling in the moderate confidence regime,
indicating that all fidelities do need to be explored at least a constant amount of times.
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A Table of Symbols

Table 1 reports a summary on the main symbols and the notation used throughout the paper.

Table 1: Notation

Symbol Meaning

K,M Number of arms and number of fidelity
δ ∈ (0, 1) Maximum risk parameter
τδ Stopping time of an algorithm
cτδ Cost incurred at the stopping time τδ
a?(µ) argmaxa∈[K] µa,M . Often denoted simply by ?
âτδ Arm recommended by the algorithm when it stops
µ Bandit model
µi,m Mean of the i-th arm at fidelity m within bandit model µ
ξm Precision of fidelity m, i.e., maxi∈[K] |µi,m − µi,M | ≤ ξm
λm Cost incurred for gathering samples at fidelity m
Θ Set of possible means in the exponential family
µa ∈ MF Arm a satisfies the multi-fidelity constraints
µ̂(t) Empirical bandit model at time t
MMF Set of multi-fidelity bandit models
M∗MF Set of multi-fidelity bandit models with a unique optimal arm
d(p, q) KL divergence between two distributions with means p,q in the exponential family
d+(p, q), d−(p, q) d+(p, q) = d(p, q)1 {p ≤ q}, d−(x, y) = d(p, q)1 {p ≥ q}
v(y) Variance of the distribution in the exponential family with mean parameter y
C∗(µ)−1 Expression that characterizes the lower-bound on the cost-complexity
ω,π Vector of cost and pull proportions respectively
ω∗ ω∗ ∈ argmaxω∈∆K×M

F (ω,µ)
fi,j(ω,µ) Dissimilarity between arms i and j defined in Equation (1)
F (ω,µ) maxi∈[K] minj 6=i fi,j(ω,µ)
∆∗K×M (µ) Set of optimal oracle weights ω∗ for the multi-fidelity bandit model µ
M̃MF Subset of multi-fidelity bandit models for which there exists a non-sparse optimal allocation ω∗
ω Uniform KM -dimensional vector ((KM)−1, . . . , (KM)−1)
G > 0 Clipping constant in Algorithm 1
αt, γt Learning rate and forced exploration rate respectively
C(t) Vector whose (a,m)-th dimension is Ca,m(t)
ω(t) Vector of empirical cost proportions, namely ωa,m(t) = Ca,m(t)(

∑
i∈[K]

∑
j∈[M ] Ci,j(t))

−1

ψ∗i Minimizer of Equation (6)
η∗i,j Minimizer of Equation (7)
ki,m(η) 1 {η ≥ µi,m + ξm}
ki,m(η) 1 {η ≤ µi,m − ξm}

B Cost complexity lower bound: proofs and derivations

B.1 Proof of Theorem 3.1

Theorem 3.1. Let δ ∈ (0, 1). For any δ-correct strategy, and any multi-fidelity bandit model
µ ∈M∗MF, it holds that:

Eµ[cτδ ] ≥ C∗(µ) log
(

1
2.4 δ

)
, (3)

where C∗(µ)−1 := supω∈∆K×M
F (ω,µ) = supω∈∆K×M

mina6=? f?,a(ω,µ) .

Proof. Consider δ ∈ (0, 1), a multi-fidelity bandit model µ and an alternative instance θ ∈ Alt(µ)
where Alt(µ) =

⋃
i 6=? {θ ∈MMF : θa,M > θ?,M}. Then, by applying Lemma 1 in [18], we can
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directly connect the expected number of draws of each arm to the KL divergence of the two multi-
fidelity bandit models. More specifically, we have that:∑

a∈[K]

∑
m∈[M ]

Eµ[Na,m(τδ)]d(µa,m, θa,m) ≥ kl(δ, 1− δ). (11)

Then, similarly to Theorem 1 in [8], we now proceed by applying Equation (11) with all the alternative
models θ ∈ Alt(µ). Specifically, we have that:

kl(δ, 1− δ) ≤ inf
θ∈Alt(µ)

∑
a∈[K]

∑
m∈[M ]

Eµ[Na,m(τδ)]d(µa,m, θa,m)

= Eµ[cτδ ] inf
θ∈Alt(µ)

∑
a∈[K]

∑
m∈[M ]

Eµ[λmNa,m(τδ)]

Eµ[cτδ ]

d(µa,m, θa,m)

λm

≤ Eµ[cτδ ] sup
ω∈∆K×M

inf
θ∈Alt(µ)

∑
a∈[K]

∑
m∈[M ]

ωa,m
d(µa,m, θa,m)

λm

= Eµ[cτδ ] sup
ω∈∆K×M

min
a 6=?

inf
θ∈MMF:

θa,M>θ?,M

∑
i,m

ωi,m
d(µi,m, θi,m)

λm

(a)
= Eµ[cτδ ] sup

ω∈∆K×M

min
a6=?

inf
θa∈MF,θ?∈MF:
θa,M>θ?,M

∑
i∈{?,a},m∈[M ]

ωi,m
d(µi,m, θi,m)

λm

= Eµ[cτδ ] sup
ω∈∆K×M

min
a 6=?

f?,a(ω,µ)

= Eµ[cτδ ]C
∗(µ)−1,

where in (a) we use that as µ ∈ MMF, the minimum in θ does not change any arm i /∈ {?, a}.
Finally, we lower bound kl(δ, 1− δ) with log

(
1

2.4 δ

)
, thus concluding the proof.

B.2 Comparison with existing lower bound

In this section, we provide a comparison with the existing lower bound for the MF-BAI setting. In
the following, we restrict our attention to bandits with Gaussian arms with variance 1/2. We assume
for simplicity of the exposition that ? = 1 and that µ1,M > µ2,M ≥ · · · ≥ µK,M . Given this setup,
we begin by recalling Theorem 1 in [25].
Theorem B.1 (Theorem 1 in [25]). Consider any multi-fidelity bandit model µ with Gaus-
sian arms with variance 1/2. Then, for any δ-correct algorithm and δ ≤ 0.15 it holds that
Eµ[cτδ ]/ log

(
(2.4δ)−1

)
is lower bounded by:

min
m∈[M ]:

µ1,m>µ2,M+ξm

λm
(µ1,m − (µ2,M + ξm))2

+

K∑
i=1

min
m∈[M ]:

µ1,M−ξm>µi,m

λm
(µi,m − (µ1,M − ξm))2

.

At this point, focus, for simplicity on the following 2× 2 bandit model (but a trivial generalization
holds for K ×M bandits). We consider µ1,m = µ1,M + ξm

2 and µ2,m = µ2,M − ξm
2 . Furthermore,

suppose that µ1,M = −µ2,M . Then, let ∆ := µ1,M − µ2,M . Suppose that ∆ = ξm, which yields
µ1,M = ξm

2 and µ2,M = − ξm2 , and that

∆

∆− ξm
2

≤
√
λM
λm

.

Since ∆ = ξm, this condition actually simplifies to λM ≥ 4λm.

Under these conditions it is possible to verify that the lower bound of [25] is given by

Eµ[cτδ ] ≥
2λm(

∆− ξm
2

)2 log

(
1

2.4δ

)
=

8λm
∆2

log

(
1

2.4δ

)
.
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At this point, consider, instead, the result that we presented in Theorem 3.1 and consider a generic
weight proportion ω. From Corollary C.2, we know that:

F (ω,µ) = f1,2(ω,µ) = inf
η∈[µ2,M ,µ1,M ]

∑
m∈[M ]

ω1,m
d−(µ1,m, η + ξm)

λm
+ ω2,m

d+(µ2,m, η − ξm)

λm
.

(12)

Then, let ω∗,M be the optimal weights restricted on the portion of the simplex in which ω1,m =
ω2,m = 0. Then, let η∗,M be the optimal solution of Equation (12) when considering ω∗,M .
Using the symmetry of the KL divergence for Gaussian distributions, it holds that η∗,M = 0 and
ω∗,M1,2 = ω∗,M2,2 = 0.5. Then, for any ω it holds that:

F (ω,µ) ≤
∑

m∈[M ]

ω1,m
d−(µ1,m, η

∗,M + ξm)

λm
+ ω2,m

d+(µ2,m, η
∗,M − ξm)

λm

= ω1,M
d(µ1,M , η

∗,M )

λM
+ ω2,M

d(µ2,M , η
∗,M )

λM

≤ F (ω∗,M ,µ),

where in the second step, we have used the fact that d(µ2,m, η
∗,M − ξm) = d(µ2,M − ξm

2 ,−ξm) = 0

and d(µ1,m, η
∗,M + ξm) = d(µ1,M + ξm

2 , ξm) = 0. In other words, we have shown that in this
example the optimal allocation is sparse and on fidelity M . To conclude, we have that:

F (ω∗,M ,µ) = 0.5 ∗
d( ξm2 , 0)

λM
+ 0.5 ∗

d(− ξm2 , 0)

λM
=
d( ξm2 , 0)

λM
=

(∆/2)2

λM
=

∆2

4λM
,

which leads to:

Eµ[cτδ ] ≥
4λM
∆2

log
(
(2.4δ)−1

)
.

Under the assumptions on the problem, 4λM
∆2 is always larger than 8λm

∆2 . This result says that the ratio
among the lower bounds can be of order λM/λm, which is arbitrarily large.

B.3 Proof of Theorem 3.2

In this section, we provide a formal proof on the sparsity of the optimal oracle allocation ω∗. The
proofs given in this section rely on results that are explained in Appendix C.1.

At this point, in order to prove Theorem 3.2, we first introduce some intermediate results that will be
used in the proving the theorem. Specifically, we begin by showing that, for each arm a, there always
exists a fidelity m such that ω∗a,m > 0 holds.

Lemma B.2. Consider µ ∈ MMF and ω∗ ∈ ∆∗K×M (µ). Then, for all a ∈ [K], there exists
m ∈ [M ] such that ω∗a,m > 0.

Proof. We split the proof into two cases. First we consider a 6= ?, and proceed by contradiction.
Consider ω∗ ∈ ∆∗K×M (µ), and suppose there exists a 6= ? such that ω∗?,m = 0 for all m ∈ [M ]. In
this case, however, we have that:

F (ω∗,µ) ≤ f?,a(ω∗,µ) = inf
θa∈MF,θ?∈MF:
θa,M≥θ?,M

M∑
m=1

ω∗?,m
d(µ?,m, θ?,m)

λm
= 0, (13)

where, in the first step we have used the definition of F (ω∗,µ), in the second one the fact that
ω∗a,m = 0 for all m ∈ [M ], and in the last one we selected θ?,m = µ?,m for all m ∈ [M ].
Nevertheless, from Lemma C.6, we know that, whenever ωi,M > 0 holds for all i ∈ [K], then
F (ω,µ) > 0 holds as well. Therefore, ω∗ /∈ ∆∗K×M .

The proof for the case in which i = ? follows identical reasoning.
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We then continue by proving that, at any optimal allocation ω∗, all the transportation costs fa(ω∗,µ)
are equal.
Lemma B.3. Consider µ ∈ MMF and ω∗ ∈ ∆∗K×M (µ). Then, for all a, b such that a 6= ? and
b 6= ? the following holds:

f?,a(ω∗,µ) = f?,b(ω
∗,µ).

Proof. We introduce the following notation:

A =

{
a ∈ [K] \ {?} : a ∈ argmin

b6=?
fb(ω

∗,µ)

}
B = ([K] \ {?}) \ A.

At this point, we proceed by contradiction. Suppose that B 6= ∅. Then, for some sufficiently small
ε > 0, we define ω̃ ∈ ∆K×M in the following way. For all a ∈ A:

ω̃a,M = ω∗a,M + ε/|A|
ω̃a,m = ω∗a,m ∀m < M.

For all b ∈ B, instead:

ω̃b,mb = ω∗b,mb − ε/|B|
ω̃b,m = ω∗b,m ∀m 6= mb,

where mb ∈ [M ] is any fidelity such that ω∗b,mb > 0 (which exists by Lemma B.2).

Given this definition of ω̃, it is easy to see that f?,a(ω̃,µ) > f?,a(ω∗,µ) for all a ∈ A. This
is a direct consequence of the fact that f?,a(·,µ) is a strictly increasing function of ωa,M , which
is apparent from its expression from its expression for µ ∈ MMF given in Corollary C.2 and the
computation of its gradient (Lemma C.3). Moreover, due to similar arguments, it also holds that
f?,b(ω̃,µ) ≤ f?,b(ω∗,µ) for all b ∈ B. Using the continuity of the functions f , for ε small enough we
further have f?,a(ω̃,µ) < f?,b(ω̃,µ) for all a ∈ A and b ∈ B. This leads to mina6=? f?,a(ω∗,µ) <
mina 6=? f?,a(ω̃,µ) which contradicts the optimality of ω∗.

We now continue by providing necessary conditions that characterize some key properties of the
oracle weights ω, which follows from the expression of the gradient of f?,a(ω,µ) with respect to ω
for µ ∈MMF (Lemma C.3).
Lemma B.4. Consider µ ∈M and ω∗ ∈ ∆K×M (µ). Then, for all a 6= ? the following conditions
holds:

d+(µa,m1
, η∗?,a(ω∗)− ξm1

)

λm1

=
d+(µa,m2

, η∗?,a(ω∗)− ξm2
)

λm2

∀m1,m2 : ω∗a,m1
, ω∗a,m2

> 0

d−(µ?,m1
, η∗?,a(ω∗) + ξm1

)

λm1

=
d−(µ?,m2 , η

∗
?,a(ω∗) + ξm2)

λm2

∀m1,m2 : ω∗?,m1
, ω∗?,m2

> 0

d+(µa,m1
, η∗?,a(ω∗)− ξm1

)

λm1

=
d−(µ?,m2

, η∗?,a(ω∗) + ξm2
)

λm2

∀m1,m2 : ω∗a,m1
, ω∗?,m2

> 0

Proof. We begin by recalling the definition of C∗(µ)−1:

C∗(µ)
−1

= sup
ω∈∆K×M

min
a6=?

f?,a(ω,µ),

which, is a concave optimization problem with a non-empty feasible region. Therefore, we can
apply the KKT conditions to study the properties of each local optimal point ω∗ for which the
sub-derivatives exist, i.e., from Theorem 4.3 and Corollary C.2, the ones for which the following
condition hold:10

min
a6=?

f?,a(ω) > 0. (14)

10We notice that a global optimum point clearly satisfies this condition.
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At this point, fix any arm a that attains the minimum in Equation (14). Then, from the KKT conditions,
we obtain the following system of inequalities:

− ∂
ωa,m

f?,a(ω,µ) + c− ba,m = 0 ∀m ∈ [M ]

− ∂
ω?,m

f?,a(ω,µ) = 0 ∀m ∈ [M ]

bi,mω
∗
i,m = 0 ∀i ∈ {?, a},∀m ∈ [M ]

bi,m ≥ 0 ∀i ∈ [K],∀m ∈ [M ]

ω∗i,m ≥ 0 ∀i ∈ [K],∀m ∈ [M ]∑
i,m ω

∗
i,m = 1

.

At this point, suppose that ωi1,m1
> 0, ωi2,m2

> 0 for some i1, i2 ∈ {?, a} and some m1,m2 ∈ [M ],
then bi1,m1 = 0, bi2,m2 = 0. As a consequence, by applying Lemma C.3 and the fact that µ ∈MMF
(i.e., see Corollary C.2), the following equations holds:

d+(µa,m1 , η
∗
?,a(ω∗)− ξm1)

λm1

=
d+(µa,m2 , η

∗
?,a(ω∗)− ξm2)

λm2

∀m1,m2 : ω∗a,m1
, ω∗a,m2

> 0

d−(µ?,m1
, η∗?,a(ω∗) + ξm1

)

λm1

=
d−(µ?,m2

, η∗?,a(ω∗) + ξm2
)

λm2

∀m1,m2 : ω∗?,m1
, ω∗?,m2

> 0

d+(µa,m1
, η∗?,a(ω∗)− ξm1

)

λm1

=
d−(µ?,m2

, η∗?,a(ω∗) + ξm2
)

λm2

∀m1,m2 : ω∗a,m1
, ω∗?,m2

> 0

Finally, to conclude the proof, it is sufficient to iterate these arguments for all a 6= ?. Indeed, from
Lemma B.3, we know that all sub-optimal arms will attain the minimum in Equation (14) at a global
optimum ω∗.

At this point we are ready to prove our main result.

Theorem 3.2. Let ∆∗K×M (µ) := argmaxω∈∆K×M
F (ω,µ) and

M̃MF :=
{
µ ∈M∗MF : ∃i ∈ [K],∃m1,m2 ∈ [M ]2,∃ω∗ ∈ ∆∗K×M (µ) : ω∗i,m1

> 0, ω∗i,m2
> 0
}
.

The set M̃MF is a subset of RK×M whose Lebesgue measure is zero.

Proof. Let us introduce some additional notation. Consider a subset of arm-fidelity pairs X ⊆
[K]× [M ], and define G(X ) ⊆M as the subset of multi-fidelity bandit models µ for which there
exists ω∗ ∈ ∆∗K×M (µ) such that, for all (i,m) ∈ X , ω∗i,m > 0 holds.

Then, fix an arm i 6= ?, and any three fidelity m1,m2,m3 ∈ [M ], and consider µ ∈
G({(i,m1), (i,m2), (?,m3)}).11 Then, from Lemma B.4, we know that the following condition
holds:

d+(µi,m1
, η∗?,i(ω

∗)− ξm1
)

λm1

=
d−(µ?,m3

, η∗?,i(ω
∗) + ξm3

)

λm3

. (15)

This, in turn, implies that η∗?,i(ω
∗) is uniquely identified as a function of µi,m1

, µ?,m3
, ξm1

, ξm3
,

λm1
and λm3

. Indeed, d+(µi,m1
, η∗?,i(ω

∗)− ξm1
) is a strictly increasing function of η∗?,i(ω

∗), while
d−(µ?,m3

, η∗?,i(ω
∗) + ξm3

) is a strictly decreasing function of η∗?,i(ω
∗). Let c1 = η∗?,i(ω

∗), and let

c2 =
d+(µi,m1

,η∗?,i(ω
∗)−ξm1

)

λm1
. At this point, since ω∗i,m2

> 0 holds by definition, we also know, from
Lemma B.4, that the following condition has to be satisfied:

d+(µi,m2
, c1 − ξm2

)

λm2

= c2.

Therefore, the value of µi,m2 is uniquely identified as a function of µi,m1 , µ?,m3 ,ξm1 , ξm3 , λm1

and λm3
. That function is measurable (it’s a combination of d+, d− and their inverses), hence µ

lies on the graph of a measurable function, and such a graph has Lebesgue measure 0. Therefore,

11Similar arguments hold also for i = ?.
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G({(i,m1), (i,m2), (?,m3)}) has measure 0. At this point, thanks to Lemma B.2, we know that, for
arm ?, there always exists at least a fidelity m3 such that ω∗?,m3

> 0. We thus have that

G((i,m1), (i,m2)) ⊆
⋃

m3∈[M ]

G((i,m1), (i,m2), (?,m3)) .

Since G((i,m1), (i,m2)) is contained in a set which is a countable union of null measure sets, it has
null measure.

To conclude the proof, we notice that:

M̃MF ⊆
K⋃
i=1

⋃
m1,m2∈[M ]2

G({(i,m1), (i,m2)}) := Y.

The proof follows from the fact that (i)Y is a countable union of set of null measure (and, consequently,
has null measure), and (ii) M̃MF ⊆ Y .

B.4 Additional results on the sparsity of the oracle weights

In this section, we present additional results on the sparsity of the oracle weights. Specifically:

(i) We identify a specific class of multi-fidelity bandit models in which the optimal allocation
is sparse. In particular, within this class of MF-bandit models, the optimal allocation have
non-zero values only at the cheapest fidelity.

(ii) We then provide sufficient conditions to determine whether some fidelity have zero weights
at any optimal weight vector ω∗

We now proceed by constructing the class of multi-fidelity bandits that we mentioned in point (i)
above. In this construction, we will consider Gaussian multi-fidelity bandits with variance 1

2 . Then,
for any number of arms K and fidelity M , we will denote with AKM , the set of Gaussian multi-
fidelity bandits that satisfy the following construction. We start by building the means of the arms
at the highest fidelity M . Specifically, we consider a generic µ?,m > 0, and let µa,M = −µ?,m for
all a 6= ?. Then, for each fidelity m < M , and any values of λm and ξm, we let µi,m = µi,M − ξm
for all i 6= ?, and µ?,m = µ?,M + ξm. Finally, to simplify some computations, we set σ2 of each
Gaussian distribution to 1

2 .

Proposition B.5. For all µ ∈ AKM , and any ω∗ ∈ ∆∗K×M , it holds that, for all a ∈ [K] and all
m > 1, ω∗a,m = 0.

Proof. To prove the result, starting from Corollary C.2, it is sufficient to notice that, for all µ ∈ AKM
and all a 6= ?, f?,a(ω,µ) can be rewritten as:

f?,a(ω,µ) = inf
η∈[µa,M ,µ?,m]

∑
i∈{?,a}

M∑
m=1

ωi,m
d(µi,M , η)

λm
. (16)

Specifically, Equation (16) follows directly from the symmetric property of KL divergence for
Gaussian distributions, and by the construction of µ. The proof then continue by contradiction.
Suppose there exists ω∗ such that there exists (i,m) (with m > 1) such that ω∗i,m > 0. By defining ω̃
as the vector which is equal to ω∗ except in the components (i,m) and (a, 1) for all a ∈ [K]. More
specifically, for a sufficiently small ε > 0, we define ω̃i,m = ω∗i,m − ε and ω̃a,1 = ω∗a,1 + ε/(K)
for all a ∈ [K]. Then, it is easy to see that f?,a(ω̃,µ) > f?,a(ω∗,µ) holds for all a 6= ?, thus
contradicting the optimality of ω∗.

Finally, we now provide sufficient conditions to determine whether some fidelity have zero weights
at any optimal weight vector ω∗

Proposition B.6. Fix a 6= ?. Then, if µa,m + ξm ≥ µ?,m, then it holds that ω∗a,m = 0. Furthermore,
if µ?,m − ξm ≤ µj,M for all j 6= ∗, then it holds that ω∗?,m = 0.
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Proof. Consider a 6= ?, and let us analyze f?,a(ω,µ) for any ω ∈ ∆K×M . More specifically, we
recall from Corollary C.2, that the only term in which ωa,m plays a role is the following one:

ωa,m
d(µa,m, η

∗
?,a(ω)− ξm)

λm
1
{
η∗?,a(ω) ≥ µa,m + ξm

}
. (17)

Nevertheless, since η∗?,a(ω) ≤ µ?,m ≤ µa,m + ξm, we have that Equation (17) is always equal to 0
for all ω ∈ ∆K×M . To prove the result we now proceed by contradiction. Suppose that ω∗ is such
that ω∗a,m > 0. Then, consider ω̃ as a vector which is equal to ω∗ except in the components (a,m)
and (i,M) for all i 6= ?. More specifically, for a sufficiently small ε > 0, we define ω̃a,m = ω∗a,m− ε
and ω̃i,M = ω∗i,M + ε/(K − 1) for all i 6= ?. At this point, by noticing that f?,i(ω,µ) is strictly
increasing in ωi,M (i.e., due to Theorem 4.3 and the fact that µ ∈ MMF), and since f?,a(ω,µ) is
not affected by the value of ωa,m (i.e., Equation (17)), we have that f?,i(ω̃,µ) > f?,i(ω

∗,µ) for all
i 6= ∗, thus contradicting the optimality of ω∗.

To show that if µ?,m − ξm ≤ µj,M for all j 6= ∗, then it holds that ω∗?,m = 0, it is possible to
follow identifical reasonings. The only difference is that the term ω?,m plays a role in each of the
(K − 1)-equations defining F (ω,µ), namely:

ω?,m
d(µ?,m, η

∗
?,a(ω) + ξm)

λm
1
{
η∗?,a(ω) ≤ µ1,m − ξm

}
∀a 6= ?. (18)

Nevertheless, Equation (18) is equal to 0 for all a 6= ? since η∗?,a(ω) ≥ µi,m − ξm ≥ µa,M holds
for all ω and all a 6= ?. The proof then follows by an identical construction of an alternative weight
vector ω̃ which increases the objective function.

B.5 Sub-optimality of "optimal" fidelity of previous works

In this section, we discuss how the concept of "optimal" fidelity of previous works (i.e., [25] and
[31]) fails to satisfy the notion of optimal fidelity that arises from the tighter lower bound that we
presented in Section 3. In this section, we consider as example 2× 2 multi-fidelity bandit models
with Gaussian distributions. To ease the notation, we will consider µ1,M > µ2,M .

B.5.1 Case 1

We notice that [25] provided the two concepts of optimal fidelity. The first one is from their Theorem 1.
This same concept was then considered later in [31]. A fidelity m is optimal for a certain arm a ∈ [K]
if it satisfies the following condition:

m∗a ∈ argmax
m∈[M ]

µ1,M − (µa,m + ξm)√
λm

if a 6= 1 (19)

m∗a ∈ argmax
m∈[M ]

(µa,m − ξm)− µ2,M√
λm

if a = 1 (20)

Then, consider the following 2×2 example of multi-fidelity BAI problem. Let ξ1 = 0.1, µ1,M = 0.6,
µ1,m = 0.65, µ2,M = 0.5, µ2,m = 0.45 (where we use the notation M = 2 for the maximal fidelity
and m = 1). Suppose, furthermore, that all distributions are Gaussian. In this case, from Equation
(19)-(20), we have that m∗1 = 1 and m∗2 = 1 whenever the following conditions are satisfied:

µ1,M − (µ2,m + ξm)√
λm

>
µ1,M − µ2,M√

λM
µ1,m − ξm − µ2,M√

λm
>
µ1,M − µ2,M√

λM
.

Plugging in the numerical values, we obtain in both cases

0.05√
λm

>
0.1√
λM

,

thus showing that, according to [31], the optimal fidelity for both arms is m = 1 whenever
√

λM
λm

>
0.1
0.05 .
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At this point, consider the expression of F (ω,µ) = f1,2(ω,µ) in this particular example. Then,
it is possible to show that, for any ω ∈ ∆2×2 such that ω1,M = ω2,M = 0, then, f1,2(ω,µ) = 0.
Specifically, we have that F (ω,µ) is given by:

inf
η∈[µ2,M ,µ1,M ]

ω1,m
d(µ1,m, η + ξm)1{η ≤ µ1,m − ξm}

λm
+ ωa,m

d(µ2,m, η − ξm)1{η ≥ µa,m + ξm}
λm

In turn, this is equal to:

inf
η∈[0.5,0.6]

ω1,m
d(0.55, η)1{η ≤ 0.55}

λm
+ ωa,m

d(0.55, η)1{η ≥ 0.55}
λm

,

which is always 0 for η = 0.55.

On the other hand, Lemma C.6, shows that any strategy that gives positive value to weights at fidelity
M = 2 obtains F (ω,µ) > 0.

B.5.2 Case 2

Furthermore, [25] provided also the following concept of optimal fidelity which only holds for
sub-optimal arms (see Definition 1 in [25]). A fidelity m such that µ1,M − µ2,M > 4ξm holds is said
to be optimal for arm a 6= 1 if the following holds:

λm
(µ1,M − µa,M − 4ξm)2

≤ min
m̄>m

λm̄
(µ1,M − µa,M − 4ξm)2

. (21)

At this point, consider the following classes of multi-fidelity bandit models: µ2,m = µ2,M − ξm,
µ1,m = µ1,M + ξm, µ1,M −µ2,M ≤ 4ξm. In this case, from Equation (20) it follows that the optimal
fidelity for arm 2 is always M . Nevertheless, since µ2,m = µ2,M − ξm, µ1,m = µ1,M + ξm, we
know from Proposition B.5 ω1,M = ω2,M = 0.

C Algorithm analysis

C.1 Gradient computation

We start by analyzing a salient feature of fi,j(ω,µ) that holds for any µ ∈ ΘKM .

Lemma C.1. Consider µ ∈ ΘKM . Fix any ω ∈ ∆K×M and i, j ∈ [K]. Let θ∗ be the solution of
the following optimization problem:

θ∗ ∈ argmin
θi∈MF,θj∈MF:
θj,M≥θi,M

∑
m∈[M ]

ωj,m
d(µj,m, θj,m)

λm
+
∑

m∈[M ]

ωi,m
d(µi,m, θi,m)

λm
.

Furthermore, define for k ∈ {i, j}:

Mk(ω,µ,θ∗) :=
{
m ∈ [M − 1] : θ∗k,M > µk,m + ξm

}
Mk(ω,µ,θ∗) :=

{
m ∈ [M − 1] : θ∗k,M < µk,m − ξm

}
.

Then, for k ∈ {i, j} we have that

θ∗k,m = µk,m ∀m ∈ [M ] \
(
Mk(ω,µ,θ∗) ∪Mk(ω,µ,θ∗)

)
(22)

θ∗k,m = θ∗k,M − ξm ∀m ∈Mk(ω,µ,θ∗) (23)

θ∗k,m = θ∗k,M + ξm ∀m ∈Mk(ω,µ,θ∗) (24)

In particular,

fi,j(w,µ) =
∑

k∈{i,j}

∑
m∈[M ]

ωk,m
d−(µk,m, θ

∗
k,M + ξm) + d+(µk,m, θ

∗
k,M − ξm)

λm

= min
θj,M≥θi,M

∑
k∈{i,j}

∑
m∈[M ]

ωk,m
d−(µk,m, θk,M + ξm) + d+(µk,m, θk,M − ξm)

λm
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Proof. We begin by proving Equation (22). To this end, it is sufficient to notice that, given a fixed
θ∗k,M , it is possible to set θ∗k,m := µk,m, whenever the following condition is satisfied:

|θ∗k,M − µk,m| ≤ ξm. (25)

The condition is Equation (25) is equivalent to requiring m ∈ [M ] \(
Mk(ω,µ,θ∗) ∪Mk(ω,µ,θ∗)

)
, which concludes the first part of the proof.

We continue by proving Equation (23). Consider m ∈ Mk(ω,µ,θ∗), that is θ∗k,m > µk,m + ξm.
From this condition, it directly follows that θ∗k,m > µk,m; therefore, since d(µk,m, x) is increasing
in x, it follows that, in order to attain the argmin, we need to pick the smallest value of θk,m that
satisfies the multi-fidelity constraint |θ∗k,M − θk,m|, that is θ∗k,M − ξm.

The proof of Equation (23) follows is almost identical to the one of Equation (24); it is sufficient to
replace the definition of Mk(ω,µ,θ∗) with Mk(ω,µ,θ∗).

At this point, we continue by analyzing in more detail the function fi,j(ω,µ).

Lemma 4.2. Consider µ ∈ ΘKM and ω ∈ ∆K×M . Define for k ∈ [K],

ψ∗k := argmin
ψ∈R

M∑
m=1

ωk,m
d−(µk,m, ψ + ξm) + d+(µk,m, ψ − ξm)

λm

Then, the following holds:

fi,j(ω,µ) =
∑

k∈{i,j}

M∑
m=1

ωk,m
d−(µk,m, ψ

∗
k + ξm) + d+(µk,m, ψ

∗
k − ξm)

λm
if ψ∗j > ψ∗i (6)

fi,j(ω,µ) = inf
η∈R

∑
k∈{i,j}

M∑
m=1

ωk,m
d−(µk,m, η + ξm) + d+(µk,m, η − ξm)

λm
otherwise. (7)

Proof. The proof follows by analyzing the definition of fi,j(ω,µ). Consider θ∗i ,θ
∗
j that attaines the

minimum in Equation (1). Then, there are two possibilities: either θ∗i,M = θ∗j,M or θ∗j,M > θ∗i,M .

Suppose that θ∗j,M > θ∗i,M , then we notice that the optimization problem in fi,j(ω,µ) is a 2D-convex
optimization problem in the variables θj,M , θi,M (thanks to Lemma C.1). Therefore, since the
minimum of the constrained problem is such that θj,M > θi,M , than, by the convexity of the problem,
this is also a minimum for the unconstrained problem, thus leading to:

fi,j(ω,µ) = inf
θi∈MF,θj∈MF

∑
k∈{i,j}

∑
m∈[M ]

ωk,m
d(µk,m, θk,m)

λm
.

At this point, we notice that the constraints in the previous optimization problem are only intra-arm.
Therefore, we can rewrite fi,j(ω,µ) as:

fi,j(ω,µ) =
∑

k∈{i,j}

inf
θk∈MF

∑
m∈[M ]

ωk,m
d(µk,m, θk,m)

λm
.

Furthermore, applying the same reasoning as in the proof of Lemma C.1, we can further rewrite
fi,j(ω,µ) as follows:

fi,j(ω,µ) =
∑

k∈{i,j}

inf
ψ∈R

∑
m∈[M ]

ωk,m
d+(µk,m, ψ − ξm) + d−(µk,m, ψ + ξm)

λm

=
∑

k∈{i,j}

∑
m∈[M ]

ωk,m
d−(µk,m, ψ

∗
k + ξm) + d+(µk,m, ψ

∗
k − ξm)

λm
.

At this point, we notice that due to Lemma C.1 we know that θ∗j,M = ψ∗j and θ∗i,M = ψ∗i , thus
concluding the first part of the proof.
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Consider now the case in which θ∗j,M = θ∗i,M holds. Then, applying Lemma C.1, and using
θ∗i,M = θ∗j,M , we can rewrite fi,j(ω,µ) as follows:

fi,j(ω,µ) = inf
η∈R

∑
k∈{i,j}

M∑
m=1

ωk,m
λm

(
d+(µk,m, η − ξm) + d−(µk,m, η + ξm)

)
,

thus concluding the proof.

Given this result, we recall that the definitions of

ψ∗i = argmin
ψ∈R

∑
m∈[M ]

ωi,m
d−(µi,m, ψ + ξm) + d+(µi,m, ψ − ξm)

λm
(26)

η∗i,j = argmin
η∈R

∑
k∈{i,j}

∑
m∈[M ]

ωk,m
d−(µk,m, η + ξm) + d+(µk,m, η − ξm)

λm
. (27)

Corollary C.2. Consider µ ∈MMF, and a ∈ [K] such that a 6= ?. Then it holds that:

f?,a(ω,µ) = inf
η∈[µa,M ,µ?,M ]

∑
i∈{?,a}

M∑
m=1

ωi,m
d−(µi,m, η + ξm) + d+(µi,m, η − ξm)

λm

= inf
η∈[µa,M ,µ?,M ]

M∑
m=1

ω?,m
d−(µ?,m, η + ξm)

λm
+ ωa,m

d+(µa,m, η − ξm)

λm

Proof. At this point, we notice that whenever µ ∈MMF it holds that f?,a can always be expressed
as Equation (7). This is direct by the condition on ψ’s in Lemma 4.2. Furthermore, it also holds at
η∗?,a that d−(µa,m, η

∗
?,a + ξm) = 0, and d+(µ?,m, η

∗
?,a − ξm) = 0. This is a consequence of the fact

that η∗?,a ∈ [µa,M , µ?,M ] for all weights ω. Indeed, η∗?,a ∈ [µa,M , µ?,M ] holds due to monotonicity
property of the KL divergence.

We now analyze in more detail Equations (26) and (27). In particular, we begin by focusing on
Equation (26). Taking the gradient in Equation (27) w.r.t. the optimization variable η, and setting it
equal to 0, we obtain that any optimal point η∗i,j(ω) needs to satisfy the following equation:

η

 ∑
a∈{i,j}

M∑
m=1

ωa,m
λm

(
ka,m

1

v(η − ξm)
+ ka,m

1

v(η + ξm)

) = (28)

∑
a∈{i,j}

M∑
m=1

ωa,m
λm

(
ka,m

µa,m + ξm
v(η − ξm)

+ ka,m
µa,m − ξm
v(η + ξm)

)
.

where we recall that ka,m(η) and ka,m(η) are given by:

ka,m(η) = 1 {η ≥ µa,m + ξm}
ka,m(η) = 1 {η ≤ µa,m − ξm} .

Given this intermediate result, we now investigate in more depth the solution of Equation (28).
Lemma 4.4. Consider µ ∈ ΘKM and ω ∈ ∆K×M such that fi,j(ω,µ) > 0 . Suppose that
ψ∗i, ≥ ψ∗j holds. Then, there exists a unique minimizer η∗i,j(ω) of Equation (7) which is the unique
solution of the following equation of η:

η =

∑
a∈{i,j}

∑
m
ωa,m
λm

(
ka,m(η)

µa,m+ξm
v(η−ξm) + ka,m(η)

µa,m−ξm
v(η+ξm)

)
∑
a∈{i,j}

∑
m
ωa,m
λm

(
ka,m(η) 1

v(η−ξm) + ka,m(η) 1
v(η+ξm)

) , (10)

where ka,m(x) = 1{x ≥ µa,m + ξm} and ka,m(x) = 1{x ≤ µi,m − ξm}.
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Proof. Let us analyze:

fi,j(ω,µ) = inf
η∈R

∑
a∈{i,j}

∑
m∈M

ωa,m
d−(µa,m, η + ξm)

λm
+ ωa,m

d+(µa,m, η − ξm)

λm

:= inf
η∈R

gi,j(ω,µ, η).

At this point, we proceed by contradiction. Suppose that there exists x1, x2 ∈
argminη∈R gi,j(ω,µ, η) such that x1 6= x2. From the convexity of gi,j(ω,µ, η) w.r.t. η, we
know that any x ∈ [x1, x2] belongs to the argmin set as well. Furthermore, for all x ∈ [x1, x2], since
fi,j(ω,µ) > 0, at least one of the following condition is satisfied:

• ωa,M
λM

d(µa,M , x) > 0 holds for some a ∈ {i, j}

• ωa,m
λm

d(µa,M , x+ ξm)ka,m(x) > 0 holds for some a ∈ {i, j} and some fidelity m < M

• ωa,m
λm

d(µa,M , x− ξm)ka,m(x) > 0 holds for some a ∈ {i, j} and some fidelity m < M

Therefore, from Equation (28), we obtain that all x ∈ [x1, x2] are fixed points of the following
Equation:

x =

∑
a∈{i,j}

∑M
m=1

ωa,m
λm

(
ka,m(x)

µa,m+ξm
v(x−ξm) + ka,m(x)

µa,m−ξm
v(x+ξm)

)
(∑

a∈{i,j}
∑M
m=1

ωa,m
λm

(
ka,m(x) 1

v(x−ξm) + ka,m(x) 1
v(x+ξm)

)) , (29)

At this point, we notice that for any couple of different x̃1, x̃2 that satisfies Equation (29), there exists
at least one arm a ∈ {i, j} and one fidelity m < M such that at least one of the following two
conditions hold:

• ka,m(x̃1) 6= ka,m(x̃2)

• ka,m(x̃2) 6= ka,m(x̃2)

This however, is possible only for a finite number of points, while the interval [x1, x2] con-
tains infinitely many optimal points. Therefore, there exists a unique solution η∗i,j(ω) ∈
argminη∈R gi,j(ω,µ, η), and, furthermore, it is a solution of Equation (29), thus concluding the
proof.

Given this result, we continue by providing a result on how to compute the derivative of fi,j(ω,µ)
whenever fi,j(ω,µ) is given by Equation (7).

Lemma C.3. Considerµ ∈ ΘKM andω ∈ ∆K×M such that fi,j(ω,µ) > 0. Furthermore, suppose
that fi,j(ω,µ) is given by Equation (7). Then, for all a ∈ {i, j} and all m ∈ [M ]:

∂fi,j(ω,µ)

∂ωa,m
=
d+(µa,m, η

∗
i,j + ξm) + d−(µi,m, η

∗
i,j − ξm)

λm
.

Proof. First of all, we notice that, since fi,j(ω,µ) > 0 holds, and since fi,j(ω,µ) is expressed as
in Equation (7), then, thanks to Lemma 4.4, we know that η∗i,j(ω) is the unique optimum of the
Equation (7). In the rest of this proof, we will explicit the relationship between fi,j and η∗i,j(ω)
by writing fi,j(ω,µ, η∗i,j(ω)). At this point, fix a ∈ {i, j} and m ∈ [M ]. Then, it is easy to verify
from Equation (10) that both the right and left derivative of η∗i,j(ω) w.r.t. ωa,m exists. Suppose for a
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moment that they are equal, then we have that
∂η∗i,j(ω)

∂ωa,m
exists and it continuous. Therefore, we obtain

∂

∂ωa,m
fi,j(ω,µ, η

∗
i,j(ω)) =

∂fi,j
∂ωa,m

(ω,µ, η∗i,j(ω)) +
∂fi,j

∂η∗i,j(ω)
(ω,µ, η∗i,j(ω))

∂η∗i,j(ω)

∂ωa,m

=
∂fi,j
∂ωa,m

(ω,µ, η∗i,j(ω))

=
d+(µa,m, η

∗
i,j + ξm) + d−(µa,m, η

∗
i,j − ξm)

λm
,

where in the second step we have used that ∂fi,j
∂η∗i,j(ω) (ω,µ, η∗i,j(ω)) = 0 since η∗i,j(ω) is a minimizer

of Equation (7).

Similarly, whenever, the right and the left derivatives of η∗i,j(ω) are different12, we can follow similar
arguments, but analyzing left and right derivatives, and we will obtain an identical result. Indeed,
this does not introduce discontinuity issue in the derivatives of fi,j thanks to the fact that η∗i,j(ω) is a
minimizer of Equation (7).

At this point, it remains to analyze in more detail the case in which we have that fi,j(ω) is expressed
as in Equation (6).
Lemma C.4. Consider µ ∈ ΘKM and ω ∈ ∆K×M such that fi,j(ω,µ) > 0 holds. Furthermore,
suppose that ψ∗j > ψ∗i . Then, for each a ∈ {i, j}, there exists a unique minimizer ψ∗a of Equation (6)
which is the unique solution of the following equation of ψ:

ψ =

∑M
m=1

ωa,m
λm

(
ka,m(ψ)

µa,m+ξm
v(ψ−ξm) + ka,m(ψ)

µa,m−ξm
v(ψ+ξm)

)
(∑M

m=1
ωa,m
λm

(
ka,m(ψ) 1

v(ψ−ξm) + ka,m(ψ) 1
v(ψ+ξm)

)) . (30)

Proof. The proof follows by noticing that, for each a ∈ {i, j}, the optimization problem in Equation
(6) is an unconstrained convex optimization problem in ψ. Taking the derivative and setting it equal
to 0 yields the desired result.

At this point, we proceed by showing how to compute the partial derivatives of fi,j(ω) whenever it is
expressed as in Equation (6).
Lemma C.5. Considerµ ∈ ΘKM andω ∈ ∆K×M such that fi,j(ω,µ) > 0. Furthermore, suppose
that ψ∗j > ψ∗i . Then, for all m ∈ [M ] it holds that:

∂fi,j(ω,µ)

∂ωa,m
=
d+(µa,m, ψ

∗
a + ξm) + d−(µa,m, ψ

∗
a − ξm)

λm
.

Proof. The proof is a straightforward adaptation of the proof of Lemma C.3.

Finally, we are now ready to prove our result on the sub-gradient of F (ω,µ).
Theorem 4.3. Considerµ ∈ ΘKM andω ∈ ∆K×M such that F (ω,µ) > 0 holds. Let (i, a) ∈ [K]2

be a pair of arms that attains the max-min value in Equation (2). Then a sub-gradient∇F (ω,µ) of
F (ω,µ) w.r.t. to ω is given by one of the two following expressions: for j ∈ {a, i} and m ∈ [M ] ,

∇F (ω,µ)j,m =
d+(µj,m, η

∗
i,a − ξm) + d−(µj,m, η

∗
i,a + ξm)

λm
if ψ∗i ≥ ψ∗a , (8)

∇F (ω,µ)j,m =
d+(µj,m, ψ

∗
j − ξm) + d−(µj,m, ψ

∗
j + ξm)

λm
otherwise. (9)

That sub-gradient∇F (ω,µ) is 0 in all the remaining KM − 2M dimensions.

Proof. The proof follows by the definition of F (ω,µ) together with Lemma 4.2, Lemma C.3, and
Lemma C.5.

12This can happen, for instance, whenever η∗i,j(ω) = µa,m ± ξm.
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We now show a sufficient condition for F (ω,µ) > 0 to hold when µ ∈ ΘKM .

Lemma C.6. Consider µ ∈ ΘKM such that there exists ? for which µ?,M > maxa 6=? µa,M .
Furthermore, consider ω ∈ ∆K×M such that ωi,M > 0 holds for all i ∈ [K]. Then, we have that
F (ω,µ) > 0.

Proof. From the definition of F , and the definition of ?, we have that:

F (ω,µ) ≥ min
a 6=?

inf
θa∈MF, θ?∈MF
θa,M≥θ?,M

∑
j∈{?,a}

∑
m∈[M ]

ωj,m
d(µj,m, θj,m)

λm

≥ min
a 6=?

inf
y≥x

ω?,M
d(µ?,M , x)

λM
+ ωa,M

d(µa,M , y)

λM

= min
a 6=?

inf
η∈[µa,M ,µ?,M ]

ω?,M
d(µ?,M , η)

λM
+ ωa,M

d(µa,M , η)

λM

> 0,

where in the last step we have used the fact that µ?,M > µi,M for all i 6= ?, together with ωi,M > 0
for all i ∈ [K].

Furthermore, we show that the sequence of weights generated by Algorithm 1 satisfy ωi,M > 0 for
all i ∈ [K]

Lemma C.7. The sequence of weights {ω̃(t)}t satisfy ωi,M (t) > 0 for all i ∈ [K] and for all t.

Proof. We begin by recalling the definition of ω̃(t):

ω̃(t+ 1) ∈ argmax
ω∈∆K×M

αt+1

t∑
s=KM

ω · Clips (∇F (ω̃(s), µ̂(s))− kl(ω,ω)

From this definition, thanks to the property of kl, we have that ω̃a,m(t) > 0 for all a ∈ [K], and all
m ∈ [M ].

Remark C.8. It follows by combining Lemma C.6 and Lemma C.7, that F (ω(t), µ̂(t)) = 0 might
happen only when there are multiple best arms at fidelity M . Whenever this condition is encountered,
it is possible to project the bandit model µ̂(t) to have a unique optimal arm (e.g., by adding a small
ε > 0 to one of the optimal arms). When looking at the proof of Theorem 4.1, we can see that this
does not impact its theoretical guarantees as (i) on the good event ET this does not happen, and,
Lemma C.17 holds unchanged.

C.2 Smoothness of F (ω, µ)

Lemma C.9. For any set S ⊆ ΘKM and any subset of arms A ⊆ [K], the function (ω,µ) 7→
infθ∈S

∑
a∈A,m∈[M ] ωa,m

d(µa,m,θa,m)
λm

is jointly continuous on ∆K×M ×ΘKM .

Proof. We apply (a trivial generalization of) Lemma 27 of [3]. The lemma in that paper is stated for a
set of alternative models, but the proof actually works for any set S. Likewise, it is stated for the case
of λm = 1, but since it works for an arbitrary Bregman divergence d it applies to a rescaled version as
well. To deal with the restriction to a subset of arms A instead of all arms, we can view the function
as a function of (ωA×[M ],µA), where we restrict the vectors to the arms in A, and continuity of the
original function is equivalent to continuity of the restricted version.

Lemma C.10. The function (ω,µ) 7→ F (ω,µ) is jointly continuous on ∆K×M ×ΘKM .

Proof. By definition, F (ω,µ) = maxi mina6=i fi,a(ω,µ) with fi,a(ω,µ) =

infθ∈Si,a
∑
a∈Ai,a,m∈[M ] ωa,m

d(µa,m,θa,m)
λm

for Si,a = {θ ∈ MMF | θa,M ≥ θi,M} and
Ai,a = {i, a}. Since a minimum of finitely many continuous functions is continuous and likewise for
the maximum, it suffices to show that each fi,a is jointly continuous. This is true by Lemma C.9.
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Corollary C.11. Let C ⊆ ΘKM be a compact set. Then F is uniformly continuous on ∆K×M × C.

Proof. The set ∆K×M ×C is compact and F is continuous, hence it is uniformly continuous on that
set.

Lemma C.12. Let µ ∈ ΘKM . For all ε > 0, there exists κε > 0 such that for all ω ∈ 4K×M and
all µ′ ∈ ΘKM , ∣∣∣∣∣∣µ− µ′∣∣∣∣∣∣

∞
≤ κε =⇒

∣∣∣F (ω,µ′)− F (ω,µ)
∣∣∣ ≤ ε.

Proof. Take any compact ball B(µ, κ) for the norm ‖ · ‖∞ with κ > 0 centered at µ. Then F is
uniformly continuous on ∆K×M × B(µ, κ) by Corollary C.11. This means that for any ε > 0, there
exists κ′ε > 0 such that for all (ω′,µ′) ∈ ∆K×M × B(µ, κ),

‖ω − ω′‖∞ ≤ κ′ε ∧ ‖µ− µ′‖∞ ≤ κ′ε =⇒ |F (ω′,µ′)− F (ω,µ)| ≤ ε .
We can take κε = min{κ, κ′ε} to remove the condition µ′ ∈ B(µ, κ). The result of the Lemma is
this for the special case ω′ = ω.

C.3 Correctness

In the following, we propose an analysis on the correctness which is based on the concentration results
provided in [22]. We notice that these results are based on Gaussian distributions. Nevertheless, at
the cost of a more involved notation, it is possible to extend all the results of this work for canonical
exponential families using, e.g., Theorem 7 in [19].

At this point, let us consider the following value of βt,δ:

βt,δ = log

(
K

δ

)
+ 2M log

(
4 log

(
K

δ

)
+ 1

)
+ 12M log (log(t) + 3) + 2MC̃, (31)

where C̃ is a universal constant (see Proposition 1 in [22]). Then, we can show the following result.
Proposition C.13. Let δ > 0, then it holds that Pµ(âτδ 6= ∗) ≤ δ.

Proof. With probabilistic arguments we have that:

Pµ(âτδ 6= ?) ≤ Pµ
(
∃t ≥ KM, ∃i 6= ?, min

j 6=i
fi,j(C(t), µ̂(t)) ≥ βt,δ

)
≤
∑
i 6=?

Pµ
(
∃t ≥ KM, min

j 6=i
fi,j(C(t), µ̂(t)) ≥ βt,δ

)
≤
∑
i 6=?

Pµ (∃t ≥ KM, fi,?(C(t), µ̂(t)) ≥ βt,δ)

≤
∑
i 6=?

Pµ

∃t ≥ KM,
∑

k∈{i,?}

∑
m∈[M ]

Nk,md(µ̂a,m(t), µa,m) ≥ βt,δ


≤ δ,

where in fourth step we have used the definition of fi,?, and in the last one Proposition 1 in [22]
together with a union bound on K.

C.4 Auxiliary lemmas

This section contains auxiliary lemmas that will be used in the analysis of Algorithm 1.

Lemma C.14. For all a ∈ [K],m ∈ [M ], and for all t ≥ 1, it holds thatNa,m(t) ≥
√
t

4KM−ln(KM).
Furthermore, it holds that: ∣∣∣∣∣∣ t∑

s=0

π̃(s)−N(t)
∣∣∣∣∣∣
∞
≤ 2 ln(KM)

√
t. (32)
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Proof. This lemma is a simple combination of Lemma 3 in [22] with the tracking result of [5]. Using
algebraic manipulations, we have that:

Na,m(t) ≥
t∑

s=1

π′a,m(s)−
∣∣∣Na,m(t)−

t∑
s=1

π′a,m(s)
∣∣∣

≥
t∑

s=1

π′a,m(s)− ln(KM)

≥
t∑

s=1

γs
KM

− ln(KM)

=
1

KM

t∑
s=1

1

4
√
s
− ln(KM)

≥
√
t

4KM
− ln(KM),

where, in the second step we have used Theorem 6 in [5], together with the fact that ln(KM) ≥
ln(4) ≥ 1.

For the second part of the proof, we have that:∣∣∣ t∑
s=1

π̃a,m(s)−Na,m(t)
∣∣∣ ≤ ∣∣∣ t∑

s=1

π′a,m(s)−Na,m(t)
∣∣∣+ 2

t∑
s=1

γs

≤ ln(KM) +
√
t

≤ 2 ln(KM)
√
t.

Lemma C.15. Consider ε > 0 and B ∈ R such that C∗(µ)−1 − B − ε > 0. Then, there exists a
constant Cε such that, for

∑
a,m

Ca,m(T ) ≥ max

{
λMCε,

log
(
K
δ

)
+ 2M log

(
4 log

(
K
δ

)
+ 1
)

C∗(µ)−1 −B − ε

}
:= C0(ε, δ), (33)

it holds that:

C∗(µ)−1 −B ≥ βT,δ∑
a,m Ca,m(T )

. (34)

Proof. Let Cε be a constant that depends on ε such that, for T ≥ Cε it holds that:

12M log(log(T ) + 3) + 2MC̃

λmin
≤ εT.

Then, for
∑
a,m Ca,m(T ) ≥ C0(ε, δ), we have that:

βT,δ∑
a,m Ca,m(T )

=
log
(
K
δ

)
+ 2M log

(
4 log

(
K
δ

)
+ 1
)

+ 12M log(log(T ) + 3) + 2MC̃∑
a,m Ca,m(T )

≤
log
(
K
δ

)
+ 2M log

(
4 log

(
K
δ

)
+ 1
)∑

a,m Ca,m(T )
+ ε

≤ C∗(µ)−1 −B,

which concludes the proof.
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C.5 Proof of Theorem 4.1

Before diving into the proof of Theorem 4.1, we introduce some additional notation. We denote with
B∞(x, κ) the ball of radius κ centered at x. Then, for all T , and ε > 0, we introduce the following
event:

Eε(T ) =

T⋂
t≥h(T )

{µ̂(t) ∈ B∞(µ, κε)} ,

where h(T ) ≈ T 1/4. At this point, we present our result. Furthermore, we denote with ω(t) the
vector of empirical cost proportions, namely, for all (a,m), ωa,m(t) =

Ca,m(t)∑
i∈[K]

∑
j∈[M] Ci,j(t)

.

First of all, we introduce an initial result that controls the expectation of the stopping cost.
Lemma C.16. Consider B such that C∗(µ)−1−B− ε > 0, and suppose that there exists a constant
Tε such that, for all T ≥ Tε, it holds that F (ω(T ), µ̂(T )) ≥ F (ω∗(µ)) − B on the good event
Eε(T ). Then, it holds that:

Eµ[cτδ ] ≤ λMTε + C0(ε, δ) + 1 +

+∞∑
t=0

Pµ(E(T )c). (35)

Proof. Using probabilistic arguments, we have that:

Eµ[cτδ ] =

∫ +∞

0

Pµ(cτδ > x)dx

≤ λMTε + C0(ε, δ) +

∫
λMTε+C0(ε,δ)

Pµ(cτδ > x, cτδ ≥ C0(ε, δ))dx

≤ λMTε + C0(ε, δ) +

∫
λMTε+C0(ε,δ)

Pµ
(
τδ >

x

λM
, cτδ ≥ C0(ε, δ)

)
dx

≤ λMTε + C0(ε, δ) + 1 +

+∞∑
T=bTε+C0(ε,δ)

λM
c

Pµ(τδ > T, cτδ ≥ C0(ε, δ))

≤ λMTε + C0(ε, δ) + 1 +

+∞∑
T=0

Pµ(E(T )c),

where (i) in the second inequality, we have upper bounded cτδ ≤ λMτδ, (ii) in the third inequality,
we have used the fact that τδ is an integer variable, and (iii) in the last inequality we have used
that for all T ≥ Tε such that

∑
a,m Ca,m(T ) ≥ C0(ε, δ), then we have that E(T ) ⊆ {τδ < T}.

Indeed, combining Lemma C.15 with the definition Tε, we obtain that for all T ≥ Tε such that∑
a,m Ca,m(T ) ≥ C0(ε, δ), then we have that E(T ) ⊆ {τδ < T}. This last step is direct by noticing

that F (ω(T ), µ̂(T )) ≥ βT,δ∑
a,m Ca,m(T ) implies stopping.

Lemma C.16 shows how to upper-bound the expected cost complexity. Notice that this result
requires different arguments w.r.t. the usual ones that appears while controlling the expected sample
complexity (see, e.g., [8]).

Then, we report a basic property of the sub-gradient ascent routing that is employed in our algorithm.
Before doing that, we recall that, on the good-event ET , it holds that there exists a constant L, that
depends on µ, such that the empirical sub-gradients are uniformly-bounded by L.
Lemma C.17. Let c̃(t) =

∑
a,m λmπ̃a,m(s). Define Cr := log(KM) +KMG+ 4(LλM )2 + 2G2,

and consider the sequence of weights {ω̃(t)}t generated by Algorithm 1. Then, on the good event
Eε(T ) it holds that:

T∑
t=h(t)

c̃(t)∇F (ω∗, µ̂(t)) · (ω∗ − ω̃(t)) ≤ Cr
√
T .
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Proof. The proof is identical to the one of Proposition 3 in [22]. The only difference is that, in our
case, we need to multiply the scale of the sub-gradient L by λM , to the additional presence of c̃(t) in
the sequence of gains that we use in our sub-gradient ascent algorithm.

Finally, we show that there exists an additional problem dependent constant Cµ that will be useful in
performing some upper-bound reasoning in the proof of the final result.

Lemma C.18. Consider the following quantity:

mina 6=? infθa,θ?∈MF
∑T
s=1

∑
i∈{?,a}

∑
m π̃i,m(s)d(µi,m, θi,m)∑

a,m Ca,m(T )
.

There exists a problem dependent constant Cµ such that the previous equation can be upper bounded
by:

F (ω(T ),µ) +
4 ln(KM)MλMCµ

λmin
√
T

.

Proof. Let us begin by analyzing F (ω(T ),µ). Fix ā such that F (ω(T ),µ) = f?,ā(ω(T ),µ). More-
over, consider θ?,θā ∈ argmin

∑
i∈{?,ā}

∑
m ωa,m(T )

d(µa,m,θa,m)
λm

. Then, consider the following
difference:

H :=
mina 6=? infθa,θ?∈MF

∑T
s=1

∑
i∈{?,a}

∑
m π̃i,m(s)d(µi,m, θi,m)∑

a,m Ca,m(T )
− F (ω(T ),µ).

Then, the previous Equation can be upper bounded by:

H ≤

∑
i∈{?,ā}

∑
m

(∑T
s=1 π̃i,m(s)−Ni,m(T )

)
d(µi,m, θ

∗
i,m)∑

a,m Ca,m(T )

≤ 2 ln(KM)
√
T

∑
i∈{?,ā}

∑
m d(µi,m, θ

∗
i,m)∑

a,m Ca,m(T )

≤ 4 ln(KM)M
√
TCµ∑

a,m Ca,m(T )
,

where in the first step, we have used the definition of θ∗ā,θ
∗
? and the definition of ω(T ), in the second

one, we have used Lemma C.14, and in the last one the facts that, thanks to definition θ∗ā,θ
∗
? , there

exists some problem dependent constant Cµ such that d(µi,m, θ
∗
i,m) is bounded.

Theorem 4.1. For any multi-fidelity bandit model µ ∈MMF, Algorithm 1 using the threshold βt,δ
given in (31) is δ-correct and satisfies

lim sup
δ→0

Eµ[cτδ ]

log(1/δ)
≤ C∗(µ). (5)

Proof. The proof of the δ-correctness is from Proposition C.13.

To prove the optimality, we first proceed by upper bounding the following quantity on the good event
Eε(T ):

F (ω∗,µ)− F (ω(T ), µ̂(T )). (36)
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Define, for brevity, T̃ := T − h(T ) + 1 and c̃(s) :=
∑
a,m λmπ̃a,m(s). Then, we start by analyzing

F (ω∗,µ). On Eε(T ) we have that:

F (ω∗,µ) =

∑
a,m Ca,m(T )∑
a,m Ca,m(T )

F (ω∗,µ)−
∑T
s=1 c̃(s)∑

a,m Ca,m(T )
F (ω∗,µ) +

∑T
s=1 c̃(s)∑

a,m Ca,m(T )
F (ω∗,µ)

≤
∑T
s=1 c̃(s)∑

a,m Ca,m(T )
F (ω∗,µ) +

F (ω∗,µ)∑
a,m Ca,m(T )

2 ln(KM)
√
T

≤
∑T
s=1 c̃(s)∑

a,m Ca,m(T )
F (ω∗,µ) +

2 ln(KM)F (ω∗,µ)

λmin
√
T

≤
∑T
s=h(T ) c̃(s)∑
a,m Ca,m(T )

F (ω∗,µ) +
h(T )

λminT
F (ω∗,µ) +

2 ln(KM)F (ω∗,µ)

λmin
√
T

≤
∑T
s=h(T ) c̃(s)F (ω∗, µ̂(t)))∑

a,m Ca,m(T )
+
λM T̃ ε

λminT
+

h(T )

λminT
F (ω∗,µ) +

2 ln(KM)F (ω∗,µ)

λmin
√
T

,

where in the first inequality we have used Lemma C.14, while in the last step we have used Lemma

C.12 together with the event Eε(T ). At this point, we focus our analysis on
∑T
s=h(T ) c̃(s)F (ω∗,µ̂(t))∑

a,m Ca,m(T ) .

Define, for brevity, gs = c̃(s)∇F (ω̃(s), µ̂(s)); then, we have that:∑T
s=h(T ) c̃(s)F (ω∗, µ̂(s)))∑

a,m Ca,m(T )
=

∑T
s=h(T ) c̃(s) (F (ω∗, µ̂))± F (ω̃(s), µ̂(s))))∑

a,m Ca,m(T )

≤
∑T
s=h(T ) c̃(s)F (ω̃(s), µ̂(s)))∑

a,m Ca,m(T )
+

∑T
s=h(T ) gs · (ω∗ − ω̃(s))∑

a,m Ca,m(T )

≤
∑T
s=h(T ) c̃(s)F (ω̃(s), µ̂(s)))∑

a,m Ca,m(T )
+

Cr

λmin
√
T

≤
∑T
s=h(T ) c̃(s)F (ω̃(s),µ)∑

a,m Ca,m(T )
+

Cr

λmin
√
T

+
λM T̃ ε

λminT
,

where in the first inequality we have used the concavity of F , in the second one we have used Lemma
C.17, and in the last one Lemma C.12 and the definition of Eε(T ).

Finally, we have that:∑T
s=1 c̃(s)F (ω̃(s),µ)∑

a,m Ca,m(T )
=

∑T
s=1 mina6=? infθa,θ?∈MF

∑
i∈{?,a}

∑
m π̃i,m(s)d(µi,m, θi,m)∑

a,m Ca,m(T )

≤
mina6=? infθa,θ?∈MF

∑T
s=1

∑
i∈{?,a}

∑
m π̃i,m(s)d(µi,m, θi,m)∑

a,m Ca,m(T )

≤ F (ω(T ),µ) +
4 ln(KM)MCµ

λmin
√
T

≤ F (ω(T ), µ̂(T )) +
4 ln(KM)MCµ

λmin
√
T

+ ε,

where (i) in the first equality we used the definition of c̃(s), ω̃(s) and F , in the second one we used
Lemma C.18, and in the last one Lemma C.12.

Given this analysis, let us define:

BT :=
2λM T̃ ε

λminT
+

h(T )

λminT
F (ω∗,µ) +

2 ln(KM)F (ω∗,µ)

λmin
√
T

+

+
Cr

λmin
√
T

+
4 ln(KM)MCµ

λmin
√
T

+ ε.
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Consider T such that:

T ≥ max

{(
2 ln(KM)F (ω∗,µ)

λminε

)2

,

(
Cr
λminε

)2

,

(
4 ln(KM)MCµ

λminε

)2
}

:= Tε.

Then, it holds that:

BT ≤
2λM ε

λmin
+ 5ε = B̄ε,

and, consequently, we have that

F (ω(T ), µ̂(T )) ≥ F (ω∗,µ)− B̄ε.
Combining this result with Lemma C.15 and C.16, we obtain:

E[cτδ ] ≤ λMTε + C0(δ, ε) + 1 +

+∞∑
t=0

Pµ(Eε(t)c).

By Lemma C.14 and Lemma 19 in [8], we obtain that:

lim sup
δ→0

E[cτδ ]

log(1/δ)
≤ 1

C∗(µ)−1 − B̄ε
.

Letting ε→ 0 concludes the proof.

D Experiment details and additional results

In this section, we provide experimental details and additional results. For the experiments we relied
on a server with 100 Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz cpus and 256GB of RAM. The
time to obtain all the empirical results is less than a day.

This section is structured as follows.

• First, we provide an additional details and results on the experiment presented in Section 5
(Section D.1 and Section D.2).

• Secondly, we provide results on additional 4× 5 multi-fidelity bandits (Section D.3).
• Then, we analyze a typical trick that is used to improve the performance of gradient-based

methods, that is using a constant rate against using the learning rate that the theory prescribes.
(Section D.4).

• We then present results using very small value of δ w.r.t. to the one that has been considered
in the main text (Section D.5). In particular, we verify that the performance difference
amplifies.

• Finally, we discuss the approaches of [31].

D.1 Further details on the experiments presented in Section 5

First instance We begin by providing further details on the 4× 5 multi-fidelity bandit model that
we used in Figure 1 and Figure 2. First, Table 2 reports the 4× 5 bandit model of Figure 1.

Table 2: Multi-fidelity bandit model presented in Figure 1.
µ1 µ2 µ3 µ4 ξ λ

m = 1 0.9465 0.8526 0.8162 0.9099 0.1 0.05
m = 2 0.7727 0.8708 0.9050 1.0594 0.08 0.1
m = 3 0.8812 0.8515 0.8209 1.0083 0.05 0.2
m = 4 0.8284 0.8374 0.8353 0.9745 0.025 0.4
m = 5 0.8494 0.8401 0.8495 0.9856 0.0 5

All arms, both for the bandit model of Figure 1 and 2 are Gaussian distributions with variance
σ2 = 0.1. The bandit model in Figure 1 has been generated according to a procedure that has been

31



used to generate MF instances in [25] (see their Appendix D.1). Specifically, first, twoM -dimensional
vectors are specified, which we refer to as a and b. Specifically, a and b are such that am ≥ am+1

and bm ≥ bm+1 for all m ∈ [M − 1]. Then, we first sample the means of the arm at fidelity M 13,
and once this is done we sample µi,m ∈

[
µi,M − am − b

2 , µi,M + am + b
2

]
. Then, ξ is computed

as ξm = am + bm
2 . In this sampling procedure, we have used a = [0.075, 0.06, 0.04, 0.02, 0] and

b = [0.05, 0.04, 0.02, 0.01, 0].

Second instance We now recall the 5× 2 example of Section 5:

Table 3: Multi-fidelity bandit model presented in Figure 2.
µ1 µ2 µ3 µ4 µ5 ξ λ

m = 1 0.4 0.4 0.4 0.4 0.5 0.1 0.5
m = 2 0.5 0.5 0.5 0.5 0.6 0 5

We prove that, in this instance, the oracle weights are given by ω∗i = [0.09621, 0] for all i ∈ [4], and
ω∗5 = [0, 0.61516] (this number have been rounded to the fourth decimal precision). In order to prove
this, we first notice that in the considered domain the optimal fidelity for i ∈ [4] is m = 1. This is
direct from the fact that µi,m = µi,M − ξm (see, e.g., Proposition B.5). Furthermore, we recall the
expression f5,i, for any i ∈ [4]:

f5,i(ω,µ) = inf
η∈[µi,M ,µ5,M ]

∑
m∈[M ]

ω5,m
d−(µ5,m, η + ξm)

λm
+ ωi,m

d+(µi,m, η − ξm)

λm
.

Then, since η∗5,i ∈ [µi,M , µ5,M ], µi,M = µ5,m = µ5,M − ξm, we have that the optimal fidelity for
arm 5 is m = 2. At this point, consider the oracle weights ω∗. We notice that, due to the symmetry
of the problem, ω∗i,1 is equal for all i ∈ [4]. Then, we can rewrite f5,i(ω

∗,µ) as a function of a single
variable, that is:

f5,i(ω,µ) = inf
η∈[µi,M ,µ5,M ]

(1− 4ωi,1)
d−(µ5,2, η)

λM
+ ωi,1

d+(µi,1, η − ξm)

λm
,

and, consequently, we obtain that C∗(µ)−1 can be expressed as a convex optimization of a single
variable, that is ωi,1. Taking the derivative of F (ω,µ) w.r.t. ωi,1 we obtain that the following equality
should be satisfied at the optimum:

4
d(µ1,M , η

∗
5,i)

λM
=
d(µi,1, η

∗
5,i − 1)

λm
.

Solving for η∗5,i gives a unique solution in the range [0.5, 0.6], which is 0.539. Then, using Lemma C.3
and solving for ωi,1, we obtain ωi,1 = 0.09621, and consequently, ω5,2 = 0.61516.

Thresholds To conclude, we comment on the thresholds βt,δ used by the algorithms. For the
stopping rule in MF-GRAD we used βt,δ = log(K/δ) +M log(log(t) + 1), which is a simplification
of its theoretical value (31) that retains the same scaling in K and M (up to constants). In GRAD, we
used βt,δ = log(K/δ) + log(log(t) + 1), which is a similar simplification of the usual threshold for
BAI, which instead of concentrating a sum of 2M KL terms (see the proof of Proposition C.13) only
requires to concentrate a sum over 2 KL terms. Finally, in the confidence intervals that are used in

IISE we have used the confidence bonuses
√

2σ2(log(KM/δ)+log(log(t)))
Na,m(t)

14, which compared to their
original form is replacing some crude union bound over t with a stylized version of the threshold that
would follows from using tight time-uniform concentration. These choices were adopted consistently
in all the experiments presented in this appendix, and they ensured the δ-correctness requirement in
all cases.

13For this step, we constrained the minimum gap between arms at fidelity M is at least 0.1.
14Notice, indeed, that ISEE requires a union bound both on K and M .
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D.2 Empirical cost proportions of MF-GRAD

In this section, we analyze the behavior of MF-GRAD by analyzing the evolution of the empirical
cost proportions. Specifically, we repeat on the 4× 5 bandit model of Table 2, the same experiment
that we presented in Section 5 for the 5× 2 bandit model. Figure 4 reports the result. Interestingly,
we highlight how the sparsity pattern emerges also in this domain.

D.3 Results on additional domains

In this section, we present results on additional 4× 5 multi-fidelity bandit models. Specifically, we
generate another random instance according to the procedure of [25], and we report the model in
Table 4. Furthermore, we created an additional bandit model where means of some arms are slightly
increasing on displaying a stationary trend over fidelity and we report the model in Table 5. In both
cases, we considered Gaussian distribution with σ2 = 0.1. Empirical results of MF-GRAD, IISE and
GRAD for δ = 0.01 can be found in Figure 5 and 6 respectively. As we can appreciate, MF-GRAD
maintains the most competitive performance across both domains.

Table 4: Additional random multi-fidelity bandit model.
µ1 µ2 µ3 µ4 ξ λ

m = 1 0.6944 0.5080 0.4153 0.3564 0.1 0.05
m = 2 0.5634 0.3723 0.4132 0.4570 0.08 0.1
m = 3 0.6178 0.4322 0.3817 0.4065 0.05 0.2
m = 4 0.6323 0.4225 0.3838 0.3582 0.025 0.4
m = 5 0.6171 0.4216 0.3831 0.3783 0.0 1

Table 5: Additional multi-fidelity bandit model.
µ1 µ2 µ3 µ4 ξ λ

m = 1 0.41 0.35 0.51 0.41 0.1 0.1
m = 2 0.45 0.37 0.56 0.39 0.08 0.125
m = 3 0.47 0.38 0.64 0.40 0.04 0.25
m = 4 0.48 0.36 0.62 0.42 0.02 0.5
m = 5 0.5 0.35 0.61 0.42 0.0 1

D.4 Improving performance with constant learning rate

As reported in [22], using constant learning rate can improve the identification performance in
standard BAI settings. In the following, we analyze the performance difference of MF-GRAD that
uses the theoretical learning rate, and MF-GRAD that uses a constant learning rate of α = 0.25. We
will refer this second version as MF-GRAD-CONST. Figure 7 and 8 reports the performance of the
algorithms in the two bandit models of Section 5. As we can see, in both cases, MF-GRAD-CONST
outperforms MF-GRAD.

We further investigate this behavior by showing the evolution of the empirical cost proportions
of MF-GRAD-CONST during the learning process. Figure 9 and 10 reports the evolution of the
empirical costs, over 100000 iterations. Comparing the results with Figure 4 and 9 we can appreciate
as MF-GRAD-CONST move away from the initial cost proportions way sooner than MF-GRAD,
which explains its superior performance in the moderate regime of δ.

D.5 Smaller value of δ

Finally, we repeat the experiments that we presented in the previous section using smaller values of δ.
Specifically, we consider δ = 10−10. Figure 11 reports the performance of the 4× 5 bandit model of
Section 5, Figure 12 reports the performance of the 5× 2 bandit model of Section 5, Figure 13 and
14 reports the performance of the additional bandit models presented in Appendix D.3. As one can
notice the performance gap between MF-GRAD and the considered baseline increases.
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Figure 4: Empirical cost proportions of MF-GRAD for 100000 iterations on the 5×2 bandit model of Section 5.
Results are average over 100 runs and shaded area report 95% confidence intervals. Empirical cost proportions
of each arm are plotted with the same color. Cost proportions at fidelity 1, 2, 3, 4 and 5 are visualized with
circle, squared, cross, triangle, and diamond respectively.

Figure 5: Empirical cost complexity for 1000 runs
times with δ = 0.01 on the multi-fidelity bandit of
Table 4.

Figure 6: Empirical cost complexity for 1000 runs
times with δ = 0.01 on the multi-fidelity bandit of
Table 5.
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Figure 7: Empirical cost complexity for 1000 runs
times with δ = 0.01 on the 4× 5 multi-fidelity bandit
of Section 5.

Figure 8: Empirical cost complexity for 1000 runs
times with δ = 0.01 on the 5× 2 multi-fidelity bandit
of Section 5.

Figure 9: Empirical cost proportions of MF-GRAD-CONST for 100000 iterations on the 4× 5 bandit model
of Section 5. Results are average over 100 runs and shaded area report 95% confidence intervals. Empirical
cost proportions of each arm are plotted with the same color. Cost proportions at fidelity 1, 2, 3, 4 and 5 are
visualized with circle, squared, cross, triangle, and diamond respectively.
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Figure 10: Empirical cost proportions of MF-GRAD-CONST for 100000 iterations on the 5× 2 bandit model
of Section 5. Results are average over 100 runs and shaded area report 95% confidence intervals. Empirical cost
proportions of each arm are plotted with the same color. Cost proportions at fidelity 1 and 2 are visualized with
circle and squared respectively.

Figure 11: Empirical cost complexity for 1000 runs
times with δ = 10−10 on the 4×5 multi-fidelity bandit
of Table 2.

Figure 12: Empirical cost complexity for 1000 runs
times with δ = 10−10 on the 5×2 multi-fidelity bandit
of Table 3.
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Figure 13: Empirical cost complexity for 1000 runs
times with δ = 10−10 on the multi-fidelity bandit of
Table 4.

Figure 14: Empirical cost complexity for 1000 runs
times with δ = 10−10 on the multi-fidelity bandit of
Table 5.

D.6 On LUCB-ExploreA and LUCB-ExploreB

In this section, we present in detail the main issue behind the algorithms presented in [31], i.e.,
LUCBExploreA and LUCBExploreB, that is the fact that these algorithm might fail at stopping in
some specific multi-fidelity bandit models. First, we provide numerical evidence of this phenomena
by running both methods in a specific instance (Section D.6.1). Then, in Section D.6.2, we point out
an error in the analysis of [31] that highlights how both algorithms fails at stopping when considering
instances such as the one that has been considered in Section D.6.2.

D.6.1 Experimental issues

When experimenting with the algorithms proposed in [31], namely LUCBExploreA and LUCB-
ExploreB, we have faced stopping issues. Specifically, both algorithms were not terminating in
any reasonable number of steps on some specific instances. We now report an illustrative example
of such scenarios. Consider the following Gaussian multi-fidelity bandit model: µ1 = [0.64, 0.6],
µ2 = [0.46, 0.5], λ = [0.1, 5], ξ = [0.1, 0] and σ2 = 1. In this scenario, the well-known LUCB algo-
rithm [12] which only uses samples at fidelity M , stops soon (iteration ≈ 100k) paying a total cost of
roughly 500k. When running LUCBExploreA and LUCBExploreB, instead, we faced termination
issues. We let both algorithms run for a maximum number of 108 samples (reaching a total cost
which is approximately 107), and the stopping criterion was never met for LUCBExploreA, while
70% of LUCBExploreB runs did not stop. LUCBExploreB explores more fidelities at the beginning,
and that initial exploration can be enough to trigger the stopping test on some runs, but many continue
until we artificially stop the experiment. Figure 15 reports the results of this experiment.

As a final remark, we notice that both LUCBExploreA and LUCBExploreB require additional
knowledge in order to run, that is an upper bound on µ1,M and a lower bound on µ2,M (assuming
arms to being ordered according to µ1,M > µ2,M ≥ · · · ≥ µK,M ). The result presented in this
section have been presented running their algorithms in the most favorable scenario, that is the
situation in which the agent has perfect knowledge on the values µ1,M and µ2,M .

D.6.2 Theoretical issues

The general idea of the LUCBExplore algorithms of [31] is to identify for each arm the “optimal
fidelity” and pull the arm at that fidelity. In Appendix B.5, we described how that “optimal fidelity”
can differ from the fidelity selected by our lower bound. Since our lower bound can be matched by
an algorithm and thus describes the actual cost complexity of the problem, it betters represent the
notion of optimal fidelity. We will thus call the fidelity used by the LUCBExplore algorithms target
fidelity instead. The two variants ExploreA and ExploreB differ in the mechanism used to look for
the target fidelity.
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Figure 15: Visualization of the non-stopping behavior of LUCBExploreA and LUCBExploreB.

We first show that even if their algorithm used an oracle for the fidelity exploration mechanism that
returns the target fidelity for all arms, it would still not be able to stop on some examples. We then
highlight an issue with the proof of [31].

Failure to stop with an oracle Consider the bandit instance from Appendix B.5. Recall that this is
a 2× 2 example of multi-fidelity BAI problem with ξ1 = 0.1, ξ2 = 0.0, µ1,M = 0.6, µ1,m = 0.65,
µ2,M = 0.5, µ2,m = 0.45 (we write M = 2 and m = 1). All distributions are Gaussian with
variance 1. We choose λM > 4λm, which means that the target fidelity for that problem are m∗1 = 1
and m∗2 = 1 (see details in Appendix B.5). LUCBExplore with an oracle that always selects that
fidelity is the following algorithm:

• Initialization: µ̂k,m(t) = 0, Nk,m(t) = 0, UCBk(t) = 1, LCBk(t) = 0 for all arms k and
fidelity m. `t = 1, ut = 2.

• While LCB`t(t) ≤ UCBut(t)
– `t = arg maxk UCBk(t), ut = arg maxk∈[k]\{`t} UCBk(t)

– Pull arms `t and ut at their target fidelity.

• Output `t

The indices are

LCBk(t) = max
m

(µ̂k,m(t)− ξm − β(Nk,m(t), t, δ))

UCBk(t) = min
m

(µ̂k,m(t) + ξm + β(Nk,m(t), t, δ))

where β(n, t, δ) =
√

log(Lt4/δ)/n for some constant L > 0.

In the two-arms example here, the algorithm simplifies greatly: it always pulls both arms alternatively,
always at fidelity m = 1. It stops when the LCB of one arm surpasses the LCB of the other.

We show that it can’t stop and return the best arm 1, unless a confidence interval is not valid, which
happens with small probability. If µ̂1,1(t) ≤ µ1,1 + β(t/2, t, δ),

LCB1(t) = max{0, µ̂1,1(t)− ξ1 − β(t/2, t, δ)}
≤ µ1,1 − ξ2
= 0.55 .
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On the other hand, if min{1, µ̂2,1(t) ≥ µ2,1 − β(t/2, t, δ),

UCB2(t) = min{1, µ̂2,1(t) + ξ1 + β(t/2, t, δ)}
≥ µ2,1 + ξ1
= 0.55 .

We get that we always have LCB1(t) ≤ UCB2(t), unless one of the two concentration inequalities
on the empirical means are not true. The confidence width β is designed to make those inequalities
true for all t ∈ N with probability close to 1. We can similarly get that LCB2(t) ≤ UCB1(t) (which
is expected since 2 is a worse arm) unless some concentration inequality is false.

We obtain that this algorithm with an oracle selection for the target fidelity cannot stop fast: the only
way it can stop is if unlikely deviations occur.

Issue with the proof There is an issue with the proof of the cost complexity upper bound of [31].
The issue is in the first 3 steps of their appendix E.2, pages 17 and 18. They identify a threshold c
(with value 0.55 in our example of the last paragraph) and prove the following.

• Step 1: if the algorithm does not terminate and confidence intervals hold, then either both
LCB`t(t) ≤ c and UCB`t(t) ≥ c or both LCBut(t) ≤ c and UCBut(t) ≥ c.

• Step 2: confidence intervals are likely to hold.
• Step 3: if a sub-optimal arm k satisfies LCBk(t) ≤ c and UCBk(t) ≥ c, then its target

fidelity cannot be pulled much.

They conclude that for all arms, the number of pulls at the target fidelity is upper bounded, with large
probability.

Let’s see the issue with that proof, on the same example as in the last paragraph.

In the example above with the oracle choice for the target fidelity, we saw that if confidence intervals
hold and `t = 1 (which is the most likely), then LCB`t(t) ≤ c and UCB`t(t) ≥ c. That is, step 1
gives a condition on arm 1 only (and nothing on arm 2). But then we get nothing from step 3, since
arm 1 is not a sub-optimal arm.

We only get an upper bound on the number of pulls for sub-optimal arms if we can say that they
satisfy LCBk(t) ≤ c and UCBk(t) ≥ c at some point, but it might not be the case. Indeed, when
the algorithm does not terminate, steps 1 and 2 together give that with large probability either both
LCB`t(t) ≤ c and UCB`t(t) ≥ c or both LCBut(t) ≤ c and UCBut(t) ≥ c. It is possible that we
always have this property for `t = 1 (the optimal arm), and that we can never apply step 3.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Each statement presented in the main text is supported with formal proofs
presented in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our algorithm is described in mathematical rigor so that it can be reproduced.
Furthermore, codebase and detailed instructions on how to reproduce the result is provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the codebase with instructions on how to reproduce the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiments have been detailed in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results are average of 1000/100 runs. Error bars are reported in all cases
(e.g., depending on the experiment, via boxplots and 95% confidence intervals).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computational resources employed in this study are reported in Appendix D.
Time taken to re-run all the experiments is also reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper aligns with the guidelines (e.g., does not involve human participants
nor datasets) and anonymity of the submission is preserved.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is a foundational research work whose goal is to advance theoretical
aspects of sequential-decision making. We do not any direct path to negative applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve such assets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not rely on existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the codebase together with instruction on how to reproduce the
experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing experiments and research with human subjects were in-
volved in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No study participants were involved in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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